
AdaEdge: A Dynamic Compression Selection
Framework for Resource Constrained Devices

Chunwei Liu
MIT CSAIL

chunwei@csail.mit.edu

John Paparrizos
The Ohio State University

paparrizos.1@osu.edu

Aaron J. Elmore
University of Chicago

aelmore@cs.uchicago.edu

Abstract—With the Internet of Things (IoT), a vast number of
connected devices generate significant data, necessitating efficient
compression techniques to manage storage costs and enhance
query performance. However, “one-size-fits-all” approach to data
compression is ineffective due to diverse applications, which vary
in data characteristics, workloads, and hardware limitations. This
paper introduces AdaEdge, a dynamic, hardware-conscious com-
pression selection framework tailored for resource-constrained
devices. AdaEdge is a best-effort compression selection frame-
work designed to preserve application-critical information as
much as possible within system constraints. It enhances the use
of limited system resources through a dynamic data compres-
sion policy that considers the staleness and the significance of
the data. AdaEdge applies a multi-armed bandit algorithm to
assist compression selection, optimizing workload targets such as
compression ratio, compression throughput, workload accuracy,
or their weighted combinations. It supports both lossy and
lossless compression selection, adapting to hardware constraints.
It operates in both online and offline modes, addressing network
constraints for edge nodes and evolving data policies to preserve
workload-specific information. AdaEdge improves machine learn-
ing task accuracy by up to 30% over baseline within the same
storage budget and by up to 20% in scenarios where lossless
methods fall short due to low compression ratios. AdaEdge also
shows robustness against data shifts and hardware variability.

I. INTRODUCTION

The Internet of Things (IoT) encompasses billions of de-
vices globally, connected to the internet and sharing vast data
amounts. For instance, an oil platform with 80,000 sensors
can generate up to 2 TB of data daily. However, the high
cost and unreliability of satellite communications for offshore
operations make transmitting this data to centralized locations
impractical. [3], [20]. This issue is mirrored in Renewable
Energy Systems (RES) such as wind turbines, which, with
their multitude of high-frequency sensors, produce data vol-
umes that far exceed the limited bandwidth available for cloud
transfer [25]. This challenge is further compounded in the
realms of deep-sea and deep-space exploration [53], where
unstable networks, severe data transfer, and storage limitations
demand highly efficient data management strategies.

Given the high costs of storage, limited storage capacity, and
query performance benefits, compression plays an important
role in IoT systems [26], [29], [42], [43]. Data systems
typically employ different compression approaches to reduce
the storage cost and improve bandwidth utilization on the
cloud [5], [27], [36], [38], [44], [45] where the compression
happens after data is centralized. Close to the IoT sensors,

edge devices are usually the entry points for collecting and
preprocessing the IoT data, which is a critical component of
an IoT system. As edge devices gain more computational
power and popularity, supporting compression, query, and
analytics on the edge side is a good option to reduce the cost
of IoT systems. By implementing compression closer to the
data source, the volume of data requiring transfer is reduced,
conserving network bandwidth and sparing edge or cloud
storage resources, often leading to enhanced query perfor-
mance. Nonetheless, edge devices are typically more resource-
constrained than cloud servers in terms of network bandwidth,
storage, and computational power, presenting novel challenges
and constraints for compression design and selection. While
edge deployments can vary in terms of resource capacity,
many edge applications are built on static allocations and lack
elastic-resources, which we consider as resource-constrained.

Modern data systems support a variety of lossless and lossy
compression approaches to store and query data. Due to well-
known problems of distribution drift in data streams, a single
compression solution may fail to encode data of a given
signal effectively. Compression approaches differ in terms of
compressed size and query performance. Significantly, task ac-
curacy is also affected in the case of lossy methods. Because of
dynamic data features and various workloads across extended
IoT applications, providing a one-size-fits-all compression so-
lution for all kinds of data and tasks is impossible. Therefore,
an adaptive lossless and lossy compression selection strategy is
necessary to select the optimal compression for the incoming
IoT data based on the data statistics, query workloads, and
limited resources available on the host.

Compression selection is an optimization task account-
ing for the features of the data, hardware, and workload.
Compression selection can optimize for different performance
targets, including space usage, compression throughput, and
query performance. Prior work presents lossless compression
selection solutions based on a decision tree [6], regression
model prediction [15], [16], or neural network models [27].
Open-source columnar formats [37] like Apache Parquet [11],
ORC [10] and Arrow Feather [9], along with commercial
systems like Vertica [40] and MySQL [18] choose to hard-
coded compression selection based on the column data type.
Traditional compression selection solutions rely mainly on
lossless compression approaches and optimize for either stor-
age or SQL query performance with assumptions of adequate

1506

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00124

2
0

2
4

 I
E

E
E

 4
0

t
h

 I
n

t
e

r
n

a
t
io

n
a

l
C

o
n

fe
r
e

n
c
e

 o
n

 D
a

t
a

 E
n

g
in

e
e

r
in

g
 (

IC
D

E
)

|
 9

7
9

-8
-3

5
0

3
-1

7
1

5
-2

/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
IC

D
E

6
0

1
4

6
.2

0
2

4
.0

0
1

2
4

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

space for the compressed data and sufficient computation
power for compression tasks and workload. Such assumptions
are not always valid in real-world applications as the storage,
bandwidth, and computation resources can be expensive.

Many devices lack sufficient hardware resources. Edge
devices, in particular, often face stringent constraints and
limitations stemming from their hardware and system envi-
ronment, including restricted storage capacity, limited band-
width, and reduced computational power. Traditional lossless
compression comes with a compression limitation defined by
the entropy of the data [48]. So it is impossible to always
keep 100% accurate data representation with limited system
storage resources. In contrast, many time-series databases
widely use lossy compression to control storage consumption.
To handle the limited storage, many prior works either remove
the old data periodically [2], [51] or keep a different level
of data summary depending on the workload and accuracy
requirement [7], [8], [23]. Systems such as ModelarDB and
SummaryStore allow user-defined compression methods to be
added by implementing an interface. What is often over-
looked is a comprehensive adaptive selection strategy that
encompasses a wide range of both general lossy and lossless
compression techniques. Furthermore, previous works mainly
focused on the lossy impacts on the accuracy of dashboard
queries and some SQL operations. However, machine learning
tasks are poorly studied as an optimization target.

Different lossy compression methods vary in accuracy and
efficiency for various tasks, and no single method fits all
needs in IoT systems with varying data statistics, workloads,
and hardware constraints. A lightweight compression selection
framework supporting both lossy and lossless compression
approaches and multiple optimization targets has been over-
looked. This paper formulates the compression selection in
IoT systems as a multi-armed bandit problem and proposes
AdaEdge as a hardware-conscious encoding selection frame-
work for resource-constrained devices. In addition to the
conventional lossless compression selection support, AdaEdge
provides a trade-off between space and workload accuracy
through its auto-recoding component. AdaEdge distinguishes
itself as a robust, best-effort compression selection framework,
offering the following key contributions:

• Multi-armed bandit-assisted lossy and lossless compression
selection based on system constraints and workload target.

• Online and offline compression solutions for resource-
limited devices, preserving mission-critical information.

• Multiple optimization targets supported, including compres-
sion ratio, throughput, aggregation queries, and machine
learning task accuracy.

• Compression policy to selectively compress data according
to its importance.

AdaEdge adaptively selects the optimal compression solution
for edge signals, considering network, storage, signal features,
and workloads. Our experiments show AdaEdge achieves
10% − 20% higher accuracy in ML tasks than baselines for
online cases needing low compression ratios (e.g., 0.1) where

lossless compression is not viable, and up to 30% accuracy
gains within the same storage constraints posted to the system.

For the rest of the paper, we review related work in Section
II. We then formulate the compression problem in Section
III and introduce the AdaEdge framework in Section IV. We
evaluate AdaEdge in Section V and conclude in Section VI.

II. RELATED WORK

Compression selection has been studied for decades. To get
an accurate data representation, many data systems use lossless
compression selection optimizing for compressed size or query
performance. For example, Abadi’s decision tree [6] is one
of the first projects to explore compression selection for in-
situ query execution on compressed data. Such an approach
introduces a rule-based encoding selection approach that relies
on the global knowledge of the dataset features. LEA [16]
is a compression selection framework that builds difference
regression models to predict the compression and query per-
formance, then selects the optimal compression according to
the optimization target. CodecDB [27] builds a neural network
model to predict optimal compression based on the data
features. It also provides specialized operators operating on
encoded columns directly. Hyrise [15] uses separate models
to predict compressed size and query operator performance,
then uses linear programming or greedy heuristics to get the
best encoding for each data chunk. BtrBlocks [30] offers
a sample-based compression selection solution to achieve a
better compression ratio and throughput. In addition, many
open-source data formats and some commercial data systems
choose hard-coded compression strategies for each data type.

All those conventional compression selection solutions as-
sume adequate storage space capable of compressing the file
by the optimal lossless compression approach. However, such
an assumption on the system resources does not always hold.
Lossy compression is necessary for systems with limited
storage resources. Some systems directly remove data ingested
earlier than a given time or exceeding a storage threshold.
RRDtool [51] and InfluxDB [2] remove old data exceeding a
certain period to take back space for new data. ModelarDB
[24] trades query accuracy for storage space by selecting the
best linear model to approximate the data with user-defined
error bounds according to the storage budget. SummaryStore
[7] reclaims the storage space by replacing the data with aggre-
gate summaries with a specific compression ratio. TVStore [8]
uses a time-varying compression framework to bound storage.
These projects mainly rely on a single lossy compression
approach to compress the data according to the storage budget.

To the best of our knowledge, AdaEdge is the first frame-
work providing both best-efforts lossless and lossy compres-
sion selection with multiple optimization goals supported.

III. PROBLEM STATEMENT

In this section, we introduce several compression ap-
proaches. We then formulate the compression selection prob-
lem in the IoT system setting and frame it as a multi-armed

1507

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

bandit problem. Finally, we introduce the multi-armed bandit
Problem, its variations, and its applications as a solution.

A. Lossless and Lossy Compression

Compression falls into two categories: lossless, where the
original data can be completely restored from the compressed
file, and lossy, where some data is permanently lost and cannot
be fully recovered.

1) Lossless compression: Popular lossless compression ap-
proaches include byte-compression techniques, such as Gzip,
Snappy and Zlib, and lightweight encodings, such as dictio-
nary encoding [13], [31], [38], Gorilla [45] (and its optimized
variation CHIMP [33]), Sprintz [14], and BUFF [36] (along
with the subsequent variation Elf [32]). Lossless compression
is widely used in data systems to persist historical data, yet
its effectiveness is hard-bounded by the entropy of the input
data. The entropy defines the minimal bits required to represent
the corresponding information losslessly. This implies a lower
bound for a 100% accurate representation. When storage
is insufficient, all the existing data compression selection
frameworks fail to get an encoding solution. However, such
scenarios are common in IoT systems, where dynamic resource
and hardware limitations often demand highly aggressive
compression to meet system constraints. In this case, further
data size reduction necessitates accepting partial information
loss, with the aim to minimize its impact on task accuracy.

2) Lossy compression: AdaEdge incorporates basic lossy
compression to address these scenarios, which offers signif-
icantly higher compression ratios than lossless methods by
sacrificing some information. To better serve our use case, all
lossy compression methods in AdaEdge are customizable to
reach the desired compression ratio. Given the storage budget,
AdaEdge chooses suitable lossy compressions for tasks with
minimal accuracy loss. They are designed for easy recoding,
minimizing the time typically required for decompression
and re-compression with new settings. Currently, AdaEdge
supports various lossy compression techniques.

BUFF [36] is a lossless compression method for float types,
using a byte-oriented layout and a defined precision, but it
can act as lossy compression by reducing float precision.
In AdaEdge, we use a lossy version of BUFF to aggres-
sively compress by discarding insignificant bits. BUFF-lossy
minimally alters input values, benefiting tree-based machine
learning tasks sensitive to changes in feature values.

Piecewise Linear Approximation (PLA) [49] is a linear
generalization method that enables linear approximation in
each data segment, with the number of segments defined by
the resource budget. Largest Triangle Three Buckets (LTTB),
a variant of the Visvalingam-Whyatt (VW) algorithm [52],
is a line generalization method used in TVStore [8] and
TimeScaleDB [4]. LTTB excels in maintaining visual signal
integrity, making it ideal for dashboard queries.

Piecewise Aggregate Approximation (PAA) [28], [54]
reduces time series dimensionality by segmenting them into
mean values, serving as a form of lossy compression. By

adjusting the window size, PAA can vary the level of approx-
imation. PAA is effective in maintaining the accuracy of Sum
and Avg queries due to its focus on mean values.

Fast Fourier Transform (FFT) [21], based on the Fourier
transform, converts signals between their original and fre-
quency domains. This conversion facilitates compression with
minimal distortion by eliminating less significant frequencies,
particularly high-frequency components. FFT is advantageous
for measuring distances in high-dimensional data.

RRD-sample. We include a random sampling method to
simulate the RRDTool compression logic which bounds stor-
age by deleting data when the storage quota is reached. Instead
of deleting old data, AdaEdge saves one random value from
it for future queries and replicates this value across a segment
as needed for specific workloads.

We acknowledge that IoT protocols [46], like MQTT and
OPC-UA are key for messaging in industrial IoT devices
but lack built-in data compression. These protocols aim to
minimize device code footprint and network bandwidth, not
compress data. In contrast, AdaEdge focuses on data compres-
sion at storage and processing levels, offering lossy compres-
sion options for edge computing constraints. This approach
complements the messaging protocols in the IoT ecosystem.

B. Compression Selection
Data compression is essential for conserving network and

storage resources, especially in resource-limited devices and
systems. It must balance resource constraints with task accu-
racy, using lossless compression when possible to allow full
data recovery. In cases of severe storage limitations, aggressive
lossy compression becomes necessary to save resources with
minimal task accuracy loss. The lossless compression selection
will mainly focus on the compressed data size and compres-
sion throughput, while the lossy compression selection will
focus more on the accuracy loss of the workload.

Resource constraints stem from aspects of the system,
including data ingested rate, limited memory, storage and
network bandwidth. The constraints can also come from the
requirements of the downstream application and workload: the
compression should help speed up the workload and diminish
the workload accuracy loss. These constraints impose re-
quirements on the compression ratio, compression throughput,
query throughput, and task accuracy.

We formulate compression selection as an optimization
problem for the resource-constrained system. The constraints
are denoted as Ibgt for a given signal ingestion rate (assuming
no control on the signal generating rate), Bbgt for network
bandwidth, and Sbgt for local storage capacity. The data
sequence is organized in segments with a fixed number of
consecutive data points (original size denoted as U). Only one
compression scheme is selected for each segment. vij = {0, 1}
indicates whether compression cj is selected for segment xi,
then we have

∑k
j=1 vij = 1 for any given segment i assuming

k compression approaches in the compression candidate set
C. In terms of the compression performance, we also use rij
to indicate the estimated compression ratio of compression

1508

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

cj on segment xi. tij indicates the estimated compression
throughput of compression cj on segment xi. eij indicates
the estimated query error of lossy compression cj on segment
xi. For n segments, we can get the total compressed size:

S = U ×
n∑

i

k∑

j

(rij ∗ vij)

And we set the average egress rate as follows:

B =
Ibgt
n
×

n∑

i

k∑

j

(rij ∗ vij)

So when we optimize for the given network bandwidth Bbgt,
we formulate the lossless compression selection as
argmin

V
S(V) s.t. Icomp(V) ≥ Ibgt and B(V) ≤ Bbgt

where V is the compression assignment for each segment
comprised by vij and Icomp(V) indicates the compression
throughput with given V . The lossless compression selection
should handle the signals and generate compressed data with
an egress rate under the network capacity. If no feasible
solutions, a lossy compression selection is needed to meet the
harsh constraints. To optimize for the given network bandwidth
Bbgt, we formulate the lossy compression selection as
argmin

V
ET (V) s.t. Icomp(V) ≥ Ibgt and B(V) ≤ Bbgt

where ET (V) represents the accuracy loss for task T under
compression V . The objective is to minimize this loss while
adhering to system constraints.

For systems without a constant network for data egress,
the focus shifts to continuously ingesting new data while
minimizing accuracy loss during data shedding. We define the
compression selection problem as
argmin

V
ET (V) s.t. Icomp(V) ≥ Ibgt and S(V) ≤ Sbgt

we keep evolving the data to meet storage budget while
ensuring the chosen compression can handle the given signal.

The input signals in AdaEdge are organized into fixed-
size segments. The compression thread keeps compressing the
ingested segments to meet the system constraints. The system
refines its estimations by observing how each approach com-
presses, leading to improved compression recommendations.
The compression selection module autonomously chooses the
best method by considering changing workloads, data inflow
rates, and system limitations. When faced with shifts in data
distribution or resource constraints, our solution is poised to
unearth the most advantageous strategy rather than defaulting
to a simplistic, greedy algorithm that merely leverages his-
torical data patterns. This process necessitates a lightweight
framework to summarize past compression outcomes and
make recommendations based on recent system feedback.
Thus, we cast the challenge of selecting IoT data compression
within the framework of a multi-armed bandit problem.

C. Multi-Armed Bandit Problem
The Multi-Armed Bandit Problem (MAB), also called K-

armed bandit problem [39], [50], involves an agent choosing
from a set number of options or actions, each offering a reward
based on different, unknown probability distributions. The goal
is to maximize the total expected reward over a certain period.

Assuming a bandit with k arms, each arm has an expected
reward q(a) when action a is chosen. The arm chosen at time
t is At, with its reward being Rt. If action a is chosen at time
t, the expected reward is

q(a) = E[Rt|At = a]

Without knowing the reward for each action in advance, we
require an accurate estimate, denoted as Qt(a) for action a at
time t. The more Qt(a) aligns with the true reward q(a), the
better the decision. Ideally, if Qt(a) is perfectly accurate, we’d
always choose the action with the highest value to maximize
return. The action selection at time t can be described as:

At = argmax
a

Qt(a)

A greedy action involves the agent choosing the arm with
the highest estimated reward, thereby exploiting its current
understanding of the bandit system. However, relying solely
on exploitation can limit learning to previously acquired
knowledge, making it necessary to explore non-greedy actions
to refine reward estimations. While exploitation maximizes
immediate rewards, exploration can lead to greater overall
rewards over time.

There are many sophisticated variations for balancing ex-
ploration and exploitation for particular mathematical formu-
lations of the MAB problem. ε-greedy is a basic solution
of balance exploration and exploitation for the MAB prob-
lem, with ε possibility to choose the non-greedy action. The
Optimistic ε-Greedy Algorithm is a simple modification by
setting the initial action estimates to high values in a regular
greedy algorithm to push it to explore the whole candidate
action, searching for optimal action. Rather than performing
exploration by simply selecting an arbitrary non-greedy action,
chosen with a probability ε that remains constant, the Upper
Confidence Bound (UCB) algorithm shifts from prioritizing
exploration of less-tried actions to focusing on exploitation,
choosing actions with the highest rewards, as it learns more
about the environment. Other bandit algorithm variations, such
as Gradient Bandit [22] and Contextual Bandits [17], are not
the focus of this work.

MAB is efficient in both computation and space (O(K))
with K arms. In AdaEdge, we associate each arm of MAB
with a specific compression, and we return the optimization
target as its reward. Sections IV-C and IV-D detail how we
map the compression selection to the MAB problem.

IV. ADAEDGE OVERVIEW

AdaEdge is an adaptive hardware-conscious compression
selection framework. AdaEdge selects the optimal compres-
sion according to system resource limitations, data statistics,
and query workload. Figure 1 shows the overview of AdaEdge.

A. AdaEdge Framework Constraints

We first introduce the basic constraints in AdaEdge.

1509

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

�G<�GOI�$pIgpQIq�

I[jg<YQvIG��<j<D<hI

1[E]ZdgIhhIG��kNNIg�kNNIg

�]0�hI[h]gh
.<q��<j<�¥/QO[<Yh¦

]ZdgIhh

]ZdgIhhIG��kNNIg�¥ .1¦

/IO�Á ÂÄ�È�³�ÂÃdZ��ÂÄ�Ê�³�ÂÃ�ÁÄdZ�«

/IO�Â ÂÃ�Æ�³�ÂdZ��ÂÄ�Á�³�Â�ÁÅdZ�«

/IO�Ã ÂÄ�Ã�³�ÃdZ��ÂÆ�Ê�³�Ã�ÁÂdZ�«

« «

¢/IO�Á
]ZdÁ¢ZIj< ÁÂÂÂÁÂÂÁÁÁÁ

¢/IO�Â
]ZdÂ¢ZIj< ÂÂÁÁÂÁÂÁÁÂÁ

¢/IO�Ã
]ZdÃ¢ZIj< ÂÂÁÁÂÁÁÁÂÂÂ

« «

.IE]GI

]ZdgIhhQ][�/IYIEjQ][��g<ZIq]gX�

7]gXY]<G�!]GIYh
]ZdgIhhIG��<j<

]ZdgIhhQ][/I

-kIgs�7]gXY]<G���!]GIYh�

!�����

+IghQhjI[j�
/j]g<OI

]ZdgIhhQ][�.IhkYjh

+IghQhjI[j�
/j]g<OI

.Ih]kgEI�
][hjg<Q[jh

.IE]GI

0HWKRG 5DQN

*]LS ��

%8)) ��

))7 ��

�<j<�NY]q

][jg]Y�NY]q

�<j<�NY]]q

][jg]Y�NY]qNY]q

6HF��,9�$

6HF��,9�'

.
6HF��,9�(

ZdgIhhIG��kNN
6HF��,9�)6HF��,9�&

Fig. 1: AdaEdge operates in both online and offline modes.

1) Signal rate: Signal generation rate from various sensors
can range from zero to millions of data points per second. In
AdaEdge, we assume no control to back-pressure the sensors
regarding the data generation rate, so the ingestion rate is
a hard constraint for our framework. AdaEdge should ingest
all incoming data and process it with proper compression, or
downsampling when necessary. In our compression selection
step, all selected compression must be able to handle the given
ingestion rate from the sensors.

2) Network bandwidth: While broadband networks are
common, low bandwidth networks are still popular and play
critical roles in the modern IoT ecosystem. The network band-
width varies depending on the network connection technology.
In practice, the bandwidth changes for a cellular network
from 0.01 Mbps to 200 Mbps. It also varies significantly
in cases of network congestion or edge device movement.
Network disconnection is typical for IoT edge devices in some
environments, such as the agriculture, aerospace exploration,
and mining industries. AdaEdge can handle all different net-
work connection cases and provide proper data ingestion and
compression solutions accordingly.

3) Storage space: An edge node has very limited storage
space. Thus, storage devices are carefully accessed on the edge
device. To extend device lifetime and minimize power con-
sumption, some industrial systems refrain from using storage
for routine operations, reserving it solely for offline use.

4) Power: Many edge devices are deployed in remote areas
without a sustainable power supply, so all tasks must account
for power consumption. AdaEdge mainly focuses on other
constraints and leaves power constraints as future work.

AdaEdge supports such constraints and prioritizes the re-
tention of critical information through effective compression
strategies rather than attempting to eliminate them entirely.

B. AdaEdge Working Modes

Based on those constraints, we classify the IoT use case
into two modes. In terms of network connection, we introduce
online and offline modes for AdaEdge.

1) Online mode: The edge node serves as a continually
connected data hub, aiming to maximize the signal data trans-
fer within given constraints, including signal rate and network
bandwidth. In online mode, AdaEdge keeps all data ingested
and compressed in memory before transmitting through net-
work protocol. The selected compression should be able to

!"!!#$"

!

"!!

#!!

$!!

%!!

&!!

'()*++, !-)*."# '#*- !.,--$ /*0" 1%22 1%22&!*.'+3 2(%)*3)4 53).3+4 -,,4

'()*+3,,*(-.!"#$%&"'%! ()*+,-
0.//!"##$%& '&("#)$%&*%+

Fig. 2: Compression should be able to handle the given signal
generation rate. An example shows a signal with 4 million data
points generated per second (* marks lossy compression).

0

00

,0

10

-!"#$%6
7&'8 "()!%%$ *+)!#,8 "8!+ *#$++

9 -!., /:00
/:006*!

#"%1
0(:)!1

);6<= 21)#1%
;
+$$;6>

?@

2!"#$%&'"%()*+,**,$)'-(.(/,0,"1'()2'-$+.%!**,$)'!3%!**'%("!'4567*8'
$)'A9:;'2$</0!'*,3)(0

33)1**')=,1 >9 B9 79 ?9

Fig. 3: The compressed file size should be within the network
transmission capacity. Bars show the compression egress rate
on a 4GHz signal with double type. Lines show the network
transmission capacity per second (MB/s).

handle the given signal generation rate, and the compressed
file size should be within the network transmission capacity.

Figure 2 shows an example with 4 million data points
generated per second, a data generation rate for a typical oil
well platform. The line shows the ingestion rate (the size of
data generated per second), and the bars are the ingestion rate
(the size of data compressed per second at full speed) for
different compression approaches. Most compression methods
are qualified to compress the signal example except for Gzip
and Kernel methods, which are usually slow in compressing
the data. In addition to the ingestion rate, we also investigate
the compressed egress performance. Figure 3 shows the egress
rate of the 4GHz signal without compression and with different
compression methods applied. A lower egress rate on the
same signal means better compression performance. Thus,
less network bandwidth is needed to transmit the compressed
data. Without compression before data transmission, it is
impossible to transfer the ingested data to the cloud with the
given network setting. Under a 4G network, many lossless
compression such as Sprintz, BUFF, dictionary encoding, and
lossy compression can send out the compressed data. However,
in a 3G network environment, none of the prevailing lossless
compression methods meet the requisite standards for effec-
tive data transmission. At this juncture, many conventional
compression selection solutions encounter failure. In contrast,
AdaEdge stands out by intelligently selecting the appropriate
lossy compression methods under a scarce bandwidth to mini-
mize the query error rate, considering the specific demands of
the query workload. This adaptive approach ensures optimal
performance under any network constraints.

For the online mode, we keep all data ingested and com-
pressed in memory before we send out those segments through
a network protocol. We omit saving data to the local storage

1510

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

to save storage space for future offline cases, save power and
prolong the lifespan of the storage device. We choose the
best lossless compression by default. In the particular case of
no qualified lossless compression, we chose lossy approaches
optimized for the target workload.

2) Offline mode: The edge node serves as a local compu-
tation and storage node for scenarios with poor network or
intermittent connection. The goal switches to keep ingested
data as much as possible for data offloading if a future net-
work connection is expected. If information loss is inevitable
because of a tight storage budget, it uses lossy compression
with the smallest negative impact on the workload. Essentially,
maintaining the accuracy of the data is crucial for making
informed decisions in the given task.

Figure 1 also shows the components related to the offline
module. Unlike the online mode, which consistently prioritizes
minimizing compressed size, the offline mode employs load
shedding when local storage capacity is exceeded. AdaEdge
dynamically manages ingested data within the allocated stor-
age budget for devices operating in offline mode. All in-
gested data is temporarily stored on the local disk. When
there is insufficient space, AdaEdge applies more aggressive
compression (even lossy compression) on less valuable or less
informative segments instead of removing them.

The informativeness can be measured by the query usage
of the segment, such as a query counter for each segment.
However, it should also reflect the contribution of each seg-
ment to the query. For example, a segment with 1% qualified
entries is less informative than one with 99%. The ratio of
qualified entries for a segment is defined by the number of
entries qualified for a given query divided by the total number
of entries in the segment. Since there are many definitions of
informativeness, AdaEdge builds a dedicated segment man-
agement component with standard GET and PUT APIs for
different policies. AdaEdge uses an LRU-based compression
policy by default, discussed in Section IV-F.

C. AdaEdge Workflow
AdaEdge allows the collection and aggregation of data from

multiple device clients. It handles time series data collected
at uniform, regular intervals—a setup commonly defined by
sensor configurations. AdaEdge ingests data points generated
by remote sensor clients, caches them into fixed-size arrays,
assigns a timestamp to each segment, and then pushes it
into the uncompressed buffer. As the uncompressed buffer
is being filled, compression threads offload data from the
uncompressed buffer. The compression selection threads are
adaptively configured to use different compression approaches
based on storage capacity, network bandwidth, ingestion rate,
and specified analytical tasks. If the uncompressed buffer
exceeds its capacity, which may happen when the ingestion
rate exceeds the compression speed, the data is flushed to the
disk. The compression threads push the compressed data into
a compressed buffer pool, which can also flush to the disk.
AdaEdge can execute queries or analyses (e.g., aggregation
queries, clustering) over the compressed data or the raw time-

series segments in the uncompressed buffer. Each segment in
the framework is associated with metadata describing its com-
pression configurations, which can be used for the codec to
do further compress or decompress the downstream workload.

AdaEdge currently supports byte-compression techniques,
such as Gzip, Snappy and Zlib, and lightweight encodings,
such as dictionary encoding, Gorilla [45], Sprintz [14], and
BUFF [36] for numeric data. AdaEdge also supports spe-
cialized lossy time-series representation methods (i.e., lossy
compression), such as Piecewise Aggregate Approximation
(PAA) [28], [54], Fourier transform [21], Piecewise Linear
Approximation (PLA) [49], and BUFF-lossy [36]. These ap-
proaches differ in terms of compression ratio, throughput,
query efficiency, and workload accuracy. There is no one-
size-fits-all approach for any time series or task. With system
resource limitations defined by edge devices, AdaEdge can
adaptively switch the compression approach according to the
optimization target. AdaEdge currently supports optimization
targets, including space (data compression ratio), time (com-
pression runtime), and accuracy (machine learning model and
aggregation query accuracy).

The compression selection component in AdaEdge can
automatically select the compression approach, given the
workload, data arrival rates, and resource capacity. AdaEdge
compression selection requires a lightweight framework to
efficiently summarize the past compression performance and
provide compression suggestions based on the latest observa-
tion from the system. The compression selection component
of AdaEdge is built based on the MAB problem. As the
signal is ingested into the system, AdaEdge compresses the
uncompressed segments and puts them into the compressed
buffer. Once compression is finished for segments, AdaEdge
runs an evaluation process to monitor the compression ratio,
compression throughput, and target workload accuracy. This
information is used for the MAB component to estimate the
potential reward by applying each compression candidate. In
the MAB greedy algorithm logic, the compression selection
for AdaEdge is selecting the compression arm with the highest
estimated value of the optimization target. So the Qt(a) from
section III-C will be the optimization target estimation for
compression action a at time step t.

In AdaEdge, the compression selection may consist of
multiple MAB instances tailored to specific use cases.

1) Online selection: In the online mode of AdaEdge, sys-
tem constraints determine a target compression ratio. Consider
an edge device receiving a continuous signal composed of
double-precision floating-point numbers – taking up 8 bytes
for each value – at an ingestion rate of I points per second,
with a network bandwidth of B bits per second. To facilitate
the transmission of this signal via the given network infras-
tructure, we can calculate a provisional target compression
ratio, R = B/(64 × I), temporarily omit the bit overhead
from network packet headers across different network layers.
AdaEdge initially applies lossless compression to the data
segments as they are ingested. Should it become apparent
that the target compression ratio R is impossible with lossless

1511

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

!"#$%&'()*+&'",'-#+./&(01$'21#3+

4$
1
3

!*"#$%*&'()*'#' +'#,"#)*'#'

!%&&'"
(%)*+#&&$%,

!%&&'"
(%)*+#&&$%,

!
!"##$%##$& '"()*%##%+,#%-(%./,!

0.'"()*%##%+,#%-(%./,!

!"##1$&,'"()*%##%+,#%-(%./,! 21/3,'"()*%##1".,*4/1",!!
!"##1$&,'"()*%##%+,#%-(%./,! 21/3,'"()*%##1".,*4/1",!"
!"##1$&,'"()*%##%+,#%-(%./,! 21/3,'"()*%##1".,*4/1",!#

"#$#%&'()*3

!%&&-#&&"
(%)*+#&&$%,

!%&&'"
(%)*+#&&$%,

Fig. 4: AdaEdge ingests the new data while applying different
levels of compression on earlier segments to free space for
incoming data. The red rectangle denotes an arbitrary segment,
with the rectangle length showing its current size.

methods, the framework seamlessly transitions to employing
lossy compression techniques.

For lossless encoding selection, task accuracy remains un-
affected, thus the focus for the MAB optimization is solely
on minimizing the compressed segment size. Upon successful
compression of a data segment, the MAB component is
updated with the new compressed size—this update refines
the reward estimation for MAB, enhancing the decision-
making process for subsequent compressions. Should lossless
compression prove inadequate for achieving the desired target
compression ratio R, a dedicated MAB instance is spawned to
oversee the lossy compression selection. Lossy compression
inherently implies an imperfect restoration of the original
data upon decompression, which can detrimentally influence
task accuracy. However, AdaEdge’s current suite of lossy
compression techniques can be finely tuned to meet any
specified target compression ratio, ensuring uniformly sized
compressed segments across varying methods. Consequently,
the compressed file size becomes secondary in importance for
lossy compression scenarios, shifting the primary optimization
objective to the maintenance of task accuracy, which becomes
the key reward criterion for MAB. AdaEdge regularly evalu-
ates task accuracy for segments compressed using lossy meth-
ods, updating the MAB with the most recent reward values to
enhance the quality of future compression recommendations.
The methodology for calculating the reward value in each
context is further elaborated in Section IV-D.

2) Offline selection: The offline mode for AdaEdge is more
complicated than the online mode, as there is no clear target
compression ratio derived from the system constraints. An
actual use case could be an offline edge device without any net-
work connection, so there is no way to egress the ingested data.
The data must keep evolving within the limited storage budget
the system gives. The goal of AdaEdge compression selection
in the offline mode is to keep mission-critical information
as much as possible to minimize the potential loss of task
accuracy under the given storage budget. The data evolving
here is achieved by applying more aggressive compression on
the data with less critical information. Figure 4 shows the
cascade compression for the offline mode. For a given segment
in the uncompressed buffer, AdaEdge applies lossless com-
pression by default to save space for future segments. When a

predefined threshold is reached, the recoding process is waked
up to further compress the segments in the compressed buffer.
As the system keeps ingesting more and more data points,
more space is needed; thus, more aggressive compression will
be applied to the old data segments. The compression sequence
of the segments depends on the cache maintenance policy,
which we discuss in Section IV-F.

AdaEdge creates multiple MAB instances for different
compression levels for offline mode. Each MAB instance
corresponds to a specific compression ratio range. This design
is based on the observation that the optimization target changes
significantly across different compression ratio ranges, and a
single MAB instance for lossy compression selection is hard to
reflect the compression ratio impact on the optimization target.
For a given uncompressed segment, the lossless compression
selection MAB instance suggests the optimal lossless compres-
sion and compresses the segment to save space. Consequently,
the size of the compressed segment becomes the optimization
target for this MAB instance, and the resulting compressed size
is fed back into the MAB for improved future estimations.
AdaEdge processes incoming data points until a predefined
storage threshold, denoted as (θ), is reached. When additional
space is required for new segments, AdaEdge initiates lossy
compression on the already compressed segments. By default,
the size is reduced to half of the original, from which a
target compression ratio for the current segment is derived.
The lossy compression selection mechanism then consults the
MAB instance that corresponds to the identified range of the
target compression ratio. The action recommended by this
instance is considered the optimal compression method for
achieving the desired optimization target within that specific
compression ratio range. Periodically, AdaEdge evaluates the
performance of each MAB instance against the target task,
focusing on the compressed segments that fall within its des-
ignated compression ratio range. This continuous process of
compression and recoding ensures that segments are managed
within the storage budget constraints until an option to egress
the data becomes available. Planning for bandwidth usage
during reconnection presents an intriguing area of exploration
that we intend to pursue in future iterations of AdaEdge.

D. Optimization Target

AdaEdge supports both single and complex optimization
targets to meet system requirements. AdaEdge provides users
with the flexibility to specify their optimization targets, which
can encompass a variety of objectives, such as the accuracy
of aggregation queries (including minimum, maximum, sum,
and average calculations), the precision of machine learning
tasks, or the efficiency of compression throughput. AdaEdge
offers flexibility to accommodate additional workload targets
readily, provided they can be assessed through a well-defined
quantitative metric.

1) Machine learning task accuracy: For tasks related to
classification or clustering within AdaEdge, we adopt accuracy
evaluation metrics from the domain of approximate inference,
as detailed in the work by [41]. The machine learning task

1512

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

accuracy evaluation on a lossy compressed segment is defined
as follows: with lossy compression, we can get its compressed
representation Rl. Before feeding it into the machine learning
task, we need to decompress it into Xl. Given the task T
and a pre-trained model M , we get the prediction results in
Yl = M(Xl). For the machine learning task evaluation on
lossy compressed data, we define the accuracy as the ratio of
matched prediction labels compared with predicted labels on
the original uncompressed data:

ACCml =
|{x|x ∈ X AND M(xl) = M(x)}|

|X|
Here, we assume the task model M is the pre-trained model
on the original dataset X and is provided to the compression
task as a given input model. AdaEdge incorporates a special-
ized module for serialization and deserialization to manage
instances of machine learning models. When a machine learn-
ing task is specified as the optimization target, AdaEdge is
equipped to load and deserialize the corresponding binary file,
converting it into a machine learning model instance ready
for performance evaluation. In other words, we operate under
the assumption that the model undergoes centralized training
on the raw data format, and we regard any output from the
model—be it a prediction or a cluster assignment—as the
ground truth. Note that while for some tasks, training and
inferring on a compressed representation can improve task
accuracy [19], we do not consider this here as we assume
model tuning and configuration are handled by downstream
tasks. By treating the provided model as the ground truth,
we enable local experimentation with various compression
techniques and parameters without altering the underlying
model. This approach aligns with the evolving landscape of
edge computing, where federated learning and the deployment
of pre-trained models on resource-constrained devices are
becoming increasingly prevalent [35].

2) Aggregation accuracy and throughput: In addition to
the machine learning tasks, AdaEdge defines relative loss for
aggregation queries as other work does for approximate query
processing evaluation [34]:

Accagg = 1− |Vtrue − Vlossy|
|Vtrue|

Where Vtrue is the real value we get from the aggregation op-
erator on the original data, while Vlossy is the estimated value
on the lossy decompressed data. The compression throughput
is defined as Cthr = So/Tc, where So is the original file
size and Tc corresponds to the compression runtime. A fast
compression usually means fewer instructions for the codec,
which consumes less power [12]. Therefore, fast compression
may correspond to a power-efficient compression approach,
which is very important for IoT applications.

3) complex optimization targets: Beyond catering to a
single optimization target, AdaEdge is equipped to han-
dle complex optimization targets that involve a hybrid of
weighted objectives. This functionality is particularly useful
for workloads encompassing multiple queries and machine-
learning tasks. Users are afforded the flexibility to assign
distinct weights to each task, allowing for the customization

of optimization targets to meet the specific needs of their
system. This feature ensures that AdaEdge can adapt to diverse
performance criteria, providing tailored support for various
workload scenarios. The complex target is defined as
targetc = w1 ×ACCagg + w2 ×ACCML + w3 × Cthr

where ACCs and Cthr are normalized, w1 + w2 + w3 = 1.

E. Recoding Optimization
AdaEdge is designed to perform recoding on the same

data segment multiple times if necessary. Unlike traditional
compression methods, which typically require complete de-
compression before recoding can occur, AdaEdge employs
a strategy akin to ”virtual decompression” [8] to minimize
unnecessary decoding steps. This approach allows for more
efficient recoding processes, as all lossy compression tech-
niques supported by AdaEdge can be reapplied for recoding
without the need for prior decompression. When more aggres-
sive compression is required, AdaEdge evaluates the original
and intended compression methods. If feasible, it performs
direct recoding on the already compressed data, bypassing the
decompression stage altogether.

AdaEdge currently supports ”virtual decompression” for
recoding tasks with identical source and destination compres-
sion approaches. For instance, to achieve a higher level of
compression, we can truncate data compressed with BUFF by
discarding the less significant bits. Similarly, we can apply
PAA compression to data already compressed with PAA to
obtain a larger window size, further compress the FFT-encoded
segments by removing additional high-frequency components,
and apply PLA compression to PLA-encoded segments to
reduce the number of key data points, thereby conserving
more space. Similar work can be done by enabling direct
transcoding between different compression approaches, which
need specific compression optimization for each compression
pair, so we keep it as future work.

F. LRU-Based Compression
The sequence in which compression and recoding are ap-

plied to data segments is crucial for minimizing adverse effects
on the target workload. For instance, newly ingested data is
often more valuable than older data [7]. Consequently, when
space constraints necessitate it, older data should be subjected
to more aggressive compression while preserving the most
recent data in a lossless format whenever feasible. Previous
systems, such as RRDTool [51] have employed a round-robin
approach to discard older data. Similarly, TVStore [8] and
SummaryStore [7] implement more aggressive compression
on segments with earlier timestamps.

AdaEdge adopts an LRU-based compression policy, priori-
tizing the compression of the least recently accessed segments.
This strategy ensures that segments frequently accessed for
queries are less likely to undergo lossy compression. The
segment management component within AdaEdge operates
on a list-based mechanism. It provides the compression or
recoding threads with the least recently used segments at the
forefront of the list, while newly compressed segments are

1513

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

1.0 0.59 0.55 0.5 0.44 0.39 0.34 0.27

BUFF compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

dt
re
e
ac
cu
ra
cy

(a) BUFF

1.0 0.5 0.33 0.25 0.20 0.11 0.06 0.03

PAA compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

dt
re
e
ac
cu
ra
cy

(b) PAA
Fig. 5: Decision tree model accuracy on UCI

1.0 0.39 0.34 0.28 0.23 0.19 0.11

BUFF compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

rf
or
es
t
ac
cu
ra
cy

(a) BUFF

1.0 0.5 0.33 0.25 0.20 0.11 0.06 0.03

PAA compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

rf
or
es
t
ac
cu
ra
cy

(b) PAA
Fig. 6: Random forest model accuracy on UCR

appended to the end. Additionally, any segments accessed by
active queries are relocated to the end of the list, reducing
their likelihood of being lossy compressed. The LRU-based
compression policy works well for AdaEdge, where ingesting
the signal and some aggregation queries are the main tasks.

The segment management component is designed to be flex-
ible, allowing for easy adaptation to alternative compression
sequencing policies. While further exploring different policies
could yield interesting insights, we have chosen to focus on
the LRU-based approach for simplicity in this work.

V. EVALUATION

We evaluate AdaEdge on aggregation and machine learn-
ing tasks with varying compression approaches. The MAB-
assisted component for selecting compression in AdaEdge
includes lossless compression options such as Gzip, Snappy,
Gorilla, Zlib, BUFF, and Sprintz, using default settings for
the first three and variable compression levels for Zlib. For
BUFF and Sprintz, precision is tailored to four digits for the
CBF dataset, five for UCR, and six for UCI, according to
dataset specifications. For lossy compression, options include
PAA, PLA, FFT, BUFF-lossy, and RRD-sample. AdaEdge
dynamically adjusts parameters like window size, data point
budget, frequency channels, and bit count to meet specific
compression ratio targets. We use CodecDB as a baseline,
adapted to support lossless compression for double data types,
originally designed for integers and strings. We also demon-
strate TVStore’s approach to lossy compression with PLA.
However, it’s important to note that neither CodecDB nor TV-
Store supports real-time selection of lossy compression based
on system constraints and its effect on workload accuracy.

We employ an optimistic ε-greedy strategy in our experi-
ments. Specifically, for offline mode, ε is set to 0.1, allowing
MAB to explore sub-optimal actions more thoroughly. Con-
versely, for online mode experiments, ε is adjusted to 0.01 to
enhance the exploitation of the optimal MAB action.

We conducted simulations to test system limitations on
servers equipped with dual Intel(R) Xeon(R) CPUs E5-2670

2.30GHz, 128GB RAM, and 250GB HDDs, running Ubuntu
18.04 and Rust 1.49.0. Additionally, we ran experiments on
an Intel NUC [1] using the same software setup with an i7-
5557U CPU, 16GB RAM, and a 250GB SSD. Given that
these resources exceed AdaEdge’s requirements, we imposed
stricter constraints on our experiments. We set hard limits in
the experiments, a fixed storage budget with a threshold for
recoding, and varying egress rates corresponding to different
bandwidth conditions. The experiments fail if any of these
constraints are breached. We limit CPU resources with 4
threads by default: one for ingestion, one for compression,
one for recoding, and one for task evaluation. MAB related
operations are managed by the above threads. In the scalability
experiments, we employ multiple threads for the ingestion,
compression, or recoding components as needed.

A. ML Accuracy with Lossy Compression

We applied prominent lossy compression techniques (BUFF,
PAA, FFT, PLA) to the UCR and UCI datasets, which are
widely recognized in the machine learning community and
encompass approximately 250 datasets from diverse domains.

We train the models on the original dataset and then apply
them to the lossy compressed data to evaluate the predicted la-
bel changes after decompressing. Due to space constraints, we
present two illustrative machine learning workloads with two
compression representatives. The horizontal axis represents the
achieved compression ratio by the respective methods, while
the vertical axis displays the relative accuracy as defined in
Section IV-D. Figure 5 illustrates that tree-based models are
particularly sensitive to lossy compression, where minor data
alterations can lead to different branching and, consequently,
altered predictions during inference. Generally, BUFF-lossy
demonstrates the best performance across most compression
ratios due to its minimal distortion from the original data.
However, its effectiveness diminishes at lower compression
ratios, as evidenced in Figure 6, where BUFF-lossy under-
performs compared to FFT, PAA, and PLA at a compression
ratio of approximately 0.12 in decision tree and random forest
evaluations on the UCR dataset. Moreover, BUFF-lossy cannot
compress our dataset when the ratio falls below 0.11.

The evaluations of machine learning tasks reveal that perfor-
mance significantly fluctuates with different lossy compression
methods, depending on the target compression ratio and the
characteristics of the input data. This variability challenges the
effectiveness of simple rule-based, greedy, or heuristic com-
pression selection approaches, which fail to accommodate the
changing data features and varying workloads. Consequently,
a dynamic compression selection model is essential—one that
provides optimal compression recommendations tailored to the
incoming data statistics, host system requirements, and the
specific demands of downstream workloads.

B. Adaptive Compression Selection

Next, we assess AdaEdge on streaming data with an ongoing
ingestion process. AdaEdge receives data from a dummy
client that generates data points from the CBF dataset [47], a

1514

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

+C,CD
C
C,CD
C,E
C,ED
C,F
C,FD
C,G
C,GD
C,H
C,HD
C,D
C,DD

CC,EC,FC,GC,HC,DC,IC,JC,KC,LE

!"
"#$

%&
&

'()*+,#-%./)+&&0%1#2(,0%
3!4 4566 7/)01,8 71(//9 :%)0;;(:80/
4566<;%&&9 =!! 66' =$!#M'>7,%)+N 22?<&(./;+ -%@+"?4

Lossless
selection

Lossy
selection

(a) Decision tree

<CACD
C
CACD
CAE
CAED
CAF
CAFD
CAG
CAGD
CAH
CAHD
CAD

CCAECAFCAGCAHCADCAICAJCAKCALE

!"
"#$

%&
&

'()*+,#-%./)+&&0%1#2(,0%
3!4 4566 7/)01,8 71(//9 :%)0;;(:80/
4566<;%&&9 =!! 66' =$!#M'>7,%)+N 22?<&(./;+ -%@+"?4

Lossless
selection

Lossy
selection

(b) Random forest

<CACD
C
CACD
CAE
CAED
CAF
CAFD
CAG
CAGD
CAH
CAHD
CAD

CCAECAFCAGCAHCADCAICAJCAKCALE

!"
"#$

%&
&

'()*+,#-%./)+&&0%1#2(,0%
3!4 4566 7/)01,8 71(//9 :%)0;;(:80/
4566<;%&&9 =!! 66' =$!#M'>7,%)+N 22?<&(./;+ -%@+"?4

Lossless
selection

Lossy
selection

(c) KNN

<CACD
C
CACD
CAE
CAED
CAF
CAFD
CAG
CAGD
CAH
CAHD
CAD

CCAECAFCAGCAHCADCAICAJCAKCALE

!"
"#$

%&
&

'()*+,#-%./)+&&0%1#2(,0%
3!4 4566 7/)01,8 71(//9 :%)0;;(:80/
4566<;%&&9 =!! 66' =$!#M'>7,%)+N 22?<&(./;+ -%@+"?4

Lossless
selection

Lossy
selection

(d) KMeans
Fig. 7: Machine learning model accuracy on target compression ratio

simulated dataset with a controlled distribution. By default, the
client produces data at a rate of 200, 000 data points per sec-
ond. The incoming data is ingested as uncompressed segments.
AdaEdge then applies compression selection to these segments
based on system constraints. For comparison, we include
baselines with predetermined compression combinations and,
when applicable, equivalents from TVStore and CodecDB.

1) Online mode: AdaEdge online mode has a clear target
compression ratio derived from the ingestion data rate and
network bandwidth. AdaEdge adaptively chooses the optimal
compression for a given workload. The compression process
fetches the segments from the uncompressed buffer and applies
compression based on the MAB component estimation.

Machine learning tasks: Figure 7 shows the machine
learning accuracy loss across different target compression
ratios. The horizontal axis is the target compression ratio
derived by system constraints, and the vertical axis shows the
corresponding relative accuracy loss. A smaller accuracy loss
signifies better compression for the dataset. The MAB line
represents AdaEdge’s compression selection component. We
show the lossless compression performance with solid lines
and lossy baselines with dash lines. For lossy compression
baselines, PAA, PLA, and FFT can handle any target compres-
sion ratio between range [1.0, 0), while BUFF-lossy does not
support a compression ratio below 0.125 on the CBF dataset.
Lossless compression incurs no accuracy loss within its limited
workable range, consistently resulting in zero accuracy loss.
In the figure, we depict negative values for various lossless
compressions to enhance visual distinction. AdaEdge uses
optimal lossless compression when possible and falls back to
best lossy compression otherwise. From Figure 7, MAB-based
compression selection always selects the optimal compression
for each target compression ratio. It selects BUFF-lossy for
compression range above 0.125 and choose either PAA or
FFT for other compression ratio range. The variation on the

B-CC-DEE

B-CC-DBO

B-CC-DBF

B-CC-DBG

B-CC-DBC

B-CC-DCH

B-CC-DCI

B-CC-DCB

CC-BC-EC-GC-IC-JC-FC-HC-KC-OB

!.
.#!
"#
#

$%&'()*+",-&(##."/*0%)."
123 3455 6-&./)7 6/%--8 9"&.::% 97.-
3455;:"##8 <22 55$ <!2*=$>6)"&(? 00@;#%,-:(+"A(B@3

Lossless
selection

Lossy
selection

Fig. 8: Sum query over target compression ratio

MAB line comes from the exploration cost of MAB, in which
sub-optimal action is taken, thus inflating the accuracy loss.
Conversely, CodecDB is effective only within a narrow range
of target ratios for lossless compression and is otherwise
ineffective. KVStore’s PLA typically underperforms.

Aggregation tasks: We also evaluated AdaEdge’s encoding
selection performance on aggregation queries. Figures 8 and
9 display the relative aggregation accuracy loss for each
compression method. Due to the minimal accuracy loss, we
employ a logarithmic scale for the vertical axis. As in the
previous experiment, we represent all lossless baselines with
values less than 1.00e − 18 for clarity, noting that lossless
compression incurs no accuracy loss within its limited work-
able range. AdaEdge effectively selects PAA or FFT as the
optimal compression for sum aggregations, aligning with the
ground truth. The spikes in the MAB lines result from the
MAB exploration steps, accentuated by the logarithmic scale
which exaggerates the impact of suboptimal actions on a small
number of segments. For max aggregation queries, AdaEdge
consistently chooses PLA due to its superior performance.
CodecDB, however, is only effective for lossless compression
within a limited range of target ratios and fails outside this
range. KVStore is suitable solely for max aggregation queries.

Complex workload targets: AdaEdge readily optimizes
for a single target. In subsequent experiments, we explore

1515

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

CDEEF;GG

CDEEF;CO

CDEEF;CH

CDEEF;CI

CDEEF;CE

CDEEF;EJ

CDEEF;EK

CDEEF;EC

EEDCEDGEDIEDKEDLEDHEDJEDMEDOC

2B
B*!
"#
#

$%&'()*+",-&(##."/*0%)."
123 3455 6-&./)7 6/%--8 9"&.::% 97.-
3455;:"##8 <22 55$ <!2*=$>6)"&(? 00@;#%,-:(+"A(B@3

Lossless
selection

Lossy
selection

Fig. 9: Max query over target compression ratio

L
L/M
L/P
L/N
L/0
L/1
L/2
L/3
L/4
L/5
M

LL/PL/0L/2L/4M

26
6*.

78
8

!"#$%&'()*+#%,,-).'/"&-)
012 234456),,7 811 44! 891':!;<&)#%= //>5,"*+6%

Fig. 10: Sum aggregation query and random forest com-
plex optimization target over target compression ratio with
weighted value w1 = 0.625 and w2 = 0.375.

compression selection for complex workload targets with mul-
tiple objectives. For time series data systems, both aggregation
query accuracy and machine learning task accuracy are often
crucial. AdaEdge accommodates complex optimization targets
that account for both, offering a knob to balance the two.

A = argmax
a

(w1 ×Accagg(a) + w2 ×AccML(a))

Figure 10 shows the sum aggregation query and random
forest complex optimization target for the online mode where
a clear target compression ratio can be derived from the
system constraints. According to the baselines, there are two
crossover points for the complex optimization target: the first
is a compression ratio of around 0.8, and the second is around
0.25. FFT is the ground truth optimal compression in the range
1 to 0.8, followed by BUFF-lossy from 0.8 to 0.25, after
which FFT regains its optimality from 0.25 to 0. According
to Figure 10, AdaEdge adapts to optimal compression across
most ranges. The outlier around compression ratio 0.15 is
because of the variation from the sum aggregation query.
Alternatively, the PLA implementation by KVStore exhibits
the least favorable performance in this scenario.

Accuracy is not the only performance dimension for system
evaluation. Data systems care about compression speed in
addition to task accuracy. AdaEdge also supports the balanced
optimization target between those two. Figure 11 shows the
compression selection performance with the optimization tar-
get combining compression speed and task accuracy.

A = argmax
a

(w1 × Cthr(a) + w2 ×AccML(a))

Figure 11 shows a complex target of speed and accuracy,
with higher values being preferable. Notably, AdaEdge’s MAB
effectively selects the optimal compression. We can see a
crossover point at 0.25 between PAA and BUFF-lossy, and
AdaEdge handles those cases well. In contrast, KVStore’s PLA
implementation underperforms in this context.

?

?@A

?@P

?@B

?@C

?@D

?@E

?@F

?@G

??@P?@C?@E?@GA

(9
:
.;
H<
'/
"=

>H
/

!"=>H/'(9:.=H??09@' /"/09
012 23445;9??7 811 44! 891':!;</9=H= //>5?":.;H

Fig. 11: Compression speed and random forest complex op-
timization target over target compression ratio with weights
w1 = 0.524 and w2 = 0.476.

2) Offline mode: The offline mode of AdaEdge aims to
preserve workload-critical information to the greatest extent
possible within the constraints of the system’s storage budget.
Thus, the compression process continuously retrieves segments
from the uncompressed buffer and applies varying levels of
compression based on each segment’s importance.

In this experiment, we allocate 10MB of space for AdaEdge
to ingest 80MB (10 million) data points with a recoding
threshold set at 0.8, meaning recoding is triggered to free
up space when space usage reaches 0.8. An LRU-based
compression policy is employed in the experiments. The
horizontal axis in Figure 12 and Figure 13 represents the
ingestion timestamp, while the two vertical axes show space
usage and machine learning task accuracy loss respectively.
During offline ingestion, there are essentially two phases of
encoding selection: lossless compression, which aims to min-
imize the compression ratio and maximize space savings, and
lossy compression, which focuses on optimizing accuracy for
machine learning tasks. We also include baselines comprising
all possible compression pairs, denoted as lossless lossy. In
total, 25 baselines cover all compression pair combinations.
We display only top-performing representatives to maintain
readability. The term mab mab represents our solution, which
employs MAB-based encoding selection strategies. Space us-
age is periodically monitored, indicated by the red lines.

All compression pairs in Figures 12 and 13 manage to
keep space usage within the safe limit set by the recoding
threshold, shown by the red lines. The MAB space usage curve
has a gentler slope compared to the Gzip, Snappy, or Gorilla
baselines in Figure 13. This is because the MAB lossless
compression selects Sprintz, which yields the smallest file size.
CodecDB also selects Sprintz for lossless compression but fails
upon reaching the recoding budget, lacking support for lossy
compression to further free up space with minimal impact on
task accuracy. The blue line to the bottom shows the KMeans
task accuracy loss, which increases when the space usage
line reaches the recoding threshold where the lossy recoding
process is initialized. The slower the task accuracy loss line
increases, the better compression it is. AdaEdge MAB-based
lossy compression selection is always the best to choose the
optimal compression to minimize task accuracy loss.

In this experiment, MAB-based lossy compression selection
initially picks BUFF-lossy as optimal lossy compression and

1516

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

CodecDB failsXX

Fig. 12: KMeans accuracy loss over in-
gestion time for baselines Sprintz X

Fig. 13: KMeans accuracy loss over in-
gestion time for baselines X bufflossy

x
 gorilla_pla fails

x
 gorilla_fft fails

Fig. 14: KMeans accuracy loss over high-
frequency signal (1 million points/s)

switches to PAA when BUFF-lossy fails to compress the
segment further. Baselines in Figure 12 show that the accuracy
loss stays low when recoding first starts and increases quickly
when more data is ingested, requiring more aggressive com-
pression for old data. BUFF-lossy fails and falls back to RRD-
sample to further compress the segments in the late phase of
the ingestion experiment. In addition to KMeans, we also test
AdaEdge offline mode on other aggregation and ML tasks. The
experiments demonstrate AdaEdge’s adaptability in finding the
best solution for aggregation queries and various machine
learning tasks, including KNN, random forest, and decision
tree. Beyond general accuracy improvements, we consistently
evaluate the task accuracy of the recent data segments. Due
to the LRU-based compression policy, AdaEdge consistently
delivers 100% accuracy for these fresh data segments.

Previous experiments showcase scenarios with relatively
modest ingestion rates, where all compression baselines suc-
cessfully managed the ingested signals within the given storage
budget, and AdaEdge delivered the optimal compression so-
lution. Figure 14 shows the ingestion experiments with high-
frequency signal (1 million points per second). We include
the top compression combinations (e.g., gzip bufflossy,
buff bufflossy and sprintz bufflossy), which perform
similarly to their counterparts’ performance on a lower fre-
quency signal in Figure 12 and 13 but in a smaller time
scale. AdaEdge consistently selects the most appropriate com-
pression method that minimizes accuracy loss while staying
feasible. However, several compression pairs could not keep
space usage within the storage budget threshold of 0.8, ul-
timately exceeding the total storage capacity. For instance,
combinations like gorilla fft and gorilla pla exceeds the
storage budget at 8.0 seconds and 8.4 seconds, respectively,
failing to complete the ingestion task. The Gorilla-based pairs
underperform because Gorilla decompression was more time-
consuming than other baselines, delaying the recoding process.
Such bottlenecks could potentially be alleviated by assigning
additional threads to the recoding component.

C. Robustness against data shifts and hardware variability
Here, we test AdaEdge on smaller edge-class hardware.

We use a synthetic dataset consisting of half high-entropy
data from the CBF dataset and half randomly generated low-
entropy data. We set the optimization goal to minimize space
usage. We also doubled the decision space by including more

(a) Baseline candidates (b) mab ε = [0.05, 0.1, 0.2]
Fig. 15: AdaEdge choose the best compression solution with
shifting workload at a rate 100k points per second

compression candidates shown in Figure 15a. Figure 15b
shows AdaEdge still converges to the optimal solution that
starts with Sprintz and then switches to gzip or zlib-9 for
the second half, even with a large decision space. The ε
value directly affects the exploration rate, but it does not
prevent AdaEdge from finding the best solution. A sub-optimal
exploration may result in space overhead, which can be fixed
or alleviated later by a recoding step if applicable. We also ran
the experiments by tuning the nonstationary step value, where
the result shows that a larger step value results in a more swift
change of choice with data distribution. To better balance the
overall performance, we used MAB ε = 0.1 and step = 0.5
as the default in AdaEdge for the cases with data shift.

This demonstrates AdaEdge’s capability in handling inges-
tion tasks with a single compression and recoding thread, con-
sistently selecting the most effective compression approach.
AdaEdge exhibits strong scalability when ingesting multiple
signals, supporting concurrent compression and recoding pro-
cesses. In our scalability tests, AdaEdge successfully managed
an ingestion rate of approximately 8 million points per second
using 8 threads while adhering to the system’s constraints.

VI. CONCLUSION

AdaEdge offers a robust compression selection framework
tailored for data systems with defined compression ratios or
storage budgets. It accommodates singular and multifaceted
optimization objectives, allowing users to customize targets
specific to their system needs. AdaEdge compresses data based
on usage frequency and selects between lossy and lossless
compression methods, accounting for hardware limitations and
workload requirements.
Acknowledgments This work was in part supported by NSF
Award IIS-2048088, Google DANI Award, and Cisco Systems.

1517

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Breakthrough performance at the edge. https://cdrdv2-
public.intel.com/780985/nuc-13-compute-element-product-brief.pdf.
(Accessed on 02/25/2024).

[2] Influxdb - open source time series, metrics, and analytics database.
https://www.influxdata.com/.

[3] Moving to the edge is crucial for oil and
gas companies to make better use of data.
https://www.forbes.com/sites/markvenables/2019/05/31/moving-to-
the-edge-is-crucial-for-oil-and-gas-companies-to-make-better-use-of-
data/?sh=854c34c59bd9. (Accessed on 11/11/2023).

[4] Time-series data simplified. https://www.timescale.com.
[5] D. Abadi, S. Madden, and M. Ferreira. Integrating Compression and

Execution in Column-oriented Database Systems. In SIGMOD, pages
671–682, 2006.

[6] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and
execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data,
pages 671–682, 2006.

[7] N. Agrawal and A. Vulimiri. Low-latency analytics on colossal data
streams with summarystore. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 647–664, 2017.

[8] Y. An, Y. Su, Y. Zhu, and J. Wang. TVStore: Automatically bounding
time series storage via Time-Varying compression. In 20th USENIX
Conference on File and Storage Technologies (FAST 22), pages 83–100,
Santa Clara, CA, Feb. 2022. USENIX Association.

[9] Apache Foundation. Apache Arrow Feather.
https://arrow.apache.org/docs/python/feather.html.

[10] Apache Foundation. Apache ORC. https://orc.apache.org.
[11] Apache Foundation. Apache Parquet. https://parquet.apache.org/.
[12] K. C. Barr and K. Asanović. Energy-aware lossless data compression.

ACM Transactions on Computer Systems (TOCS), 24(3):250–291, 2006.
[13] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based order-

preserving string compression for main memory column stores. In ACM
SIGMOD, pages 283–296. ACM, 2009.

[14] D. Blalock, S. Madden, and J. Guttag. Sprintz: Time series compression
for the internet of things. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2(3):1–23, 2018.

[15] M. Boissier. Robust and budget-constrained encoding configurations for
in-memory database systems. Proceedings of the VLDB Endowment,
15(4):780–793, 2021.

[16] L. Cen, A. Kipf, R. Marcus, and T. Kraska. Lea: A learned encoding
advisor for column stores. In Fourth Workshop in Exploiting AI
Techniques for Data Management, pages 32–35, 2021.

[17] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with
linear payoff functions. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pages 208–214.
JMLR Workshop and Conference Proceedings, 2011.

[18] P. DuBois. MySQL. Pearson Education, 2008.
[19] A. Dziedzic, J. Paparrizos, S. Krishnan, A. Elmore, and M. Franklin.

Band-limited training and inference for convolutional neural networks.
In International Conference on Machine Learning, pages 1745–1754.
PMLR, 2019.

[20] O. Evensen and D. Womack. How ai can pump new life into
oilfields. IBM Corporation. Available online: https://www. ibm.
com/downloads/cas/5BNKGNLE (accessed on December 2021), 2020.

[21] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In SIGMOD, pages 419–429, 1994.

[22] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex
optimization in the bandit setting: gradient descent without a gradient.
arXiv preprint cs/0408007, 2004.

[23] S. K. Jensen, T. B. Pedersen, and C. Thomsen. Modelardb: modular
model-based time series management with spark and cassandra. Pro-
ceedings of the VLDB Endowment, 11(11):1688–1701, 2018.

[24] S. K. Jensen, T. B. Pedersen, and C. Thomsen. Scalable model-based
management of correlated dimensional time series in modelardb+. In
2021 IEEE 37th International Conference on Data Engineering (ICDE),
pages 1380–1391. IEEE, 2021.

[25] S. K. Jensen and C. Thomsen. Holistic analytics of sensor data from
renewable energy sources: a vision paper. In European Conference
on Advances in Databases and Information Systems, pages 360–366.
Springer, 2023.

[26] H. Jiang, C. Liu, Q. Jin, J. Paparrizos, and A. J. Elmore. Pids: attribute
decomposition for improved compression and query performance in
columnar storage. Proceedings of the VLDB Endowment, 13(6):925–
938, 2020.

[27] H. Jiang, C. Liu, J. Paparrizos, A. A. Chien, J. Ma, and A. J. Elmore.
Good to the last bit: Data-driven encoding with codecdb. In Proceedings
of the 2021 International Conference on Management of Data, pages
843–856, 2021.

[28] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality
reduction for fast similarity search in large time series databases.
Knowledge and information Systems, 3(3):263–286, 2001.

[29] S. Krishnan, A. J. Elmore, M. Franklin, J. Paparrizos, Z. Shang,
A. Dziedzic, and R. Liu. Artificial intelligence in resource-constrained
and shared environments. ACM SIGOPS Operating Systems Review,
53(1):1–6, 2019.

[30] M. Kuschewski, D. Sauerwein, A. Alhomssi, and V. Leis. Btrblocks:
Efficient columnar compression for data lakes. Proceedings of the ACM
on Management of Data, 1(2):1–26, 2023.

[31] W. Lang, M. Morse, and J. M. Patel. Dictionary-based compression for
long time-series similarity. IEEE transactions on knowledge and data
engineering, 22(11):1609–1622, 2009.

[32] R. Li, Z. Li, Y. Wu, C. Chen, and Y. Zheng. Elf: Erasing-based lossless
floating-point compression. Proceedings of the VLDB Endowment,
16(7):1763–1776, 2023.

[33] P. Liakos, K. Papakonstantinopoulou, and Y. Kotidis. Chimp: efficient
lossless floating point compression for time series databases. Proceed-
ings of the VLDB Endowment, 15(11):3058–3070, 2022.

[34] X. Liang, Z. Shang, S. Krishnan, A. J. Elmore, and M. J. Franklin.
Fast and reliable missing data contingency analysis with predicate-
constraints. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 285–295, 2020.

[35] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao. Federated learning in mobile edge networks:
A comprehensive survey. IEEE Communications Surveys & Tutorials,
22(3):2031–2063, 2020.

[36] C. Liu, H. Jiang, J. Paparrizos, and A. J. Elmore. Decomposed bounded
floats for fast compression and queries. Proceedings of the VLDB
Endowment, 14(11):2586–2598, 2021.

[37] C. Liu, A. Pavlenko, M. Interlandi, and B. Haynes. A deep dive into
common open formats for analytical dbmss. Proceedings of the VLDB
Endowment, 16(11):3044–3056, 2023.

[38] C. Liu, M. Umbenhower, H. Jiang, P. Subramaniam, J. Ma, and A. J.
Elmore. Mostly order preserving dictionaries. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 1214–
1225. IEEE, 2019.

[39] A. Mahajan and D. Teneketzis. Multi-armed bandit problems. In
Foundations and applications of sensor management, pages 121–151.
Springer, 2008.

[40] Micro Focus International plc. Vertica Encoding Types.
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/
SQLReferenceManual/Statements/encoding-type.htm.

[41] S. Nakandala, A. Kumar, and Y. Papakonstantinou. Incremental and
approximate inference for faster occlusion-based deep cnn explanations.
In Proceedings of the 2019 International Conference on Management
of Data, pages 1589–1606, 2019.

[42] J. Paparrizos, I. Edian, C. Liu, A. J. Elmore, and M. J. Franklin. Fast
adaptive similarity search through variance-aware quantization. In 2022
IEEE 38th International Conference on Data Engineering (ICDE), pages
2969–2983. IEEE, 2022.

[43] J. Paparrizos and M. J. Franklin. Grail: efficient time-series representa-
tion learning. Proceedings of the VLDB Endowment, 12(11):1762–1777,
2019.

[44] J. Paparrizos, C. Liu, B. Barbarioli, J. Hwang, I. Edian, A. J. Elmore,
M. J. Franklin, and S. Krishnan. Vergedb: A database for iot analytics
on edge devices. In CIDR, 2021.

[45] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza,
and K. Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proceedings of the VLDB Endowment, 8(12):1816–1827,
2015.

[46] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll. Opc
ua versus ros, dds, and mqtt: Performance evaluation of industry
4.0 protocols. In 2019 IEEE International Conference on Industrial
Technology (ICIT), pages 955–962. IEEE, 2019.

[47] N. Saito. Local feature extraction and its applications using a library
of bases. Yale University, 1994.

1518

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

[48] C. E. Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948.

[49] H. Shatkay and S. B. Zdonik. Approximate queries and representations
for large data sequences. In ICDE, pages 536–545. IEEE, 1996.

[50] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[51] Tobi Oetiker. Rrdtool: round robin database tool.
http://oss.oetiker.ch/rrdtool/.

[52] M. Visvalingam and J. D. Whyatt. Line generalisation by repeated
elimination of points. The cartographic journal, 30(1):46–51, 1993.

[53] W. Weber, R. Cesarone, R. Miller, and P. Doms. A view of the future of
nasa’s deep space network and associated systems. In SpaceOps 2002
Conference, page 33, 2002.

[54] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp
norms. VLDB, 2000.

1519

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 20,2025 at 17:49:07 UTC from IEEE Xplore. Restrictions apply.

