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Abstract—In modern cloud environments, ephemeral resources
with intermittent availability and fluctuating monetary costs are
becoming common. This dynamic nature presents a new challenge
when deploying cloud-native databases: adaptive query execution,
which can suspend queries when the resources are scarce or costs
unexpectedly soar, and then resume them when the resources
become available or cost-effective. Addressing this challenge
requires the design and implementation of query suspension and
resumption with a mechanism that can adaptively determine when,
if, and how to suspend queries. In this paper, we propose Riveter, a
query suspension and resumption framework that can adaptively
pause ongoing queries using various strategies, including (1) a
redo strategy that terminates queries and subsequently re-runs
them, (2) a pipeline-level strategy that suspends a query once one
of its pipelines has completed to reduce the storage requirements
for intermediate data, (3) and a process-level strategy that enables
the suspension of query execution processes at any given moment
but generates a substantial volume of intermediate data for query
resumption. We also devise a cost model to estimate query latency
using various strategies and an algorithm to select the one that
causes minimum latency. To demonstrate the effectiveness of
Riveter, we conduct evaluations based on the TPC-H benchmark
to investigate intermediate data persistence, strategy selection,
and cost model-based estimation. Our results not only present
the difference among the strategies of Riveter in terms of the
size of persisted intermediate data and the time of triggering
the suspension but also confirm the adaptive and efficient query
suspension and resumption delivered by Riveter.

Index Terms—cloud-native, query execution, query optimization,
cost-model, suspension, resumption, resource-adaptive

[. INTRODUCTION

With the recent advancement in modern hardware and
virtualization, an increasing number of data processing and
analytic workloads are shifting towards database systems
deployed on large-scale cloud infrastructure [1]. This shift is
giving rise to a new database paradigm: cloud-native databases
[2], which are designed and optimized to run seamlessly
within cloud environments, and there have been a number
of successful instances of cloud-native databases. Nevertheless,
the increasing prevalence of ephemeral cloud resources is
prompting a re-thinking of the principles of cloud-native
databases and necessitating a novel query execution. First,
ephemeral cloud resources are ever-changing in availability.
Spot instances provide short-lived computing infrastructure
for short-running jobs [3], [4], [5], [6]. Recent developments
in cloud computing are amplifying this transient capacity.
One noteworthy example is the rise of serverless computing
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[7], [8], which empowers applications to leverage lightweight
cloud resources characterized by constrained runtime, memory
capacity, and computation specification. Another emerging
trend is “zero-carbon clouds” [9]. In this cloud paradigm,
data centers are designed to be entirely ephemeral, driven
primarily by renewable energy sources, such as sunlight and
wind, which are inherently unstable in availability. Second, the
monetary cost of cloud resources can fluctuate. The inherent
multi-tenancy nature of cloud resources [10] inevitably leads
to price adjustments based on resource supply and demand
dynamics [11]. Reportedly, the prices of cloud resources can
surge to 200 to 400 times the normal rate during peak demand
[7]. Moreover, the recent rise of data science and data-driven
Al has introduced increasingly complex and heterogeneous
workloads, combining both long-running and short-running
queries [12], [13], [14]. This diversity can potentially lead to
resource saturation, thereby exacerbating pricing fluctuations.

These two emerging trends challenge cloud-native databases
from two perspectives: (1) the assumption that cloud resources
are stable is not always applicable, and thus preserving the
resources for a relatively long term is not feasible all the
time; (2) the widely-used latency-oriented SLA (Service Level
Agreement) may not be the best option for all users, particularly
for those who prioritize cost-efficiency over speed. An ideal
cloud-native database designed for ephemeral resources needs
to perform queries in an adaptive manner: suspending a query
when resource accessibility or cost-efficiency is no longer
viable and resuming it when resources become available or
cost-effective again while minimizing the overhead caused by
the query suspension and resumption.

Motivated by this novel requirement, we proposed Riveter, an
adaptive query suspension and resumption framework. Riveter
supports various query suspension and resumption strategies,
including redo, process-level, and pipeline-level strategies.
Specifically, the redo strategy allows for terminating a query
at any given moment and subsequently rerunning it. However,
with this strategy, all current query progress is forfeited upon
termination. In contrast, the process-level strategy can also
suspend a query at any point and preserve the current progress
by persisting all intermediate data and context information
of the process in which the query is executed. This strategy
typically requires that each query runs in an isolated process;
otherwise, the strategy may pause the entire database system.
The process-level strategy comes with notable drawbacks: the
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persisted data can be exceedingly large, and the requirement for
resuming processes requires identical resource configurations,
such as the number of hardware threads and allocated memory
size, as were in use at the time of suspension.

The pipeline-level strategy offers an alternative approach by
persisting the intermediate data of each pipeline in the query
plan for potential resumption. This implies that suspending
queries and persisting their intermediate data only occur after
specific pipelines have completed their execution, but this strat-
egy usually reduces the volume of persisted intermediate data
since they are typically aggregated upon pipeline completion.
Riveter also employs a cost model that can estimate the latency
of various strategies and adaptively determine if, when, and
which strategy should be used.

For the implementation of Riveter, we modify DuckDB [15]
to realize the pipeline-level strategy and develop the process-
level strategy building on top of CRIU [16]. We also devise an
adaptive query suspension and resumption algorithm based on
the proposed cost model. We further conduct a set of evaluations
using the TPC-H benchmark [17] to study the effectiveness of
Riveter. We first compare intermediate data persistence when
the suspension starts under process-level and pipeline-level
strategy. For instance, using the TPC-H SF-100 dataset, when
query Q21 is suspended around halfway using the process-
level strategy, the intermediate data size is 28GB. Conversely,
with a pipeline-level strategy in the same setting, suspension
may be postponed until the completion of the current pipeline,
significantly reducing the intermediate data size to 79 bytes.
We also analyze how Riveter determines the strategy with the
least latency for specific queries and reveal the selected strategy
introduces negligible overhead. We validate the efficiency of
our cost model in terms of estimation accuracy and runtime.

Contributions. This work aims to design and implement an
adaptive query execution framework for ephemeral cloud
resources. This framework not only provides a cost model and
query suspension/resumption algorithm, but also introduces the
mechanism of selecting and executing diverse query suspension
and resumption strategies that are developed within Riveter.
To the best of our knowledge, Riveter is the first work to
provide a pipeline-level suspension and resumption strategy.
These advancements position our framework as a critical
extension to the query optimization capabilities of cloud-native
databases, thereby enhancing their efficiency and adaptability.
Our contributions are summarized:

o Characterizing the adaptive query suspension and resumption
for cloud-native databases with ephemeral resources (§II).
Designing and implementing various query suspension and
resumption strategies within the proposed adaptive query
execution framework Riveter. (§III-B, §III-A).

Devising a cost model and an algorithm to adaptively
determine the suspension and resumption strategies for
various queries (§111-C).

Evaluating Riveter using the TPC-H benchmark and revealing
insights: strategies bring distinct overheads due to intermedi-
ate data persistence (§IV-A), adaptively selecting strategies
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is necessary as their performance varies markedly across
different scenarios (§1V-B), and the proposed cost model-
based estimation is vital for informed strategy selection but
introduces neglect overhead (§IV-C).

II. MOTIVATION

We revisit the original concept of query suspension and
resumption and further highlight the essential role and po-
tential benefits of adaptive query suspension and resumption,
particularly in cloud-native databases with ephemeral resources.

A. Query Suspension and Resumption

The concept of query suspension and resumption is rooted
in recovery mechanisms in database systems [18], [19], and
the work can be considered one of the earliest works of
query suspend and resume is database checkpoint mechanism.
It can create a point from which the execution engine can
persist the current state of the database into non-volatile
storage [20]. In light of the checkpoint mechanisms, a query
suspend and resume approach is proposed for pull-based
query execution [21]. It generates a query suspend plan that
may involve a combination of persisting current state and
going back to previous checkpoints. Within this approach,
the potential suspension points are always the ones that
have minimized memory usage, thus mitigating significant
overhead during suspension and resumption. Alternatively,
instead of persisting the intermediate data, certain systems
suspend queries and retain the intermediate data in memory
during suspension. For instance, Amber [22] converts the
operator DAG of the execution plan to an actor DAG and
passes messages of “suspend” and “resume” among actors
so that the query suspension or resumption can be triggered.
Nevertheless, maintaining query processing in a suspended state
without persistence can consume substantial memory resources
and lead to significant delays for other queries. Moreover, this
approach is not suitable for query or database migration, which
is not uncommon in cloud-native databases.

We identify three pivotal aspects of suspension and re-
sumption strategies: (1) suspension flexibility, (2) intermediate
data persistence, and (3) progress preservation. Based on the
perspectives, the most ideal strategy is the one that can suspend
a query at any given time and preserve the progress of the
suspending time point with the least volume of intermediate
data to persist. Suspension flexibility measures the granularity
of triggering suspension a strategy can support. Within this
spectrum, two extremes can be identified: one where queries
can be suspended at any point during their executions and
another where suspension occurs only upon query completion.
Progress preservation signifies how much query processing
progress can be retained, whether partially or in its entirety,
when a suspension is initiated. Intermediate data persistence
specifically refers to the size of persisted intermediate data,
which directly impacts the latency of query suspension.

We describe three strategies according to the above perspec-
tives, as presented in Table I.
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queries, potentially reducing the overhead associated with

Suspension Data Progress migrating cloud-native databases. Furthermore, in certain

Flexibility Persistence Preservation . . . . .
circumstances where a single resource-intensive, long-running
Redo Strategy Tez?lligit; at  No imj;g‘edia‘e Loses all progress query dominates the database, migrating that specific query

Y ) ) can free up resources for more efficient utilization.
Process-Level  Suspend anytime Intermediate Preserves all . . .

Strategy  at process level  data of process progress Case 3: Computation with ephemeral resources. An increas-
Pipeline-Level Suspend at pipeline  Intermediate ~ Keeps progress of ing number of cloud-native databases now support server-
Strategy ~ completion data of pipeline persisted pipeline less computing, which leverages lightweight and short-lived
- - - - resources to enable users to invoke functions deployed in
TABLE I: Representative suspension & resumption strategies the cloud and retrieve results locally. These functions can be

likened to queries or analytical tasks performed on specific
datasets. However, ephemeral resources can lead to increased
latency in serverless computing due to fluctuating resource
costs and unstable resource availability. The proposed adaptive
query suspension and resumption can mitigate these issues
by avoiding periods when resources are either unavailable or
expensive for utilization.

Redo strategy allows for query suspension at any given time
through immediate termination. It preserves no progress of
query processing, resulting in no persisted intermediate data.
Process-level strategy can suspend a query at any given time
and keep the current progress during suspension by persisting
all necessary intermediate data.

Pipeline-level strategy only checks if a query can be suspended
when a pipeline is completed and preserves progress by ITI. RIVETER DESIGN AND IMPLEMENTATION

persisting the intermediate data at this completion point. Inspired by the motivational cases, we propose Riveter, an
adaptive query suspension and resumption framework. Riveter
supports three strategies as we identify in §1I-A and adaptively
select the strategy that is associated with minimized latency
based on a cost model.

B. Motivational Cases

Adaptive query suspension and resumption become evident
in the evolving scenarios of cloud-native databases, considering
that ephemeral cloud resources are becoming increasingly
prevalent. The rise of spot instances [3], [4], [5] and the A. Process-level Suspension and Resumption
emergence of zero-carbon clouds [9], [23] have provided
transient and intermittent computing infrastructures. Meanwhile,
the prices of these cloud resources can fluctuate. In these
scenarios, the adaptive query suspension and resumption enable
queries to execute when resources are available or costs are
within acceptable bounds, and it allows query suspension when
resources become unavailable or costs become prohibitive.

We describe the following motivational cases in cloud-native
databases for adaptive query suspension and resumption:

Riveter can suspend and resume queries at any given point
by employing a process-level query suspension and resumption
strategy. This strategy operates within the context of a process,
ensuring the persistence of the complete context and all inter-
mediate data upon initiation of suspension. Riveter reconstructs
the entire process context and execution environment during
the resumption phase, subsequently reloading the intermediate
data associated with that process. The process-level strategy in
Riveter empowers the suspension and resumption of queries

Case 1: Heterogeneous workloads. Cloud native databases are at will, albeit accompanied by a notable overhead due to the
deployed for multi-tenants and process the heterogeneous — pecessity of data persistence and loading. This overhead arises
workloads that are mixed by short-running and long-running  from the persistence of the entire process context and state
queries. When long-running queries occupy resources for during the suspension phase, which is then reinstated upon
unexpectedly long periods, they potentially cause resource query resumption. Furthermore, the resumption of queries
saturation. This can lead to significant delays for shorter-  (rjggers the meticulous reconstruction of the process context to
running queries, which otherwise could have been completed precisely match its state during suspension, which also ensures
promptly with sufficient resources. Existing methods, such that the resource configuration remains consistent and unaltered
as query scheduling or resource reservation, may fall short between the suspension and resumption phases.

of expectations as they often treat the queries as indivisible

entities, whereas the proposed adaptive query suspension and Query Suspend Query Resume
resumption essentially converts a long-running query into a m Check if should I
series of short-running ones by suspending and resuming it for SUEFETE QUSTES lesimeldliciies
multiple times, allowing more flexible scheduling for execution. $ 2

Case 2: Database migration. Database migration is vital for
maintaining elasticity and scalability in cloud-native databases.

@

N
The current state-of-the-art approach is live database migration, Process ; Process
which strives to move databgge services with minimal iervice —
disruption and negligible impact on performance. However,
migrating entire database systems remains non-trivial and
brings substantial overhead. The adaptive query suspension and Fig. 1: Workflow of process-level strategy.
resumption framework can enable the migration of individual
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We implement process-level query suspension and resump-
tion in Riveter on top of CRIU [16], as demonstrated in Fig. 1.
When suspending a query, the entire query execution process
will be dumped as intermediate image files, which can be used
to restore the process and the associated query.

B. Pipeline-level Suspension and Resumption

Pipeline-based query execution divides the query plan into
a number of pipelines for parallel execution. Dividing query
plans into pipelines is based on the pipeline breakers that
usually block operators and collect sufficient intermediate
results for further process. Thus, the pipeline-level suspension
and resumption strategy in Riveter takes the pipeline breakers
as the natural suspension and resumption points.

Athread finishes ' J
a batch for a pipeline

Execute next
pipeline

Query Suspend

nd

Check if
suspend

Check if the pipeline
is finalized
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global state
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$
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Fig. 2: Workflow of pipeline-level strategy.

We modify DuckDB [15] to implement a prototype system
for the pipeline-level strategy. The workflow of pipeline-level
suspension and resumption is illustrated in Fig.2. When a
thread completes processing a pipeline with a data batch,
Riveter checks whether the query execution has reached
the suspension point and determines whether to initiate the
suspension process. If affirmative, Riveter proceeds to verify
if the current pipeline is finalized—indicating that all the
intermediate results at the thread level have been merged into
the global state. If so, Riveter serializes and persists the global
state before suspending the query. When resuming a query,
Riveter first attempts to identify the persisted intermediate data
and resource configurations in order to re-establish the query
execution environment. Subsequently, Riveter manages pipeline
dependencies; for example, it bypasses pipelines processed
prior to suspension and marks successor pipelines as ready for
execution while also reconstructing the global states for future
execution. Afterward, Riveter carries out the query until it
reaches the next suspension point or produces the final results.

We illustrate a set of common query operators under pipeline-
level strategy in Fig. 3 and Fig. 4. Although a pipeline can be
executed by multiple threads, it maintains a global state to
merge the intermediate data of each thread. Taking in-memory
hash join as an example, the query plan is split into two
pipelines: one is for building hash tables, and the other is for
probing hash tables. Thus, there are two pipeline breakers at
the end of each pipeline for suspension and resumption; each
breaker maintains a global state.

The implementation of pipeline-level strategy only performs
at pipeline breakers for query suspension and resumption, but

3978

the intermediate data are usually processed and aggregated,
which makes the necessary persisted data reasonably small.
Our implementation brings an extra advantage, running queries
using adaptive resources. This is because Riveter can check
and exploit the available resources when loading and recreating
the execution context for resume queries.

C. Cost Model and Strategy Selection

We devise a cost model to adaptively decide if, when, and
how to suspend queries, formulating the cost model as follows.

Given. A query g that may encounter a termination within a
specific time window 7', starting from 7 to T,. Considering
the potential termination, the query must confront a decision
point: it can either be forcefully terminated, resulting in the loss
of current progress, or strategically suspended while retaining
all intermediate data. When the query is suspended before
the termination, the intermediate data is persisted, ensuring
the continuity of the ongoing progress. However, persisting
intermediate data at query suspension and reloading them
during query resumption may introduce additional latency,
denoted as L, and L,., which are typically denominated by the
size of intermediate data. In cases where a query cannot be
suspended before its intended termination, both the intermediate
data and the current progress are forfeited, which necessitates
a complete re-execution from its starting point.

Assumption. A termination can happen within a time window 7',
determined by a probability Pr,0 < Pr < 1. Specifically, Pr
can be either predefined or decided by a probability distribution
m. This setting can simulate the termination in real-world
applications; for instance, users can be alerted when their spot
instances are at risk of imminent termination, or servers in
zero-carbon clouds may face an energy shortage within a future
time window. The potential termination point can differ each
time the query is executed. Additionally, the available amount
of resources, such as CPU threads and memory, are known
prior to the suspension and resumption of the query, but the
availability of these resources might undergo changes during
the suspension and resumption phases; thus, resuming a query
is unviable when the resources available are inadequate for its
execution.

Objective. Select the strategy to minimize the overall cost for
q. When suspending ¢ using the redo strategy, the cost is,

Cost'rcdo Prcdo " Frcdo
q T

(D
When executing ¢ using the process-level strategy, the cost is,
Costhroe = [Proc 4 [Proc 4 Pproc x Toroe )

When executing ¢ using the pipeline-level strategy, the cost is,
CostPP! = LPP! 4 PPl pRPt s vl 3)

Specifically, Cost;ed" is essentially the execution time before
the termination point, which is jointly determined by the
probability of termination P7¢% and the redo cost I'*%° under
the redo strategy. The costs associated with the pipeline-level
and the process-level strategy come from two perspectives:
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hash-joins in Riveter.

(1) the latency caused by persisting intermediate data during
suspension and reloading them for query resumption, and (2)
the redo cost if the suspension fails to complete before the termi-
nation point. Therefore, the cost of pipeline-level and process-
level strategies can be expressed as Costy = (Ls+L,)+Pr=T.
The latency L, and L, can be estimated based on the size
of intermediate data and hardware specification to facilitate
prompt decision-making during query execution.

Using the cost model, we devise an algorithm for adaptive
strategy selection. Since continuously monitoring the status of
query execution and performing cost calculations for potential
suspension and resumption can significantly impede regular
query execution, our algorithm employs a proactive approach
to support adaptive query execution and meanwhile reduce
the associated overhead. We present an illustrative example in
Fig. 5, and more details are provided in Algorithm 1.

Riveter estimates the cost of employing the three strategies
and makes latency-oriented decisions when the query execution
reaches a pipeline breaker. For the query ¢, the cost of redo
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Fig. 5: Illustrative example of strategy selectlon in Riveter.

strategy Cost!®4 is expressed as Ppe4° « I, where Pjed©
is calculated in terms of the overlap between termination
time window 7" and the time of completing future pipelines
(lines 9-17 in Algorithm 1). The completion time of future
pipelines can be estimated based on the average of previous
pipelines. For the cost estimation of pipeline-level strategy, we
serialize and persist the intermediate data in binary format,
essentially representing a large vector of bytes, which allows
us to determine its size. Then, the latency LFP! and LPP!
can be estimated based on the size of intermediate data and
the estimated I/O performance. The cost associated with the
pipeline-level strategy, denoted as Cost{q’pl, is calculated by
aggregating the above factors, as presented from line 33 to 46.

The cost estimation of process-level strategy requires probing
more future suspension points since the strategy can suspend
queries anytime (lines 18-32). The suspension point under a
process-level strategy associated with minimum latency can
be selected. During the probing process, Riveter employs an
iterative approach, advancing suspension time points by each
time unit that can be predefined according to the termination
time window to estimate the latency of each future suspension
point. It is non-trivial to estimate the latency L2"°¢ and LP"¢ of
process-level strategy at each potential suspension point since
the intermediate data include the processing data and all the
necessary context information as well. We exploit a regression-
based approach to estimate the size of intermediate data under
the process-level strategy. The regression-based approach can
fit a curve based on a number of key factors, such as the size
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Algorithm 1: Adaptive Strategy Selection

Input :Query g, Termination time window 7" (from T to T¢),
Probability of termination Pp
1 Tsum =0, Npp; = 0;
2 Initialize termination probabilities P7¢4°, ngl, ngl;
3 while q reaches a pipeline breaker do

4 Observe current time Cy;
5 Observe available memory M;
6 Observe running time of pipeline 77,3
7 Tsum = Tsum + Tppis Nppt = Nppr + 13
8 Return strategy based on
min{CosTESTREDO (),CosTESTPPL (),CosTESTPROC () }
9 Function CosTESTREDO ()¢
w | ifC>Ts or Cp+ T > T, then
pp
11 ‘ P{f’d” = Prp;
12 else if Ts < Cy + %—“'7 < Te then
PP
13 Overlapped time window T, = C¢ + 7;\;‘7”’; —Ts;
pp
redo — __ T, .
14 Predo = o Pr;
15 else
16 L Pjﬁ"'d" =0
17 Return Costgedo = P}Ed" * Cy;
18 Function CosTEsTPRrROC ()
19 for st;, i < Ct to Cy + %”;’ do
ppl
20 Estimate size of intermediate data Sf; ¢ at st;;
21 if S7°° < M then
2 | Estimate latency L' 5° and L5 based on S%;°%
23 else
proc __ proc __ .
2 L Ls,sti = 0, LT',Sti = o0
25 if st; + LY'° > Te then
2 | PR =Py
27 else if T < st; + LY"5° < T, then
28 Overlapped time window T, = st; + L’;pslti —Ts;
proc __ T, .
29 Pr, = 7T ij * Pr;
30 else
proc __ .
31 | PP =0;
32 | Return Costf;mC = min{Lf?ﬁ + Lfrsi + PJETOC * sty }
33 Function CosTESTPPL ():
34 Obtain size of intermediate data SPP! of pipeline-level strategy;
35 if SPPL < M then
; ppl ppl l.
36 ‘ Estimate latency Lg~ and L;" based on SPP';
37 else
38 L PP = oo, LPP! = oo;
3 if ¢y + L2 > T, then
40 ‘ P;pl = Pr;
a1 else if Ts < Cy + LPPY < T. then
42 Overlapped time window T, = Cy + LPP' — Ty;
ppl _ T, .
3 P = T, * Ppr;
44 else
45 L P;ipl =0;
46 Return Costgpl =LrPl 4oty P;ipl * Cy;

and the cardinality of the input data, the metadata of the query
(e.g., number of various core operators in the physical query
plan), and the suspension point. In cases where regression-
based estimation methods may not yield satisfactory results
due to limited or unavailable historical data, we also resort to an
optimizer-based approach for robust estimation. Specifically, the
optimizer-based estimation of the persisted intermediate data
size is an outcome of two factors: (1) memory utilization, which

is determined through query plans generated by cost-based
optimizers [24]. It takes into account the estimated cardinality
of the core operator closest to the root node in the query plan, as
well as the data types associated with each column in the input
data; (2) the ratio of suspension time point, which is calculated
by comparing the suspension time to the overall execution time.
For example, we may choose to suspend queries at around
50% of their total execution time as a reference point for this
ratio. Note that the aforementioned estimation approaches can
be revised to fit different scenarios.

IV. EVALUATION

Using the TPC-H benchmark, we:

« Investigate the intermediate data persistence under process-

level and pipeline-level strategy (§IV-A),

o Analyze the strategy selection based on the cost model

(§IV-B),

o Study the estimation accuracy and runtime of the cost

model (§IV-C).

Riveter is evaluated on a server with two Intel Xeon Silver
CPUs (2.10GHz, 16.5MB Cache, 12 physical cores), 192GB
memory, and six 10TB hard disks (7200 RPM, SATA 6.0 Gb/s),
running Ubuntu Server 18.04. We use the Parquet format [25]
and assume that data is ingested for query processing. During
the evaluation, query executions are initiated using Python
APIs. All the results in the evaluation are averaged over three
independent runs, unless stated otherwise.

We run all the queries from the TPC-H benchmark to conduct
a comprehensive evaluation. Additionally, we highlight the
queries Q1, Q3, Q17, and Q21, which feature diverse core
operators and varying numbers of input tables. The queries are
characterized in Table II.

Query Core Operators Tables
Ql 1 groupby 1 table
Q3 1 groupby, 2 join 3 tables
Q17 1 join, 1 unionall 2 tables
Q21 1 groupby, 4 join, 1 outer join 4 tables

TABLE II: Selected queries in TPC-H

A. Impact of Intermediate Data Persistence

We investigate the size of persisted intermediate data using
the strategies in Riveter. Since the redo strategy allows query
termination to occur and re-executes them subsequently without
persisting any intermediate data, this evaluation focuses on the
process-level and pipeline-level strategy.

1) Process-level Strategy: We utilize the process-level
strategy in Riveter to suspend all the queries from TPC-H
benchmark. Specifically, Riveter suspends the queries at
approximately 50% of their estimated execution time, persisting
all intermediate data and process context. As depicted in
Fig. 6, the sizes of intermediate data for most queries exhibit
a proportional increase with the volume of input datasets. For
example, when Q21 is suspended, the size of persisted data is
3.1GB for the SF-10 dataset, 14GB for the SF-50 dataset, and
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Fig. 6: Persisted intermediate data size of queries in TPC-H when suspending them at around 50% execution time using the

process-level strategy on SF-10, SF-50, SF-100 datasets.

28GB for the SF-100 dataset. However, there were exceptions
noted for queries Q2, Q11, Q16, and Q22 when using the SF-
10 dataset. This deviation can be attributed to the lightweight
nature of these four queries, which were completed rapidly
when processing smaller datasets such as SF-10. For instance,
the execution time of Q2 and Q11 are 0.9 and 0.4 seconds,
respectively. Consequently, when Riveter suspends these queries
at approximately 50% of their execution time (i.e., around 0.45
and 0.2 seconds, respectively), they were still in the early
stages of execution, resulting in small sizes of intermediate
data for persistence.

Following the above argument that queries in their early
execution stages generate fewer intermediate data under the
process-level strategy, we further investigate how different
suspension points affect the size of intermediate data. Specifi-
cally, we measure the intermediate data size when suspending
queries at approximately 30%, 60%, and 90% of their execution
progress. Fig. 7 presents that the size of persisted intermediate
data under the process-level strategy increases as suspension
occurs later in the query execution. Our argument for this trend
is that the memory allocation is not timely de-allocated during
query execution. Thus, intermediate data accumulates until the
query execution is completed. This observation underscores the
trade-off between suspending a query immediately to reduce
the space required for persistence and delaying suspension to
make more progress, should it prove advantageous.

® 100GB

FEBNN Suspension at 30% exuection time
EEEE Suspension at 60% exuection time
I Suspension at 90% exuection time

10GB

Intermediate Data Siz

1GB Q3 Q17 Q21

Fig. 7: Persisted intermediate data size of Q1, Q3, Q17, Q21
when suspending them at around 30%, 60%, and 90% execution
time using process-level strategy on SF-100 dataset.

2) Pipeline-level Strategy: Riveter suspends queries from
TPC-H benchmark at around 50% of their execution time

3981

using pipeline-level strategy. Fig. 8 illustrates the size of
persisted intermediate data of 22 queries, each exhibiting
notable differences. For example, when suspending Q1 on
the SF-10 dataset, the size of intermediate data is less than
1KB, while the intermediate data generated by Q8 for the
same dataset is approximately 12GB. Furthermore, while the
intermediate data for certain queries (e.g., Q8, Q9, Q12, Q17,
and Q18) that undergo suspension tends to grow proportionally
with the size of the input datasets (SF-10, SF-50, SF-100),
the size of intermediate data for other queries, such as Ql,
Q4-7, Q11, Q14, and Q19-Q22, remains consistent across these
datasets. This behavior is primarily influenced by the specific
pipeline in which the query is situated when suspension is
initiated. For instance, queries within hash-join pipelines tend to
exhibit increased intermediate data sizes in tandem with larger
input datasets, whereas queries within aggregation pipelines,
such as those involving sum or average operators, tend to
produce intermediate data of similar sizes due to the nature
of their aggregated results. Moreover, in the case of certain
queries, the pipeline-level strategy results in a greater volume
of intermediate data compared to the process-level strategy.
This discrepancy arises from the fact that the pipeline-level
strategy exclusively initiates suspension upon the completion
of a pipeline. To illustrate, consider Q8: when the suspension
is requested at around 50% of its execution time, the pipeline
engages with a hash-join operator is being processed; thus, the
pipeline-level strategy can only suspend Q8 when this pipeline
is processed completely, thereby necessitating the retention of
the entire hash table for the join. However, the process-level
strategy exhibits a swifter response to suspension requests,
resulting in the persistence of intermediate data involving only
the partial hash table.

Since the pipeline-level strategy only suspends a query when
one of its pipelines is finalized, the time a suspension is
requested is not always the moment when the suspension
process commences, and we measure the time difference
accordingly in Fig. 9. Specifically, Q21 has the minimum
delay on different datasets due to the granularity of its query
plan, which can be quantified by the number of pipelines
involved. This is mainly because Q21 has more pipelines than
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Fig. 9: Time lag incurred when suspensions are requested under the pipeline-level strategy.

Q1, Q3, and Q17, which provides more feasible suspension
points and thereby allows the query to be suspended closer to
the suspension point. Our results quantitatively confirm that
when suspension occurs, the pipeline-level strategy typically
generates significantly less intermediate data for persistence
than the process-level strategy. This reduced intermediate data
can be attributed to the fact that pipeline-level strategy does not
necessitate capturing all state and context data for resumption.
However, the pipeline-level strategy may introduce extra delays
in responding to suspension requests, particularly when the
query plan comprises fewer pipelines or is dominated by a
single heavyweight pipeline.

B. Analysis of Suspension and Resumption Strategy Selection

We analyze Riveter’s selection of suspension and resump-
tion strategies by examining scenarios in which termination
time windows and termination probabilities are configured
with different settings. In this evaluation, we predefine the
termination probability P and the termination time window
[Ts,T.]. The termination probability P dictates the likelihood
of a query being terminated during its execution. Should
a termination occur, the exact timing of termination within
the window [T, T¢| is determined by a uniform distribution
with the cumulative distribution 1% at T} to 100% at T,. In
this section, we employ the notation X-Y% to represent the
termination time window. This notation specifies the interval
for the termination time window, beginning at approximately

X% and ending at Y% of the total execution time. We run
and analyze all the TPC-H queries using SF-100 datasets. All
the results in §IV-B are averaged over ten independent runs.
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Fig. 10: Suspension and resumption overheads of TPC-H
queries on the SF-100 dataset using three strategies under
scenarios where termination probability is 100%.

We first investigate scenarios characterized by certain ter-
minations, where the termination probability is 100%. Fig. 10
presents the overheads of suspension and resumption across
all 22 TPC-H queries using the SF-100 dataset, utilizing three
strategies under a range of termination time windows, yet
maintaining a termination probability of 100%, as depicted
through box plots. For Fig. 10, we deactivate the cost model and
the mechanism for adaptive strategy selection within Riveter,
thereby compelling Riveter to employ a predetermined strategy.
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We measure the overhead as the difference between the normal
execution time and the execution time that includes a single
suspension and resumption using the specific strategy. Fig. 10
illustrates that for queries utilizing the redo strategy, overhead
increases as the termination time windows shift from the initial
0-25% interval to the final 75-100% interval. This trend arises
because the overhead under the redo strategy corresponds to
the termination point (the execution time before termination is
wasted), making the overhead increments directly proportional
to the termination time windows and specific termination
points. Similarly, overheads for queries applying the process-
level strategy exhibit a gradual increase as termination time
windows progress from 0-25% to 50-75%, with a marked
rise in the 75-100% window. This pattern can be attributed
primarily to the growth in intermediate data sizes as execution
advances (referenced in Fig. 7), which results in extended
serialization and persistence durations. Consequently, this not
only requires additional time for suspension and resumption
but also heightens the likelihood of failing to complete the
suspension before termination. Overheads associated with the
pipeline-level strategies exhibit a different pattern, showing a
gradual increase from the 0 — 25% to the 50 —75% termination
time windows, but demonstrating a decrease from the 50— 75%
to the 75 — 100%. This is due to the nature of the pipeline-
level strategy, where feasible suspension points are pipeline
breakers. A number of TPC-H queries are characterized by
dominating pipelines, which results in pipeline breakers being
predominantly situated near the beginning and end of the query
execution process. Therefore, some TPC-H queries cannot be
suspended timely when the termination time windows are
located at the 50 — 75% and the 50 — 75% of query execution
time, thereby, increasing the overhead. Fig. 10 presents the
trade-off among the strategies, confirms our argument that
adaptive query execution is necessary when terminations may
happen, and highlights the advantages of Riveter.
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Fig. 11: Successful strategy selection rate under scenarios
where termination probability is 100%.

To show the effectiveness of Riveter’s strategy selection
process, we activate its strategy selection mechanism and
record the number of successful selections across all TPC-
H queries on the SF-100 dataset over ten independent runs, as
depicted in Fig. 11. A strategy selection is deemed successful
if the execution of a query, under the strategy chosen by
Riveter, is completed in the shortest time, even in the event of
a termination. Fig. 11 demonstrates that Riveter often selects
the best approach in different scenarios over ten runs.

We also explore scenarios where termination probabilities are
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varied, including 30%, 50%, 70%, and 90%, rather than being
absolute at 100%. Below, we describe examples for queries Q1,
Q3, Q17, and Q21 under different termination probabilities and
time windows, as illustrated in Table III. The expected number
of terminations is calculated using the termination probabilities
and the total number of independent runs. For example, with
our ten independent runs and a termination probability of 30%,
the expected number of terminations would be 3.

Query Q1 serves as a representative example of queries that
heavily rely on one of a few pipelines. For Q1, we configure
a termination time window [81s,108s] (i.e., 75 — 100% of
expected execution time), with a 30% probability of termination.
Once Q1 approaches this time window, Riveter assesses the
cost associated with different suspension strategies. The cost
of the redo strategy is notably high in this scenario. This is
primarily because Q1 is nearing the completion of its execution,
and any termination at this point would result in the loss of
all progress, necessitating a complete restart. Consequently,
this would lead to a significant increase in execution time.
Meanwhile, the estimated cost of the process-level strategy is
considerably higher than that of the pipeline-level strategy. This
is attributed to the much larger size of intermediate data that
must be persisted during the suspension period. Thus, Riveter
recommends the pipeline-level strategy for Q1.

In the case of Query Q3, we analyze the strategy selection
of Riveter when there is a potential for early termination
during query execution. In this case, the first pipeline of
Q3 reaches completion quite early in the process. Riveter,
after performing its calculations, selects the redo strategy
for suspension, primarily due to its lower cost compared
to the other two strategies. This choice is bolstered by the
fact that the termination time window occurs at the outset
of query execution, resulting in a relatively modest cost for
the redo strategy since the cost of the redo strategy is mainly
associated with the query re-execution instead of persisting
any intermediate data. During three independent runs, one
termination event occurred, necessitating the need to rerun
the query execution and thereby increasing the redo strategy’s
average running time.

In the case of Query Q17, the probability of query termi-
nation is relatively high. Consequently, suspending the query
becomes a more reasonable choice than redoing it entirely.
Riveter, taking this into account, opts for the process-level
strategy over the pipeline-level strategy. The latter, which
involves persisting relatively large amounts of data, introduces
additional overhead. Furthermore, Riveter’s estimation suggests
that the next pipeline of Q3 will fully cover the termination
time window, rendering the redo strategy more expensive due
to the high termination probability.

Query Q21 is one of the most complex queries in TPC-H.
We configure a termination time window at the middle phase
of query execution, paired with a high termination probability,
which suggests a higher expected number of terminations.
According to Riveter’s estimation, the size of intermediate
states maintained for persistence during suspension, using a
process-level strategy, substantially exceeds that of the pipeline-
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Query Configuration Selected Strategy | Execution Time E?(ecutlon TlTne
with Suspension
Q1 | Termination Probability: 30%, Termination Time Window: 75-100% | Pipeline-level 108s 109.8s
Q3 Termination Probability: 50%, Termination Time Window: 0-25% Redo 78.6s 82.4s
Q17 | Termination Probability: 70%, Termination Time Window: 50-75% Process-level 116.1s 132.9s
Q21 | Termination Probability: 90%, Termination Time Window: 25-50% Pipeline-level 242.4s 298s

TABLE III: Comparison of normal execution time versus execution time using Riveter’s selected strategy

level strategy, which can introduce considerable overhead into
the query execution process. Additionally, the termination
time window initiates at 70 seconds. This factor diminishes
the attractiveness of employing the redo strategy, given that
termination has a 90% probability of occurring, resetting the
progress and significantly extending the overall query execution
time. Therefore, Riveter recommends adopting the pipeline-
level strategy, as the execution time with a single suspension
and resumption event introduces only negligible overhead.
Furthermore, the observed increase in average execution time
when including suspension and resumption, compared to
normal execution time, is attributable to one independent
run where suspension fails to complete before reaching the
termination point. This failure necessitates restarting the query
and significantly increases the overhead.

Our evaluation reveals that there is no universally superior
suspension and resumption strategy and underscores the neces-
sity of judicious selection of when/how to suspend a query.

C. Accuracy Estimation and Runtime of Cost Model

The cost model plays a crucial role in the Riveter framework,
aiding in determining the optimal strategy based on latency
estimations for various strategies. As detailed in §III-C, as-
sessing the latency of the process-level strategy necessitates
estimating the size of intermediate data; thus, we investigate
the accuracy of this estimation within Riveter. We collect data
from 200 query executions and employ a regression-based
approach to fit the curve, and subsequently, leverage this curve
to estimate the size of intermediate data when applying the
process-level strategy in Riveter to suspended queries. The
results of our estimations are presented in Table IV, offering
valuable estimates to the cost model for identifying the strategy
with the least latency.

Query| Dataser | Kt | OPE e |
Q1 | SE-50 2.25GB 15.7GB 2.3GB
Q1 | SF-100 475GB 31.3GB 43GB
Q3 | SF-50 3GB 236 x10'® GB | 2.3GB
Q3 | SF-100 5.2GB 1.89 x10'® GB | 4.2GB
Q17 | SF-50 2.7GB 1.01 x10'" GB | 2.1GB
Q17 | SF-100 4.5GB 8.05 x10'" GB | 5GB

Q21 | SF-50 11.7GB 5.05 x10'® GB | 14GB
Q21 | SF-100 24.3GB 4.05 x10' GB | 28GB

TABLE IV: Estimation analysis of cost model when queries
are suspended at around 50% using process-level strategy.
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Furthermore, we conduct a robustness test using optimizer-
based estimation that relies on estimated cardinality and
data types associated with the input data table columns. As
illustrated in Table IV, the optimizer-based estimation, with
its independence from historical or real-time data, produces
significantly inaccurate estimates compared to the ground-
truth values. In the test, we configure Riveter to utilize
the optimizer-based estimate for strategy selection in the
case of Q17 (Table III). The optimizer-based estimation tends
to overestimate intermediate data sizes and the associated
overhead introduced by their persistence. Given termination
probability and termination time window, this results in Riveter
selecting the pipeline-level strategy that is a sub-optimal
strategy, as shown in Fig. 12. Since the suspension of pipeline-
level strategy only occurs when reaching pipeline breakers,
the suspension of pipeline-level strategy for Q17 is deferred
until a pipeline is processed completely (e.g., Fig.9) and
thereby overlaps with the termination time window. In three
experimental runs, this lag leads to two terminations occurring
before the pipeline-level suspension is completed.

Process-level strateqy NN > <

0 50 100 150 200 250
Query execution time (sec)

Fig. 12: Query suspension strategy selection for Q17 based on
optimizer-based estimation.

Pipeline-level Strategy
(Optimizer-based Estimation)

300

In our implementation of Riveter, the cost model is launched
as a dedicated process and efficiently communicates with the
process where the query is executed through allocated shared
memory. We measure the running time of the cost model,
including data ingestion for estimation, latency estimation for
the process-level strategy, and evaluation of latency for other
strategies to determine the optimal strategy. Specifically, Riveter
runs query Q1, Q3, Q17, and Q21 on the SF-100 dataset and
suspends them at around 50% of their execution time. We
capture the running time of the cost model when it is triggered
for optimal strategy selection for this suspension request. As
tabulated in Table V, the running time of the cost model for
Ql, Q3, and Q21 is negligible. The cost model for Q17 brings
a relatively higher overhead to the query execution. This is
primarily due to determining the size of larger intermediate
data of Q17 during suspension, a critical step in the cost model,
which requires more time to complete and introduces additional
overhead to the cost model.
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Query Running Time of Overall Executign Time
Cost Model (no suspension)
Ql 0.012s 108.4s
Q3 0.018s 69.3s
Q17 5.85s 115.8s
Q21 0.02s 223.6s

TABLE V: Running time of cost model in Riveter for various
queries on the SF-100 dataset

V. RELATED WORK

In this section, we identify some key domains where Riveter
can effectively contribute, and compare it with established
relevant techniques within those domains.

A. Recovery, Checkpoint, and Suspension

Recovery, checkpoint, and suspension can be traced from a
similar lineage in databases. ARIES [26], a canonical algorithm
for database recovery, enables features like steal and no-force
buffer management, partial rollbacks, and fuzzy checkpoints.
Disk-based databases often use ARIES or similar methods
for recovery [27]. However, in-memory databases typically
avoid ARIES-style recovery to boost performance, prioritizing
minimal I/O overhead by accessing persistent storage primarily
for recovery purposes. Although many disk-resident database
systems implement ARIES-alike mechanisms for recovery
purposes, in-memory database systems avoid using ARIES-
style for performance reasons [19].

The checkpoint mechanism is vital for improving recovery
processes, creating a reference point for persistently capturing
the database’s current state. Unlike disk-based systems, main-
memory databases use an asynchronous method to move
transaction updates from the log to a checkpoint archive,
speeding up recovery and freeing log space [28]. Main-memory
databases typically generate consistent snapshots instead of
individual log records, representing the database’s state at a
specific time [29]. The snapshot-based approaches enable in-
memory databases [30] and modern disk-resident databases
[31] to reload the latest snapshot after a system crash quickly.

In light of checkpoint mechanisms, Chandramouli et al. in-
troduced a pull-based query execution approach that operates
at the operator level and focuses on query suspension and
resumption [21]. This approach, which can be integrated into
Riveter, differs from the existing suspension and resumption
strategy in Riveter. The comparison is illustrated in Table VI.
Graefe et al. [32] and Antonopoulos et al. [33] explored the
possibilities of implementing pause and resume functionality
for index operations in commercial database systems. Similar
to query suspension, the query preemption mechanism can
pause or checkpoint some ongoing jobs in favor of others due
to specific objectives. SaGe [34] focuses on SPARQL queries
and allows the queries to be suspended by the Web server
after a fixed period and resumed upon client request. Rotary
[14] is a general resource arbitration framework, but one of
its implementations, Rotary-AQP can checkpoint some long-
running AQP jobs during execution and resume it using the
persisted state when it is beneficial to do so.
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Riveter distinguishes itself from the aforementioned works
in two main aspects. First, Riveter is under the assumption
that potential resource terminations are either predictable or
reasonably estimated, facilitating more informed decision-
making in Riveter. Second, Riveter is designed as an adaptive
framework that integrates different query suspension and
resumption strategies. It can select the most appropriate strategy
according to the proposed cost model and then execute the
strategy for query suspension and resumption at various levels,
ensuring the sustained progress of queries even in scenarios
with fluctuating resources.

B. Database Migration

Database migration facilitates the transfer of databases
and analytics workloads from one execution environment
to another, often requiring the database to stop and restart,
similar to pausing and resuming queries. One state-of-the-
art method, live database migration, utilizes virtualization
[35] to migrate database services with minimal interruption
and negligible performance impact [36], [37]. Live database
migration involves two main methods: iterative copying [36],
[38] and dual execution [39], [40]. Iterative copying, akin to the
methodology employed by Riveter, pauses active transactions
on the source database during migration, transferring the
database cache and ongoing transaction states to start the
destination with a hot cache [41], [42]. On the other hand,
dual execution, introduced by Zephyr and improved in systems
like MgCrab [43] and Remus [40], allows transactions to run
concurrently on both source and destination databases, reducing
service disruptions and downtime to a minimum. Slacker [44]
and Madeus [45] are middleware solutions that synchronize
databases without altering them directly.

State migration is crucial in streaming databases for recon-
figuring stateful operators, often employing a “’stop-and-restart”
method, a kind of redo strategy. This approach involves halting
program execution to securely transfer state, then restarting the
job once state redistribution is complete, leveraging existing
fault-tolerance mechanisms [46], [47]. Typically, only a few
operators need state migration, allowing the rest to operate
uninterrupted. Fault-tolerance checkpoints can be utilized to
facilitate the process of state migration [48], [49], [50].

Riveter exhibits orthogonality to live or state migration,
augmenting their capabilities within resource-dynamic envi-
ronments. Riveter facilitates query migration as opposed to
full database migration, employing various suspension and
resumption strategies. This approach improves the feasibility
of live migration in scenarios where resources are ephemeral
or fluctuating. Migrating queries proves to be less resource-
intensive than relocating entire database states, primarily due
to the smaller intermediate states.

C. Query Scheduling

Query scheduling is not uncommon in data systems deployed
within cloud environments, particularly for resource allocation
among multiple users within multi-tenant databases [51]. These
databases need to ensure that each tenant meets their Service
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Query Execution Model

Timing of Suspensions

Single or Multiple Threads

Chandramouli et al.[21] pull-based (or iterator) model

suspends at operators with low memory usage

works for single-thread query execution

Pipeline-level strategy | push-based (or morsel-driven) model

suspends at pipeline-breakers

works for multi-threads query execution

TABLE VI: Comparison between pipeline-level strategy and reference [21]

Level Objectives (SLOs) by receiving adequate resources for
request handling. Addressing this involves mechanism like
resource isolation [52], [53] and intelligent tenant placement
[54], [55]. Yet, this responsibility becomes challenging with the
increase of long-running queries, which risk exhausting cloud
resources. Current methods—allocating substantial resources
to these queries or repositioning them—either hasten resource
saturation or increase query latency. Recent research endeavors
have explored the possibility of preempting certain long-running
jobs during their execution in favor of prioritizing others [14].
In classic approaches, cloud resources are presumed to be
persistent and stable. In contrast, Riveter operates under the
assumption that these resources are ephemeral and subject
to change over time. Furthermore, Riveter offers substantial
enhancements to existing approaches. This enhancement stems
from the application of suspension and resumption techniques,
which allow a long-running query to be segmented into a
sequence of smaller tasks. This segmentation, in turn, enables
more efficient query scheduling and resource allocation.

VI. DISCUSSION

In this section, we discuss implementation choices, share
the insights gained, and highlight open questions.
More Suspension and Resumption Strategies. Riveter serves
as an adaptable query suspension and resumption framework
capable of accommodating a wide range of strategies. In
our implementation, we present three representative strategies:
redo, pipeline-level, and process-level strategy, to demonstrate
Riveter’s functionality and performance. Nevertheless, Riveter
is versatile and can support additional strategies while adapting
to more complex scenarios. For example, it is valuable
to implement a data-level strategy that can partition input
datasets and execute queries in batch mode, particularly when
developing a suspension-oriented query execution engine proves
to be complicated. Alternatively, an operator-level strategy can
be implemented to offer finer-grained suspension capabilities
for scenarios involving iterator-based query execution.
Multiple Suspensions during Query Execution. While the
proposed Riveter can be extended to accommodate scenarios
with multiple suspension events, our performance evaluation
of Riveter mainly focuses on scenarios that involve a single
suspension and resumption event. This choice is motivated
by the fact that each suspension event can be treated as an
independent occurrence, and latency increases proportionally
with the number of suspensions. As part of our future work, we
will also explore more complex scenarios involving multiple
queries, where the individual suspension and resumption of
queries may interact with one another.
Persistence and Serialization Overhead. One insight we
learned from our implementation and evaluation is that Riveter
requires significant time to serialize and persist intermediate
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data upon suspension, leading to considerable overhead to
query execution. Therefore, devising a strategy to minimize
the intermediate data serialization and persistence emerges as
a crucial enhancement. For example, data can be sorted before
execution, and Riveter can leverage this pre-sorted data layout
while continuously tracking the watermark during execution.
The watermark can serve as intermediate data, diminishing
intermediate data size and reducing the overhead.

Query Re-optimization and Isolation. Riveter assumes that
query plans remain the same when suspending and resuming
queries. However, it presents a challenging yet beneficial avenue
to explore the possibility of altering the query plan after
suspension but before resumption. This leads to the question of
how Riveter should determine the strategy for query suspension
and the nature of intermediate data persistence to maximize the
benefits of query re-optimization. Furthermore, Riveter excludes
the data modifications during suspension for query isolation.
An outstanding question remains regarding the methodologies
to ensure isolation amidst data modifications. While snapshot
isolation emerges as a viable strategy, further investigation is
warranted to broaden the scope of potential solutions.

VII. CONCLUSION

This paper argues that resources are increasingly fluctuating
and ephemeral in modern computing infrastructure, which
necessitates the development of an adaptive query execution
mechanism for these scenarios, as exemplified by modern cloud-
native databases. We present Riveter, a framework designed and
developed for adaptive query execution. It offers a spectrum of
strategies for suspending queries and resuming them when
deemed necessary or advantageous; it also confirms that
no single suspension and resumption technique is dominant
and careful selection of when/how to suspend a query is
needed. To determine the strategies for different queries,
we have developed an algorithm based on a cost model
tailored to the characteristics of these suspension strategies.
Our experimental evaluation, leveraging the TPC-H benchmark,
explores the intermediate data persistence within different
strategies, analyzes strategy selection guided by a cost model
for various queries, and examines the estimation accuracy and
runtime performance associated with the employed cost model.
The findings underscore that the efficacy of query suspension
and resumption strategies is contingent upon multiple factors.
Thus, cloud-native databases need to select strategies that align
with their specific operational contexts.
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