
1

HuNT: Exploiting Heterogeneous PIM Devices to Design
a 3D Manycore Architecture for DNN Training

Chukwufumnanya Ogbogu*, Gaurav Narang*, Biresh Kumar Joardar, Member, IEEE, Janardhan Rao Doppa, Senior

Member, IEEE, Krishnendu Chakrabarty, Fellow, IEEE, and Partha Pratim Pande, Fellow, IEEE

Abstract—Processing-In-Memory (PIM) architectures have
emerged as an attractive computing paradigm for accelerating
Deep Neural Network (DNN) training and inferencing. However,
a plethora of PIM devices, e.g., ReRAM, FeFET, PCM, MRAM,
SRAM exists and each of these devices offers advantages and
drawbacks in terms power, latency, area, and non-idealities. A
heterogeneous architecture that combines the benefits of multiple
devices in a single platform can enable energy-efficient and high
performance DNN training and inference. Three-dimensional (3D)
integration enables the design of such a heterogeneous
architecture where multiple planar tiers consisting of different
PIM devices can be integrated into a single platform. In this work,
we propose the HuNT framework, which hunts for (finds) an
optimal DNN neural layer mapping, and planar tier
configurations for a 3D heterogeneous architecture. Overall, our
experimental results demonstrate that the HuNT-enabled 3D
heterogeneous architecture achieves up to 10× and 3.5×
improvement with respect to the homogeneous and existing
heterogeneous PIM-based architectures, respectively, in terms of
energy-efficiency (TOPS/W). Similarly, the proposed HuNT-
enabled architecture outperforms existing homogeneous and
heterogeneous architectures by up to 8× and 2.4× respectively in
terms of compute-efficiency (TOPS/mm2) without compromising
the final DNN accuracy.
Index Terms— DNN, Heterogeneous, Processing-in-Memory,
ReRAM, FeFET, SRAM.

I. INTRODUCTION
EEP Neural Networks (DNNs) are widely employed to
solve complex problems in a variety of application
domains, including computer vision, natural language

processing (NLP), and time-series senor data analytics [1].
However, DNNs have hundreds of millions of trainable
parameters, which need to be tuned using large and complex
datasets. The high latency and energy cost of data-movement
between the processing cores and memory units in traditional
computing platforms based on the von-Neuman architecture
(e.g., CPUs and GPUs) impose significant performance
bottlenecks while executing DNN workloads, which is referred
to as the “memory wall” challenge [2]. Consequently, there has
been a growing demand for domain-specific computing
platforms that seamlessly integrate both storage and computing,
thereby enabling high-performance and energy-efficient
acceleration of DNN workloads [3].
Processing-in-Memory (PIM)-based computing platforms

have emerged as a promising alterative for executing DNN
workloads. This is due to their ability to perform energy-
efficient computation within the memory to eliminate
unnecessary data movement, thus addressing the memory-wall
challenge. Specifically, the use of CMOS-based memory
devices such as Static Random-Access-Memory (SRAM), and
non-volatile memory (NVM) devices such as Resistive-
Random-Access-Memory (ReRAM), Phase Change Memory
(PCM), Ferroelectric-Field-Effect-Transistors (FeFET), and
spintronic memory (MRAM), have been widely studied as
suitable candidates for accelerating DNN training and
inferencing [2] [3] [4] [5] [6]. However, each of these PIM
devices offer specific advantages and drawbacks in terms of
dynamic and leakage power, area, latency, retention, endurance
and non-idealities, when used as the PIM device in DNN
accelerators [3]. For example, ReRAM devices have almost
~30× higher write latency compared to FeFET devices.
However, ReRAMs can have a write endurance of as high as
~1012 programming cycles whereas FeFETs have an endurance
of ~105 cycles [7]. An ideal memory device suitable for energy-
efficient and high-performance PIM-based DNN accelerators
should have low read/write latency (< 1 ns), low dynamic and
leakage energy (< 3 pJ), high write endurance (> 1017 cycles),
small memory cell footprint (< 4F2), and excellent scalability to
lower technology nodes (< 10 nm) [8]. However, so far, no
particular PIM device has all the ideal characteristics. At the
same time, DNN workloads are composed of neural layers,
which can differ significantly in terms of the number of layers,
weight parameters, kernel size, input and output information
across layers in the forward-propagation, and frequency of
weight updates during the back-propagation step. These
characteristics determine the suitability of each neural layer in
the forward- and back-propagation phase of the DNN workload
to be executed on a specific PIM-enabled Processing Element
(PE) in terms of area, latency, power, and endurance. Hence,
this PE-level heterogeneity in PIM-based architectures needs to
be exploited to achieve the best trade-off in terms of power,
area, performance, and DNN accuracy while designing a
suitable accelerator platform.
Integrating different memory devices in a single platform

presents unique challenges. Specifically, manufacturing
technologies of NVM devices vary and they are not always
CMOS-compatible [9]. Hence, this hinders the feasibility of
integrating such heterogeneous PEs into a single planar
architecture. Three-dimensional (3D) integration enables the
mapping of disparate technologies to different planar tiers [9]
[10]. However, existing implementations of 3D heterogeneous
architectures are not well optimized for PIM devices, as they do

D

This work was supported, in part by the US National Science Foundation
(NSF) under grants CNS-1955353, CNS-1955196 and CNS-2308530.
Chukwufumnanya Ogbogu, Gaurav Narang, Janardhan Rao Doppa, and

Partha Pratim Pande are with Washington State University, Pullman, WA,
USA. Email: {c.ogbogu, gaurav.narang, jana.doppa, pande}@wsu.edu
Biresh Kumar Joardar is with the Department of Electrical and Computer

Engineering, University of Houston, TX, USA and Krishnendu Chakrabarty is
with the Department of Electrical and Computer Engineering, Arizona State
University Tempe AZ, USA. (*equal contribution)

2

not consider the device-level characteristics in their design
optimization flow. For example, 3D architectures are known to
give rise to thermal hotspots. PIM devices such as ReRAM and
FeFET are susceptible to non-idealities due to thermal noise,
which potentially degrades the accuracy of trained DNNs [11]
[12]. As a result, critical DNN model layers mapped to PEs
placed in planar tiers that are away from heat sinks can
potentially degrade the test accuracy of the DNN due to thermal
hotspots. Hence, in order to meet the high accuracy demand of
DNN applications, suitable placement of the PEs on planar tiers
in a 3D system is important.
Furthermore, existing heterogenous DNN accelerators do

not consider the characteristics of DNN workloads and the
properties of different PIM devices while mapping DNN neural
layers to PEs in the overall architecture [4] [2]. For example,
neural layers with large number of weights and activations
mapped to a PE with high read/write energy would consume
more power compared to a PE with less read/write energy. In
addition, different neural layers have varying impact on DNN
accuracy [13]. Hence, they need to be suitably mapped to
appropriate PEs on a planar tier in the 3D architecture without
degrading the final predictive accuracy. Hence, the layer-to-PE
and PE-to-tier mapping in a 3D heterogeneous system impact
the overall performance in terms of latency, area, power, and
accuracy while executing DNN workloads.
In this paper, we propose a design space exploration

methodology called HuNT that undertakes neural layer-to-PE
and PE-to-planar tier mapping to design an optimized 3D
heterogeneous manycore architecture for training DNN
workloads. We consider SRAM, ReRAM, and FeFET PIM-
enabled PEs for studying the efficacy of the HuNT framework.
These heterogeneous PIM devices largely vary in terms of area,
power, latency, and endurance. This variation provides HuNT
with the scope of optimizing across multiple conflicting, yet
crucial objectives namely: latency, accuracy, area, and power.
We capture these objectives using three performance evaluation
metrics: energy-efficiency (TOPS/W), compute-efficiency
(TOPS/mm2), and DNN predictive accuracy. Recent work has
proposed optimization methodologies aimed at exploring
device-level heterogeneity in PIM accelerators [14] [15] [16].
However, these techniques are focused on DNN inference
scenarios, and cannot handle the more challenging scenario of
DNN training. Specifically, the computation of the weight- and
activation-gradients in the back-propagation phase requires
multiple write operations and high-precision computation.
However, NVM devices have limited write endurance, and
store weights and activations in fixed-point representation [17]
[3]. These critical drawbacks limit the applicability of existing
NVM-based PIM accelerators to DNN training. In this work, in
addition to the energy-efficient NVM devices (ReRAM and
FeFET), we have also incorporated a CMOS-based memory
device (SRAM) which can perform high-precision computation
in the back-propagation phase, and has a high write endurance
into the HuNT framework. This heterogeneity in PIM devices
enables reliable, energy-efficient, and high-performance DNN
training on 3D heterogeneous PIM architectures. The key
contributions of this work are as follows:

• We propose the HuNT framework that determines the
mappings of DNN layer to heterogeneous PEs and the
corresponding PE to planar tier mapping to design a 3D
heterogeneous manycore architecture tailor-made for
DNN training. The heterogeneity enables significant
improvement in energy-efficiency, area-efficiency, and
endurance compared to its homogeneous counterparts.

• We demonstrate the transferability of the HuNT-
enabled 3D heterogeneous manycore architecture for
diverse datasets. The hardware architecture optimized
with CIFAR-10 dataset is equally effective for larger
datasets such as CIFAR-100 and TinyImageNet.
Hence, this reduces the cost of repeated optimization as
no extra training is required for complex datasets.

• Our experimental results show that the HuNT-enabled
3D heterogeneous PIM architecture outperforms state-
of-the-art heterogeneous PIM architectures, namely,
AccuReD and HyperX by up to 3.5× and 4.5×
respectively in terms of energy-efficiency (TOPS/W),
and 2.2× and 3.2× in terms of area-efficiency
(TOPS/mm2) respectively.

To the best of our knowledge, HuNT is the first-of-its kind
framework that jointly incorporates DNN layer-to-PE and PE-
to-planar tier mapping in a 3D architecture to achieve high-
performance, energy-efficient, and reliable DNN training.
The rest of this paper is organized as follows. Section II

discusses related prior work, and Section III elucidates the
overall methodology of the HuNT framework. Section IV
presents a thorough experimental analysis of HuNT, and
Section V concludes the paper.

II. BACKGROUND AND RELATED PRIOR WORK
In this section, we discuss relevant prior work on PIM-based

architectures for accelerating DNN workloads. Specifically, we
focus on homogeneous PIM architectures solely based on either
SRAM, ReRAM or FeFET devices, as well as their advantages
and limitations. Table I compares the characteristics of SRAM,
ReRAM, and FeFET PIM devices. Next, we discuss
heterogeneous architectures that combine two or more of these
devices, and finally shed more light on 2.5D and 3D based PIM
accelerators for DNNs.

A. Homogeneous PIM Architectures
SRAM cells have been used as a crossbar-based PIM device
for high accuracy DNN training and inference [18] [19]. This is
due to their low device variability, high write endurance, low
susceptibility to noise, and low write latency as shown in Table
I [3]. However, the 6T-cell configuration of SRAMs with a cell
size of 150F2 (as shown in Table I) leads to the high area
overhead of SRAM-based crossbar arrays [3] [14].
Additionally, SRAMs suffer from high leakage energy and have
low density storage (i.e., can only store 1-bit per-cell) thereby
making them less energy- and area-efficient compared to other
PIM-devices. Hence, this makes SRAM-based PIM platforms
infeasible for large DNN models with large number of weights
and activations and many neural layers. Recent work has also
leveraged DRAM technology for PIM-based architectures due

3

to its small cell area [20]. However, DRAM suffers from high
leakage power and refresh energy due to its volatile nature.
Moreover, the 1T1C structure of the DRAM cell lacks in-situ
compute capability, hence cannot enable parallel energy-
efficient Matrix Vector Multiply (MVM) operations required
for DNN training [20]. Consequently, this has led researchers
to explore NVM devices such as FeFET and ReRAMs.
 ReRAM-based NVM device enables high density storage
due to its multi-bit cell storage capability [3] [4]. Additionally,
ReRAM devices have relatively small cell area and low leakage
energy compared to SRAMs, as shown in Table I. However,
despite these advantages, ReRAM cells suffer from low write
endurance, high write energy, and latency compared to SRAMs.
As a result, this limits the applicability of ReRAM-based PIM
architectures for DNN training scenarios, as the back-
propagation phase requires a significant number of write
operations [3]. Additionally, ReRAM cells become less reliable
as temperature increases over time, which can cause errors,
thereby leading to a degradation in the DNN predictive
accuracy. Also, despite the small cell area of ReRAMs (~4F2),
the high-resolution ADCs required by the ReRAM crossbar
array introduces significant area and energy overhead [4].
Hence, this potentially limits the benefits of using ReRAM-
devices in PIM-based architectures.
FeFET devices have been explored as another possibility for
PIM-based DNN accelerators. FeFET PIM devices are
particularly attractive due to their relatively low cell area (~35
F2) compared to SRAMs, high read and write speeds, low write
energy, and low leakage energy. Moreover, they exhibit
relatively better temperature stability compared to ReRAM [7].
However, as shown in Table I, a key drawback of FeFET PIM
devices is their low write endurance compared to other memory
technologies such as SRAMs and ReRAMs. This is due to the
collapse of the separation between the ON and OFF states of
the FeFET device (also known as the memory window) after
repeated program/erase cycles [5]. Consequently, this can cause
read errors during DNN training and inference.
Overall, homogeneous architectures built solely using either
SRAM, ReRAM or FeFET PIM devices have their unique
advantages, as well as drawbacks that limit their applicability
for DNN training and inference workloads. Therefore,
exploring heterogeneous PIM architectures that combine one or
more PIM devices is necessary to achieve better performance,
power, area, and DNN predictive accuracy trade-offs compared
to the homogeneous ones. For the scope of this work, we have
considered SRAM CMOS-based devices, FeFET and ReRAM
NVM-based devices, as examples to demonstrate the viability

of our proposed framework to design optimized heterogeneous
PIM accelerators. Note however that other types of PIM devices
such as PCMs and MRAMs can also be considered for
heterogeneous systems.

B. Heterogeneous PIM Architectures
Prior work has proposed heterogenous architectures that
combine two or more PIM devices for accelerating DNN
workloads. Various hybrid ReRAM/SRAM-based PIM
architectures have been proposed to address the non-idealities
in ReRAM devices, and reduce the high area overhead of
SRAM. Some of these approaches involve encoding the MSBs
using SRAMs, and RRAMs for the LSBs of multi-bit weights,
while maintaining high energy-efficiency [21]. Other methods
involve the use of ReRAM and SRAM to perform the DNN
forward- and back-propagation operations respectively, thereby
mitigating the limited endurance challenge of ReRAM. In fact,
a recent hybrid architecture incorporates SRAM macros to
perform output compensation of the non-ideal output of
ReRAM crossbars, thereby enabling robust DNN inference
[16]. However, these methods do not consider the layer-wise
characteristics of DNN workloads (e.g., number of neural
layers, weights, activations, size of kernels etc.) while mapping
neural layers to the heterogeneous PIM-based architectures. As
a result, this can lead to sub-optimal performance while
executing DNN training and inference tasks.
A recent work called HyDe has proposed a design space
exploration methodology for finding an optimal mapping of
DNN layers to either SRAM, FeFET or PCM devices in a
hybrid platform [14]. This approach leverages the
characteristics of each DNN layer to find its affinity towards a
specific type of PIM device. However, this approach is aimed
only at inferencing, and considered a scalarized single-
objective optimization formulation. However, linear
scalarization is known to perform poorly due to its inability to
explore non-convex regions of the Pareto front. Moreover,
HyDe follows a differentiable optimization approach, which is
not possible for all hardware design objectives and requires
training DNN weights by considering the device characteristics.
Hence, this is not practical for the DNN training task. Other
works such as HyperX have proposed a hybrid SRAM/ReRAM
architecture, where some DNN layer weights remain static, and
are mapped to ReRAMs, while other layers are mapped to
SRAMs for fine-tuning [22].
Despite the advantages of heterogeneity, previous solutions
do not consider the challenges of integrating different PIM
devices into a single platform. Moreover, they are mostly
targeted at DNN inferencing/fine-tuning applications and
cannot be used for end-to-end training of large DNNs. Hence,
suitable heterogeneous PIM architectures for DNN training
scenarios need to be explored.

C. 2.5D/3D-based PIM Architectures
To address the challenges associated with integrating
different PIM technologies in a single platform, various
heterogeneous integration methods have been proposed.
Specifically, chiplet-based (2.5D) integration techniques have

TABLE I
COMPARISON OF VARIOUS PIM DEVICES

Property SRAM [7] ReRAM [33] FeFET [7]
Multi-bit Cell No Yes Yes
†Cell Area (F2) 150F2 4F2 35F2
Write Energy 3pJ 2nJ 5pJ
Write Latency ~1ns ~100ns ~3ns
Write Endurance >1017 cycles 108 cycles 105 cycles
Leakage Energy High Low Low

†F is the minimum feature size [14]

4

been proposed for DNN accelerators [14]. However, the long-
range on-chip communication in planar 2.5D systems presents
a significant performance bottleneck in the execution of DNN
workloads [23]. Hence, 3D heterogeneous integration methods
that stack planar tiers consisting of PEs connected to each other
using through-silicon-via (TSV)-based vertical links have been
proposed [23]. For example, a 3D heterogeneous architecture
for accelerating DNN training known as AccuReD was recently
proposed. AccuReD leverages ReRAM-based PEs, and GPUs
for accelerating all types of DNN layers to enable high accuracy
DNN training [23].
Despite offering the advantages of 3D heterogenous
integration, existing architectures do not consider the properties
of the neural layers while determining the mapping for DNN
workloads. Moreover, 3D architectures inherently suffer from
thermal issues, which have a varying impact on PEs with NVM
devices (FeFET and ReRAM). Prior work does not adequately
consider thermal issues while finding a suitable DNN layer-to-
PE mapping in 3D heterogenous PIM architectures. As a result,
this potentially leads to degradation of predictive accuracy,
power, and latency when DNN workloads are executed. Hence,
the properties of the DNN neural layers, PIM device
characteristics of the PEs, as well as the PE to 3D planar tier
mapping should be jointly considered to enable high
performance, energy-efficient, and reliable DNN training on
heterogeneous PIM platforms.

III. THE HUNT FRAMEWORK

This section presents the problem formulation and
optimization methodology of the HuNT framework to find the
optimal neural layer-to-PE and PE-to-tier mapping in a 3D
heterogeneous architecture for DNN training.

A. Problem Setup
We consider a manycore system with 𝐶 PIM-based
Processing Elements (PEs) distributed over 𝑍 planar tiers and
stacked using TSV-based vertical links. We use a conventional
mesh-based network on chip (NoC) as the communication
backbone [23]. Each planar tier consists of PEs of one particular
type of PIM device, i.e., either SRAM (S), ReRAM (R) or
FeFET (F). Fig. 1 illustrates an example of a three-tier (i.e.,	𝑍	=
3) 3D heterogenous manycore architecture. Given the
characteristics of the DNN neural layers, and the physical
properties of the PIM devices in the PEs, our goal is to find an
optimized neural layer to PE mapping, and the corresponding
PE to planar tier mapping that achieves a suitable trade-off
between the training accuracy, area, latency, and power.
Without loss of generality, Fig. 1 shows a DNN workload
mapped on to a 3D heterogeneous architecture. Here, each
neural layer (𝐿!) of the DNN can be mapped onto either SRAM-
/FeFET-/ReRAM-based PEs, which can be located either in
tier-1, 2 or 3 as shown in Fig. 1. In addition, each neural layer
is characterized by its corresponding kernel size, the number of
input and output features, and the bit precision of
weights/activations, and can be mapped to one or more PEs in
a planar tier of the 3D architecture. DNN training requires the
high-precision computation of weight- and activation-gradients

for each neural layer in the back-propagation phase. This
process requires a significant number of write operations, which
influences the choice of PIM device for the computation of the
back-propagation phase.
Furthermore, the PIM devices in the PEs have their
corresponding physical properties, such as write endurance
limit, area, energy, latency, and temperature-dependent non-
ideal effects. Additionally, the distance of a planar tier from the
heat sink in the 3D architecture determines the degree of
vulnerability of the PIM device to thermal noise, which can
potentially lead to significant loss in DNN accuracy [23].
Consequently, this leads to a multi-objective optimization
(MOO) problem of finding the suitable mapping of each neural
layer to one of the C PIM-based PEs (i.e., either SRAM-
/ReRAM-/FeFET-based PE), as well as its appropriate location
in one of the Z planar tiers, that achieves the best latency, area,
power, and accuracy trade-off.

B. HuNT MOO Formulation
Fig. 2 shows the overview of the proposed HuNT framework.
The inputs to the framework are the number of planar tiers (𝑍),
total number of PEs (𝐶), PIM device choices, and DNN
workload characteristics (e.g., number of neural layers, their
weights, activations etc.). We define the mapping vector 𝜋 to
characterize the mapping of 𝐾	neural layers on to PEs in the 3D
architecture and the corresponding PE to planar tier mapping
𝛼 = [𝑡!, 𝑡", … , 𝑡#] where 𝑡$ is the device type of the PEs in 𝑖%&
planar tier. Subsequently, let 𝑑 = (𝜋, 𝛼) be a candidate design in
the design space 𝐷 which corresponds to a specific neural layer
mapping on to the heterogeneous PEs (𝜋), and PE-to-tier mapping
(𝛼). In each optimization iteration, one design 𝑑 is evaluated
using power, latency, area, and DNN accuracy estimation
models. Our goal is to minimize the (a) loss in DNN accuracy
(𝐸𝑟𝑟) due to various PIM device non-idealities, (b) the area in
terms of the number of PEs needed to map all the DNN layers (𝐴𝑟),
(c) the latency (𝐿𝑎𝑡), and (d) power consumption (𝑃𝑤𝑟) while
executing a given DNN training on the 3D heterogeneous
architecture. We represent the MOO-formulation as:

	𝐷∗ = 	𝑀𝑂𝑂&𝑂𝐵𝐽 = 𝑃𝑤𝑟(𝑑), 𝐴𝑟(𝑑), 𝐿𝑎𝑡(𝑑), 𝐸𝑟𝑟(𝑑)5								(1)

where 𝐷∗ is the set of Pareto optimal designs. A design is called
Pareto optimal if it cannot be improved in any of the design
objectives without compromising some other objective. The goal
is to first find the Pareto optimal set 𝐷∗ ⊆ 𝐷 using a MOO solver.
Next, we select feasible designs from the Pareto set that meet
the constraint (e.g., less than ~1% accuracy loss compared to

Fig. 1: Illustration of layer-to-PE and PE-to-tier mapping of DNN workload
with 𝐾-layers on to a 3D heterogeneous PIM-based architecture. Here, DNN
layer L1 is mapped to ReRAM-based PEs and placed on Tier 1 as an example.

TSV-based
Vertical Link

Planar
Link

Processing
Element (PE)

Heat Sink

!!
!"

!#… ReRAM FeFET SRAM

Tie
r 1

Tie
r 2

Tie
r 3

5

the ideal accuracy). Finally, we select the best design 𝑑()*% from
the feasible designs that achieves the best performance in-terms
of either energy-efficiency (TOPS/W) or compute-efficiency
(TOPS/mm2).
Next, we discuss the key elements of our MOO formulation.
1) Inputs. The inputs to the HuNT framework are the number
of planar tiers (𝑍), total number of PEs (𝐶), PIM device choices
(ReRAM, SRAM and FeFET), and DNN workload
characteristics (e.g., weights, activations, etc.).
2) Design Variables. There are two types of design variables for
the optimization for a given DNN model. Each candidate solution
represents (a) a neural layer mapping to PEs (𝜋); (b) a PE-to-tier
mapping (𝛼), i.e., [𝑡!, 𝑡", … , 𝑡+], where the planar tiers 𝑡! and 𝑡+
are closest and farthest from the heat sink respectively, resulting in
higher temperature on planar tier 𝑡+ compared to 𝑡!.
3) Design Objectives. Next, we explain the evaluation of the
design objectives: latency, area, accuracy, and power. We can
get accurate values for all these objectives for any candidate
design by performing cycle-accurate simulations, which are
very expensive. Since we need to evaluate many design choices
to solve the MOO problem shown in (1), we consider surrogate
design objectives elaborated below for tractable optimization.
Latency (𝑳𝒂𝒕): We evaluate end-to-end latency incurred in
DNN training for a candidate design (𝐿𝑎𝑡(𝑑)) considering a 3D
mesh-based network on chip (NoC) architecture. The latency
for a candidate design is proportional to the sum of the
computation and communication latency while executing the
training task on the 3D heterogeneous architecture given by (2).
Computation during DNN training involves computing
activations (𝐴𝑐𝑡), and gradients (activations gradients (∆𝐴𝐺)
and weight gradients (∆𝑊𝐺)) in the forward- and back-
propagation phases respectively. Both phases have different
precision requirements. In contrast to 𝐴𝑐𝑡 computation, ∆𝐴𝐺
and ∆𝑊𝐺 computation requires PEs with a PIM device that has
high precision and high endurance due to large number of
repeated write operations [24]. Hence, the neural layer
computation in a training task is spread out on different 3D
planar tiers, where each tier consists of PEs constituting of a
specific device type. This generates on-chip communication
traffic, which depends on the layer-to-PE, and the PE-to-tier
mapping. The end-to-end compute latency for a DNN workload

depends on the compute latency incurred by the individual
neural layers mapped to either SRAM-, ReRAM- or FeFET-
based PEs (𝐿𝑎𝑡𝑒𝑛𝑐𝑦#|%|&), as shown in (3). Similarly, the latency
associated with sending 𝐴𝑐𝑡, ∆𝐴𝐺 or ∆𝑊𝐺 from 𝑃𝐸$ to 𝑃𝐸,
depends on the placement of PEs and contributes to the
communication latency given by (4), where 𝐹$, is either 𝐴𝑐𝑡,
∆𝐴𝐺 or ∆𝑊𝐺 as defined above. The parameter 𝑀$, is the
corresponding Manhattan distance between 𝑃𝐸$ and 𝑃𝐸,.

𝐿𝑎𝑡(𝑑) ∝ ℒ'()*+,- +	ℒ'()).																																(2)

ℒ'()*+,- ∝;[𝐿𝑎𝑡𝑒𝑛𝑐𝑦#|%|&(𝑊! + 𝐴𝑐𝑡!)]
/

!01

												(3)

ℒ'()).(𝑖, 𝑗) ∝ 𝐹!2 ∙ 𝑀!2 , ∀𝐹!2 ∈ {𝐴𝑐𝑡, ∆𝐴𝐺, ∆𝑊𝐺}						(4)
Area (𝑨𝒓): It is desirable to execute a given DNN training task
using less resources (PEs) to improve the compute efficiency
(TOPS/mm2). The number of PEs needed to map a given neural
layer depends on its device type. For example, SRAMs have
larger footprint (150F2) compared to ReRAM cells (4F2), where
F is the minimum feature size as mentioned in Table I. Hence,
a neural layer mapped to SRAM-based PEs would require a
higher number of PEs than if it were otherwise mapped to
ReRAM-based PEs, leading to comparatively lower
TOPS/mm2. The design objective 𝐴𝑟 corresponds to the sum of
computational resources needed to execute 𝐾 layers of a DNN,
where PEs needed for 𝑖%& neural layer (weights 𝑤$ and
activations 𝐴𝑐𝑡$), depending on the PIM-device (𝐴𝑟𝑒𝑎#|%|&).

𝐴𝑟(𝑑) ∝;[𝐴𝑟𝑒𝑎#|%|&(𝑤! + 𝐴𝑐𝑡!)]
/

!01

																									(5)

Accuracy (𝑬𝒓𝒓): Prior work has shown that DNN models can
be trained to be robust against conductance drift in NVM
devices using techniques such as adaptive noise injection,
negative feedback training, etc. [25] [26]. For example, the
injection of Gaussian noise is widely used to improve
robustness of DNN training executed on NVM-based
architectures [13]. In a 3D manycore architecture, the thermal
noise mainly depends on the placement of the PEs and their
mutual interactions. Hence, the exact noise and specific layer-
wise weight deviation (𝜎) is not known prior to neural layer-to-
PE and PE-to-tier mapping on a given architecture. Thus, even

Fig. 2: Overall workflow of the HuNT framework, showing input stage, optimization phase, and the final validation phase.

6

with a model trained with conductance drift incorporated, the
actual thermal noise depends on the neural layer-to-PE mapping
and the location of the planar tier where the PE is placed. This
necessitates the consideration of accuracy as one of the
objectives in the MOO formulation. It should be noted that
executing DNN training for each mapping candidate solution 𝑑
in the optimization phase is costly. Hence, we model the loss in
accuracy by capturing the deviation in stored weights and
activations due to thermal noise, as discussed below.
Three-dimensional (3D) architectures with multiple stacked
planar tiers are prone to thermal hotspots, which causes
variations in stored DNN weights and activations especially in
NVM devices (FeFET and ReRAM). This leads to a
degradation in the DNN accuracy. However, SRAM is known
to be more tolerant to the thermal noise compared to ReRAM
and FeFET devices [14]. Hence, to achieve high DNN
accuracy, it is desirable to execute high precision computations
(involved in the back-propagation phase) on PEs with a PIM
device that is more resilient to thermal noise. Thus,
computations involved in a neural layer in different DNN
training phases, i.e., forward and back-propagation phases need
to be mapped on different types of PEs to achieve high training
accuracy. Furthermore, these different PEs can be mapped to
planar tiers such that loss in DNN accuracy due to thermal noise
is mitigated. For example, PEs with NVM devices should be
placed closer to the heat sink, while SRAM-based PEs can be
mapped to a planar tier farther from the heat sink.
In addition, a layer-to-PE and PE-to-tier mapping also needs
to be considered for different NVM devices. This is crucial
because thermal noise impacts variations in weights/activation
of various NVM devices differently. For example, weights and
activations of the neural layers are stored in ReRAM cells as
conductance states. As the temperature increases, the OFF-state
conductance of ReRAM cells increases exponentially, and the
noise margin reduces [23]. On the other hand, the noise margin
of FeFET devices, characterized by the memory window,
reduces linearly with the increase in temperature [5]. For weight
variation (∆𝑤), we adopt a Gaussian distribution with
∆𝑤~𝒢(0, 𝜎"), where 𝜎 represents standard deviation of

weights, consistent with prior work [13]. The variation of
weights/activations belonging to different DNN layers impact
the model accuracy differently. The impact of
weights/activations variations due to thermal noise is captured
by loss in accuracy (𝐸𝑟𝑟) given by (6) and (7). Hence,
𝐸𝑟𝑟	depends on the neural layer mapping, 𝑃𝐸$ temperature 𝑄$,
and DNN layer weights 𝑤$ and activations 𝐴𝑐𝑡$.

𝐸𝑟𝑟(𝑑) =;(𝑤! + 𝐴𝑐𝑡!)
3

!01

∙ 𝒩(𝑖)																													(6)

𝒩(𝑖) = R
𝑒𝑥𝑝[𝑄!] , 					𝑅𝑒𝑅𝐴𝑀
𝑄! , 															𝐹𝑒𝐹𝐸𝑇
~0,													𝑆𝑅𝐴𝑀

																																	(7)

To estimate the temperature 𝑄$ of each PE, our framework
utilizes the thermal model from prior work, which considers
both vertical and horizontal heat flow, given by (8) [27].

𝑄(,5 = R;\𝑃(,+;𝑅6

+

601

] + 𝑅7;𝑃(,+

5

+01

5

+01

^ ∗ Φ8														(8)

where 𝑃-,/ is the power consumption of the PEs 𝑢	tiers away
from the sink in a vertical stack 𝑜 and is a function of the neural
layer to PE mapping,	Φ0 represents the lateral heat flow, 𝑅1 is
the thermal resistance in vertical direction, and 𝑅(is the thermal
resistance of the base layer on which the die is placed and z
represents the 𝑧%& tier where PEs are located. Values of 𝑅1 and
𝑅(depend on the material characteristics and are calibrated
using HotSpot [28].
Power (𝑷𝒘𝒓): The PE power consumption 𝑃-,/ in (8) depends
on the DNN training task, layer-to-PE, and PE-to-tier mapping.
The total computation power corresponds to the power incurred
while computing the individual neural layers mapped to either
SRAM-, ReRAM- or FeFET-based PEs (𝑃𝑜𝑤𝑒𝑟#|%|&), as shown
in (10). Further, routers and links associated with the PEs
dissipate significant power due to high data exchange between
the neural layers. If two subsequent neural layers exchanging
large number of activations are mapped on to the PEs far apart,
then such mapping creates traffic bottleneck due to frequent
long distance data transfer. This creates unnecessary congestion
resulting in increase in the communication power. The
communication power required to transfer data from 𝑃𝐸$ to 𝑃𝐸,
is given by (11), where 𝐹$, is either activations (𝐴𝑐𝑡) in forward
phase, or activation gradients (∆𝐴𝐺) and weight gradients
(∆𝑊𝐺) in back-propagation phase, communicated from 𝑃𝐸$ to
𝑃𝐸, 	and 𝑀$, is the corresponding Manhattan distance between
𝑃𝐸$ and 𝑃𝐸,.

𝑃𝑤𝑟(𝑑) ∝ 𝑃'()*+,- + 𝑃'()).																																		(9)

𝑃'()*+,- ∝;[𝑃𝑜𝑤𝑒𝑟𝑆|𝑅|𝐹(𝑤! + 𝐴𝑐𝑡!)]
/

!01

													(10)

𝑃'()).(𝑖, 𝑗) ∝ 𝐹!2 ∙ 𝑀!2 , ∀𝐹!2 ∈ {𝐴𝑐𝑡, ∆𝐴𝐺, ∆𝑊𝐺}				(11)
AMOSA-based MOO Approach: In this subsection, we discuss
the algorithmic procedure to compute the Pareto optimal set of
designs (neural layer-to-PE and PE-to-tier mappings).
Algorithm 1 shows a high-level pseudocode for our design
optimization methodology based on the well-known AMOSA

Algorithm 1. Neural layer-to-PE and PE-to-3D planar tier mapping
Input: Target manycore system with 𝐶 PEs of PIM device types- SRAM,
ReRAM or FeFET
𝐴𝑃𝑃 = DNN training task
Output: 𝐷∗, the Pareto optimal set of designs (optimized neural layer-to-PE
mapping	and PE-to-tier mapping𝑠)
 1: Initialize: 𝐷 = non-dominated set of solutions; 𝐴	= Archive
 2: Input variables (𝑥) = neural layer-to-PE mapping (𝜋) and PE-to-tier

mapping (𝛼)
 3: Repeat:
 4: Select one 𝑥⃗ from A and 𝑃𝑒𝑟𝑡𝑢𝑟𝑏 𝑥⃗ to get a design 𝑑
 5: 𝑑𝑒𝑠𝑖𝑔𝑛	𝑑 ←	Candidate mapping of neural layer-to-PEs and

PEs-to-3D planar tiers
 6: Evaluate(𝑑𝑒𝑠𝑖𝑔𝑛	𝑑, 𝐴𝑃𝑃) /∗	using power, area, latency, and

accuracy models [section III B]∗/
 7: Update non-dominated set of solutions 𝐷 via

𝑃𝑤𝑟(𝑑), 𝐴𝑟(𝑑), 𝐿𝑎𝑡(𝑑), 𝐸𝑟𝑟(𝑑)
 8: Update	Archive	𝐴
 9: Until convergence or maximum iterations
10: Pareto optimal set of designs 𝐷∗ ← 	𝐷
11: return 𝐷∗, the Pareto optimal set of designs (optimized neural

layer-to-PE mapping	and PE-to-tier mappings)

7

solver [29]. The goal is to distribute the computations of 𝐾
DNN layers (forward- and back-propagation phases) across 𝐶
PEs on 𝑍 planar tiers of different device types to obtain optimal
trade-offs between 𝑃𝑤𝑟, 𝐴𝑟, 𝐿𝑎𝑡, 𝐸𝑟𝑟. The input variables 𝑥⃗ in
our MOO approach are the neural layer-to-PE mapping (𝜋) and
PE-to-tier mapping (𝛼). A candidate configuration of 𝑥⃗
corresponds to the design 𝑑 which is a candidate mapping of
neural layer-to-PEs and PEs-to-3D planar tiers (Algorithm 1,
line 5). First, we start with a randomly chosen mapping of DNN
layers to PEs and PEs to planar tiers satisfying the mapping
constraints: (a) a neural layer is mapped on to PEs of one device
type, and (b) a planar tier consists of PEs of one device type. It
should be noted that it is possible for a neural layer to be
mapped to different types of PEs in different tiers. However,
this gives rise to synchronization issues as each type of PE has
different latency and throughput. Computations involved in one
neural layer need to be completed and the activations must then
be sent to the next neural layer. If a layer is mapped on two
different types of PEs with unequal timing characteristics, then
the computation latency for a particular neural layer will be
bottlenecked by the PE with the worst-case delay. This will lead
to a degradation in the overall training performance. Hence,
each neural layer is mapped on to PEs of one device type. Also,
due to fabrication challenges, we refrain from integrating
different types of NVM devices on the same tier.
Next, we perturb a candidate mapping solution to get a new
layer-to-PE and PE-to-tier mapping (Algorithm 1, line 4). Here,
a valid perturbation is defined as allocating a randomly chosen
neural layer to a different PE such that the mapping constraints
mentioned above, are satisfied. In each AMOSA iteration, the
selected design is evaluated using the surrogate objectives for
latency, area, power, and accuracy (Algorithm 1, line 6) and the
non-dominated set of designs and Archive are updated based on
this new design evaluation. At convergence or after maximum

iterations, we get the Pareto optimal set of designs 𝐷∗ from the
MOO solver. We first select the feasible designs from 𝐷∗
fulfilling the DNN accuracy constraint mentioned above (e.g.,
1% accuracy loss with respect to ideal condition) by performing
cycle-accurate simulations. Finally, we select the best design
𝑑()*% from the feasible designs that achieves the best
performance in-terms of either energy-efficiency (TOPS/W) or
compute-efficiency (TOPS/mm2). It should be noted that the
HuNT framework optimizes layer-to-PE and PE-to-tier
mapping at the design time for a given DNN workload and any
other MOO solver can also be used to the same effect.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present comprehensive experimental
results for the HuNT-enabled 3D heterogeneous PIM
architecture for DNN training. First, we describe the
experimental setup used to evaluate the performance of HuNT.
Next, we present a trade-off analysis of HuNT in terms of
accuracy, energy- and compute-efficiency. Finally, we compare
the performance of the proposed HuNT-enabled heterogeneous
manycore architecture with respect to the state-of-the-art.

A. Experimental Setup
The HuNT design optimization framework is executed on an
NVIDIA Quadro GPU with 40GB of memory. Table II presents
the details of the hardware used for the execution of the HuNT
framework. The HuNT optimization phase (described in
Algorithm 1) is executed for 100 iterations, as this is sufficient
to ensure the convergence of the AMOSA-based MOO.
Algorithm 1 is executed at the design time; hence the time
overhead is a one-time cost. The overall time complexity of the
adapted AMOSA-based MOO solver is given by 𝑂(𝑇 × 𝑁 ×
(𝑀 + log(𝑁))), where T is the total iterations of the algorithm,
𝑁 is the maximum number of non-dominated solutions stored
in the 𝐴𝑟𝑐ℎ𝑖𝑣𝑒, and 𝑀 is the number of design objectives [29].
HuNT generates the optimized neural layer-to-PE mapping, and
the corresponding PE-to-tier mapping, which is then mapped to
the proposed 3D heterogeneous PIM-based architecture.
3D Heterogeneous PIM Architecture: The PIM architecture
considered in this work consists of a total of 64 processing
elements (PEs) distributed over four planar tiers and connected
using through silicon via (TSV)-based vertical links. Each PIM-
based PE has its unique configuration such as crossbar size, cell
resolution, number of crossbars/6T cells etc. as shown in Table
III. We consider an iso-PE area setting, such that all PEs
(irrespective of their device type) have the same area but
different amount of storage and compute capability.
Considering the storage capacity of each PIM-based PE, the
HuNT-enabled architecture can have a storage capacity of up to
~75 MB. Each planar tier consists of 16 PEs of a particular PIM
device type (SRAM/ReRAM/FeFET).
The area, energy, and latency of the SRAM, ReRAM, and
FeFET devices and their associated peripheral circuits such as
ADC, sense-amps (S/A), DACs, buffers, column-/row-
decoders, nonlinear activation units (ReLU) were modeled via
NeuroSim [24]. NeuroSim incorporates cycle-accurate
analytical tools (NVSim & CACTI) to evaluate the compute

TABLE II
HUNT OPTIMIZATION HARDWARE

GPU
OS: Linux CentOS. GPU: NVIDIA V100,

32GB. CPU: Intel Xeon Gold 5222 @ 3.8GHz,
16 cores, 32K L1 cache and 1024K L2 cache

TABLE III
PIM ARCHITECTURE SPECIFICATIONS

64 PEs distributed over 4 tiers (16 PEs/tier), 4 tiles/PE

ReRAM Tile
96 SAR ADCs (8-bits), 128×96 DACs (1-bit), 96
crossbars, 128×128 crossbar array, 2-bit/cell

resolution, 0.40 mm2

FeFET Tile 256×48 S/A (1-bit), 48 crossbars, 256×256
crossbar array, 1-bit/cell resolution, 0.40 mm2

SRAM Tile
6T, 1-bit-cell, 256 S/A, 8KB SRAM array
(256×256), 9 column/row-decoder, 9 SRAM

arrays, 0.40 mm2

TABLE IV
DNN WORKLOADS WITH CIFAR-10 DATASET
 # Layers Learning

rate Batch size # Params

VGG11 11 0.01 64 1.5M
VGG16 16 0.01 64 2.2M
ResNet18 18 0.05 128 1.1M
ResNet34 34 0.05 128 2M
DenseNet40 40 0.01 128 900K

8

area, latency, and power for each PIM configuration. The
connectivity between PEs follows the 3D mesh topology and
the workload-dependent inter-PE traffic is given as input to
BookSim to estimate communication power and latency [30].
We employ HotSpot’s default ambient temperature setting of
300𝐾 to conduct thermal analysis with the power traces
generated using NeuroSim and BookSim [28]. Finally, we
model the thermal effects (shown in (6) and (7)) on the DNN
accuracy using the PyTorch wrapper in NeuroSim for the
different DNN models and datasets considered in this work.
Following prior work, we use 16-bit fixed-point precision for
the storage and computation of the DNN weights and
activations in the forward pass, and 32-bit floating point
precision for the weight- and activation-gradient computation
in the back-propagation phase [31]. The 3D heterogeneous
architecture utilizes a multicast-enabled 3D mesh network-on-
chip (NoC) as the interconnection backbone for communicating
between the PEs during DNN training [23]. In our experimental
evaluation, we consider energy-efficiency (TOPS/W) and
compute-efficiency (TOPS/mm2) as the two relevant
performance metrics that capture the latency, area, power
objectives considered in Section III of this work.
DNN models and Datasets: We evaluate the performance of
the HuNT design optimization framework considering the
CIFAR-10, CIFAR-100, and TinyImageNet datasets with five
diverse DNN models namely: VGG11, VGG16, ResNet18,
ResNet34, and DenseNet40. Table IV shows the characteristics
and parameters of the DNN models executed on the HuNT
enabled 3D heterogeneous PIM architecture. As shown in Table
IV, the largest network considered in this work (VGG16) has
about 2.2M parameters which requires ~4.4 MB of storage,
hence it can be easily stored on the HuNT-enabled 3D
heterogeneous architecture (with a storage capacity of up to ~75
MB) along with its activations and layer-wise gradients.
However, for larger networks where the neural network size
exceeds the total storage capacity of the PEs in the system, then
we need to read/write weights and activations from/to main
memory (DRAM). As a result, there will be an additional
latency penalty corresponding to that. However, the layer-to-PE
and PE-to-tier mapping obtained from the HuNT optimization
framework is unimpacted by the off-chip memory accesses in
the case of very large DNNs. In this work, we train the DNN
models on the HuNT-enabled 3D heterogeneous PIM
architecture for 200 epochs using the Stochastic Gradient
Descent method to ensure their training convergence without
overfitting.

B. Layer-to-PE and PE-to-Tier Mapping Trade-offs
The neural layer-to-PE and PE-to-tier mapping affect the
overall latency, power, area, and DNN accuracy. The aim of the
HuNT framework is to determine the optimum configuration of
the heterogeneous 3D manycore architecture that achieves a
suitable balance among all these metrics. Fig. 3 presents the
Pareto front considering the above-mentioned design
objectives, while executing the training task on ResNet34
model using CIFAR-10 dataset as an example. Recall, the PE-
to-tier mapping is represented by 𝛼 = [𝑡!, 𝑡", … , 𝑡+], where a

planar tier 𝑡+ has PEs of one device type – ReRAM (R), FeFET
(F), SRAM (S). Fig. 3 shows a representative Pareto optimal set
of designs 𝐷∗ highlighted in black. It should be noted that all
the Pareto optimal configurations with heterogeneous PEs have
the SRAM devices at the bottom tier, away from the heat sink,
which is used for the gradient calculation during back-
propagation. Further, to minimize the on-chip hardware
resources for gradient computation, we do not need to process
all the layers simultaneously, but just perform layer-by-layer
weight gradient computation, following prior work [24].
Therefore, one tier of SRAM-based PEs is enough to support
the layer with largest size of activation gradients for the DNN
models considered here. Due to the necessity of the SRAM tier
for the back-propagation, the homogeneous configurations
where we have only one type of NVM PIM device like FeFET
or ReRAM, are: [𝐹!, 𝐹", 𝐹6, 𝑆7] and [𝑅!, 𝑅", 𝑅6, 𝑆7].
Alternatively, the homogeneous configuration with only
SRAM device is: [𝑆!, 𝑆", 𝑆6, 𝑆7]. All the design objectives
shown in Fig. 3 are normalized with respect to a mapping
corresponding to 𝛼 = [𝑆!, 𝐹", 𝐹6, 𝑅7] (shown in green), since it
has the worst DNN accuracy. As mentioned earlier, impact of
thermal noise on ReRAM-based PEs is more severe compared
to FeFET- or SRAM- based PEs. Thus, the mapping
[𝑆!, 𝐹", 𝐹6, 𝑅7] has the worst DNN accuracy because (a) the high
power consuming FeFET-based PEs on two planar tiers lead to
thermal hotspots and (b) ReRAM-based PEs are mapped to the
planar tier farthest from the heat sink. On the other hand,
candidate mappings with all thermal noise resilient SRAM-
based PEs, i.e., [𝑆!, 𝑆", 𝑆6, 𝑆7] achieve the highest DNN
accuracy, but at the cost of extremely high area. The FeFET-
based PEs contribute to high power density in the mapping
corresponding to [𝐹!, 𝐹", 𝐹6, 𝑆7], resulting in peak temperature
of 380𝐾 and lower DNN accuracy compared to [𝑅!, 𝑅", 𝑅6, 𝑆7].
However, the mapping [𝑅!, 𝑅", 𝑅6, 𝑆7] incurs high write latency
due to pre-dominantly ReRAM-based PEs when compared to
mappings on pre-dominantly SRAM- or FeFET-based PEs.
Thus, all homogeneous architectures score high in one specific
design metric neglecting the others. On the other hand,
heterogeneous 3D architectures such as [𝑅!, 𝐹", 𝐹6, 𝑆7] and
[𝑅!, 𝑅", 𝐹6, 𝑆7] exploit device-heterogeneity with optimal layer-
to-PE and PE-to-tier mapping, and achieve suitable trade-offs
between power, latency, area and DNN accuracy.

Fig. 3: Layer-to-PE and PE-to-tier mapping trade-offs while running the
DNN training task for ResNet34 model on CIFAR-10 dataset.

9

Next, we implement the HuNT-enabled Pareto optimal set of
designs 𝐷∗ and evaluate their performance in realistic settings.
Figs. 4(a) and (b) show the comparative performance evaluation
of the architectures in terms of energy-efficiency (TOPS/W)
and compute-efficiency (TOPS/mm2) for DNN training task on
VGG16 model with CIFAR-10 dataset as an example. As
shown in Fig. 4, neural layer mapping corresponding to a
homogeneous SRAM-based PE configuration, i.e.,
[𝑆!, 𝑆", 𝑆6, 𝑆7] leads to the lowest TOPS/W and TOPS/mm2 due
to higher power and area consumption when compared to
FeFET- and ReRAM-based architectures. Similarly,
[𝐹!, 𝐹", 𝐹6, 𝑆7] achieves low TOPS/W due to high power
FeFET-based PEs. As shown in Fig. 4, the layer-to-PE and PE-
to-tier mapping corresponding to [𝑅!, 𝑅", 𝐹6, 𝑆7] (highlighted in
red) achieves highest TOPS/W and TOPS/mm2 compared to
rest of the Pareto optimal candidate mappings. This mapping
utilizes the ReRAM and FeFET-based PEs (on planar tier 1, 2
and 3) for low precision computation in the forward phase and
SRAM-based PEs (on planar tier 4) for high precision gradients
computation in the back-propagation phase. Further, the DNN
layers processing high number of activations are mapped to
dense ReRAM-based PEs, resulting in higher TOPS/mm2 and
closer to the SRAM tier, reducing the communication energy
specifically during the back-propagation phase. Hence, this
results in higher TOPS/W.
Next, we discuss the DNN layers’ characteristics and their
role in layer-to-PE and PE-to-tier mapping for the best-
performing [𝑅!, 𝑅", 𝐹6, 𝑆7] architecture. Fig. 5 shows layer-wise
mapping on to PEs and 3D planar tiers for training DenseNet40
and VGG16 models with CIFAR-10 dataset as an example. As
discussed earlier, high precision gradients are calculated in the
bottom tier (tier S4) and the forward phase computation is

executed on tiers 1 to 3 of the [𝑅!, 𝑅", 𝐹6, 𝑆7] architecture. As
shown in Fig. 5(a), initial layers in DenseNet40 process higher
number of activations than the latter layers and need more
crossbars to store weights and activations. Therefore, these
layers are mapped to dense, low power ReRAM-based PEs (R2)
as well as closer to tier S4 for faster exchange of gradients. On
the contrary, latter layers with comparatively fewer activations
and smaller kernels, are mapped on tier F3 (layers 14 to 24) and
R1 (layers 30 to 40). However, as shown in Fig. 5(b), the layer-
wise characteristics of VGG16 are different than that of
DenseNet40, i.e., initial layers process higher number of
activations but have less crossbars requirement for storage and
computation, due to the layers’ input/output feature map and
kernel size. Thus, the initial layers of VGG16 are mapped to
FeFET-based PEs on tier F3 that have low latency but less
dense when compared to ReRAMs. On the contrary, the middle
layers consist of wider kernels and require more crossbars.
Thus, these layers are mapped to dense, low power ReRAM-
based PEs on tier R2. This highlights the importance of
considering DNN layers’ characteristics while finding optimal
layer-to-PE and PE-to-tier mapping to achieve high compute-
and energy-efficiency.

C. Overall Performance Evaluation
In this subsection, we present a thorough performance
evaluation of the HuNT-enabled DNN layer-to-PE and PE-to-
tier mapping for the proposed 3D heterogeneous PIM
architecture during DNN training. Figs. 6(a) - 6(c) compare the
energy-, compute-efficiency, and accuracy of the HuNT
enabled 3D heterogeneous architecture (simply referred to as
HuNT here after) with the homogeneous and existing
heterogenous counterparts for all DNN workloads considered
in this work with the CIFAR-10 dataset respectively. For this
comparison, the homogenous configurations are;
[𝐹!, 𝐹", 𝐹6, 𝑆7], [𝑅!, 𝑅", 𝑅6, 𝑆7] and [𝑆!, 𝑆", 𝑆6, 𝑆7] as mentioned
earlier. The existing heterogenous counterparts considered in
our comparative performance evaluation includes the HyperX
and AccuReD architectures [22] [23]. As discussed in the
related work, HyperX leverages both ReRAM (R) and SRAM
(S), while AccuReD leverages ReRAM- and GPU-based
processing elements to achieve high-performance DNN
training. In our comparative performance evaluation with
respect to HuNT, we use the two tiers of ReRAM and two GPU
tiers [𝑅!, 𝑅", 𝐺𝑃𝑈6, 𝐺𝑃𝑈7] configuration, and the [𝑅!, 𝑆", 𝑆6, 𝑆7]
configuration for the AccuReD and HyperX architectures
respectively [22] [23].

(a)

(b)

Fig. 4: Comparison of various Pareto optimal layer-to-PE and PE-to-tier
mappings in terms of (a) TOPS/W and (b) TOPS/mm2, while running
training task for VGG16 model on CIFAR-10 dataset as an example.

0
5

10
15
20

RRRS RRFS RRSS RFRS RSRS RFFS RFSS FSRS FFFS SSSS

TO
PS
/W

0
3
6
9

RRRS RRFS RRSS RFRS RSRS RFFS RFSS FSRS FFFS SSSS

TO
PS
/m

m
2

(a) (b) (c)

Fig. 5: Layer-to-PE and PE-to-tier mapping for DNN training task on (a) DenseNet40 and (b) VGG16 models with CIFAR-10 dataset on (c) the optimized
[𝑅!, 𝑅", 𝐹#, 𝑆$] architecture. Here, R1 and R2 refers to Tier 1 and 2 with ReRAM based PEs respectively, F3 refers to Tier 3 with FeFET based PEs, and S4
refers to Tier 4 with SRAM based PEs.

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40

Cr
os
sb
ar
s

DenseNet40 DNN layers
R2 F3 R1R2

0
200
400
600
800

1000
1200

1 3 5 7 9 11 13 15

Cr
os
sb
ar
s

VGG16 DNN layers
F3 R1R2

10

As shown in Figs. 6(a) and 6(b), HuNT achieves up to 20
TOPS/W and 10.73 TOPS/mm2 on CIFAR-10 dataset which
corresponds to a ~10× and ~8× improvement in energy- and
compute-efficiency respectively over the all-SRAM
homogenous counterpart. As shown earlier in Table I, and
corroborated in the literature, SRAM-based PIM architectures
generally suffer from low energy- and compute-efficiency due
to their high leakage power and significant area overhead
respectively [3]. Hence, they achieve a relatively low energy-
and compute-efficiency of 2.2 TOPS/W and 1.1 TOPS/mm2 on
average across all DNN models as shown in Figs. 6(a) and 6(b)
respectively. HuNT exploits device heterogeneity and DNN
workload awareness to achieve up to a 1.2× and 1.3×
improvement in TOPS/W and TOPS/mm2 respectively over the
homogeneous ReRAM configuration ([𝑅1, 𝑅9, 𝑅:, 𝑆;]).
Similarly, HuNT achieves an improvement of up to 2.6× and
1.5× in TOPS/W and TOPS/mm2 respectively over the
homogeneous FeFET configuration ([𝐹1, 𝐹9, 𝐹:, 𝑆;]) on CIFAR-
10 dataset. Overall, HuNT outperforms HyperX and AccuReD
by 3.1× and 1.4× respectively on average in terms of energy-
efficiency, and by 2.7× and 1.5× respectively on average in
terms of compute efficiency on CIFAR-10 dataset. This is
because the high power and area of the SRAM-based PEs and
the GPU-based PEs in HyperX and AccuReD respectively
make them less compute- and energy-efficient.
As shown in Fig. 6(c), we compare HuNT with the
homogenous and heterogeneous counterparts in terms of the
accuracy. Here, the all-SRAM configuration achieves the
highest accuracy due its high reliability, and less vulnerability
to thermal issues in the 3D architecture [23]. However, the
homogeneous FeFET and ReRAM counterparts suffer up to 4%
and 2.5% accuracy loss. This is due to high power consumption

of FeFET-based PEs and limited thermal endurance of
ReRAM-based PEs when placed away from the heat sink.
Overall, HuNT achieves less than 1% accuracy drop compared
to the all-SRAM counterpart. In summary, our performance
evaluation demonstrates that the HuNT-enabled 3D
heterogeneous PIM architecture achieves high energy- and
compute-efficiency over the homogenous counterparts and the
existing heterogeneous PIM-based architectures (AccuReD and
HyperX). Overall, the HuNT-enabled 3D PIM architecture
achieves the highest TOPS/W and TOPS/mm2 with negligible
loss in DNN accuracy.

D. Transferability across Datasets
In this subsection, we demonstrate that the HuNT-enabled
optimized layer-to-PE and PE-to-tier mapping (𝑑()*%) obtained
using the CIFAR-10 dataset can be transferred to another
dataset for training on 3D heterogeneous PIM architecture
without compromising the DNN training accuracy, and overall
performance. Here, the 𝑑()*% for a given DNN workload is
generated with a ‘source’ dataset via the HuNT framework, and
then mapped to the 3D heterogeneous architecture for training
using a ‘target’ dataset. Figs. 7 and 8 demonstrate the
transferability of 𝑑()*% generated using the CIFAR-10 dataset
(as the source dataset) to the CIFAR-100 and TinyImageNet
datasets (as the target datasets) respectively. In Figs. 7 and 8,
we consider 𝑑()*% generated using CIFAR-100 and
TinyImageNet respectively via the HuNT framework in each
case as the baseline. In this work, we compare the performance
of 𝑑()*% obtained using the CIFAR-10 dataset with respect to
the baselines in-terms of energy-efficiency (TOPS/W),
compute-efficiency (TOPS/mm2) and the final DNN test
accuracy as shown in Figs. 7(a) and 8(a), Figs. 7(b) and 8(b),

(a) (b) (c)

Fig. 6: Performance evaluation of the HuNT-enabled 3D PIM architecture with state-of-the-art in terms of (a) Energy-efficiency (TOPS/W), (b) Compute-
efficiency (TOPS/mm2), and (c) Accuracy of DNN workloads executed on CIFAR-10 dataset. Here, for brevity we use FFFS, RRRS, SSSS to refer to
[𝐹!, 𝐹", 𝐹#, 𝑆$], [𝑅!, 𝑅", 𝑅#, 𝑆$] and [𝑆!, 𝑆", 𝑆#, 𝑆$] homogeneous configurations respectively.

0

4

8

12

16

20

VGG11 VGG16 RN18 RN34 DN40

TO
PS

/W

0
2

4
6
8

10
12

VGG11 VGG16 RN18 RN34 DN40

TO
PS

/m
m

2

75

78

81

84

87

90

VGG11 VGG16 RN18 RN34 DN40

Ac
cu
ra
cy
 (%

)

(a) (b) (c)

Fig. 7: Transferability from CIFAR-10 to CIFAR-100 dataset for (a) energy-efficiency (TOPS/W), (b) compute-efficiency (TOPS/mm2), and (c) Accuracy.

18.20

13.07

6.33

9.67

8.12

18.67

13.53

6.87

9.93

8.24

0 5 10 15 20 25

VGG11

VGG16

RN18

RN34

DN40

TOPS/W

Baseline CIFAR-10 -> CIFAR-100

9.73

7.27

3.05

3.13

3.41

9.93

7.60

3.13

3.15

3.43

0 3 6 9 12

VGG11

VGG16

RN18

RN34

DN40

TOPS/mm2

Baseline CIFAR-10 -> CIFAR-100

68.6

72.9

75.6

76.7

77.2

68.64

73

75.5

76.7

77.4

0 20 40 60 80 100

VGG11

VGG16

RN18

RN34

DN40

Accuracy (%)

Baseline CIFAR-10 -> CIFAR-100

11

and Figs. 7(c) and 8(c) respectively. Here, the configurations
are denoted as DS → DT, where DS represents the ‘source’
dataset and DT represents the ‘target’ dataset. In our analysis,
we consider the CIFAR-10→CIFAR-100 and CIFAR-
10→TinyImageNet configurations for the sake of brevity.
However, it is worth noting that the HuNT framework is
compatible with other image datasets, and the results shown
here are reproducible for other configurations.
As shown in Figs. 7(a) and 7(b), we observe less than an
average of 2% and 1.5% loss in energy- and compute-efficiency
respectively compared to the baseline across all the DNN
models for the CIFAR-10→CIFAR-100 configuration.
Similarly, we also observe an average of 3.1% and 1.9% loss in
energy- and compute-efficiency respectively compared to the
baseline for the CIFAR-10→TinyImageNet configurations
respectively as shown in Figs. 8(a) and 8(b). Overall, we
observe a negligible accuracy loss of less than 1% across all
DNN models considered in both the CIFAR-10→CIFAR-100
and CIFAR-10→TinyImageNet configurations as shown in Fig.
7(c) and Fig. 8(c) respectively. Here, the transferability of the
optimal neural layer mapping of 𝑑()*% across datasets is
possible because the general DNN model behavior is often
transferable between datasets. This idea is similar to transfer
learning, where a model trained on one dataset can be reused
with slight changes for another dataset [32]. Hence, the neural
layer mapping of 𝑑()*% for a given DNN model can also be used
with other datasets, and achieve similar levels of performance
(energy- and compute-efficiency) with negligible accuracy loss.
However, it is worth noting that the absolute values of the
achievable performance in terms of TOPS/W and TOPS/mm2
vary across datasets due to their unique characteristics. For
example, the TinyImageNet dataset generates more activations
during training compared to the CIFAR-10 dataset. This
requires more PEs. Hence, for the same system configuration,
HuNT achieves lower compute- and area-efficiencies for
TinyImageNet compared to both CIFAR-10 and CIFAR-100
datasets. The dataset characteristics influence the absolute
achievable performance. However, the overall trend is agnostic
to the dataset. In addition, the transferability of 𝑑()*% across
datasets eliminates the cost of implementing repeated MOO for
more complex datasets. In essence, this further demonstrates
the scalability, and versatility of the HuNT-enabled optimized
layer-to-PE and PE-to-tier mapping (𝑑()*%) to other datasets for
DNN training on 3D heterogeneous PIM accelerators.

E. Lifetime and Endurance of Proposed 3D PIM Architecture
Lifetime and write endurance of NVM-based PIM devices are
crucial for DNN training due to significant number of write
operations required for the weight- and activation- gradient
calculations as well as weight updates in the back-propagation
phase. For our analysis, we consider realistic write endurance
limit for the FeFET-, ReRAM- and SRAM-based PEs reported
in prior work, as shown in Table I. As discussed earlier, the
HuNT-enabled layer-to-PE mapping maps the weights in the
DNN layers to both ReRAM- and FeFET-based PEs, and the
weight- and activation-gradient computation is performed on
SRAM-based PEs (i.e., the [𝑅!, 𝑅", 𝐹6, 𝑆7] configuration).
Therefore, the weights mapped to the ReRAM- and FeFET-
based PEs need to be re-programmed during the weight update
phase. However, ReRAM and FeFET devices suffer from low
write endurance, which limits the number of times that they can
be re-programmed before they fail due to faults [17].
In Fig. 9, we present a comparative performance trade-off
analysis between the energy-efficiency and endurance of the
homogeneous architectures, and the HuNT-enabled
heterogeneous architecture ([𝑅!, 𝑅", 𝐹6, 𝑆7]) executing the
VGG-11 DNN workload with the CIFAR-10 dataset. We
observe that beyond the endurance limit for each device, the
achievable performance (TOPS/W) begins to reduce, as the
number of resources (PEs) available to perform reliable
computation reduces due to failures of the NVM devices. The
[𝑆!, 𝑆", 𝑆6, 𝑆7] configuration achieves the lowest TOPS/W due
to its significant leakage power, however, it has the highest
endurance. Overall, the HuNT-enabled heterogeneous
architecture achieves an improvement of 10×, 3× and 1.2× in
terms of TOPS/W compared to the homogeneous SRAM,
FeFET and ReRAM based architectures respectively. At the
same time, HuNT achieves similar write endurance as the

Fig. 9: Comparison of HuNT-enabled architecture with other homogeneous
architectures in terms of energy-efficiency (TOPS/W) and endurance for
training on VGG11 model with CIFAR-10 dataset as an example.

0

5

10

15

20

0E+00 1E+03 1E+05 1E+08 1E+12 1E+17 1E+20

TO
PS
/W

Endurance

FFFS RRRS SSSS HuNT

Fe
FE
T
En

du
ra
nc
e
Li
m
it

Re
RA

M
 E
nd

ur
an
ce
 L
im

it

SR
AM

 E
nd

ur
an
ce
 L
im

it

1.2×

~10×

~3×

(a) (b) (c)

Fig. 8: Transferability from CIFAR-10 to TinyImageNet dataset for (a) energy-efficiency (TOPS/W), (b) compute-efficiency (TOPS/mm2) and (c) Accuracy.

14.70

10.88

4.47

7.17

7.62

14.95

10.92

4.52

7.28

7.73

0 5 10 15 20 25

VGG11

VGG16

RN18

RN34

DN40

TOPS/W

Baseline CIFAR-10 -> TinyImageNet

6.48

5.55

2.60

2.35

2.82

6.55

5.59

2.62

2.49

2.83

0 3 6 9 12

VGG11

VGG16

RN18

RN34

DN40

TOPS/mm2

Baseline CIFAR-10 -> TinyImageNet

47.2

48.1

41.45

43.1

50.1

47.3

48.3

41.3

43.4

50.7

0 20 40 60

VGG11

VGG16

RN18

RN34

DN40

Accuracy (%)

Baseline CIFAR-10 -> TinyImageNet

12

homogeneous configurations with at least one type of NVM
device ([𝑅!, 𝑅", 𝑅6, 𝑆7] and [𝐹!, 𝐹", 𝐹6, 𝑆7]).

V. CONCLUSION
PIM-based architectures enable high-performance and
energy-efficient hardware accelerators for DNN training.
However, each PIM device has specific advantages and
drawbacks. Hence, a heterogeneous architecture that combines
multiple PIM devices in a single system is necessary to achieve
the suitable balance between all the required design metrics. A
3D architecture enables the design of such a heterogeneous
platform where each planar tier consists of processing elements
designed with one type of device. This also avoids the
fabrication challenges of integrating disparate technologies on
a single tier. In this work, we propose the HuNT framework,
which finds an optimal layer-to-PE and PE-to-tier mapping for
3D PIM-based heterogenous architectures. Overall, the HuNT-
enabled 3D heterogeneous architecture achieves up to a 10×
and 8× improvement in energy-, and compute-efficiency
respectively over the homogenous counterparts and existing
heterogeneous PIM-based architectures without compromising
the final DNN accuracy.

REFERENCES
[1] W. Liu et al., "A survey of deep neural network architectures and their

applications," Neurocomputing, vol. 234, pp. 11-26, 2017.
[2] L. Song, X. Qian, L. Hai and Y. Chen, "PipeLayer: A Pipelined

ReRAM-Based Accelerator for Deep Learning," in IEEE HPCA, 2017.
[3] K. Roy, I. Chakraborty, M. Ali, A. Ankit and A. Agrawal, "In-Memory

Computing in Emerging Memory Technologies for Machine Learning:
An Overview," in IEEE DAC, 2020.

[4] A. Shafiee et al., "ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars Ali," in ISCA,
2016.

[5] T. Soliman et al., "First demonstration of in-memory computing
crossbar using multi-level Cell FeFET," Nature Communications, vol.
14, no. 1, p. 6348, 2023.

[6] Y. Long et al., "A Ferroelectric FET-Based Processing-in-Memory
Architecture for DNN Acceleration," IEEE Journal on Exploratory
Solid-State Computational Devices and Circuits, vol. 5, 2019.

[7] A. Keshavarzi, K. Ni, W. Van Den Hoek, S. Datta and A.
Raychowdhury, "FerroElectronics for Edge Intelligence," IEEE Micro,
vol. 40, 2020.

[8] A. Yusuf, T. Adegbija and D. Gajaria, "Domain-Specific STT-MRAM-
Based In-Memory Computing: A Survey," IEEE Access, vol. 12, 2024.

[9] G. Murali et al., "Heterogeneous Mixed-Signal Monolithic 3-D In-
Memory Computing Using Resistive RAM," IEEE TVLSI Systems, vol.
29, 2021.

[10] X. Peng et al., "Benchmarking Monolithic 3D Integration for Compute-
in-Memory Accelerators: Overcoming ADC Bottlenecks and
Maintaining Scalability to 7nm or Beyond," in IEEE IEDM, 2020.

[11] A. Kaul et al., "3-D Heterogeneous Integration of RRAM-Based
Compute-In-Memory: Impact of Integration Parameters on Inference
Accuracy," IEEE Transactions on Electron Devices, vol. 70, 2023.

[12] M. Yayla et al., "FeFET-Based Binarized Neural Networks Under
Temperature-Dependent Bit Errors," IEEE Transactions on Computers,
vol. 71, no. 7, pp. 1681-1695, 2021.

[13] X. Yang, S. Belakaria, B. Joardar, H. Yang, J. Doppa, P. Pande, K.
Chakrabarty and H. Li, "Multi-objective optimization of ReRAM
crossbars for robust DNN inferencing under stochastic noise,"
IEEE/ACM ICCAD, pp. 1-9, 2021.

[14] A. Bhattacharjee, A. Moitra and P. Panda, "HyDe: A Hybrid
PCM/FeFET/SRAM Device-Search for Optimizing Area and Energy-
Efficiencies in Analog IMC Platforms," IEEE JETCAS, vol. 13, 2023.

[15] Y. Sun et al., "CREAM: Computing in ReRAM-Assisted Energy- and
Area-Efficient SRAM for Reliable Neural Network Acceleration," IEEE
TCAS I: Regular Papers, vol. 70, 2023.

[16] G. Krishnan et al., "Hybrid RRAM/SRAM in-Memory Computing for
Robust DNN Acceleration," IEEE TCAD, vol. 41, 2022.

[17] W. Wen, Y. Zhang and J. Yang, "ReNEW: Enhancing Lifetime for
ReRAM Crossbar based Neural Network Accelerators," in IEEE ICCD,
2019.

[18] C. Eckert et al., "Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks," in 45th ISCA, 2018.

[19] S. Spetalnick and A. Raychowdhury, "A Practical Design-Space
Analysis of Compute-in-Memory With SRAM," IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 69, 2022.

[20] S. Roy, M. Ali and A. Raghunathan, "PIM-DRAM: Accelerating
machine learning workloads using processing in commodity DRAM.,"
IEEE JETCAS, vol. 11, no. 4, pp. 701-710, 2021.

[21] M. R. Haq Rashed, S. K. Jha and R. Ewetz, "Hybrid Analog-Digital In-
Memory Computing," in IEEE/ACM ICCAD, 2021.

[22] A. Kosta et al., "HyperX: A Hybrid RRAM-SRAM partitioned system
for error recovery in memristive Xbars," in DATE, 2022.

[23] B. K. Joardar et al., "AccuReD: High Accuracy Training of CNNs on
ReRAM/GPU Heterogeneous 3D Architecture," IEEE TCAD, 2020.

[24] X. Peng et al., "DNN+NeuroSim V2.0: An end-to-end benchmarking
framework for compute-in-memory accelerators for on-chip training,"
arXiv:2003.06471, 2020.

[25] N. Ye, L. Cao, L. Yang, Z. Zhang, Z. Fang, Q. Gu and G.-Z. Yang,
"Improving the robustness of analog deep neural networks through a
Bayes-optimized noise injection approach," Communications
Engineering, vol. 2 (1), p. 25, 2023.

[26] Y. Qin, Z. Yan, W. Wen, X. S. Hu and Y. Shi, "Negative Feedback
Training: A Novel Concept to Improve Robustness of NVCiM DNN
Accelerators," arXiv preprint arXiv:2305.14561, 2023.

[27] J. Cong, J. Wei and Y. Zhang, "A thermal-driven floorplanning
algorithm for 3D ICs.," IEEE/ACM ICCAD, pp. 306-313, 2004.

[28] R. Zhang, M. Stan and K. Skadron, "Hotspot 6.0: Validation,
acceleration and extension," in University of Virginia, Tech. Rep, 2015.

[29] S. Bandyopadhyay, S. Saha, U. Maulik and K. Deb, "A simulated
annealing-based multiobjective optimization algorithm: AMOSA,"
IEEE transactions on evolutionary computation, vol. 12(3), pp. 269-
283, 2008.

[30] N. Jiang et al., "A detailed and flexible cycle-accurate Network-on-Chip
simulator," in IEEE ISPASS, 2013.

[31] H. Jin, C. Liu, H. Liu, R. Luo, J. Xu, F. Mao and . X. Liao, "ReHy: A
ReRAM-based digital/analog hybrid PIM architecture for accelerating
CNN training," IEEE TPDS, vol. 33, no. 11, pp. 2872-2884, 2021.

[32] C. O. Ogbogu et al., "Accelerating Graph Neural Network Training on
ReRAM-Based PIM Architectures via Graph and Model Pruning,"
IEEE TCAD, vol. 42, pp. 2703-2716, 2023.

[33] D. Niu et al., "Design of cross-point metal-oxide ReRAM emphasizing
reliability and cost," in IEEE/ACM ICCAD, 2013.

Chukwufumnanya Ogbogu and Gaurav Narang are currently pursuing
the Ph.D. degree in Computer Engineering at Washington State University,
Pullman, WA, USA.

Biresh Kumar Joardar is an Assistant Professor with the Department of
Electrical and Computer Engineering, University of Houston, TX, USA.

Janardhan Rao Doppa is the Huie-Rogers Endowed Chair Associate
Professor in computer science with Washington State University, Pullman,
WA, USA.

Krishnendu Chakrabarty (Fellow, IEEE) is the Fulton Professor of
Microelectronics in the School of Electrical, Computer and Energy
Engineering at Arizona State University (ASU), Tempe, AZ, USA.

Partha Pratim Pande (Fellow, IEEE) is a professor and a holder of the
Boeing Centennial Chair of Computer Engineering with the School of
Electrical Engineering and Computer Science, Washington State
University, Pullman, WA, USA, where he is the interim Dean of the
Voiland College of Engineering and Architecture.

