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Measurement of the time-integrated CP asymmetry in D’ — K%KY decays
using Belle and Belle 11 data
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We measure the time-integrated CP asymmetry in D — KK decays reconstructed in e

Te~ — cC

events collected by the Belle and Belle II experiments. The corresponding data samples have integrated
luminosities of 980 and 428 fb~!, respectively. The D° decays are required to originate from the
D** — DOz decay, which determines the charm flavor at production time. A control sample of

D" — KTK~ decays is used to correct for production and detection asymmetries. The result,
(—1.4 £ 1.3(stat) + 0.1(syst)) %, is consistent with previous determinations and with CP symmetry.

DOI: 10.1103/PhysRevD.111.012015

I. INTRODUCTION

Charge-parity (CP) violation in the charm sector was
first observed by the LHCb Collaboration in the difference
between the CP asymmetries of D — K*K~ and D —
#tn~ decays [1]. (Throughout this paper, charge-conjugate
modes are implied unless stated otherwise.) A more recent
result reports evidence that the CP violation occurs
primarily in the D° — 77z~ mode [2]. However, the origin
of the LHCb CP asymmetry is not fully understood and
there is a debate about whether it could be due to physics
beyond the standard model [3—6]. This motivates additional
measurements of CP asymmetries in D decays to two
pseudoscalars to evaluate predictions based on the pattern
of flavor-SU(3) breaking in charm decays [4,7].

The D° — KK decay proceeds through a color- and
Cabibbo-suppressed transition that involves interference
between ¢ — us5 and ¢ — udd amplitudes, mediated by
the exchange of a W boson at tree level. Such interference
can generate CP asymmetries at the 1% level, even if the
Cabibbo-Kobayashi-Maskawa phase is the only source of
CP violation [7-9]. These features make the D° — K9K?
mode an important ingredient in understanding of the
origin of CP violation in charm decays.

Several experiments have searched for CP violation in
D° — K9K?9 decays [10-14]. The world-average value of
the CP asymmetry, Acp(D° — KOK3) = (-1.9 £ 1.0)%
[15], is dominated by measurements from Belle [12]
and LHCb [13]. Using a sample of eTe™ collisions with
an integrated luminosity of 921 fb~!, Belle measured
Acp(D° - KKY)=(-0.02+£1.53+0.024+0.17)%, where
the first uncertainty is statistical, the second systematic, and
the third is due to the uncertainty in the CP asymmetry of
the D — K(S)no reference mode. A more precise result is
obtained by LHCb using a 6 fb~! sample of pp collisions:
(=3.1 +1.2+ 0.4 +0.2)%, where the first uncertainty is

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

statistical, the second is systematic, and the third is due to
the uncertainty in the CP asymmetry of the reference D° —
K*K~ decay. The measurement of Acp(D° - K*K~) has
been recently improved by LHCb [2], bringing the corre-
sponding uncertainty below the 0.1% level. The precision
of the world-average value of Acp(D® — K9K?Y) is there-
fore limited by statistical uncertainties and is expected to
greatly improve over the next few years with the larger
samples being collected at LHCb and Belle II.

In this paper, we report a measurement of
Acp(D® — K3KY) using a combination of Belle and
Belle II data, which have integrated luminosities of 980
and 428 fb~! [16], respectively. To determine the produc-
tion flavor of the neutral D meson, which is referred to as
“tagging,” we reconstruct D — KK decays from D*" —
Dz decays in ete” — c¢ events. The decay-time-
integrated CP asymmetry, defined as

F(DO — KgKg) - F(I?O - KgKg)
(D’ - K9KY) +T'(D° — K9K?)'

(1)

where I is the time-integrated decay rate, is measured from
the raw asymmetry in reconstructed yields,

Acp(D° — KSKY) =

N(D° - K9KY) — N(D° — K9K?Y)
N(D° - K$K9) + N(D° — K$KY9)’

0
KK

S —
Araw -

(2)

after correcting for “nuisance” asymmetries induced by
production and detection mechanisms. The nuisance asym-
metries are determined using the control channel D** —
D°(— K*K~)x*. In the limit of small CP and nuisance
asymmetries, the raw asymmetry of a D**-tagged D° decay
to a two-body and CP-symmetric final state f can be
expressed as

Al =Acp(D° = f)+AR"(D° > f) +AZ(D° > ). (3)
The term AD" arises, in e*e™ — c¢ events, from the

forward-backward asymmetric production of charm
hadrons due to y*-Z° interference and higher-order QED
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effects [17-19]. This production asymmetry is an odd
function of the cosine of the polar angle in the center of
mass system, cos 9*(D*+), and therefore averages to zero
only when integrated over a cos 6*(D**)-symmetric accep-
tance, which is not the case at Belle and Belle II. The term AZ?
is the detection asymmetry of the low-momentum tagging
pion from the D** decay (“soft” pion). Having opposite
strangeness, the two kaons in the DP final states do not
contribute any CP violation or detection asymmetry.
Assuming that the nuisance asymmetries are identical for
D° — K9KY and D° — KK~ decays, or that they can be
made so by weighting the control sample, the CP asymmetry
in D° — KK decays can be determined as

0 g0
Acp(D® = KOK9) = ARs's — AKK™ 4 Ap(D° - K*K7),
(4)

where A¢p(D° — K K~) is an external input. In particular,
we use Acp(D® — K*K~) computed from the results
reported in Refs. [2,20] as

Acp(D® —» KTK™) = ASL(DY - KTK™) + AY
= (6.7+5.4) x 1074, (5)

where AL is the direct CP asymmetry, AY is the asymmetry
arising from CP violation in mixing and in the interference
between mixing and decay [21,22], and we have used the fact
that the average decay times of the selected D® — K+K~
decays are equal to the D° lifetime. The value of AY is
here assumed to be independent of the D° decay mode [21].
The measurements of A%i;(DO — KTK™) from Ref. [2],
(7.74+5.7) x 107, and AY from Ref. [20], (=1.0 £ 1.1)x
107, have a total correlation of 35% [23].

To avoid potential bias, an arbitrary and undisclosed

offset is added to the measured value of Aﬁgfg from the
data. This offset remains undisclosed until we finalize the
entire analysis procedure and determine all uncertainties.

The paper is organized as follows. Section II provides an
overview of the Belle and Belle II detectors. Section III
details the simulation samples used in the measurement.
The reconstruction and selection of both the signal D° —
K9KY and control D — K*K~ decays are presented in
Sec. IV. Section V discusses the weighting of the control
mode to match the kinematic distributions of the signal
mode and ensure an accurate cancellation of the nuisance
asymmetries. Determination of the raw asymmetries is
covered in Sec. VI, followed by a discussion of the
systematic uncertainties affecting the measurement in
Sec. VII. Final results are presented in Sec. VIII, followed
by concluding remarks.

II. BELLE AND BELLE II DETECTORS

The Belle experiment [24,25] operated at the KEKB
asymmetric-energy ee~ collider [26,27] between 1999
and 2010. The detector consisted of a large-solid-angle
spectrometer, which included a double-sided silicon-strip
vertex detector, a 50-layer central drift chamber, an array
of aerogel threshold Cherenkov counters, a barrel-like
arrangement of time-of-flight scintillation counters, and
an electromagnetic calorimeter composed of CsI(T1) crys-
tals. All subdetectors were located inside a superconducting
solenoid coil that provided a 1.5 T magnetic field. An iron
flux-return yoke, placed outside the coil, was instrumented
with resistive-plate chambers to detect K9 mesons and
identify muons. Two inner detector configurations were
used: a 2.0 cm radius beam pipe and a three-layer silicon
vertex detector; and, from October 2003, a 1.5 cm radius
beam pipe, a four-layer silicon vertex detector, and a small-
inner-cell drift chamber [28].

The Belle II detector [29,30] is an upgrade with several
new subdetectors designed to handle the significantly
larger beam-related backgrounds of the new collider,
SuperKEKB [31]. It consists of a silicon vertex detector
wrapped around a 1 cm radius beam pipe and comprising
two inner layers of pixel detectors and four outer layers
of double-sided strip detectors, a S56-layer central drift
chamber, a time-of-propagation detector, an aerogel ring-
imaging Cherenkov detector, and an electromagnetic calo-
rimeter, all located inside the same solenoid as used for
Belle. A flux return outside the solenoid is instrumented
with resistive-plate chambers, plastic scintillator modules,
and an upgraded readout system to detect muons and K9
mesons. For the data used in this paper, collected between
2019 and 2022, only part of the second layer of the pixel
detector, covering 15% of the azimuthal angle, was
installed.

III. SIMULATION

We use simulated event samples to identify sources of
background, optimize selection criteria, match the kin-
ematic distributions of signal and control decays, determine
fit models, and validate the analysis procedure. We generate
ete” > T (nS) (n=4, 5) events and simulate particle
decays with EviGen [32]; we generate continuum ete™ —
qq (where g is a u, d, c, or s quark) with PYTHIA6 [33] for
Belle, and with Kkmc [34] and pYTHIAS [35] for Belle II;
we simulate final-state radiation with PHOTOS [36,37]; we
simulate detector response using Geant3 [38] for Belle and
Geant4 [39] for Belle II. In the Belle simulation, beam
backgrounds are taken into account by overlaying random
trigger data. In the Belle II simulation, they are accounted
for by simulating the Touschek effect [40], beam-gas
scattering, and luminosity-dependent backgrounds from
Bhabha scattering and two-photon QED processes [41,42].
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IV. RECONSTRUCTION AND EVENT SELECTION

We use the Belle II analysis software framework (BASF2)
to reconstruct both Belle and Belle II data [43,44]. The
Belle data are converted to the Belle II format for BASF2
compatibility using the B2BII framework [45].

Events are selected by a trigger based on either the total
energy deposited in the electromagnetic calorimeter or the
number of charged-particle tracks reconstructed in the
central drift chamber. The efficiency of the trigger is found
to be close to 100% for both signal and control mode
decays.

Candidate K§ — 7"z~ decays are reconstructed from
combinations of oppositely charged particles that are con-
strained to originate from a common vertex. These particles
are assumed to be pions and the resulting di-pion mass is
required to be in the [0.45,0.55] GeV/c? range. Pairs of K§
candidates are combined to form candidate D — K9K?
decays. The mass of the D° candidate, m(K%KY), is
required to be in the [1.85, 1.89] GeV/c? range for Belle
and in the [1.85,1.88] GeV/c? range for Belle II, corre-
sponding to approximately 3 times the mass resolution.
The different ranges account for a small offset observed in
the D° mass-peak positions in the two datasets and for the
different mass resolutions.

For the control mode decays, candidate D° mesons are
formed by combining pairs of oppositely charged kaons
with mass, m(K*K~), in the [1.75,2.05] GeV/c? range.
Tracks originating from charged kaons must have at least
20 hits in the central drift chamber and at least one hit in the
silicon vertex detector. They must have a distance of closest
approach to the e*e™ interaction point (IP) smaller than
2.0 cm in the longitudinal direction (parallel to the solenoid
axis and in the direction of the positron beam) and smaller
than 0.5 cm in the transverse plane. We identify kaons by
requiring Lx/(Lx + L) > 0.6 and L /(Lx + L,) > 0.1,
where £, is the likelihood for the hypothesis x to have
produced the relevant track. The particle-identification
likelihoods are based on information from the aerogel
threshold Cherenkov counters, time-of-flight scintillation
counters, and the central drift chamber for Belle; and from
all subdetectors except the pixel detector for Belle II. The
kaon-identification efficiency is above 86% with rates of
pion-to-kaon and electron-to-kaon misidentification below
9% and 20%, respectively.

The D° candidates for both signal and control modes are
then combined with low-momentum pions to form a
D** — Dz* decay. The soft-pion tracks must be in the
acceptance of the central drift chamber and have longi-
tudinal and transverse distances of closest approach to the
IP smaller than 2.0 and 0.5 cm, respectively. To improve
signal efficiency, particle identification is not required for
the soft-pion candidates. The D*T candidates undergo a
kinematic fit [46], which constrains the D*™ vertex to the
measured position of the IP and the masses of the two K

candidates to the nominal Kg mass [47] for the signal
mode. Only candidates whose kinematic fits converge with
x* probabilities larger than 107> are retained for further
analysis.

The difference between the reconstructed D** and D°
masses is required to be smaller than 0.16 GeV/c?. To
suppress events in which the D** candidate comes from the
decay of a B meson, the momentum of the D** in the e* e~
center-of-mass system is required to be greater than
2.5 GeV/c. Simulation shows that the remaining contami-
nation from B meson decays amounts to less than one
candidate per 1 ab~! of integrated luminosity and is
negligible.

V. KINEMATIC WEIGHTING

Because detector- and production-induced asymmetries
depend on kinematic properties of the selected D** candi-
dates, the asymmetry cancellation is realized accurately only
if the kinematic distributions in the D° - K%K and D° —
K*K~ samples are the same. The D** production asym-
metry is expected to vary as a function of the D** polar
angle, @(D*"); the soft-pion detection asymmetry is
expected to vary both as a function of momentum and of
polar angle. Because of the differences in the reconstruction
and selection of charged and neutral kaons, small differences
are present in these distributions for the selected D° —
K9KY and D° —» K™K~ candidates (Fig. 1). A weighting
procedure is therefore implemented to reduce the observed
differences. The ratio of the cos@(D*") distributions of
D° - K$KY and D° — KK~ decays in simulation is used
to determine a smooth curve that provides a candidate-
specific weight for the D — K*K~ sample in data.
Weighting as a function of cos @(D**) also reduces the
differences in the other kinematic distributions (Fig. 1). The
D" — K*K~ distributions shown in the remainder of this
paper are weighted according to this procedure.

VI. DETERMINATION OF OBSERVED
ASYMMETRIES

The asymmetries between the observed yields of D**
and D*~ signal candidates are determined using unbinned
maximume-likelihood fits to distributions that distinguish
signal and control mode decays from background proc-
esses. The fit models are assumed to be the same for charm
and anticharm mesons. Their functional forms are extracted
from either simulation, with parameter values that are
adjusted for the data, or from sideband data.

A. Fit to the D" — KK} sample

There are three components in the fit: signal D° — K3K?
decays, peaking background from D° — K2ﬂ+ﬂ_ decays,
and nonpeaking background. Nonpeaking background
is separated from the other two components using the
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Normalized distributions of (from left to right) cosine of the D* polar angle, cosine of the soft-pion polar angle, D**

momentum, and soft-pion momentum of background-subtracted D° — K9K9 and D — K"K~ decays in (top) Belle and (bottom)

Belle II data, before and after the kinematic weighting.

distribution of the D** mass, m(D°z™"), which is calculated
using the vector sum of the momenta of the three final-state
particles as D** momentum, and the known DY mass [47]
in the determination of the D** energy [22,48]. Signal
and peaking-background D° — K%z "z~ decays have iden-
tical m(D°z") distributions, which narrowly peak at the
nominal D* mass. In contrast, the nonpeaking background
has a smooth m(D%z") distribution. To separate signal
from peaking background, we use the large distance (L)
between the K(S) and DY decay vertices resulting from
the long K? lifetime. We introduce the variable S, (K%) =
log [min (L, /o, Ly/6y,)], where L) and oL, are the
distance and its uncertainty for the first (second) K9
candidate, respectively. Both the signal and peaking-back-
ground Sy, (KY) distributions exhibit a peaking structure,
but they peak at very different values.

We determine the signal yield and raw asymmetry by
fitting to the m(D°z ") and Sy, (K$) distributions, simul-
taneously for D** and D*~ candidates. In the fit, the two-
dimensional probability density functions (PDFs) of each
component can be factorized into the product of one-
dimensional PDFs, as verified in simulation. The m(D%z™")
and S, (K$) PDFs of signal and peaking-background
decays are each modeled using Johnson’s S;; functions
with parameters derived from simulation [49]. The
m(D°z") PDF is assumed to be the same for DY —
K9KY and D° — K9zt a~ decays; the Sy, (K§) PDF peaks
at larger values for D° — K9K9 than for D° — K%z z~
decays. The m(D°z") distribution of the nonpeaking
background is modeled as a thresholdlike distribution,

Pk (m) oc (m —mg)'? + a(m —mg)*? — (6)

with the threshold parameter m, fixed to the known value
corresponding to the sum of the nominal D° and charged-
pion masses [47]. The parameter « is determined directly
from the fit to the data, together with the yields and
asymmetries of each component. The Sp,(K%) PDF is
modeled as the sum of two Johnson’s S, functions peaking
at different values. All the parameter values are determined
using candidates populating the m(D°zt) sideband
[2.005,2.008] U [2.013,2.023] GeV/c?. Simulation shows
that candidates in this sideband reproduce the distribution
of the nonpeaking background in the signal region.

The results of the fit to the Belle and Belle II data are
shown in Fig. 2. The measured signal yields are 4864 + 78
in Belle and 2214 + 51 in Belle II. The raw asymmetry is
measured to be (—1.0 £ 1.6)% in Belle and (—0.6 +2.3)%
in Belle II. The uncertainties are statistical only. The fit
model describes the data well, except for the Belle case in
the region around Sp;,(K%) = 3.5. The mismodeling is
similar for D** and D*~ candidates and hence does not
significantly affect the asymmetry. Fits to simulation,
which have a similar mismodeling, show no evidence of
a bias in the determinations of the signal yield and
asymmetry. A systematic uncertainty is assigned by repeat-
ing the fit to the data with alternative models, as discussed
in Sec. VIL

B. Fit to the D* > K*K~

The raw asymmetry of the control decays is determined
using a fit to the two-dimensional distribution of m(K"K™)
and m(D°z ). The fit consists of the following compo-
nents: D’ - KTK~ control mode decays; D° — K~z*
decays in which the pion is misidentified as a kaon, peaking

sample
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FIG. 2. Distributions of (left) m(D%z") and (right) Sy, (K$) for combined D° — K9K§ and D° — K9KY candidates, in (top) Belle
and (bottom) Belle II data, with fit projections overlaid. The middle panel of each plot shows the distribution of the difference between
observed and fit values divided by the uncertainty from the fit (pull), the bottom panel shows the asymmetry between D° and DY

candidates with the fit projection overlaid.

at m(K+K~) values around 1.94 GeV/c?; partially recon-
structed D° — multibody decays, where the term multi-
body refers to decays such as D° — K~z+7°, where the
charged pion is misidentified as a kaon and the neutral pion
is not reconstructed, or semileptonic D° decays, where the
neutrino is not reconstructed, populating mostly the low-
m(K*K™) region; Di — K"K~z decays in which the z™
is reconstructed as a soft-pion candidate, peaking at
m(K*K~) values around 1.82 GeV/c?; and combinatorial
background populating the entire m(K*K~) range nearly
uniformly. Each D° component can either be associated

with a real soft-pion candidate, which peaks in m(D%z*),
or with an unrelated soft-pion candidate, which contributes
to a smoothly distributed random-pion background in
m(D°z"). The Dy background has a distribution that rises
almost linearly in m(D°z"). Simulation shows that the
two-dimensional PDF of each component, except for the
D} - KTK~n" background, can be approximated by
the product of two one-dimensional PDFs.

The control decays and physics backgrounds PDFs are
determined using simulation. The m(K*K~) and m(D°z™")
PDFs of the D*f — D% — K*K~)z" decays are each
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modeled using the sum of two Gaussian functions (with
a common mean) and of a Johnson’s S; function.
The m(K"K~) PDF of the misidentified D*t —
D°(— K~z")z* background is parametrized using the
sum of a Gaussian and a Johnson’s Sy function. Given
that m(D°z ™) is unaffected by the misidentification of the
DY final-state particles, the m(D°z*) PDF is shared with
that of the control decays. To account for mismodeling of
the simulation, shape parameters related to the peak
positions and resolutions of the D - K*K~ and D° —
K~z components are floated when fitting to the data,
while other parameters are fixed to the values obtained from
simulation.

The partially reconstructed D** — D°(— multibody)z™
decays are modeled as an exponential function in
m(KTK~) and as a Johnson’s Sy function in m(D%z"),
with parameters fixed to simulation.

For each of the aforementioned components there is a
background in which an unrelated soft pion is associated
with the identified D° candidate. These random-pion
components share the same m(K*K™~) distribution as the
component with the correctly reconstructed soft pion. Their
m(D°z ") distributions are modeled by the following

common PDF:
mom () )
A mo ’

with the parameters A and B free to float in the fit.

The Df - K"K~z background, in which the pion is
used as the soft-pion candidate, exhibits a kinematic
correlation between the average values of m(K+*K~) and
m(D°z") which can be calculated analytically as
(m(K*K™))(m(D°z")) = mpr + mpo —m(D°z"), using
the known D7 and D° masses [47]. The two-dimensional
PDF is written as the product of the m(K"K~) PDF,
conditional on the value of m(D%z"), and the m(D°z™")
PDF,

P™(m|my, A, B) [1 — exp (—

PP (m(KtK™), m(D°z"))
— PP (KK (DO )PP (D). (8)

The first term on the right-hand side is parametrized
as a Johnson’s Sy function with a mean given by
uy + (m(KTK™))(m(D°x")), where p; is an offset which
accounts for possible data-simulation differences in the
peak position and is floated in the fit to the data. The
m(D°z*) PDF is a first-order polynomial defined only
above the threshold value of my,.

Finally, the combinatorial background PDF is modeled
by a product of a linear function in m(K*K~) and Eq. (7)
for m(D°z"). The parameters of the combinatorial back-
ground are floated in the fit to the data. The yield and

asymmetry of each component are the remaining free
parameters of the fit.

The results of the fit to the Belle and Belle II data are
shown in Fig. 3. The measured K™K~ yields are 308760 +
570 in Belle and 145520 =+ 400 in Belle II. The K™K~ raw
asymmetry is measured to be (0.17 £ 0.19)% in Belle and
(1.61 £ 0.27)% in Belle II. The uncertainties are statistical
only. The raw-asymmetry values for Belle and Belle II are
consistent with expected differences in reconstruction
asymmetries for low-momentum pions between the two
experiments. While the variation of the asymmetry as a
function of the fitted observables is fairly well described by
the fit model, the CP-averaged distributions of the fitted
observables are not. A similar mismodeling is observed in
simulation and results in 0.1%—2% biases in the measured
K*K~ yields. The mismodeling has a small effect on the
measured asymmetries, as observed in simulation and
quantified by refitting to the data with alternative models
(Sec. VII).

VIL. SYSTEMATIC UNCERTAINTIES

The following sources of systematic uncertainties
are considered: PDF modeling in the D° — K9K$ and
D — K*K~ fits, kinematic weighting of the control
and signal sample for the cancellation of the nuisance
asymmetries, uncertainties on the external input value of
Acp(D® - K*K~). A summary of the estimated uncer-
tainties is given in Table I, the total is the sum in quadrature
of the individual components.

To estimate the systematic uncertainty due to the fit
models, we repeat the fit to the data using several variations
of the default models. We test two classes of variations: one
in which we vary the PDF model, which is the same for D°
and D° candidates, and another in which we keep the
default PDF model but introduce different shape parame-
ters for D° and D° candidates. For the first class of
variations we use (six for D — K3K9 and seven for
D" — K*K~) alternative models featuring similar or much
worse description of the data compared to the default
model. The alternative models change the —21log £ value,
where L is the likelihood at the minimum, by an amount
ranging between —6 and 86 for the K%K fits and between
—377 x 10 and 35.9 x 10° for the K* K~ fits, while having
similar numbers of free parameters as the nominal model.
The largest variations in the measured raw asymmetries are
assigned as systematic uncertainties. From the second class
of model variations we observe no significant changes in
the asymmetries and consistent fit qualities for alternative
and default models. Hence, we assign no additional
systematic uncertainty due to the default-fit assumption
that D and D° shapes are the same.

The kinematic weighting of the D° — K*K~ control
sample does not entirely remove all differences observed
in the D*" and soft-pion momentum and polar angle
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Distributions of (left) m(D%z") and (right) m(K*K~) for combined D° — K* K~ and D° — K* K~ candidates, in (top) Belle

and (bottom) Belle II data, with fit projections overlaid. The middle panel of each plot shows the distribution of the difference between
observed and fit values divided by the uncertainty from the fit (pull), the bottom panel shows the asymmetry between D° and D"
candidates with the fit projection overlaid. Other backgrounds include the D — KTK~z", random-pion, and combinatorial

components.

distributions. The residual differences are approximately a
factor 2 smaller than those observed before the weighting.
We therefore take half the variation in AX X~ introduced by
the weighting procedure, 0.06% in Belle and 0.07% in
Belle II, as a systematic uncertainty.

The uncertainty in the input value of Acp(D° — KT K™),
0.05% [Eq. (5)], is propagated as a systematic uncertainty
on the measurement.

The entire analysis procedure, including the kinematic

weighting of the control mode, is validated using sets of

pseudoexperiments generated by sampling from the fit PDFs
and using fully simulated decays. In both cases, the results of
the validation confirm that we estimate the CP asymmetry in
D° — K$KY decays, and its uncertainty, without bias.
Finally, we check the consistency of the measured value
of Acp(D® — KK9) by repeating the measurement in
disjoint subsets of the data split according to data-taking
conditions or momentum of the D** candidate. In all cases,
observed variations in the results are consistent with each
other and with the measurement from the full sample.
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TABLE I.  Summary of uncertainties in Acp(D° — K9KY).

Uncertainty (%)

Source Belle Belle I
Modeling in the D° - K9KY fit 0.04 0.05
Modeling in the D — KTK~ fit 0.02 <0.01
Kinematic weighting 0.06 0.07
Input Acp(D° — KTK™) 0.05 0.05
Total systematic 0.09 0.10
Statistical 1.60 2.30

VIII. FINAL RESULTS AND CONCLUSIONS

Using D**-tagged D’ — KK and D° - KTK-
decays reconstructed in 980 fb~! of Belle data, and in
428 fb~! of Belle II data, we measure the time-integrated
CP asymmetry in D — K9K$ decays to be

Acp(D° — KIKY) = (1.1 £ 1.6(stat) =0.1(syst))%  (9)
and
Acp(D° - KOKQ) = (=2.24+2.3(stat) £0.1(syst))%. (10)

respectively. The two results are consistent and agree with
previous determinations [10—-14]. The result based on Belle
data supersedes the published result [12]. It has a factor of 2
smaller systematic uncertainty compared to the previous
result thanks to the usage of the D° — K+ K~ control mode,
which provides a more precise Ap external input compared
to the DY — K%72° control mode used in Ref. [12]. Assuming
that the only source of correlation between the two results is
the external input value of A¢p(DY — K*K~), we combine
our Belle and Belle II results to obtain

Acp(D° > KIKY) = (—1.441.3(stat) £0.1(syst))%. (11)

The combined result has precision comparable to the world’s
best measurement from LHCD [13], with which it agrees.
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