
Flow Table Modification Using Behavioral-Based Fingerprinting Technique to
Facilitate Zero Trust Identity Management and Access Control

Vinton Morris
Cybersecurity Assurance and

Policy Center
Morgan State University

Baltimore, MD 21251
Email: vinton.morris@morgan.edu

Kevin Kornegay
Department of Electrical and

Computer Engineering
Morgan State University

Baltimore, MD 21251
Email: Kevin.kornegay@morgan.edu

Abstract—Traditional security mechanisms and architectures
are falling short, impacting both organizations and end users
alike. The rapid growth and variety of Internet of Things
(IoT) devices have significantly expanded the attack surface
and increased network vulnerabilities. In recent years, Zero
Trust (ZT) has gained traction in its attempt to solve the
inherent flaws of the traditional perimeter-centric security
architecture. While there have been great strides in supporting
users, applications, and general-purpose computing devices
(GPD), current ZT architectures lack the necessary capabilities
to support IoT devices. In this paper, we present a method
of authentication that profiles the network traffic and builds
unique fingerprints for IoT devices. The fingerprints are a
representation of the behavior of the IoT devices. We then
compare the on-demand generated fingerprints of a device
attempting to communicate to those in the database and update
the flow tables of a software-defined networking (SDN) switch,
accordingly ensuring that only devices with matching profiles
can communicate on the network. We argue that the predictive
nature of IoT device traffic and their limited protocol set make
them a candidate for this method of authentication and access
control that can satisfies the Zero Trust Architecture’s identity
management component.

1. Introduction

Traditional security mechanisms and architectures are
unable to keep up with today’s dynamic environments. The
frequency and severity of security breaches [1], [2], [3],
[4], [5] have significantly increased in recent years, causing
many organizations to rethink their security operations. Zero
Trust Architecture (ZTA), as illustrated in Figure 1, promises
a solution to the various security challenges of the perimeter-
based security model. Zero Trust (ZT) is a cybersecurity
strategy that secures an organization by eliminating implicit
trust and ensuring continuous verification at every stage of
an access request [6], [7], [8]. Based on the principle of
”never trust, always verify,” [9], [10], [11], [12], [13], ZT
protects modern environments by using robust authentica-
tion methods, leveraging network segmentation, preventing

lateral movement, and simplifying granular ”least access”
policies [14], [15]. The creation of ZT was in direct response
to traditional security models, which operated on the flawed
assumption that all devices and users on the internal network
were trustworthy. This implicit trust often gives network
users, including threat actors and malicious insiders, the
ability to move laterally and access or ex-filtrate sensitive
data due to a lack of granular security controls. This has
become a serious concern for many organizations. These
devices have become staples of our everyday personal and
professional lives because they provide automation, help
to streamline processes, increase productivity, better serve
customers, and reduce costs. With the rapid proliferation and
diversity of Internet of Things (IoT) devices, networks have
become extremely vulnerable due to the following reasons:

• Resource Constrained: IoT devices are often
resource-constrained with little to no security built
in, which makes them more enticing for attackers.
These devices have limited storage space, processing
power, and battery life. They are often optimized to
conserve power and, as a result, place little empha-
sis on security. Implementing security processes in
these devices is highly complex due to the limited
capabilities available on the devices.

• Bypass Traditional Zero Trust Architecture so-
lutions: IoT and its class of devices tend to bypass
traditional ZT solutions designed to validate authen-
tication and access requests. A user in a ZTA envi-
ronment can present MFA tokens or can be presented
with methods such as CAPTHAs, while a general-
purpose computing device can present certificates or
other hardware-based solutions. Many IoT devices
are simple sensors and lack the necessary hardware
components to support such solutions.

• Lack the capability for agents: IoT devices and
its class of devices often lack the capability for
agents or the ability to attest to the device identity.
A general-purpose computing device (GPD) often
presents the ability to install an agent or other ap-
plications that can attest to the device’s identity. IoT

979-8-3315-0769-5/25/$31.00 ©2025 IEEE
00307

20
25

 IE
EE

 1
5t

h
An

nu
al

 C
om

pu
tin

g
an

d
Co

m
m

un
ic

at
io

n
W

or
ks

ho
p

an
d

Co
nf

er
en

ce
 (C

CW
C)

 |
 9

79
-8

-3
31

5-
07

69
-5

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CC
W

C6
29

04
.2

02
5.

10
90

38
61

Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

devices offer no such capabilities.

In current software-defined networking (SDN) architectures,
flows are often installed proactively. This means that flows
are installed to handle all possible traffic prior to the arrival
of such network traffic. In this architecture, network traffic
will simply be allowed without any means of authentication.

This research presents a method of authentication that
profiles network traffic and builds unique fingerprints for
IoT devices. The fingerprints are a representation of the
behavior of the IoT devices. Through extensive packet
capture, feature extraction, and machine learning, unique
profiles are created for each device. The unique profile is
a representation of a fingerprint. Just like human beings
have multiple fingerprints, an IoT device can also have
various fingerprints; however, a fingerprint is unique to a
single device. We then compare the on-demand generated
fingerprints of a device attempting to communicate to those
in the database and update the flow tables of a SDN switch,
accordingly ensuring that only devices with matching pro-
files can communicate on the network. Due to their limited
functionality, IoT devices behave in a specific pattern and
are often highly predictive. The predictive nature of IoT
device traffic and their limited protocol set make them a
candidate for this method of authentication and access con-
trol, satisfying the ZTA’s identity management and access
control component. To utilize this method of authentication,
we created an Opendaylight (ODL) Bundle that intercepts
packets sent to the controller and sends them to a Flask
Web server. The ODL Bundle is written in Java. The Flask
Web server calls on several Python scripts to perform packet
parsing, feature extraction, fingerprint generation, database
query, and device classification. While Flask uses Python as
the main programming language, a system integrator could
use any language they choose, as this is done external to
the controller. The remainder of this paper is organized as
follows: the following section reviews related work. Section
3 presents an overview of our proposed architecture and
explains its key components. Section 4 explains the environ-
mental environment used in this paper. Section 5 presents
our experimental scenarios and measurements. Sections 6
and 7 discuss the research problem and conclude this paper,
respectively.

2. Related Work

Comer [18] presents an architecture that disaggregates
controller functionality and externalizes packet processing
designed to decentralize micro-services at the control plane
level. They utilized a Kafka event distribution application
that listens for incoming packets from network devices and
forwards them to a Kafka cluster for processing. This work
is the closest to our work; however their work focuses on
measuring response time. Our work focuses on the exter-
nalization of packet processing for the purpose of identity
management and access control.

Miettinen et al. [19] was one of the first works that
delved into this space. It uses SDN to implement network

isolation and traffic filtering. They sought to identify the
types of devices being connected to the network and en-
able the enforcement of rules in an effort to constrain the
communication of vulnerable devices and minimize damage
resulting from their compromise. They used static rule set
and only examined device status at setup time. This method
is static and does not perform continuous authentication as
required by ZTA. Our work provides dynamic authentication
and access control by continuously validating connection
requests from each device.

Eidle et al. [20] presented results from an experimental
cybersecurity test bed, which implements aspects of a Zero
Trust data communication network using autonomic OODA
loops (observe, orient, decide, act). They present test results
of trials in which identity management with automated threat
response and packet-based authentication were combined
with dynamic management of eight distinct network trust
levels. The log parsing and orchestration software works
alongside open-source log management tools to coordinate
and integrate threat response from firewalls, authentication
gateways, and other network devices. Their work focused
on detecting and blocking Distributed Denial of Service
(DDoS) attacks and not authentication. Our work focuses on
blocking traffic from devices that have failed authentication
by dropping the communication request.

3. Overview of the Proposed Architecture

Figure 1 presents a basic ZTA. It is divided into two
distinct areas: a data or forwarding plane and a control
plane. The current SDN models separates the functionality
into three broad pieces: a data plane, a control plane, and
an application plane [22]. An SDN controller implements
the control plane. Most SDN controllers employ two types
of application programming interfaces (APIs) used to com-
municate with outside entities: a Northbound (NB) interface
that defines communication between an external application
and control plane software running in the controller and
a Southbound (SB) interface that defines communication
between the control plane software running in the controller
and underlying network devices [23]. The data or forwarding
plane simply forwards traffic based on predefined flows,
while the control plane ultimately makes the decision about
what should be forwarded. Figure 2 depicts our proposed
ZTA, while Figure 3 illustrates the proposed ZTA that
supports device authentication using device behavior. The
key components are:

• Opendaylight Bundle: The first step to provide
authentication is to add a mechanism to the SDN
controller that can intercept packets sent to it by the
OpenFlow switches and extract relevant information.
Our solution is designed around a Java Bundle that
resides on the SDN controller. The Java1 Bundle
integrates with the SDN controller and intercepts
OpenFlow packets that are sent to the controller and

1. https://javadoc.io/doc/org.opendaylight.mdsal/mdsal-
docs/13.0.1/index.html

00308
Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Zero Trust Architecture.

extracts the packet payload and forward them as a
byte string to the Flask Web Server. The ODL Java
Bundle also has the responsibility of writing new
bidirectional flows to the OpenFlow switch(s) and
sending a packet-out message for the packets that
are forwarded to the SDN controller.

• Flask Web Server: The Flask Web Server2 receives
the packet payload from the SDN controller and
performs the necessary operations on the packet.
As Figure 4 demonstrates, it parses the packet and
generates a fingerprint, which is used to query the
database. If a matching fingerprint is found in the
database, the packet is deemed to be from a legiti-
mate device. Based on the returned values, it sends
certain parsed values back to the SDN controller.
These values include source and destination MAC
address, source and destination IP address, source
and destination port, the table number, the protocol
value (TCP, UDP, ICMP, etc.), the Ethernet type
as well as the flow ID, which is a random 6-digit
hexadecimal value.

• Python Scripts: The Python scripts are used to per-
form the necessary parsing of the packet, fingerprint
generation and additions to the database, database
query, and device classification. In addition, the
Python scripts serve to perform the machine learning
portion of the application to ultimately classify new
devices being introduced into the network.

• MySQL Database: The MySQL3 database is used
to store the fingerprints. The database stores the
fingerprints, which is a combination of the the device
MAC address and 16 binary features, as well as the
device ID, which is simply represented as the device
MAC address.

The following subsections explain how the proposed
solution can be used to provide device authentication on a
legitimate device, block a device that is not legitimate from
communication, and identify a new device from communi-
cating on the network.

2. https://flask.palletsprojects.com/en/3.0.x/
3. https://www.mysql.com/

Figure 2. The proposed Zero Trust Architecture components.

Figure 3. Proposed Zero Trust Architecture for Identity Management and
Access Control.

Figure 4. Packet processing and flow rule installation sequence diagram.

3.1. Example of a legitimate device

This section uses our reactive application to provide
device authentication.

The application acts in response to packets for which
no forwarding rule exists in the flow table and installs a
new rule for the flow. To implement the application, it
must receive an incoming packet, extract the packet payload,
generate a fingerprint from the packet header data, compare
the generated fingerprint to the fingerprints in the database,

00309
Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

generate the flow rule(s), and install the flow rule(s) on the
appropriate network device. For the flow rule to be installed
on the network device, a matching fingerprint must reside in
the database. To facilitate communication, a variety of static
flows are written in the switch(s). For example: static flows
are written to allow Address Resolution Protocol (ARP).
Additionally, static flows are written to allow the switch(s)
to communicate with the controller. As illustrated in Figure
4 and Figure 9, when a packet arrives at the controller,
and no forwarding rules exist, the packet is sent to the
SDN controller for further processing. Key information is
then extracted from the packet header and compared to
information pre-installed in the database. If it finds matching
information, the SDN controller will install flow rule(s) to
allow the traffic.

3.2. Prevent Illegitimate Devices

This section uses our reactive application to prevent
illegitimate devices from communicating on the network.

Our application can prevent illegitimate devices from
communicating on the network. Our application uses a
reactive flow model. A fingerprint will be generated when
a device attempts to communicate using the packet header
information. This will be done in response to the absence
of a matching flow in the flow table. That fingerprint will
then be compared to pre-installed fingerprints located in
the database. If the fingerprint does not match, a flow rule
will not be installed, and traffic will be dropped for the
illegitimate device attempting to communicate.

3.3. Commissioning New Device

This section uses our reactive application to commission
a new device by performing device classification.

From time to time, it may be necessary to add new
devices to the network. Our application can identify new
devices that match an existing device type being introduced
into the network. Additionally, fingerprints will be added
to the database for a new device that matches an existing
device. As illustrated in Figure 9, the application will extract
the packet header features and perform device type classifi-
cation using the Random Forest algorithm ”predict proba”
function. If the prediction matches an existing device type,
it will extract the fingerprint of the new device as well
as its device type identification and add it to the database
for future use. In the event that a new device does not
match any existing device, the device will be classified as
”Other” and will require manual intervention by the network
programmer to generate fingerprints and add them to the
database for future use. The application will only match a
device where the packet header statistical values are close
enough to match an existing device type.

4. Experimental Setup

4.1. Implementation Details

We implemented our solution using the Opendaylight4
SDN controller. The OpenDaylight Project is a collaborative
open-source project hosted by the Linux Foundation. The
project serves as a platform for software-defined network-
ing (SDN) for customizing, automating, and monitoring
computer networks of any size and scale [24]. To further
demonstrate our solution, we utilized a Flask Web Server
to serve as our external application that interacts with the
various Python5 scripts. Flask is a micro web framework
written in Python that does not require any particular tools or
libraries. Additionally, we utilized MySQL as the database
repository to store the various fingerprints. We developed an
Opendaylight Java bundle using Maven. Maven6 allows us
to identify all the necessary dependencies and bundle them
together. This allows the bundle to download all the nec-
essary dependencies for its operation. Additionally, because
this is a bundle, it allows for easy portability among SDN
controllers.

4.2. Experimental Testbed

We conducted our experiments on our SDN testbed,
which is a Linksys WRT 3200ACM router. Multiple studies
[25], [26], [27], [28], [29], [30] have been completed uti-
lizing Mininet7 as a virtual SDN switch. We opted to use
a physical device because the testbed contains real-world
devices that require a connection point. We flashed the router
with OpenWRT8 version 23.02.02 and installed the Open
vSwitch (OVS) package. Open vSwitch9 is a production-
grade, multilayer virtual switch licensed under the open-
source Apache 2.0 license. It is built to enable large-scale
network automation through programmatic extensions while
maintaining support for standard management interfaces and
protocols. We added a total of 25 IoT devices, as well as
a few Raspberry Pis, to the testbed, as illustrated in Figure
5. We added one (1) Amazon Alexa, one (1) Amazon Fire
TV Stick, one (1) Blink Doorbell Camera, one (1) Blink
Mini Camera, one (1) VR520 IR Camera, one (1) Govee
Leak Detector and two (2) sensors, three (3) Heiman Door
Sensors, two (2) LWITT Light Bulbs, five (5) Sengled light
bulbs (for of them were the exact same make and model),
one (1) Sonof WiFi Smart Switch, one (1) TP-Link Light
Bulb, four (4) TP-Link Smart Plugs, and one (1) Web
Power Switch. The two Govee Leak Detector devices utilize
radio frequency (RF) and are connected to the Govee Leak
Detector Gateway; therefore, we performed classification on
the gateway device and not the individual leak detectors.

4. https://docs.opendaylight.org/en/stable-calcium/
5. https://www.python.org/
6. https://mvnrepository.com/
7. https://mininet.org/
8. https://openwrt.org/
9. https://www.openvswitch.org/

00310
Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Testbed.

TABLE 1. IOT DEVICES IN THE TESTBED

Device Name Device Type Quantity Protocol

Amazon Alexa Home Assistant 1 WiFi

Amazon Fire TV Media 1 WiFi

Blink Doorbell Camera Camera 1 WiFi

Blink Mini Camera Camera 1 WiFi

Camera VR520 IR Camera 1 Ethernet

Govee Gateway Gateway 1 WiFi

Govee Leak Detector Sensor 2 RF

Heiman Door Sensor Sensor 3 WiFi

LVWIT Light Bulb Light Bulb 2 WiFi

Sengled Light Bulb Light Bulb 5 WiFi

Sonof WiFi Smart Switch Smart Switch 1 WiFi

TP-Link Light Bulb Light Bulb 1 WiFi

TP-Ling Plug Smart Plug 4 WiFi

Web Power Switch Smart Switch 1 WiFi

Table 1 presents the devices added as well as the device
types, the quantity of each, and the protocol that is used to
connect to the network. We added an OFP NORMAL flow
to OVS and captured packets using Wireshark10 (4.2.3) and
TCPdump for approximately 20 days. The 20 days were not
20 continuous days. The OFP NORMAL flow was added
to ensure that the SDN switch operated as a layer 2 device
and forwarded all traffic that it received. We utilized a
Samsung Notebook Model NP940X5J Intel Core i7-4500U
CPU @ 1.80 GHZ, 8 GB RAM. We installed VirtualBox
7.0.14 r161095 and created two (2) Ubuntu 22.04.4 virtual
machines. We installed Opendaylight Calcium 2024.03 with
three (3) GB RAM and one (1) CPU on the first virtual
machine. We installed MySQL 8 on the 2nd virtual machine
with two (2) GB RAM and one (1) CPU.

5. Experimental Phase Results

• Learning Phase: The primary objective of the learn-
ing phase is to collect data. In this phase, we de-
termined how much data should be collected and
determined the optimal features to use. We deter-
mined what features would be useful in identifying
the device as obtained from the packet header, as

10. https://www.wireshark.org/

well as other features not included in the packet
header that would be useful.

• Analysis Phase: The primary objective of the anal-
ysis phase is to identify the devices that are com-
municating on the network with high accuracy. To
utilize our solution, we need to be able to identify
the devices with high certainty. To achieve this, we
utilized research conducted by Kostas et al. [21],
where they presented a method called aggregation of
like devices; however, in our work, we aggregated
devices that are identical in nature. The idea behind
this is that devices that are identical will behave
in a similar manner. Additionally, we modified one
feature related to the way that they presented the IP
address count. While this feature allow the model to
perform well utilizing the training and test data, it
did not perform well with a validation set. Validation
sets often contain unseen data. Due to the way
that they utilize the IP Address count feature, it
always reset at zero. In a large dataset, this value
can become substantial. This feature is extremely
important in the classification process. To overcome
this limitation, we proposed creating a dictionary
that maintains the count that is available throughout
the entire training and validation process. We were
able to achieve accuracy, precision, and recall above
99% using Random Forest, as illustrated in Figure
6. Kostas et al. [21] showed in their work that Ran-
dom Forest as an ensemble machine learning model
works well for multi-class classification problems.
Fingerprints are proactively added to the database by
taking all of the packets captured during the learning
phase, removing certain packets such as ARP –due
to static flow, removing all duplicates, and extracting
the needed features used in the fingerprint from the
dataset.

• Implementation Phase: In the implementation
phase, the OpenFlow switch, which operates based
on reactive flows, sends the received packet to the
SDN controller as an OFP PACKET IN message.
This is the original packet encapsulated in an
OpenFlow packet, as illustrated in Figure 7. The
SDN controller utilizing our Packet-Forwarder
bundle extracts the payload (the original packet)
from the OpenFlow packet as a byte string, ensuring
that it is not a null packet. It then sends the extracted
OpenFlow packet payload to the Flask Web Server
as an HTTP Post request. The Flask Web Server
receives the payload string and parses the string
to obtain the packet header information. It then
performs the sequence of activities as illustrated
in Figure 9. The main activity performed is to
generate a fingerprint from the parsed packet
header data. We defined the fingerprint generated
as follows: Let f1, f2, f3,, f16 represent 16
binary features obtained from the packet header. Let
MAC be the Ethernet source address obtained from
the packet header as a binary string. We denote a

00311
Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Device classification report.

TABLE 2. FEATURES USED IN FINGERPRINT

Protocols Layers Protocols

Layer 2 Protocols ARP, LLC

Layer 3 Protocols IP, IPV6, ICMP, ICMP6

Layer 4 Protocols TCP, UDP

Layer 7 protocols HTTP, HTTPS, DHCP, BOOTP,
SSDP, DNS, MDNS, NTP

Figure 7. OpenFlow Packet-In message.

fingerprint Pi as the combination of MACi and
f1, f2, f3,, f16 concatenated together:

Pi = MACi ⌢ (fi1, fi2, fi3,, fi16)

We extract the fingerprint from each packet that
is sent to the SDN controller as a 64-bit binary
string. Figure 8 presents fingerprints generated for
one device. There are 3 unique fingerprints corre-
sponding to a single device. These fingerprint are
representative of the ”Blink Mini Camera”. A device
is not limited to the number of fingerprints that it can
have. The 16 features used are listed in table 2.
Once Flask completes the necessary operations, it
returns certain parsed values to the SDN controller.
These values include source and destination Ethernet
address, source and destination IP address, source
and destination ports, protocol, the flow ID, and the
Table ID. The flow ID is a randomly generated 6-
digit hexadecimal string, while the reverse flow adds

Figure 8. 64-bit fingerprints in binary format for 1 device.

Figure 9. Zero Trust application process flow

an ”r” to the flow ID. The Packet-Forwarder bundle
uses the parsed values to update the flow table with
bi-directional flows. It adds a flow based on the
original packet and a flow with the parsed values in
reverse. Additionally, the Packet-Forwarder bundle
adds two timeout values to the flow rule: a hard
timeout and a soft timeout. The soft timeout removes
the flow if no packet is received at the network
device with matching criteria within a specified in-
terval, while the hard timeout removes the flow rule
after a specified amount of time set by the network
programmer. This ensures that the device will be re-
authenticated periodically. The bi-directional flows
are written with the following parameters:
cookie, table ID, idle timeout, hard timeout,
send flow rem priority, Protocol, dl vlan, dl src,
dl dst, nw src, nw dst, tp src, tp dst and the
actions to take for the specified packet.
The initial packets sent by a device provide authen-
tication, while the flow(s) written to the SDN Switch
provide access control for the specific device.
Additionally, we observed the additional latency in-
troduced while using our Packet-Forwarder appli-
cation to implement authentication. Figure 10 il-
lustrates the additional latency introduced. This la-
tency is incurred exclusively by the initial packet,
as subsequent packets are not redirected to the SDN
controller until the designated timeout has elapsed.
It is important to note that this latency is in ad-
dition to the standard network operational latency.
We elected to present the additional latency rather
than the overall latency for two primary reasons: (1)
each network environment is unique, and the latency
observed in one setting may not accurately represent

00312
Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

Figure 10. Additional latency to implement ZTA authentication.

that in another, and (2) the additional latency specif-
ically characterizes the delay introduced by the first
transmitted packet, rather than applying uniformly
to every packet sent by a device.

6. Discussion and Future Work

The proposed architecture introduces new research ques-
tions that need to be investigated:

• As the environment increases the number of flow
rules will also increase. We will need to determine
the optimal amount of time to keep flow rules in the
flow table(s) to prevent flow table overflow.

• Many IoT devices utilize long poling or persis-
tent web sockets to keep connections open. This is
done since repeated requests to a server often waste
resources. Additionally, by holding the connection
open it allows users, other devices, or applications to
interact with the device via their control app. For this
reason, the flow rules should remain sufficiently long
enough to not impact the ability of users to interact
with the device near real-time while ensuring it is
short enough to encourage re-authentication.

• A comparative analysis with other authentication
methods used in IoT device authentication. Common
authentication methods used to authenticate a device
on a network include but are not limited to pass-
word authentication, certificate-based authentication,
Extensible Authentication Protocol (EAP), Kerberos,
Single Sign-On (SSO), Remote Authentication Dial-
In User Service (RADIUS), and mutual authentica-
tion. Many IoT devices lack the capability to support
these types of authentication.

7. Conclusion

In this paper, we present an architecture for Zero Trust
Identity Management and Access Control that utilizes an
Opendaylight Java Bundle, Flask Web Server, and Python to
provide IoT device authentication and access control. This is
a critical step in providing a mechanism that can provide au-
thentication to IoT devices that lack the necessary resources

to support traditional Zero Trust Architecture technologies.
We showed that utilizing an external application introduces
some overhead into the system for the initial packet of a
communication attempt, however, this overhead is tolerable
because of the benefits that it provides. This overhead could
be reduced by utilizing more efficient hardware or optimized
Python code.

References

[1] A. H. Seh, M. Zarour, M. Alenezi, A. K. Sarkar, A. Agrawal, R.
Kumar, and R. A. Khan, ”Healthcare Data Breaches: Insights and
Implications,” Healthcare (Basel, Switzerland), vol. 8, no. 2, p. 133,
2020. doi: 10.3390/healthcare8020133.

[2] C. X. Ou, X. Zhang, S. Angelopoulos, R. M. Davison, and N.
Janse, ”Security breaches and organization response strategy: Ex-
ploring consumers’ threat and coping appraisals,” International Jour-
nal of Information Management, vol. 65, p. 102498, 2022. doi:
10.1016/j.ijinfomgt.2022.102498.

[3] J. Li, W. Xiao, and C. Zhang, ”Data security crisis in universities:
Identification of key factors affecting data breach incidents,” Human-
ities and Social Sciences Communications, vol. 10, no. 1, 2023. doi:
10.1057/s41599-023-01757-0.

[4] M. Hill, D. Swinhoe, and J. Leyden, ”The 18 biggest data
breaches of the 21st century,” CSO Online, Sep. 12, 2024. [Online].
Available: https://www.csoonline.com/article/534628/the-biggest-data-
breaches-of-the-21st-century.html

[5] D. Hylender, P. Langlois, A. Pinto, and S. Widup, 2024 Data
Breach Investigations Report, 100th ed. Verizon, 2024. [Online]. Avail-
able: https://www.verizon.com/business/resources/Tad3/reports/2024-
dbir-data-breach-investigations-report.pdf

[6] O. C. Edo, T. Tenebe, E. Etu, A. Ayuwu, J. Emakhu, and S. Adebiyi,
”Zero Trust Architecture: Trend and Impact on Information Security,”
Int. J. Emerg. Technol. Adv. Eng., vol. 12, no. 7, pp. 140–147, 2022.
doi: 10.46338/ijetae0722 15.

[7] O. Borchert and A. Tan, ”Implementing a Zero Trust,” National
Institute of Standards and Technology (NIST), Mar. 2020. [Online].
Available: https://www.nccoe.nist.gov/sites/default/files/legacy-files/zt-
arch-project-description-draft.

[8] M. Shore, S. Zeadally and A. Keshariya, ”Zero Trust: The What, How,
Why, and When,” in Computer, vol. 54, no. 11, pp. 26-35, Nov. 2021,
doi: 10.1109/MC.2021.3090018.

[9] N. F. Syed, S. W. Shah, A. Shaghaghi, A. Anwar, Z. Baig, and R.
Doss, ”Zero Trust Architecture (ZTA): A Comprehensive Survey,”
IEEE Access, vol. 10, pp. 57143–57179, 2022. doi: 10.1109/AC-
CESS.2022.3174679.

[10] D. Puthal, S. P. Mohanty, P. Nanda, and U. Choppali, ”Building
Security Perimeters to Protect Network Systems Against Cyber Threats
[Future Directions],” IEEE Consum. Electron. Mag., vol. 6, no. 4, pp.
24–27, 2017. doi: 10.1109/MCE.2017.2714744.

[11] Deloitte, ”Zero Trust 2021 A Revolutionary Approach to Cyber
or Just Another Buzz Word?” Cybersecurity, 2021. [Online]. Available:
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/risk/deloitte-
cyber-zero-trust.pdf

[12] C. Buck, C. Olenberger, A. Schweizer, F. Völter, and T. Eymann,
”Never trust, always verify: A multivocal literature review on current
knowledge and research gaps of zero-trust,” Comput. Secur., vol. 110,
p. 102436, 2021. doi: 10.1016/j.cose.2021.102436.

[13] E. S. Hosney, I. T. A. Halim, and A. H. Yousef, ”An Artificial
Intelligence Approach for Deploying Zero Trust Architecture (ZTA),”
in 5th Int. Conf. Comput. Informatics, ICCI, 2022, pp. 343–350. doi:
10.1109/ICCI54321.2022.9756117.

00313
Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

[14] M. Bush and A. Mashatan, ”From Zero to 100,” Commun. ACM,
vol. 66, no. 2, pp. 48–55, 2023. doi: 10.1145/3573127.

[15] M. Campbell, ”Beyond Zero Trust: Trust Is a Vulnerabil-
ity,” Computer, vol. 53, no. 10, pp. 110–113, 2020. doi:
10.1109/MC.2020.3011081.

[16] U. Mattsson, ”Zero Trust Architecture,” in Controlling Privacy and the
Use of Data Assets, pp. 127–134, 2022. doi: 10.1201/9781003189664-
11.

[17] N. Sheikh, M. Pawar, and V. Lawrence, ”Zero trust using net-
work micro-segmentation,” in IEEE INFOCOM 2021 - IEEE Conf.
Comput. Commun. Workshops, 2021. doi: 10.1109/INFOCOMWK-
SHPS51825.2021.9484645.

[18] D. Comer and A. Rastegarnia, ”Externalization of Packet Processing
in Software Defined Networking,” IEEE Netw. Lett., vol. 1, no. 3, pp.
124–127, 2019. doi: 10.1109/LNET.2019.2918155.

[19] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. R. Sadeghi, and
S. Tarkoma, ”IoT SENTINEL: Automated Device-Type Identification
for Security Enforcement in IoT,” in Proc. Int. Conf. Distrib. Comput.
Syst., 2017, pp. 2177–2184. doi: 10.1109/ICDCS.2017.283.

[20] D. Eidle, S. Y. Ni, C. Decusatis, and A. Sager, ”Autonomic security
for zero trust networks,” in IEEE 8th Annu. Ubiquitous Comput. Elec-
tron. Mobile Commun. Conf., 2017, pp. 288–293. doi: 10.1109/UEM-
CON.2017.8249053.

[21] K. Kostas, M. Just, and M. A. Lones, ”IoTDevID: A Behavior-
Based Device Identification Method for the IoT,” 2021. doi:
10.1109/JIOT.2022.3191951.

[22] C. Trois, M. D. D. Fabro, L. C. E. de Bona, and M. Martinello, ”A
survey on SDN programming languages: Toward a taxonomy,” IEEE
Commun. Surveys Tuts., vol. 18, no. 4, pp. 2687–2712, 4th Quart.,
2016

[23] J. H. Cox et al., ”Advancing software-defined networks: A survey,”
IEEE Access, vol. 5, pp. 25487–25526, 2017

[24] ”OpenDaylight project,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/OpenDayligh Project. Accessed: Nov. 2,
2024.

[25] S. Bera, S. Misra and A. Jamalipour, ”FlowStat: Adaptive Flow-
Rule Placement for Per-Flow Statistics in SDN,” in IEEE Journal on
Selected Areas in Communications, vol. 37, no. 3, pp. 530-539, March
2019, doi: 10.1109/JSAC.2019.2894239.

[26] K. P. Kumar and P. Sivanesan, ”Flow rule-based routing protocol
management system in software-defined IoT sensor network for IoT
applications,” International Journal of Communication Systems, vol.
35, no. 11, pp. 1–17, 2022. doi: 10.1002/dac.5182.

[27] P. K. Sharma, J. H. Park, Y. S. Jeong, and J. H. Park, ”SHSec:
SDN based Secure Smart Home Network Architecture for Internet
of Things,” Mobile Networks and Applications, vol. 24, no. 3, pp.
913–924, 2019. doi: 10.1007/s11036-018-1147-3.

[28] P. Krishnan, K. Jain, K. Achuthan, and R. Buyya, ”Software-Defined
Security-by-Contract for Blockchain-enabled MUD-aware Industrial
IoT Edge Networks,” IEEE Transactions on Industrial Informatics,
2021. doi: 10.1109/TII.2021.3084341.

[29] K. S. Sahoo and D. Puthal, ”SDN-Assisted DDoS Defense Frame-
work for the Internet of Multimedia Things,” ACM Transactions on
Multimedia Computing, Communications and Applications, vol. 16,
no. 3s, 2021. doi: 10.1145/3394956.

[30] M. Sisov, ”Building a Software-Defined Networking System with
OpenDaylight Controller,” 2016.

00314
Authorized licensed use limited to: Kevin Kornegay. Downloaded on July 07,2025 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.

