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Abstract—Processing-In-Memory (PIM) architectures have 
emerged as an attractive computing paradigm for accelerating 
Deep Neural Network (DNN) training and inferencing. However, 
a plethora of PIM devices, e.g., ReRAM, FeFET, PCM, MRAM, 
SRAM exists and each of these devices offers advantages and 
drawbacks in terms power, latency, area, and non-idealities. A 
heterogeneous architecture that combines the benefits of multiple 
devices in a single platform can enable energy-efficient and high 
performance DNN training and inference. Three-dimensional (3D) 
integration enables the design of such a heterogeneous 
architecture where multiple planar tiers consisting of different 
PIM devices can be integrated into a single platform. In this work, 
we propose the HuNT framework, which hunts for (finds) an 
optimal DNN neural layer mapping, and planar tier 
configurations for a 3D heterogeneous architecture. Overall, our 
experimental results demonstrate that the HuNT-enabled 3D 
heterogeneous architecture achieves up to 10× and 3.5× 
improvement with respect to the homogeneous and existing 
heterogeneous PIM-based architectures, respectively, in terms of 
energy-efficiency (TOPS/W). Similarly, the proposed HuNT-
enabled architecture outperforms existing homogeneous and 
heterogeneous architectures by up to 8× and 2.4× respectively in 
terms of compute-efficiency (TOPS/mm2) without compromising 
the final DNN accuracy. 
Index Terms— DNN, Heterogeneous, Processing-in-Memory, 
ReRAM, FeFET, SRAM.  

I. INTRODUCTION 
EEP Neural Networks (DNNs) are widely employed to 
solve complex problems in a variety of application 
domains, including computer vision, natural language 

processing (NLP), and time-series senor data analytics [1]. 
However, DNNs have hundreds of millions of trainable 
parameters, which need to be tuned using large and complex 
datasets. The high latency and energy cost of data-movement 
between the processing cores and memory units in traditional 
computing platforms based on the von-Neuman architecture 
(e.g., CPUs and GPUs) impose significant performance 
bottlenecks while executing DNN workloads, which is referred 
to as the “memory wall” challenge [2]. Consequently, there has 
been a growing demand for domain-specific computing 
platforms that seamlessly integrate both storage and computing, 
thereby enabling high-performance and energy-efficient 
acceleration of DNN workloads [3].  
Processing-in-Memory (PIM)-based computing platforms 

have emerged as a promising alterative for executing DNN 
workloads. This is due to their ability to perform energy-
efficient computation within the memory to eliminate 
unnecessary data movement, thus addressing the memory-wall 
challenge. Specifically, the use of CMOS-based memory 
devices such as Static Random-Access-Memory (SRAM), and 
non-volatile memory (NVM) devices such as Resistive-
Random-Access-Memory (ReRAM), Phase Change Memory 
(PCM), Ferroelectric-Field-Effect-Transistors (FeFET), and 
spintronic memory (MRAM), have been widely studied as 
suitable candidates for accelerating DNN training and 
inferencing [2] [3] [4] [5] [6]. However, each of these PIM 
devices offer specific advantages and drawbacks in terms of 
dynamic and leakage power, area, latency, retention, endurance 
and non-idealities, when used as the PIM device in DNN 
accelerators [3]. For example, ReRAM devices have almost 
~30× higher write latency compared to FeFET devices. 
However, ReRAMs can have a write endurance of as high as 
~1012 programming cycles whereas FeFETs have an endurance 
of ~105 cycles [7]. An ideal memory device suitable for energy-
efficient and high-performance PIM-based DNN accelerators 
should have low read/write latency (< 1 ns), low dynamic and 
leakage energy (< 3 pJ), high write endurance (> 1017 cycles), 
small memory cell footprint (< 4F2), and excellent scalability to 
lower technology nodes (< 10 nm) [8]. However, so far, no 
particular PIM device has all the ideal characteristics. At the 
same time, DNN workloads are composed of neural layers, 
which can differ significantly in terms of the number of layers, 
weight parameters, kernel size, input and output information 
across layers in the forward-propagation, and frequency of 
weight updates during the back-propagation step. These 
characteristics determine the suitability of each neural layer in 
the forward- and back-propagation phase of the DNN workload 
to be executed on a specific PIM-enabled Processing Element 
(PE) in terms of area, latency, power, and endurance. Hence, 
this PE-level heterogeneity in PIM-based architectures needs to 
be exploited to achieve the best trade-off in terms of power, 
area, performance, and DNN accuracy while designing a 
suitable accelerator platform.  
Integrating different memory devices in a single platform 

presents unique challenges. Specifically, manufacturing 
technologies of NVM devices vary and they are not always 
CMOS-compatible [9]. Hence, this hinders the feasibility of 
integrating such heterogeneous PEs into a single planar 
architecture. Three-dimensional (3D) integration enables the 
mapping of disparate technologies to different planar tiers [9] 
[10]. However, existing implementations of 3D heterogeneous 
architectures are not well optimized for PIM devices, as they do 
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not consider the device-level characteristics in their design 
optimization flow. For example, 3D architectures are known to 
give rise to thermal hotspots. PIM devices such as ReRAM and 
FeFET are susceptible to non-idealities due to thermal noise, 
which potentially degrades the accuracy of trained DNNs [11] 
[12]. As a result, critical DNN model layers mapped to PEs 
placed in planar tiers that are away from heat sinks can 
potentially degrade the test accuracy of the DNN due to thermal 
hotspots. Hence, in order to meet the high accuracy demand of 
DNN applications, suitable placement of the PEs on planar tiers 
in a 3D system is important. 
Furthermore, existing heterogenous DNN accelerators do 

not consider the characteristics of DNN workloads and the 
properties of different PIM devices while mapping DNN neural 
layers to PEs in the overall architecture [4] [2]. For example, 
neural layers with large number of weights and activations 
mapped to a PE with high read/write energy would consume 
more power compared to a PE with less read/write energy. In 
addition, different neural layers have varying impact on DNN 
accuracy [13]. Hence, they need to be suitably mapped to 
appropriate PEs on a planar tier in the 3D architecture without 
degrading the final predictive accuracy. Hence, the layer-to-PE 
and PE-to-tier mapping in a 3D heterogeneous system impact 
the overall performance in terms of latency, area, power, and 
accuracy while executing DNN workloads.  
In this paper, we propose a design space exploration 

methodology called HuNT that undertakes neural layer-to-PE 
and PE-to-planar tier mapping to design an optimized 3D 
heterogeneous manycore architecture for training DNN 
workloads. We consider SRAM, ReRAM, and FeFET PIM-
enabled PEs for studying the efficacy of the HuNT framework. 
These heterogeneous PIM devices largely vary in terms of area, 
power, latency, and endurance. This variation provides HuNT 
with the scope of optimizing across multiple conflicting, yet 
crucial objectives namely: latency, accuracy, area, and power. 
We capture these objectives using three performance evaluation 
metrics: energy-efficiency (TOPS/W), compute-efficiency 
(TOPS/mm2), and DNN predictive accuracy. Recent work has 
proposed optimization methodologies aimed at exploring 
device-level heterogeneity in PIM accelerators [14] [15] [16]. 
However, these techniques are focused on DNN inference 
scenarios, and cannot handle the more challenging scenario of 
DNN training. Specifically, the computation of the weight- and 
activation-gradients in the back-propagation phase requires 
multiple write operations and high-precision computation. 
However, NVM devices have limited write endurance, and 
store weights and activations in fixed-point representation [17] 
[3]. These critical drawbacks limit the applicability of existing 
NVM-based PIM accelerators to DNN training. In this work, in 
addition to the energy-efficient NVM devices (ReRAM and 
FeFET), we have also incorporated a CMOS-based memory 
device (SRAM) which can perform high-precision computation 
in the back-propagation phase, and has a high write endurance 
into the HuNT framework. This heterogeneity in PIM devices 
enables reliable, energy-efficient, and high-performance DNN 
training on 3D heterogeneous PIM architectures. The key 
contributions of this work are as follows: 

• We propose the HuNT framework that determines the 
mappings of DNN layer to heterogeneous PEs and the 
corresponding PE to planar tier mapping to design a 3D 
heterogeneous manycore architecture tailor-made for 
DNN training. The heterogeneity enables significant 
improvement in energy-efficiency, area-efficiency, and 
endurance compared to its homogeneous counterparts.        

• We demonstrate the transferability of the HuNT-
enabled 3D heterogeneous manycore architecture for 
diverse datasets. The hardware architecture optimized 
with CIFAR-10 dataset is equally effective for larger 
datasets such as CIFAR-100 and TinyImageNet. 
Hence, this reduces the cost of repeated optimization as 
no extra training is required for complex datasets. 

• Our experimental results show that the HuNT-enabled 
3D heterogeneous PIM architecture outperforms state-
of-the-art heterogeneous PIM architectures, namely, 
AccuReD and HyperX by up to 3.5× and 4.5× 
respectively in terms of energy-efficiency (TOPS/W), 
and 2.2× and 3.2× in terms of area-efficiency 
(TOPS/mm2) respectively.   

To the best of our knowledge, HuNT is the first-of-its kind 
framework that jointly incorporates DNN layer-to-PE and PE-
to-planar tier mapping in a 3D architecture to achieve high-
performance, energy-efficient, and reliable DNN training.  
The rest of this paper is organized as follows. Section II 

discusses related prior work, and Section III elucidates the 
overall methodology of the HuNT framework. Section IV 
presents a thorough experimental analysis of HuNT, and 
Section V concludes the paper.  

II. BACKGROUND AND RELATED PRIOR WORK   
In this section, we discuss relevant prior work on PIM-based 

architectures for accelerating DNN workloads. Specifically, we 
focus on homogeneous PIM architectures solely based on either 
SRAM, ReRAM or FeFET devices, as well as their advantages 
and limitations. Table I compares the characteristics of SRAM, 
ReRAM, and FeFET PIM devices. Next, we discuss 
heterogeneous architectures that combine two or more of these 
devices, and finally shed more light on 2.5D and 3D based PIM 
accelerators for DNNs.  

A. Homogeneous PIM Architectures 
SRAM cells have been used as a crossbar-based PIM device 
for high accuracy DNN training and inference [18] [19]. This is 
due to their low device variability, high write endurance, low 
susceptibility to noise, and low write latency as shown in Table 
I [3]. However, the 6T-cell configuration of SRAMs with a cell 
size of 150F2 (as shown in Table I) leads to the high area 
overhead of SRAM-based crossbar arrays [3] [14]. 
Additionally, SRAMs suffer from high leakage energy and have 
low density storage (i.e., can only store 1-bit per-cell) thereby 
making them less energy- and area-efficient compared to other 
PIM-devices. Hence, this makes SRAM-based PIM platforms 
infeasible for large DNN models with large number of weights 
and activations and many neural layers. Recent work has also 
leveraged DRAM technology for PIM-based architectures due 



3 
 

to its small cell area [20]. However, DRAM suffers from high 
leakage power and refresh energy due to its volatile nature. 
Moreover, the 1T1C structure of the DRAM cell lacks in-situ 
compute capability, hence cannot enable parallel energy-
efficient Matrix Vector Multiply (MVM) operations required 
for DNN training [20]. Consequently, this has led researchers 
to explore NVM devices such as FeFET and ReRAMs.  
 ReRAM-based NVM device enables high density storage 
due to its multi-bit cell storage capability [3] [4]. Additionally, 
ReRAM devices have relatively small cell area and low leakage 
energy compared to SRAMs, as shown in Table I. However, 
despite these advantages, ReRAM cells suffer from low write 
endurance, high write energy, and latency compared to SRAMs. 
As a result, this limits the applicability of ReRAM-based PIM 
architectures for DNN training scenarios, as the back-
propagation phase requires a significant number of write 
operations [3]. Additionally, ReRAM cells become less reliable 
as temperature increases over time, which can cause errors, 
thereby leading to a degradation in the DNN predictive 
accuracy. Also, despite the small cell area of ReRAMs (~4F2), 
the high-resolution ADCs required by the ReRAM crossbar 
array introduces significant area and energy overhead [4]. 
Hence, this potentially limits the benefits of using ReRAM-
devices in PIM-based architectures.  
FeFET devices have been explored as another possibility for 
PIM-based DNN accelerators. FeFET PIM devices are 
particularly attractive due to their relatively low cell area (~35 
F2) compared to SRAMs, high read and write speeds, low write 
energy, and low leakage energy. Moreover, they exhibit 
relatively better temperature stability compared to ReRAM [7]. 
However, as shown in Table I, a key drawback of FeFET PIM 
devices is their low write endurance compared to other memory 
technologies such as SRAMs and ReRAMs. This is due to the 
collapse of the separation between the ON and OFF states of 
the FeFET device (also known as the memory window) after 
repeated program/erase cycles [5]. Consequently, this can cause 
read errors during DNN training and inference.  
Overall, homogeneous architectures built solely using either 
SRAM, ReRAM or FeFET PIM devices have their unique 
advantages, as well as drawbacks that limit their applicability 
for DNN training and inference workloads. Therefore, 
exploring heterogeneous PIM architectures that combine one or 
more PIM devices is necessary to achieve better performance, 
power, area, and DNN predictive accuracy trade-offs compared 
to the homogeneous ones. For the scope of this work, we have 
considered SRAM CMOS-based devices, FeFET and ReRAM 
NVM-based devices, as examples to demonstrate the viability 

of our proposed framework to design optimized heterogeneous 
PIM accelerators. Note however that other types of PIM devices 
such as PCMs and MRAMs can also be considered for 
heterogeneous systems. 

B. Heterogeneous PIM Architectures  
Prior work has proposed heterogenous architectures that 
combine two or more PIM devices for accelerating DNN 
workloads. Various hybrid ReRAM/SRAM-based PIM 
architectures have been proposed to address the non-idealities 
in ReRAM devices, and reduce the high area overhead of 
SRAM. Some of these approaches involve encoding the MSBs 
using SRAMs, and RRAMs for the LSBs of multi-bit weights, 
while maintaining high energy-efficiency [21]. Other methods 
involve the use of ReRAM and SRAM to perform the DNN 
forward- and back-propagation operations respectively, thereby 
mitigating the limited endurance challenge of ReRAM. In fact, 
a recent hybrid architecture incorporates SRAM macros to 
perform output compensation of the non-ideal output of 
ReRAM crossbars, thereby enabling robust DNN inference 
[16]. However, these methods do not consider the layer-wise 
characteristics of DNN workloads (e.g., number of neural 
layers, weights, activations, size of kernels etc.) while mapping 
neural layers to the heterogeneous PIM-based architectures. As 
a result, this can lead to sub-optimal performance while 
executing DNN training and inference tasks.  
A recent work called HyDe has proposed a design space 
exploration methodology for finding an optimal mapping of 
DNN layers to either SRAM, FeFET or PCM devices in a 
hybrid platform [14]. This approach leverages the 
characteristics of each DNN layer to find its affinity towards a 
specific type of PIM device. However, this approach is aimed 
only at inferencing, and considered a scalarized single-
objective optimization formulation. However, linear 
scalarization is known to perform poorly due to its inability to 
explore non-convex regions of the Pareto front. Moreover, 
HyDe follows a differentiable optimization approach, which is 
not possible for all hardware design objectives and requires 
training DNN weights by considering the device characteristics. 
Hence, this is not practical for the DNN training task. Other 
works such as HyperX have proposed a hybrid SRAM/ReRAM 
architecture, where some DNN layer weights remain static, and 
are mapped to ReRAMs, while other layers are mapped to 
SRAMs for fine-tuning [22].  
Despite the advantages of heterogeneity, previous solutions 
do not consider the challenges of integrating different PIM 
devices into a single platform. Moreover, they are mostly 
targeted at DNN inferencing/fine-tuning applications and 
cannot be used for end-to-end training of large DNNs. Hence, 
suitable heterogeneous PIM architectures for DNN training 
scenarios need to be explored. 

C. 2.5D/3D-based PIM Architectures 
To address the challenges associated with integrating 
different PIM technologies in a single platform, various 
heterogeneous integration methods have been proposed. 
Specifically, chiplet-based (2.5D) integration techniques have 

TABLE I 
COMPARISON OF VARIOUS PIM DEVICES 

Property SRAM [7]  ReRAM [33] FeFET [7] 
Multi-bit Cell No Yes Yes 
†Cell Area (F2) 150F2 4F2 35F2 
Write Energy 3pJ 2nJ 5pJ 
Write Latency ~1ns ~100ns ~3ns 
Write Endurance >1017 cycles 108 cycles 105 cycles 
Leakage Energy High  Low Low 

†F is the minimum feature size [14] 
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been proposed for DNN accelerators [14]. However, the long-
range on-chip communication in planar 2.5D systems presents 
a significant performance bottleneck in the execution of DNN 
workloads [23]. Hence, 3D heterogeneous integration methods 
that stack planar tiers consisting of PEs connected to each other 
using through-silicon-via (TSV)-based vertical links have been 
proposed [23]. For example, a 3D heterogeneous architecture 
for accelerating DNN training known as AccuReD was recently 
proposed. AccuReD leverages ReRAM-based PEs, and GPUs 
for accelerating all types of DNN layers to enable high accuracy 
DNN training [23].  
Despite offering the advantages of 3D heterogenous 
integration, existing architectures do not consider the properties 
of the neural layers while determining the mapping for DNN 
workloads. Moreover, 3D architectures inherently suffer from 
thermal issues, which have a varying impact on PEs with NVM 
devices (FeFET and ReRAM). Prior work does not adequately 
consider thermal issues while finding a suitable DNN layer-to-
PE mapping in 3D heterogenous PIM architectures. As a result, 
this potentially leads to degradation of predictive accuracy, 
power, and latency when DNN workloads are executed. Hence, 
the properties of the DNN neural layers, PIM device 
characteristics of the PEs, as well as the PE to 3D planar tier 
mapping should be jointly considered to enable high 
performance, energy-efficient, and reliable DNN training on 
heterogeneous PIM platforms. 

III. THE HUNT FRAMEWORK 

This section presents the problem formulation and 
optimization methodology of the HuNT framework to find the 
optimal neural layer-to-PE and PE-to-tier mapping in a 3D 
heterogeneous architecture for DNN training.   

A. Problem Setup 
We consider a manycore system with 𝐶 PIM-based 
Processing Elements (PEs) distributed over 𝑍 planar tiers and 
stacked using TSV-based vertical links. We use a conventional 
mesh-based network on chip (NoC) as the communication 
backbone [23]. Each planar tier consists of PEs of one particular 
type of PIM device, i.e., either SRAM (S), ReRAM (R) or 
FeFET (F). Fig. 1 illustrates an example of a three-tier (i.e.,	𝑍	= 
3) 3D heterogenous manycore architecture. Given the 
characteristics of the DNN neural layers, and the physical 
properties of the PIM devices in the PEs, our goal is to find an 
optimized neural layer to PE mapping, and the corresponding 
PE to planar tier mapping that achieves a suitable trade-off 
between the training accuracy, area, latency, and power. 
Without loss of generality, Fig. 1 shows a DNN workload 
mapped on to a 3D heterogeneous architecture. Here, each 
neural layer (𝐿!) of the DNN can be mapped onto either SRAM-
/FeFET-/ReRAM-based PEs, which can be located either in 
tier-1, 2 or 3 as shown in Fig. 1. In addition, each neural layer 
is characterized by its corresponding kernel size, the number of 
input and output features, and the bit precision of 
weights/activations, and can be mapped to one or more PEs in 
a planar tier of the 3D architecture. DNN training requires the 
high-precision computation of weight- and activation-gradients 

for each neural layer in the back-propagation phase. This 
process requires a significant number of write operations, which 
influences the choice of PIM device for the computation of the 
back-propagation phase.  
Furthermore, the PIM devices in the PEs have their 
corresponding physical properties, such as write endurance 
limit, area, energy, latency, and temperature-dependent non-
ideal effects. Additionally, the distance of a planar tier from the 
heat sink in the 3D architecture determines the degree of 
vulnerability of the PIM device to thermal noise, which can 
potentially lead to significant loss in DNN accuracy [23]. 
Consequently, this leads to a multi-objective optimization 
(MOO) problem of finding the suitable mapping of each neural 
layer to one of the C PIM-based PEs (i.e., either SRAM-
/ReRAM-/FeFET-based PE), as well as its appropriate location 
in one of the Z planar tiers, that achieves the best latency, area, 
power, and accuracy trade-off.  

B. HuNT MOO Formulation 
Fig. 2 shows the overview of the proposed HuNT framework. 
The inputs to the framework are the number of planar tiers (𝑍), 
total number of PEs (𝐶), PIM device choices, and DNN 
workload characteristics (e.g., number of neural layers, their 
weights, activations etc.). We define the mapping vector 𝜋 to 
characterize the mapping of 𝐾	neural layers on to PEs in the 3D 
architecture and the corresponding PE to planar tier mapping 
𝛼 = [𝑡!, 𝑡", … , 𝑡#] where 𝑡$ is the device type of the PEs in 𝑖%& 
planar tier. Subsequently, let 𝑑 = (𝜋, 𝛼) be a candidate design in 
the design space 𝐷 which corresponds to a specific neural layer 
mapping on to the heterogeneous PEs (𝜋), and PE-to-tier mapping 
(𝛼). In each optimization iteration, one design 𝑑 is evaluated 
using power, latency, area, and DNN accuracy estimation 
models. Our goal is to minimize the (a) loss in DNN accuracy 
(𝐸𝑟𝑟) due to various PIM device non-idealities, (b) the area in 
terms of the number of PEs needed to map all the DNN layers (𝐴𝑟), 
(c) the latency (𝐿𝑎𝑡), and (d) power consumption (𝑃𝑤𝑟) while 
executing a given DNN training on the 3D heterogeneous 
architecture. We represent the MOO-formulation as: 

	𝐷∗ = 	𝑀𝑂𝑂&𝑂𝐵𝐽 = 𝑃𝑤𝑟(𝑑), 𝐴𝑟(𝑑), 𝐿𝑎𝑡(𝑑), 𝐸𝑟𝑟(𝑑)5								(1) 

where 𝐷∗ is the set of Pareto optimal designs. A design is called 
Pareto optimal if it cannot be improved in any of the design 
objectives without compromising some other objective. The goal 
is to first find the Pareto optimal set 𝐷∗ ⊆ 𝐷 using a MOO solver. 
Next, we select feasible designs from the Pareto set that meet 
the constraint (e.g., less than ~1% accuracy loss compared to 

 
Fig. 1: Illustration of layer-to-PE and PE-to-tier mapping of DNN workload 
with 𝐾-layers on to a 3D heterogeneous PIM-based architecture. Here, DNN 
layer L1 is mapped to ReRAM-based PEs and placed on Tier 1 as an example. 
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the ideal accuracy). Finally, we select the best design 𝑑()*% from 
the feasible designs that achieves the best performance in-terms 
of either energy-efficiency (TOPS/W) or compute-efficiency 
(TOPS/mm2). 
Next, we discuss the key elements of our MOO formulation. 
1) Inputs. The inputs to the HuNT framework are the number 
of planar tiers (𝑍), total number of PEs (𝐶), PIM device choices 
(ReRAM, SRAM and FeFET), and DNN workload 
characteristics (e.g., weights, activations, etc.).  
2) Design Variables. There are two types of design variables for 
the optimization for a given DNN model. Each candidate solution 
represents (a) a neural layer mapping to PEs (𝜋); (b) a PE-to-tier 
mapping (𝛼), i.e., [𝑡!, 𝑡", … , 𝑡+], where the planar tiers 𝑡! and 𝑡+ 
are closest and farthest from the heat sink respectively, resulting in 
higher temperature on planar tier 𝑡+ compared to 𝑡!.  
3) Design Objectives. Next, we explain the evaluation of the 
design objectives: latency, area, accuracy, and power. We can 
get accurate values for all these objectives for any candidate 
design by performing cycle-accurate simulations, which are 
very expensive. Since we need to evaluate many design choices 
to solve the MOO problem shown in (1), we consider surrogate 
design objectives elaborated below for tractable optimization.  
Latency (𝑳𝒂𝒕): We evaluate end-to-end latency incurred in 
DNN training for a candidate design (𝐿𝑎𝑡(𝑑)) considering a 3D 
mesh-based network on chip (NoC) architecture. The latency 
for a candidate design is proportional to the sum of the 
computation and communication latency while executing the 
training task on the 3D heterogeneous architecture given by (2). 
Computation during DNN training involves computing 
activations (𝐴𝑐𝑡), and gradients (activations gradients (∆𝐴𝐺) 
and weight gradients (∆𝑊𝐺)) in the forward- and back-
propagation phases respectively. Both phases have different 
precision requirements. In contrast to 𝐴𝑐𝑡 computation, ∆𝐴𝐺  
and ∆𝑊𝐺 computation requires PEs with a PIM device that has 
high precision and high endurance due to large number of 
repeated write operations [24]. Hence, the neural layer 
computation in a training task is spread out on different 3D 
planar tiers, where each tier consists of PEs constituting of a 
specific device type. This generates on-chip communication 
traffic, which depends on the layer-to-PE, and the PE-to-tier 
mapping. The end-to-end compute latency for a DNN workload 

depends on the compute latency incurred by the individual 
neural layers mapped to either SRAM-, ReRAM- or FeFET-
based PEs (𝐿𝑎𝑡𝑒𝑛𝑐𝑦#|%|&), as shown in (3). Similarly, the latency 
associated with sending 𝐴𝑐𝑡, ∆𝐴𝐺 or ∆𝑊𝐺 from 𝑃𝐸$ to 𝑃𝐸, 
depends on the placement of PEs and contributes to the 
communication latency given by (4), where 𝐹$, is either 𝐴𝑐𝑡, 
∆𝐴𝐺 or ∆𝑊𝐺 as defined above. The parameter 𝑀$, is the 
corresponding Manhattan distance between 𝑃𝐸$ and 𝑃𝐸,. 

𝐿𝑎𝑡(𝑑) ∝ ℒ'()*+,- +	ℒ'()).																																(2) 

ℒ'()*+,- ∝;[𝐿𝑎𝑡𝑒𝑛𝑐𝑦#|%|&(𝑊! + 𝐴𝑐𝑡!)]
/

!01

												(3) 

ℒ'()).(𝑖, 𝑗) ∝ 𝐹!2 ∙ 𝑀!2 , ∀𝐹!2 ∈ {𝐴𝑐𝑡, ∆𝐴𝐺, ∆𝑊𝐺}						(4) 
Area (𝑨𝒓): It is desirable to execute a given DNN training task 
using less resources (PEs) to improve the compute efficiency 
(TOPS/mm2). The number of PEs needed to map a given neural 
layer depends on its device type. For example, SRAMs have 
larger footprint (150F2) compared to ReRAM cells (4F2), where 
F is the minimum feature size as mentioned in Table I. Hence, 
a neural layer mapped to SRAM-based PEs would require a 
higher number of PEs than if it were otherwise mapped to 
ReRAM-based PEs, leading to comparatively lower 
TOPS/mm2. The design objective 𝐴𝑟 corresponds to the sum of 
computational resources needed to execute 𝐾 layers of a DNN, 
where PEs needed for 𝑖%& neural layer (weights 𝑤$ and 
activations 𝐴𝑐𝑡$), depending on the PIM-device (𝐴𝑟𝑒𝑎#|%|&). 

𝐴𝑟(𝑑) ∝;[𝐴𝑟𝑒𝑎#|%|&(𝑤! + 𝐴𝑐𝑡!)]
/

!01

																									(5) 

Accuracy (𝑬𝒓𝒓):  Prior work has shown that DNN models can 
be trained to be robust against conductance drift in NVM 
devices using techniques such as adaptive noise injection, 
negative feedback training, etc. [25] [26]. For example, the 
injection of Gaussian noise is widely used to improve 
robustness of DNN training executed on NVM-based 
architectures [13]. In a 3D manycore architecture, the thermal 
noise mainly depends on the placement of the PEs and their 
mutual interactions. Hence, the exact noise and specific layer-
wise weight deviation (𝜎) is not known prior to neural layer-to-
PE and PE-to-tier mapping on a given architecture. Thus, even 

 
Fig. 2: Overall workflow of the HuNT framework, showing input stage, optimization phase, and the final validation phase. 
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with a model trained with conductance drift incorporated, the 
actual thermal noise depends on the neural layer-to-PE mapping 
and the location of the planar tier where the PE is placed. This 
necessitates the consideration of accuracy as one of the 
objectives in the MOO formulation. It should be noted that 
executing DNN training for each mapping candidate solution 𝑑 
in the optimization phase is costly. Hence, we model the loss in 
accuracy by capturing the deviation in stored weights and 
activations due to thermal noise, as discussed below.   
Three-dimensional (3D) architectures with multiple stacked 
planar tiers are prone to thermal hotspots, which causes 
variations in stored DNN weights and activations especially in 
NVM devices (FeFET and ReRAM). This leads to a 
degradation in the DNN accuracy. However, SRAM is known 
to be more tolerant to the thermal noise compared to ReRAM 
and FeFET devices [14]. Hence, to achieve high DNN 
accuracy, it is desirable to execute high precision computations 
(involved in the back-propagation phase) on PEs with a PIM 
device that is more resilient to thermal noise. Thus, 
computations involved in a neural layer in different DNN 
training phases, i.e., forward and back-propagation phases need 
to be mapped on different types of PEs to achieve high training 
accuracy. Furthermore, these different PEs can be mapped to 
planar tiers such that loss in DNN accuracy due to thermal noise 
is mitigated. For example, PEs with NVM devices should be 
placed closer to the heat sink, while SRAM-based PEs can be 
mapped to a planar tier farther from the heat sink.  
In addition, a layer-to-PE and PE-to-tier mapping also needs 
to be considered for different NVM devices. This is crucial 
because thermal noise impacts variations in weights/activation 
of various NVM devices differently. For example, weights and 
activations of the neural layers are stored in ReRAM cells as 
conductance states. As the temperature increases, the OFF-state 
conductance of ReRAM cells increases exponentially, and the 
noise margin reduces [23]. On the other hand, the noise margin 
of FeFET devices, characterized by the memory window, 
reduces linearly with the increase in temperature [5]. For weight 
variation (∆𝑤), we adopt a Gaussian distribution with 
∆𝑤~𝒢(0, 𝜎"), where 𝜎 represents standard deviation of 

weights, consistent with prior work [13]. The variation of 
weights/activations belonging to different DNN layers impact 
the model accuracy differently. The impact of 
weights/activations variations due to thermal noise is captured 
by loss in accuracy (𝐸𝑟𝑟) given by (6) and (7). Hence, 
𝐸𝑟𝑟	depends on the neural layer mapping, 𝑃𝐸$ temperature 𝑄$, 
and DNN layer weights 𝑤$ and activations 𝐴𝑐𝑡$. 

𝐸𝑟𝑟(𝑑) =;(𝑤! + 𝐴𝑐𝑡!)
3

!01

∙ 𝒩(𝑖)																													(6) 

𝒩(𝑖) = R
𝑒𝑥𝑝[𝑄!] , 					𝑅𝑒𝑅𝐴𝑀
𝑄! , 															𝐹𝑒𝐹𝐸𝑇
~0,													𝑆𝑅𝐴𝑀

																																	(7) 

To estimate the temperature 𝑄$ of each PE, our framework 
utilizes the thermal model from prior work, which considers 
both vertical and horizontal heat flow, given by (8) [27]. 

𝑄(,5 = R;\𝑃(,+;𝑅6

+

601

] + 𝑅7;𝑃(,+

5

+01

5

+01

^ ∗ Φ8														(8) 

where 𝑃-,/ is the power consumption of the PEs 𝑢	tiers away 
from the sink in a vertical stack 𝑜 and is a function of the neural 
layer to PE mapping,	Φ0 represents the lateral heat flow, 𝑅1 is 
the thermal resistance in vertical direction, and 𝑅( is the thermal 
resistance of the base layer on which the die is placed and z 
represents the 𝑧%& tier where PEs are located. Values of 𝑅1 and 
𝑅( depend on the material characteristics and are calibrated 
using HotSpot [28].  
Power (𝑷𝒘𝒓): The PE power consumption 𝑃-,/ in (8) depends 
on the DNN training task, layer-to-PE, and PE-to-tier mapping. 
The total computation power corresponds to the power incurred 
while computing the individual neural layers mapped to either 
SRAM-, ReRAM- or FeFET-based PEs (𝑃𝑜𝑤𝑒𝑟#|%|&), as shown 
in (10). Further, routers and links associated with the PEs 
dissipate significant power due to high data exchange between 
the neural layers. If two subsequent neural layers exchanging 
large number of activations are mapped on to the PEs far apart, 
then such mapping creates traffic bottleneck due to frequent 
long distance data transfer. This creates unnecessary congestion 
resulting in increase in the communication power. The 
communication power required to transfer data from 𝑃𝐸$ to 𝑃𝐸, 
is given by (11), where 𝐹$, is either activations (𝐴𝑐𝑡) in forward 
phase, or activation gradients (∆𝐴𝐺) and weight gradients 
(∆𝑊𝐺) in back-propagation phase, communicated from 𝑃𝐸$ to 
𝑃𝐸, 	and 𝑀$, is the corresponding Manhattan distance between 
𝑃𝐸$ and 𝑃𝐸,.  

𝑃𝑤𝑟(𝑑) ∝ 𝑃'()*+,- + 𝑃'()).																																		(9) 

𝑃'()*+,- ∝;[𝑃𝑜𝑤𝑒𝑟𝑆|𝑅|𝐹(𝑤! + 𝐴𝑐𝑡!)]
/

!01

													(10) 

𝑃'()).(𝑖, 𝑗) ∝ 𝐹!2 ∙ 𝑀!2 , ∀𝐹!2 ∈ {𝐴𝑐𝑡, ∆𝐴𝐺, ∆𝑊𝐺}				(11) 
AMOSA-based MOO Approach: In this subsection, we discuss 
the algorithmic procedure to compute the Pareto optimal set of 
designs (neural layer-to-PE and PE-to-tier mappings). 
Algorithm 1 shows a high-level pseudocode for our design 
optimization methodology based on the well-known AMOSA 

Algorithm 1. Neural layer-to-PE and PE-to-3D planar tier mapping  
Input: Target manycore system with 𝐶 PEs of PIM device types- SRAM, 
ReRAM or FeFET 
𝐴𝑃𝑃 = DNN training task 
Output: 𝐷∗, the Pareto optimal set of designs (optimized neural layer-to-PE 
mapping	and PE-to-tier mapping𝑠) 
  1: Initialize: 𝐷 = non-dominated set of solutions; 𝐴	= Archive 
  2: Input variables (𝑥) = neural layer-to-PE mapping (𝜋) and PE-to-tier 

mapping (𝛼)  
  3: Repeat: 
  4:  Select one 𝑥⃗ from A and 𝑃𝑒𝑟𝑡𝑢𝑟𝑏 𝑥⃗ to get a design 𝑑 
  5:  𝑑𝑒𝑠𝑖𝑔𝑛	𝑑 ←	Candidate mapping of neural layer-to-PEs and 

PEs-to-3D planar tiers 
  6:  Evaluate(𝑑𝑒𝑠𝑖𝑔𝑛	𝑑, 𝐴𝑃𝑃) /∗	using power, area, latency, and 

accuracy models [section III B]∗/ 
  7:  Update non-dominated set of solutions 𝐷 via 

𝑃𝑤𝑟(𝑑), 𝐴𝑟(𝑑), 𝐿𝑎𝑡(𝑑), 𝐸𝑟𝑟(𝑑) 
  8:  Update	Archive	𝐴 
  9: Until convergence or maximum iterations 
10: Pareto optimal set of designs 𝐷∗ ← 	𝐷 
11: return 𝐷∗, the Pareto optimal set of designs (optimized neural 

layer-to-PE mapping	and PE-to-tier mappings) 
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solver [29]. The goal is to distribute the computations of 𝐾 
DNN layers (forward- and back-propagation phases) across 𝐶 
PEs on 𝑍 planar tiers of different device types to obtain optimal 
trade-offs between 𝑃𝑤𝑟, 𝐴𝑟, 𝐿𝑎𝑡, 𝐸𝑟𝑟. The input variables 𝑥⃗ in 
our MOO approach are the neural layer-to-PE mapping (𝜋) and 
PE-to-tier mapping (𝛼). A candidate configuration of 𝑥⃗ 
corresponds to the design 𝑑 which is a candidate mapping of 
neural layer-to-PEs and PEs-to-3D planar tiers (Algorithm 1, 
line 5). First, we start with a randomly chosen mapping of DNN 
layers to PEs and PEs to planar tiers satisfying the mapping 
constraints: (a) a neural layer is mapped on to PEs of one device 
type, and (b) a planar tier consists of PEs of one device type. It 
should be noted that it is possible for a neural layer to be 
mapped to different types of PEs in different tiers. However, 
this gives rise to synchronization issues as each type of PE has 
different latency and throughput. Computations involved in one 
neural layer need to be completed and the activations must then 
be sent to the next neural layer. If a layer is mapped on two 
different types of PEs with unequal timing characteristics, then 
the computation latency for a particular neural layer will be 
bottlenecked by the PE with the worst-case delay. This will lead 
to a degradation in the overall training performance. Hence, 
each neural layer is mapped on to PEs of one device type. Also, 
due to fabrication challenges, we refrain from integrating 
different types of NVM devices on the same tier. 
Next, we perturb a candidate mapping solution to get a new 
layer-to-PE and PE-to-tier mapping (Algorithm 1, line 4). Here, 
a valid perturbation is defined as allocating a randomly chosen 
neural layer to a different PE such that the mapping constraints 
mentioned above, are satisfied. In each AMOSA iteration, the 
selected design is evaluated using the surrogate objectives for 
latency, area, power, and accuracy (Algorithm 1, line 6) and the 
non-dominated set of designs and Archive are updated based on 
this new design evaluation. At convergence or after maximum 

iterations, we get the Pareto optimal set of designs 𝐷∗ from the 
MOO solver. We first select the feasible designs from 𝐷∗ 
fulfilling the DNN accuracy constraint mentioned above (e.g., 
1% accuracy loss with respect to ideal condition) by performing 
cycle-accurate simulations. Finally, we select the best design 
𝑑()*% from the feasible designs that achieves the best 
performance in-terms of either energy-efficiency (TOPS/W) or 
compute-efficiency (TOPS/mm2). It should be noted that the 
HuNT framework optimizes layer-to-PE and PE-to-tier 
mapping at the design time for a given DNN workload and any 
other MOO solver can also be used to the same effect.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS  
In this section, we present comprehensive experimental 
results for the HuNT-enabled 3D heterogeneous PIM 
architecture for DNN training. First, we describe the 
experimental setup used to evaluate the performance of HuNT. 
Next, we present a trade-off analysis of HuNT in terms of 
accuracy, energy- and compute-efficiency. Finally, we compare 
the performance of the proposed HuNT-enabled heterogeneous 
manycore architecture with respect to the state-of-the-art.   

A. Experimental Setup 
The HuNT design optimization framework is executed on an 
NVIDIA Quadro GPU with 40GB of memory. Table II presents 
the details of the hardware used for the execution of the HuNT 
framework. The HuNT optimization phase (described in 
Algorithm 1) is executed for 100 iterations, as this is sufficient 
to ensure the convergence of the AMOSA-based MOO. 
Algorithm 1 is executed at the design time; hence the time 
overhead is a one-time cost. The overall time complexity of the 
adapted AMOSA-based MOO solver is given by 𝑂(𝑇 × 𝑁 ×
(𝑀 + log(𝑁))), where T is the total iterations of the algorithm, 
𝑁 is the maximum number of non-dominated solutions stored 
in the 𝐴𝑟𝑐ℎ𝑖𝑣𝑒, and 𝑀 is the number of design objectives [29]. 
HuNT generates the optimized neural layer-to-PE mapping, and 
the corresponding PE-to-tier mapping, which is then mapped to 
the proposed 3D heterogeneous PIM-based architecture.   
3D Heterogeneous PIM Architecture: The PIM architecture 
considered in this work consists of a total of 64 processing 
elements (PEs) distributed over four planar tiers and connected 
using through silicon via (TSV)-based vertical links. Each PIM-
based PE has its unique configuration such as crossbar size, cell 
resolution, number of crossbars/6T cells etc. as shown in Table 
III. We consider an iso-PE area setting, such that all PEs 
(irrespective of their device type) have the same area but 
different amount of storage and compute capability. 
Considering the storage capacity of each PIM-based PE, the 
HuNT-enabled architecture can have a storage capacity of up to 
~75 MB.  Each planar tier consists of 16 PEs of a particular PIM 
device type (SRAM/ReRAM/FeFET). 
The area, energy, and latency of the SRAM, ReRAM, and 
FeFET devices and their associated peripheral circuits such as 
ADC, sense-amps (S/A), DACs, buffers, column-/row-
decoders, nonlinear activation units (ReLU) were modeled via 
NeuroSim [24]. NeuroSim incorporates cycle-accurate 
analytical tools (NVSim & CACTI) to evaluate the compute 

TABLE II 
HUNT OPTIMIZATION HARDWARE  

GPU 
OS: Linux CentOS. GPU: NVIDIA V100, 

32GB. CPU: Intel Xeon Gold 5222 @ 3.8GHz, 
16 cores, 32K L1 cache and 1024K L2 cache 

TABLE III  
PIM ARCHITECTURE SPECIFICATIONS 

64 PEs distributed over 4 tiers (16 PEs/tier), 4 tiles/PE 

ReRAM Tile 
96 SAR ADCs (8-bits), 128×96 DACs (1-bit), 96 
crossbars, 128×128 crossbar array, 2-bit/cell 

resolution, 0.40 mm2  

FeFET Tile  256×48 S/A (1-bit), 48 crossbars, 256×256 
crossbar array, 1-bit/cell resolution, 0.40 mm2  

SRAM Tile 
6T, 1-bit-cell, 256 S/A, 8KB SRAM array 
(256×256), 9 column/row-decoder, 9 SRAM 

arrays, 0.40 mm2  

TABLE IV  
DNN WORKLOADS WITH CIFAR-10 DATASET 
  # Layers Learning 

rate Batch size # Params 

VGG11 11 0.01 64 1.5M 
VGG16 16 0.01 64 2.2M 
ResNet18 18 0.05 128 1.1M 
ResNet34 34 0.05 128 2M 
DenseNet40 40 0.01 128 900K 
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area, latency, and power for each PIM configuration. The 
connectivity between PEs follows the 3D mesh topology and 
the workload-dependent inter-PE traffic is given as input to 
BookSim to estimate communication power and latency [30]. 
We employ HotSpot’s default ambient temperature setting of 
300𝐾 to conduct thermal analysis with the power traces 
generated using NeuroSim and BookSim [28]. Finally, we 
model the thermal effects (shown in (6) and (7)) on the DNN 
accuracy using the PyTorch wrapper in NeuroSim for the 
different DNN models and datasets considered in this work. 
Following prior work, we use 16-bit fixed-point precision for 
the storage and computation of the DNN weights and 
activations in the forward pass, and 32-bit floating point 
precision for the weight- and activation-gradient computation 
in the back-propagation phase [31]. The 3D heterogeneous 
architecture utilizes a multicast-enabled 3D mesh network-on-
chip (NoC) as the interconnection backbone for communicating 
between the PEs during DNN training [23]. In our experimental 
evaluation, we consider energy-efficiency (TOPS/W) and 
compute-efficiency (TOPS/mm2) as the two relevant 
performance metrics that capture the latency, area, power 
objectives considered in Section III of this work.  
DNN models and Datasets: We evaluate the performance of 
the HuNT design optimization framework considering the 
CIFAR-10, CIFAR-100, and TinyImageNet datasets with five 
diverse DNN models namely: VGG11, VGG16, ResNet18, 
ResNet34, and DenseNet40. Table IV shows the characteristics 
and parameters of the DNN models executed on the HuNT 
enabled 3D heterogeneous PIM architecture. As shown in Table 
IV, the largest network considered in this work (VGG16) has 
about 2.2M parameters which requires ~4.4 MB of storage, 
hence it can be easily stored on the HuNT-enabled 3D 
heterogeneous architecture (with a storage capacity of up to ~75 
MB) along with its activations and layer-wise gradients. 
However, for larger networks where the neural network size 
exceeds the total storage capacity of the PEs in the system, then 
we need to read/write weights and activations from/to main 
memory (DRAM). As a result, there will be an additional 
latency penalty corresponding to that. However, the layer-to-PE 
and PE-to-tier mapping obtained from the HuNT optimization 
framework is unimpacted by the off-chip memory accesses in 
the case of very large DNNs. In this work, we train the DNN 
models on the HuNT-enabled 3D heterogeneous PIM 
architecture for 200 epochs using the Stochastic Gradient 
Descent method to ensure their training convergence without 
overfitting.  

B. Layer-to-PE and PE-to-Tier Mapping Trade-offs 
The neural layer-to-PE and PE-to-tier mapping affect the 
overall latency, power, area, and DNN accuracy. The aim of the 
HuNT framework is to determine the optimum configuration of 
the heterogeneous 3D manycore architecture that achieves a 
suitable balance among all these metrics. Fig. 3 presents the 
Pareto front considering the above-mentioned design 
objectives, while executing the training task on ResNet34 
model using CIFAR-10 dataset as an example. Recall, the PE-
to-tier mapping is represented by 𝛼 = [𝑡!, 𝑡", … , 𝑡+], where a 

planar tier 𝑡+ has PEs of one device type – ReRAM (R), FeFET 
(F), SRAM (S). Fig. 3 shows a representative Pareto optimal set 
of designs 𝐷∗ highlighted in black. It should be noted that all 
the Pareto optimal configurations with heterogeneous PEs have 
the SRAM devices at the bottom tier, away from the heat sink, 
which is used for the gradient calculation during back-
propagation. Further, to minimize the on-chip hardware 
resources for gradient computation, we do not need to process 
all the layers simultaneously, but just perform layer-by-layer 
weight gradient computation, following prior work [24]. 
Therefore, one tier of SRAM-based PEs is enough to support 
the layer with largest size of activation gradients for the DNN 
models considered here. Due to the necessity of the SRAM tier 
for the back-propagation, the homogeneous configurations 
where we have only one type of NVM PIM device like FeFET 
or ReRAM, are: [𝐹!, 𝐹", 𝐹6, 𝑆7] and [𝑅!, 𝑅", 𝑅6, 𝑆7]. 
Alternatively, the homogeneous configuration with only 
SRAM device is: [𝑆!, 𝑆", 𝑆6, 𝑆7]. All the design objectives 
shown in Fig. 3 are normalized with respect to a mapping 
corresponding to 𝛼 = [𝑆!, 𝐹", 𝐹6, 𝑅7] (shown in green), since it 
has the worst DNN accuracy. As mentioned earlier, impact of 
thermal noise on ReRAM-based PEs is more severe compared 
to FeFET- or SRAM- based PEs. Thus, the mapping 
[𝑆!, 𝐹", 𝐹6, 𝑅7] has the worst DNN accuracy because (a) the high 
power consuming FeFET-based PEs on two planar tiers lead to 
thermal hotspots and (b) ReRAM-based PEs are mapped to the 
planar tier farthest from the heat sink. On the other hand, 
candidate mappings with all thermal noise resilient SRAM-
based PEs, i.e., [𝑆!, 𝑆", 𝑆6, 𝑆7] achieve the highest DNN 
accuracy, but at the cost of extremely high area. The FeFET-
based PEs contribute to high power density in the mapping 
corresponding to [𝐹!, 𝐹", 𝐹6, 𝑆7], resulting in peak temperature 
of 380𝐾 and lower DNN accuracy compared to [𝑅!, 𝑅", 𝑅6, 𝑆7]. 
However, the mapping [𝑅!, 𝑅", 𝑅6, 𝑆7] incurs high write latency 
due to pre-dominantly ReRAM-based PEs when compared to 
mappings on pre-dominantly SRAM- or FeFET-based PEs. 
Thus, all homogeneous architectures score high in one specific 
design metric neglecting the others. On the other hand, 
heterogeneous 3D architectures such as [𝑅!, 𝐹", 𝐹6, 𝑆7] and 
[𝑅!, 𝑅", 𝐹6, 𝑆7] exploit device-heterogeneity with optimal layer-
to-PE and PE-to-tier mapping, and achieve suitable trade-offs 
between power, latency, area and DNN accuracy.  

 
Fig. 3: Layer-to-PE and PE-to-tier mapping trade-offs while running the 
DNN training task for ResNet34 model on CIFAR-10 dataset.  
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Next, we implement the HuNT-enabled Pareto optimal set of 
designs 𝐷∗ and evaluate their performance in realistic settings. 
Figs. 4(a) and (b) show the comparative performance evaluation 
of the architectures in terms of energy-efficiency (TOPS/W) 
and compute-efficiency (TOPS/mm2) for DNN training task on 
VGG16 model with CIFAR-10 dataset as an example. As 
shown in Fig. 4, neural layer mapping corresponding to a 
homogeneous SRAM-based PE configuration, i.e., 
[𝑆!, 𝑆", 𝑆6, 𝑆7] leads to the lowest TOPS/W and TOPS/mm2 due 
to higher power and area consumption when compared to 
FeFET- and ReRAM-based architectures. Similarly, 
[𝐹!, 𝐹", 𝐹6, 𝑆7] achieves low TOPS/W due to high power 
FeFET-based PEs. As shown in Fig. 4, the layer-to-PE and PE-
to-tier mapping corresponding to [𝑅!, 𝑅", 𝐹6, 𝑆7] (highlighted in 
red) achieves highest TOPS/W and TOPS/mm2 compared to 
rest of the Pareto optimal candidate mappings. This mapping 
utilizes the ReRAM and FeFET-based PEs (on planar tier 1, 2 
and 3) for low precision computation in the forward phase and 
SRAM-based PEs (on planar tier 4) for high precision gradients 
computation in the back-propagation phase. Further, the DNN 
layers processing high number of activations are mapped to 
dense ReRAM-based PEs, resulting in higher TOPS/mm2 and 
closer to the SRAM tier, reducing the communication energy 
specifically during the back-propagation phase. Hence, this 
results in higher TOPS/W. 
Next, we discuss the DNN layers’ characteristics and their 
role in layer-to-PE and PE-to-tier mapping for the best-
performing [𝑅!, 𝑅", 𝐹6, 𝑆7] architecture. Fig. 5 shows layer-wise 
mapping on to PEs and 3D planar tiers for training DenseNet40 
and VGG16 models with CIFAR-10 dataset as an example. As 
discussed earlier, high precision gradients are calculated in the 
bottom tier (tier S4) and the forward phase computation is 

executed on tiers 1 to 3 of the [𝑅!, 𝑅", 𝐹6, 𝑆7] architecture.  As 
shown in Fig. 5(a), initial layers in DenseNet40 process higher 
number of activations than the latter layers and need more 
crossbars to store weights and activations. Therefore, these 
layers are mapped to dense, low power ReRAM-based PEs (R2) 
as well as closer to tier S4 for faster exchange of gradients. On 
the contrary, latter layers with comparatively fewer activations 
and smaller kernels, are mapped on tier F3 (layers 14 to 24) and 
R1 (layers 30 to 40). However, as shown in Fig. 5(b), the layer-
wise characteristics of VGG16 are different than that of 
DenseNet40, i.e., initial layers process higher number of 
activations but have less crossbars requirement for storage and 
computation, due to the layers’ input/output feature map and 
kernel size. Thus, the initial layers of VGG16 are mapped to 
FeFET-based PEs on tier F3 that have low latency but less 
dense when compared to ReRAMs. On the contrary, the middle 
layers consist of wider kernels and require more crossbars. 
Thus, these layers are mapped to dense, low power ReRAM-
based PEs on tier R2. This highlights the importance of 
considering DNN layers’ characteristics while finding optimal 
layer-to-PE and PE-to-tier mapping to achieve high compute- 
and energy-efficiency.  

C. Overall Performance Evaluation  
In this subsection, we present a thorough performance 
evaluation of the HuNT-enabled DNN layer-to-PE and PE-to-
tier mapping for the proposed 3D heterogeneous PIM 
architecture during DNN training. Figs. 6(a) - 6(c) compare the 
energy-, compute-efficiency, and accuracy of the HuNT 
enabled 3D heterogeneous architecture (simply referred to as 
HuNT here after) with the homogeneous and existing 
heterogenous counterparts for all DNN workloads considered 
in this work with the CIFAR-10 dataset respectively. For this 
comparison, the homogenous configurations are; 
[𝐹!, 𝐹", 𝐹6, 𝑆7], [𝑅!, 𝑅", 𝑅6, 𝑆7] and [𝑆!, 𝑆", 𝑆6, 𝑆7] as mentioned 
earlier. The existing heterogenous counterparts considered in 
our comparative performance evaluation includes the HyperX 
and AccuReD architectures [22] [23]. As discussed in the 
related work, HyperX leverages both ReRAM (R) and SRAM 
(S), while AccuReD leverages ReRAM- and GPU-based 
processing elements to achieve high-performance DNN 
training. In our comparative performance evaluation with 
respect to HuNT, we use the two tiers of ReRAM and two GPU 
tiers [𝑅!, 𝑅", 𝐺𝑃𝑈6, 𝐺𝑃𝑈7] configuration, and the [𝑅!, 𝑆", 𝑆6, 𝑆7] 
configuration for the AccuReD and HyperX architectures 
respectively [22] [23].  

 
(a) 

 
(b) 

Fig. 4: Comparison of various Pareto optimal layer-to-PE and PE-to-tier 
mappings in terms of (a) TOPS/W and (b) TOPS/mm2, while running 
training task for VGG16 model on CIFAR-10 dataset as an example.  
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Fig. 5: Layer-to-PE and PE-to-tier mapping for DNN training task on (a) DenseNet40 and (b) VGG16 models with CIFAR-10 dataset on (c) the optimized 
[𝑅!, 𝑅", 𝐹#, 𝑆$] architecture. Here, R1 and R2 refers to Tier 1 and 2 with ReRAM based PEs respectively, F3 refers to Tier 3 with FeFET based PEs, and S4 
refers to Tier 4 with SRAM based PEs.   
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As shown in Figs. 6(a) and 6(b), HuNT achieves up to 20 
TOPS/W and 10.73 TOPS/mm2 on CIFAR-10 dataset which 
corresponds to a ~10×  and ~8× improvement in energy- and 
compute-efficiency respectively over the all-SRAM 
homogenous counterpart. As shown earlier in Table I, and 
corroborated in the literature, SRAM-based PIM architectures 
generally suffer from low energy- and compute-efficiency due 
to their high leakage power and significant area overhead 
respectively [3]. Hence, they achieve a relatively low energy- 
and compute-efficiency of 2.2 TOPS/W and 1.1 TOPS/mm2 on 
average across all DNN models as shown in Figs. 6(a) and 6(b) 
respectively. HuNT exploits device heterogeneity and DNN 
workload awareness to achieve up to a 1.2× and 1.3× 
improvement in TOPS/W and TOPS/mm2 respectively over the 
homogeneous ReRAM configuration ([𝑅1, 𝑅9, 𝑅:, 𝑆;]). 
Similarly, HuNT achieves an improvement of up to 2.6× and 
1.5× in TOPS/W and TOPS/mm2 respectively over the 
homogeneous FeFET configuration ([𝐹1, 𝐹9, 𝐹:, 𝑆;]) on CIFAR-
10 dataset. Overall, HuNT outperforms HyperX and AccuReD 
by 3.1× and 1.4× respectively on average in terms of energy-
efficiency, and by 2.7× and 1.5× respectively on average in 
terms of compute efficiency on CIFAR-10 dataset. This is 
because the high power and area of the SRAM-based PEs and 
the GPU-based PEs in HyperX and AccuReD respectively 
make them less compute- and energy-efficient. 
As shown in Fig. 6(c), we compare HuNT with the 
homogenous and heterogeneous counterparts in terms of the 
accuracy. Here, the all-SRAM configuration achieves the 
highest accuracy due its high reliability, and less vulnerability 
to thermal issues in the 3D architecture [23]. However, the 
homogeneous FeFET and ReRAM counterparts suffer up to 4% 
and 2.5% accuracy loss. This is due to high power consumption 

of FeFET-based PEs and limited thermal endurance of 
ReRAM-based PEs when placed away from the heat sink. 
Overall, HuNT achieves less than 1% accuracy drop compared 
to the all-SRAM counterpart. In summary, our performance 
evaluation demonstrates that the HuNT-enabled 3D 
heterogeneous PIM architecture achieves high energy- and 
compute-efficiency over the homogenous counterparts and the 
existing heterogeneous PIM-based architectures (AccuReD and 
HyperX). Overall, the HuNT-enabled 3D PIM architecture 
achieves the highest TOPS/W and TOPS/mm2 with negligible 
loss in DNN accuracy.  

D. Transferability across Datasets 
In this subsection, we demonstrate that the HuNT-enabled 
optimized layer-to-PE and PE-to-tier mapping (𝑑()*%) obtained 
using the CIFAR-10 dataset can be transferred to another 
dataset for training on 3D heterogeneous PIM architecture 
without compromising the DNN training accuracy, and overall 
performance. Here, the 𝑑()*% for a given DNN workload is 
generated with a ‘source’ dataset via the HuNT framework, and 
then mapped to the 3D heterogeneous architecture for training 
using a ‘target’ dataset. Figs. 7 and 8 demonstrate the 
transferability of 𝑑()*% generated using the CIFAR-10 dataset 
(as the source dataset) to the CIFAR-100 and TinyImageNet 
datasets (as the target datasets) respectively. In Figs. 7 and 8, 
we consider 𝑑()*% generated using CIFAR-100 and 
TinyImageNet respectively via the HuNT framework in each 
case as the baseline.  In this work, we compare the performance 
of 𝑑()*% obtained using the CIFAR-10 dataset with respect to 
the baselines in-terms of energy-efficiency (TOPS/W), 
compute-efficiency (TOPS/mm2) and the final DNN test 
accuracy as shown in Figs. 7(a) and 8(a), Figs. 7(b) and 8(b), 

 

 
(a)                          (b)                      (c) 

Fig. 6: Performance evaluation of the HuNT-enabled 3D PIM architecture with state-of-the-art in terms of (a) Energy-efficiency (TOPS/W), (b) Compute-
efficiency (TOPS/mm2), and (c) Accuracy of DNN workloads executed on CIFAR-10 dataset. Here, for brevity we use FFFS, RRRS, SSSS to refer to 
[𝐹!, 𝐹", 𝐹#, 𝑆$], [𝑅!, 𝑅", 𝑅#, 𝑆$] and [𝑆!, 𝑆", 𝑆#, 𝑆$] homogeneous configurations respectively. 
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Fig. 7: Transferability from CIFAR-10 to CIFAR-100 dataset for (a) energy-efficiency (TOPS/W), (b) compute-efficiency (TOPS/mm2), and (c) Accuracy.   
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and Figs. 7(c) and 8(c) respectively. Here, the configurations 
are denoted as DS → DT, where DS represents the ‘source’ 
dataset and DT represents the ‘target’ dataset. In our analysis, 
we consider the CIFAR-10→CIFAR-100 and CIFAR-
10→TinyImageNet configurations for the sake of brevity. 
However, it is worth noting that the HuNT framework is 
compatible with other image datasets, and the results shown 
here are reproducible for other configurations.  
As shown in Figs. 7(a) and 7(b), we observe less than an 
average of 2% and 1.5% loss in energy- and compute-efficiency 
respectively compared to the baseline across all the DNN 
models for the CIFAR-10→CIFAR-100 configuration. 
Similarly, we also observe an average of 3.1% and 1.9% loss in 
energy- and compute-efficiency respectively compared to the 
baseline for the CIFAR-10→TinyImageNet configurations 
respectively as shown in Figs. 8(a) and 8(b). Overall, we 
observe a negligible accuracy loss of less than 1% across all 
DNN models considered in both the CIFAR-10→CIFAR-100 
and CIFAR-10→TinyImageNet configurations as shown in Fig. 
7(c) and Fig. 8(c) respectively. Here, the transferability of the 
optimal neural layer mapping of 𝑑()*% across datasets is 
possible because the general DNN model behavior is often 
transferable between datasets. This idea is similar to transfer 
learning, where a model trained on one dataset can be reused 
with slight changes for another dataset [32]. Hence, the neural 
layer mapping of 𝑑()*% for a given DNN model can also be used 
with other datasets, and achieve similar levels of performance 
(energy- and compute-efficiency) with negligible accuracy loss. 
However, it is worth noting that the absolute values of the 
achievable performance in terms of TOPS/W and TOPS/mm2 
vary across datasets due to their unique characteristics. For 
example, the TinyImageNet dataset generates more activations 
during training compared to the CIFAR-10 dataset. This 
requires more PEs. Hence, for the same system configuration, 
HuNT achieves lower compute- and area-efficiencies for 
TinyImageNet compared to both CIFAR-10 and CIFAR-100 
datasets. The dataset characteristics influence the absolute 
achievable performance. However, the overall trend is agnostic 
to the dataset. In addition, the transferability of 𝑑()*% across 
datasets eliminates the cost of implementing repeated MOO for 
more complex datasets. In essence, this further demonstrates 
the scalability, and versatility of the HuNT-enabled optimized 
layer-to-PE and PE-to-tier mapping (𝑑()*%) to other datasets for 
DNN training on 3D heterogeneous PIM accelerators.  

E. Lifetime and Endurance of Proposed 3D PIM Architecture 
Lifetime and write endurance of NVM-based PIM devices are 
crucial for DNN training due to significant number of write 
operations required for the weight- and activation- gradient 
calculations as well as weight updates in the back-propagation 
phase. For our analysis, we consider realistic write endurance 
limit for the FeFET-, ReRAM- and SRAM-based PEs reported 
in prior work, as shown in Table I. As discussed earlier, the 
HuNT-enabled layer-to-PE mapping maps the weights in the 
DNN layers to both ReRAM- and FeFET-based PEs, and the 
weight- and activation-gradient computation is performed on 
SRAM-based PEs (i.e., the [𝑅!, 𝑅", 𝐹6, 𝑆7] configuration). 
Therefore, the weights mapped to the ReRAM- and FeFET- 
based PEs need to be re-programmed during the weight update 
phase. However, ReRAM and FeFET devices suffer from low 
write endurance, which limits the number of times that they can 
be re-programmed before they fail due to faults [17].  
In Fig. 9, we present a comparative performance trade-off 
analysis between the energy-efficiency and endurance of the 
homogeneous architectures, and the HuNT-enabled 
heterogeneous architecture ([𝑅!, 𝑅", 𝐹6, 𝑆7]) executing the 
VGG-11 DNN workload with the CIFAR-10 dataset. We 
observe that beyond the endurance limit for each device, the 
achievable performance (TOPS/W) begins to reduce, as the 
number of resources (PEs) available to perform reliable 
computation reduces due to failures of the NVM devices. The 
[𝑆!, 𝑆", 𝑆6, 𝑆7] configuration achieves the lowest TOPS/W due 
to its significant leakage power, however, it has the highest 
endurance. Overall, the HuNT-enabled heterogeneous 
architecture achieves an improvement of 10×, 3× and 1.2× in 
terms of TOPS/W compared to the homogeneous SRAM, 
FeFET and ReRAM based architectures respectively. At the 
same time, HuNT achieves similar write endurance as the 

 
Fig. 9: Comparison of HuNT-enabled architecture with other homogeneous 
architectures in terms of energy-efficiency (TOPS/W) and endurance for 
training on VGG11 model with CIFAR-10 dataset as an example. 
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Fig. 8: Transferability from CIFAR-10 to TinyImageNet dataset for (a) energy-efficiency (TOPS/W), (b) compute-efficiency (TOPS/mm2) and (c) Accuracy.  
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homogeneous configurations with at least one type of NVM 
device ([𝑅!, 𝑅", 𝑅6, 𝑆7] and [𝐹!, 𝐹", 𝐹6, 𝑆7]).  

V. CONCLUSION 
PIM-based architectures enable high-performance and 
energy-efficient hardware accelerators for DNN training. 
However, each PIM device has specific advantages and 
drawbacks. Hence, a heterogeneous architecture that combines 
multiple PIM devices in a single system is necessary to achieve 
the suitable balance between all the required design metrics. A 
3D architecture enables the design of such a heterogeneous 
platform where each planar tier consists of processing elements 
designed with one type of device. This also avoids the 
fabrication challenges of integrating disparate technologies on 
a single tier. In this work, we propose the HuNT framework, 
which finds an optimal layer-to-PE and PE-to-tier mapping for 
3D PIM-based heterogenous architectures. Overall, the HuNT-
enabled 3D heterogeneous architecture achieves up to a 10× 
and 8× improvement in energy-, and compute-efficiency 
respectively over the homogenous counterparts and existing 
heterogeneous PIM-based architectures without compromising 
the final DNN accuracy. 

REFERENCES 
[1]  W. Liu et al., "A survey of deep neural network architectures and their 

applications," Neurocomputing, vol. 234, pp. 11-26, 2017.  
[2]  L. Song, X. Qian, L. Hai and Y. Chen, "PipeLayer: A Pipelined 

ReRAM-Based Accelerator for Deep Learning," in IEEE HPCA, 2017.  
[3]  K. Roy, I. Chakraborty, M. Ali, A. Ankit and A. Agrawal, "In-Memory 

Computing in Emerging Memory Technologies for Machine Learning: 
An Overview," in IEEE DAC, 2020.  

[4]  A. Shafiee et al., "ISAAC: A Convolutional Neural Network 
Accelerator with In-Situ Analog Arithmetic in Crossbars Ali," in ISCA, 
2016.  

[5]  T. Soliman et al., "First demonstration of in-memory computing 
crossbar using multi-level Cell FeFET," Nature Communications, vol. 
14, no. 1, p. 6348, 2023.  

[6]  Y. Long et al., "A Ferroelectric FET-Based Processing-in-Memory 
Architecture for DNN Acceleration," IEEE Journal on Exploratory 
Solid-State Computational Devices and Circuits, vol. 5, 2019.  

[7]  A. Keshavarzi, K. Ni, W. Van Den Hoek, S. Datta and A. 
Raychowdhury, "FerroElectronics for Edge Intelligence," IEEE Micro, 
vol. 40, 2020.  

[8]  A. Yusuf, T. Adegbija and D. Gajaria, "Domain-Specific STT-MRAM-
Based In-Memory Computing: A Survey," IEEE Access, vol. 12, 2024.  

[9]  G. Murali et al., "Heterogeneous Mixed-Signal Monolithic 3-D In-
Memory Computing Using Resistive RAM," IEEE TVLSI Systems, vol. 
29, 2021.  

[10]  X. Peng et al., "Benchmarking Monolithic 3D Integration for Compute-
in-Memory Accelerators: Overcoming ADC Bottlenecks and 
Maintaining Scalability to 7nm or Beyond," in IEEE IEDM, 2020.  

[11]  A. Kaul et al., "3-D Heterogeneous Integration of RRAM-Based 
Compute-In-Memory: Impact of Integration Parameters on Inference 
Accuracy," IEEE Transactions on Electron Devices, vol. 70, 2023.  

[12]  M. Yayla et al., "FeFET-Based Binarized Neural Networks Under 
Temperature-Dependent Bit Errors," IEEE Transactions on Computers, 
vol. 71, no. 7, pp. 1681-1695, 2021.  

[13]  X. Yang, S. Belakaria, B. Joardar, H. Yang, J. Doppa, P. Pande, K. 
Chakrabarty and H. Li, "Multi-objective optimization of ReRAM 
crossbars for robust DNN inferencing under stochastic noise," 
IEEE/ACM ICCAD, pp. 1-9, 2021.  

[14]  A. Bhattacharjee, A. Moitra and P. Panda, "HyDe: A Hybrid 
PCM/FeFET/SRAM Device-Search for Optimizing Area and Energy-
Efficiencies in Analog IMC Platforms," IEEE JETCAS, vol. 13, 2023.  

[15]  Y. Sun et al., "CREAM: Computing in ReRAM-Assisted Energy- and 
Area-Efficient SRAM for Reliable Neural Network Acceleration," IEEE 
TCAS I: Regular Papers, vol. 70, 2023.  

[16]  G. Krishnan et al., "Hybrid RRAM/SRAM in-Memory Computing for 
Robust DNN Acceleration," IEEE TCAD, vol. 41, 2022.  

[17]  W. Wen, Y. Zhang and J. Yang, "ReNEW: Enhancing Lifetime for 
ReRAM Crossbar based Neural Network Accelerators," in IEEE ICCD, 
2019.  

[18]  C. Eckert et al., "Neural Cache: Bit-Serial In-Cache Acceleration of 
Deep Neural Networks," in 45th ISCA, 2018.  

[19]  S. Spetalnick and A. Raychowdhury, "A Practical Design-Space 
Analysis of Compute-in-Memory With SRAM," IEEE Transactions on 
Circuits and Systems I: Regular Papers, vol. 69, 2022.  

[20]  S. Roy, M. Ali and A. Raghunathan, "PIM-DRAM: Accelerating 
machine learning workloads using processing in commodity DRAM.," 
IEEE JETCAS, vol. 11, no. 4, pp. 701-710, 2021.  

[21]  M. R. Haq Rashed, S. K. Jha and R. Ewetz, "Hybrid Analog-Digital In-
Memory Computing," in IEEE/ACM ICCAD, 2021.  

[22]  A. Kosta et al., "HyperX: A Hybrid RRAM-SRAM partitioned system 
for error recovery in memristive Xbars," in DATE, 2022.  

[23]  B. K. Joardar et al., "AccuReD: High Accuracy Training of CNNs on 
ReRAM/GPU Heterogeneous 3D Architecture," IEEE TCAD, 2020.  

[24]  X. Peng et al., "DNN+NeuroSim V2.0: An end-to-end benchmarking 
framework for compute-in-memory accelerators for on-chip training," 
arXiv:2003.06471, 2020.  

[25]  N. Ye, L. Cao, L. Yang, Z. Zhang, Z. Fang, Q. Gu and G.-Z. Yang, 
"Improving the robustness of analog deep neural networks through a 
Bayes-optimized noise injection approach," Communications 
Engineering, vol. 2 (1), p. 25, 2023.  

[26]  Y. Qin, Z. Yan, W. Wen, X. S. Hu and Y. Shi, "Negative Feedback 
Training: A Novel Concept to Improve Robustness of NVCiM DNN 
Accelerators," arXiv preprint arXiv:2305.14561, 2023. 

[27]  J. Cong, J. Wei and Y. Zhang, "A thermal-driven floorplanning 
algorithm for 3D ICs.," IEEE/ACM ICCAD, pp. 306-313, 2004.  

[28]  R. Zhang, M. Stan and K. Skadron, "Hotspot 6.0: Validation, 
acceleration and extension," in University of Virginia, Tech. Rep, 2015.  

[29]  S. Bandyopadhyay, S. Saha, U. Maulik and K. Deb, "A simulated 
annealing-based multiobjective optimization algorithm: AMOSA," 
IEEE transactions on evolutionary computation, vol. 12(3), pp. 269-
283, 2008.  

[30]  N. Jiang et al., "A detailed and flexible cycle-accurate Network-on-Chip 
simulator," in IEEE ISPASS, 2013.  

[31]  H. Jin, C. Liu, H. Liu, R. Luo, J. Xu, F. Mao and . X. Liao, "ReHy: A 
ReRAM-based digital/analog hybrid PIM architecture for accelerating 
CNN training," IEEE TPDS, vol. 33, no. 11, pp. 2872-2884, 2021.  

[32]  C. O. Ogbogu et al., "Accelerating Graph Neural Network Training on 
ReRAM-Based PIM Architectures via Graph and Model Pruning," 
IEEE TCAD, vol. 42, pp. 2703-2716, 2023.  

[33]  D. Niu et al., "Design of cross-point metal-oxide ReRAM emphasizing 
reliability and cost," in IEEE/ACM ICCAD, 2013. 

 
Chukwufumnanya Ogbogu and Gaurav Narang are currently pursuing 
the Ph.D. degree in Computer Engineering at Washington State University, 
Pullman, WA, USA. 
 
Biresh Kumar Joardar is an Assistant Professor with the Department of 
Electrical and Computer Engineering, University of Houston, TX, USA. 
 
Janardhan Rao Doppa is the Huie-Rogers Endowed Chair Associate 
Professor in computer science with Washington State University, Pullman, 
WA, USA.  
 
Krishnendu Chakrabarty (Fellow, IEEE) is the Fulton Professor of 
Microelectronics in the School of Electrical, Computer and Energy 
Engineering at Arizona State University (ASU), Tempe, AZ, USA. 
 
Partha Pratim Pande (Fellow, IEEE) is a professor and a holder of the 
Boeing Centennial Chair of Computer Engineering with the School of 
Electrical Engineering and Computer Science, Washington State 
University, Pullman, WA, USA, where he is the interim Dean of the 
Voiland College of Engineering and Architecture.  


