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DOUBLE B-FIBRATIONS AND DESINGULARIZATION OF

THE X-RAY TRANSFORM ON MANIFOLDS WITH

STRICTLY CONVEX BOUNDARY

by Rafe Mazzeo & François Monard

Abstract. — We study the mapping properties of the X-ray transform and its adjoint on spaces
of conormal functions on Riemannian manifolds with strictly convex boundary. After desingular-
izing the double fibration, and expressing the X-ray transform and its adjoint using b-fibrations
operations, we employ tools related to Melrose’s pushforward theorem to describe the mapping
properties of these operators on various classes of polyhomogeneous functions, with special fo-
cus to computing how leading order coefficients are transformed. The appendix explains that a
naive use of the pushforward theorem leads to a suboptimal result with non-sharp index sets.
Our improved results are obtained by closely inspecting Mellin functions which arise in the
process, showing that certain coefficients vanish. This recovers some sharp results known by
other methods. A number of consequences for the mapping properties of the X-ray transform
and its normal operator(s) follow.

Résumé (Doubles b-fibrations et désingularisation de la transformée en rayons X sur les variétés
à bord strictement convexe)

Nous étudions les propriétés fonctionnelles de la transformée en rayons X et de son adjointe
dans les espaces conormaux, sur les variétés riemanniennes a bord strictement convexe. Après
une désingularisation préalable de la double fibration sous-jacente en une double b-fibration,
nous exprimons les deux opérateurs étudiés comme des compositions d’intégration le long des
fibres et de précompositions par des b-fibrations. Nous utilisons ensuite des techniques reliées
aux théorèmes d’intégration le long des fibres et de précomposition de Melrose pour en déduire
l’action de ces opérateurs sur des espaces de fonctions polyhomogènes conormales, décrivant
notamment comment les développements ainsi que les termes principaux sont transformés. Nous
expliquons dans l’appendice qu’une application naïve du théorème d’intégration le long des
fibres donne une surestimation des ensembles d’indices qui ne permet pas d’obtenir la précision
de certains résultats existant dans la littérature. Notre approche retrouve cette précision et
la généralise, en inspectant de plus près les fonctionnelles de Mellin qui entrent en jeu, et
en montrant l’annulation de certains coefficients. Nous discutons de quelques applications des
résultats principaux, concernant la transformation en rayons X et ses opérateurs normaux
associés.
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1. Introduction

In this article we study the mapping properties of the geodesic X-ray transform
and its adjoint on manifolds with convex boundary.

To set the stage and introduce the main objects of study, let (Md, g) be a Rie-
mannian manifold with strictly convex boundary (in the sense of having positive
definite second fundamental form). Denote by SM

π−→ M its unit tangent bundle.
The boundary of SM splits into outward (-) and inward (+) boundaries:

(1)
∂SM = ∂+SM ∪ ∂−SM,

∂±SM := {(x, v) ∈ SM, x ∈ ∂M, ±gx(v, νx) ⩾ 0},

with νx the unit inward normal at x ∈ ∂M . Note that ∂+SM is naturally diffeo-
morphic to ∂−SM under the reflection involution (x, v) 7→ (x,−v), and furthermore
that ∂+SM ∩ ∂−SM is naturally identified with S∂M ; this is called the glancing set.
We also denote by φt : SM → SM the geodesic flow. This is defined for (x, v) ∈ SM

and t ∈ [−τ(x,−v), τ(x, v)], where τ(x, v) ∈ [0,∞] is the smallest time for which
φt(x, v) ∈ ∂SM . Throughout, we will assume that (M, g) is non-trapping in the sense
that supSM τ <∞. The footpoint map

πf : SM ∋ (x, v) 7−→ φ−τ(x,−v)(x, v) ∈ ∂+SM,

assigns to any point and direction the initial (or ‘final in backward time’) point on the
boundary and inward-pointing direction determined by the geodesic through (x, v);
this is continuous on SM and smooth on (SM)o (Here and below the superscript o

denotes the interior of the set in question.). We then define the geodesic X-ray trans-
form I0 and the backprojection operator I♯0:

I0f(x, v) =

∫ τ(x,v)

0

f(π(φt(x, v))) dt, (x, v) ∈ ∂+SM,(2)

I♯0g(x) =

∫
Sx

g(πf(x, v))dSx(v), x ∈M.(3)

The operator I0 is continuous from L2(M,dM) to L2(∂+SM,µ dΣ2d−2), where

µ(x, v) = gx(v, νx),

dM is the Riemannian density on M , and dΣ2d−2 is the hypersurface measure inher-
ited by ∂+SM from the Sasaki volume form dΣ2d−1 on SM . Given these choices of
measure, I♯0 is the Hilbert space adjoint of I0.

J.É.P. — M., 2024, tome 11
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Recent works [20, 21, 22] justify the necessity of addressing mapping properties
of I♯0I0 in a way that does not require use of an extension of M . For manifolds with
strictly geodesically convex boundaries, the results in the literature are sparse. These
offer a variety of unrelated insights:

– Pestov and Uhlmann construct in [25] a space C∞
α (∂+SM) (see Equation (9)

below) of functions whose extensions as first integrals of the geodesic flow are smooth
on SM . This space satisfies

(4) I♯0(C
∞
α (∂+SM)) ⊂ C∞(M).

They go on to characterize C∞
α (∂+SM) in terms of the scattering relation using fold

theory. We also refer to [24] for a more recent take on this issue.
– In [20], the authors show that I♯0I0 extends to a larger manifold engulfing M ;

assuming it satisfies a (−1/2)-transmission condition at ∂M , they conclude that

(5) I♯0I0 :

d−1/2C∞(M)
∼=−−−→ C∞(M),

H(−1/2),s(M)
∼=−−−→ Hs+1(M) (s > −1),

are isomorphisms. Here H(−1/2),•(M) is the scale of Hörmander transmission spaces,
and H•(M) the classical Sobolev scale. Even though (5) implies a set of estimates,
these mapping properties do not fully predict the mapping properties of iterates of
the operator I♯0I0, which must be understood when using Landweber’s iteration for
purposes of inversion.

– In [19] it is shown that in the class of simple geodesic disks with constant curva-
ture, the operator I♯0 µ−1I0 is an isomorphism of C∞(M). This is done by constructing
a Sobolev scale H̃k(M), defined using a degenerate elliptic operator, which have in-
tersection C∞(M) and which satisfy

I♯0 µ
−1I0 : H̃

k(M)
∼=−−−→ H̃k+1(M).

In other words, by introducing the singular weight 1/µ, one can identify spaces which
are stable under iteration of the modified normal operator I♯0 µ

−1I0.
– In [11], the mapping properties for the Euclidean dual Radon transform (i.e.,

integration over hyperplanes) are given. These allow one to understand how index
sets on R × Sn−1 translate into index sets on Rn. In particular, this explains much
about the Euclidean X-ray transform on the plane.

The present work presents a first step towards a unified understanding of these
various results about mapping properties of I0, I♯0 and the normal operators built out
of them, at the level of Fréchet spaces.

As is well known in integral geometry, it is very helpful to recast the problem in
terms of double fibrations, cf. Helgason’s work on symmetric spaces [8], Guillemin’s
realization of integral-geometric operators as FIO’s [7], and the formulation of the
Bolker condition [23, 9], which leads to a more precise understanding of the impact
of interior conjugate points on the X-ray transform. A famous and basic example of

J.É.P. — M., 2024, tome 11
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double fibrations in the homogeneous space setting is that of Euclidean motions on R2

via centralizers of points and lines:

R2 ←− E(2) −→ R× S1.

Using this, the two-dimensional X-ray transform can be viewed as the composition
of pullback by the map onto R2 followed by pushforward by the map onto R × S1.
For the geodesic X-ray transform on non-homogeneous Riemannian manifolds, one
can construct a local double fibration out of the point-geodesic relation [23, 5], or a
double fibration of SM by (base-) points and geodesics. However, if M has a strictly
convex boundary, such fibrations cannot be extended globally due to the presence of
‘short’ geodesics. The difficulty arises because as (x, v) ∈ SM approaches S(∂M),
the maximal geodesic passing through (x, v) collapses to a point. Because of this, the
extensions to SM of certain smooth functions on ∂+SM as first integrals of geodesic
flow are neither smooth nor even conormally regular. In this article, we show that this
difficulty can be ‘resolved’ (in two senses of the word): there is a desingularization by
means of a map

(6) Υ: ∂+SM × [0, 1] ∋ ((x, v), u) 7−→ φuτ(x,v)(x, v) ∈ SM,

recently introduced in [22], which gives rise to a double b-fibration in the sense of
geometric microlocal analysis [16, 6] (see Lemma 3.1 below), represented by the dashed
lines in Figure 1.

∂+SM × [0, 1]

SM

∂+SM M

Υ
π̂π̂f

πf π

Figure 1. Desingularization of the double fibration into a double b-
fibration via the map Υ

Moreover, the operators I0 and I♯0 can be written as weighted compositions of push-
forward and pullback by the maps π̂ := π ◦Υ and π̂f := πf ◦Υ. In this setup, one can
then in principle apply Melrose’s pullback and pushforward Theorems to understand
the mapping properties of I0 and I♯0 on smooth or polyhomogeneous functions. How-
ever, this process (carried out in the appendix for comparison to our main results)
produces polyhomogeneous functions which apparently have index sets, i.e., the set
of exponents in their expansion, significantly larger than desired. This is less sharp
than the result obtained by Pestov and Uhlmann (4).

Our main results, Theorems 2.1 and 2.2 below, provide mapping properties for I0
and I♯0 which recover the result by Pestov and Uhlmann, while extending the functional
setting to spaces with polyhomogeneous behavior at the boundaries of M and ∂+SM .
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Notably, much of the work is in the study of I♯0, which displays a variety of interesting
phenomena (e.g. index set creation or cancellation, see Theorem 2.2) depending on
the index set of the input function. To obtain such refinements, we first introduce new
singular coordinates on ∂+SM (or more accurately, we blow up certain p-submanifolds
in this space) which have the effect of resolving the scattering relation. We also need to
examine the mechanism behind the pushforward theorem in greater detail, i.e., study
the Mellin functionals, whose poles and residues give the index set and associated
leading coefficients. We can then see that certain poles do not in fact occur. This
cancellation is ultimately due to fact that the Beta function,

(7) B(z, z) =

∫ 1

0

(u(1− u))z−1 du

(and appropriate generalizations of it) has zeros at the negative half integers −N0 −
1/2. Another important part of this is the introduction of a parity condition on
the Taylor series (resulting in C∞

α -index sets below, see Section 2.1). Such parity
conditions have been used in other applications of geometric microlocal analysis,
in particular in local index theory and spectral geometry [17, 15], asymptotics of
Poincaré-Einstein metrics [4] and renormalized volume [1, 2], analytic continuation
and resolvent estimates for the Laplacian on asymptotically hyperbolic spaces [26, 27],
and inverse problems related to the above contexts [13, 3].

In the next section, we formulate the main results before discussing some conse-
quences, including refined boundary determination of polyhomogeneous integrands,
and natural candidates for Fréchet spaces where it should be possible to formulate sta-
ble mapping properties of normal operators (i.e., weighted compositions of I0 and I♯0).
We give an outline of the remainder of the article at the end of the next section.

Acknowledgements. — The authors thank Gabriel P. Paternain for helpful discussions,
Joey Zou for pointing out a mistake in an earlier statement of Theorem 2.2, and the
anonymous referees whose comments greatly improved the exposition of the article.
R.M. thanks both Gunther Uhlmann and András Vasy for many years of patient
guidance on inverse problems.

2. Statement of the main results

After first defining in Section 2.1 appropriate regularity classes and notions of index
set (unrestricted on M , and with parity constraints on ∂+SM), Section 2.2 gives the
main results, Theorems 2.1 and 2.2, describing how polyhomogeneous functions are
transformed under the operators I0 and I♯0; in other words, we determine how these
operators act on index sets. In Section 2.3, we formulate and prove some consequences
of the main results. We also propose Conjecture 2.11 on the mapping properties of
normal operators in singularly weighted situations.
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2.1. Preliminaries: polyhomogeneous functions on manifolds with boundary

Let Nn be a manifold with boundary, and choose adapted coordinates (x, y) near
∂N , where x ⩾ 0 is a boundary defining function (bdf) for ∂N and y = (y1, . . . , yn−1)

restricting to a coordinate system on the boundary. Although C∞(N) is the most
obvious class of ‘nice’ functions on N , it is not the most natural in many analytic and
geometric problems. There are two standard characterizations of C∞: smooth func-
tions enjoy stable regularity, i.e., maintain regularity upon repeated differentiation, or
that they admit Taylor series expansions. Each of these can be generalized in slightly
different ways, the first by restricting the types of differentiations which are allowed,
and the second by allowing slightly more general asymptotic expansions as x → 0.
These lead to the class of conormal functions and to the notion of polyhomogeneity,
respectively.

The key to finding a suitable generalization of stable regularity is to weaken the set
of allowable differentiations. Accordingly, we define Vb(N) to be the space of smooth
vector fields on N which are unconstrained in the interior but which lie tangent to
the boundary. With (x, y) a local coordinate system as above, we have
(8) Vb(M) = C∞-span {x∂x, ∂y1 , . . . , ∂yn−1}.

Now define the space of conormal functions of order s ∈ R on N by
As(N) := {u ∈ C∞(No) : V1 . . . Vku ∈ xsL∞(N)

for all Vj ∈ Vb(N) and for all k ∈ N0}.

(Here and below the superscript o denotes the interior of the set in question.) Note
that As(N) contains functions of the form xs′ |log x|a for any s′ with Re s′ > s,
a ∈ R (or Re s′ ⩾ s if a ⩽ 0). More generally, As(N) contains functions which
are discrete or continuous superpositions of these basic ones. As a rule of thumb,
conormal functions are completely smooth in tangential directions and have special
regularity properties normal to the boundary. The intersection

⋂
s∈R As(N) is just

the space Ċ∞(N) of smooth functions vanishing to infinite order at ∂N . Here and
below, we denote A∞(N) :=

⋃
s∈R As(N).

We next define the particularly nice families of polyhomogeneous functions, which
are subspaces of the space of conormal functions. Polyhomogeneous function are
conormal, but in addition have classical asymptotic expansions involving powers
xz(log x)k (z ∈ C and k ∈ N0) as x → 0. A particular space of polyhomogeneous
functions is determined by its index set E, which is the set of exponent pairs (z, k)

which can appear in the expansions of its elements. By definition, an index set E is
a subset of C× N0 with the following properties:

(a) For every s ∈ R, the set E⩽s := {(z, k) ∈ E : Re(z) ⩽ s} is finite.
(b) If (z, k) ∈ E, then (z, ℓ) ∈ E for any ℓ = 0, 1, . . . , k − 1.

If E also satisfies
(c) If (z, k) ∈ E, then (z + 1, k) ∈ E,

then it is called a C∞ index set.

J.É.P. — M., 2024, tome 11
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Given any index set E, define

AE
phg(N) =

{
u ∈ A∞(N) : u ∼

∑
(z,k)∈E

uz,k(y)x
z(log x)k, uz,k ∈ C∞(∂N)

}
.

This asymptotic expansion is ‘classical’ in the sense that the difference between u and
any finite partial sum of this series decays as x ↘ 0 like the next term in the series,
and with corresponding decay properties for any derivative of u and the corresponding
term-by-term derivative of the series.

Condition (a) implies the existence of a real number inf E := inf{Re(z), (z, k) ∈ E}
such that AE

phg(N) ⊂ As(N) for all s < inf E. If k = 0 for all (z, k) ∈ E with
Re(z) = inf E, then AE

phg(N) ⊂ Ainf E(N). If condition (c) is satisfied, then the
moniker C∞ index set ensures that AE

phg(N) is a C∞(N) module and is invariant
under any smooth change of variables of N .

As examples, AN0×{0}
phg (N) = C∞(N) and A

N0×{0,1}
phg (N) = C∞(N) + log xC∞(N).

Even structures: C∞
α -index sets on ∂+SM . — When the manifold N has additional

symmetries, the spaces AE
phg may not encode these symmetries, and refinements of the

objects above are needed. In our setting, the manifold of interest is ∂+SM , as defined
in (1); it has boundary

∂0SM = ∂+SM ∩ ∂−SM = {(x, v) ∈ SM : x ∈ ∂M, gx(v, νx) = 0}.

When (M, g) is non-trapping with strictly convex boundary, then ∂SM carries a
natural involution called the scattering relation α : ∂SM → ∂SM . This is defined by

α(x, v) = φ±τ(x,±v)(x, v), (x, v) ∈ ∂±SM ;

it leaves each (x, v) ∈ ∂0SM fixed. Using this involution, one may define the important
subspaces of C∞(∂+SM)

(9) C∞
α,±(∂+SM) := {u ∈ C∞(∂+SM), A±u ∈ C∞(∂SM)},

where

A±u(x, v) :=

{
u(x, v), (x, v) ∈ ∂+SM,

±u(α(x, v)), (x, v) ∈ ∂−SM,

for u ∈ C∞(∂+SM). (Note that C∞
α,+ coincides with the space C∞

α (∂+SM) described
in the introduction.) Functions in C∞

α,+/−(∂+SM) are smooth in the interior of ∂+SM
with Taylor expansions at ∂0SM which involve only even/odd terms. This makes
sense only if these expansions are written with respect to a restricted class of ‘even’
boundary defining functions, described below. To state our main results, we introduce
the key definitions and relegate details to Section 4.3.

On ∂+SM , a bdf t for ∂0SM is called an α-boundary defining function (α-bdf)
if moreover t ∈ C∞

α,−(∂+SM). A good example of an α-bdf is the exit time function
τ : ∂+SM → R. A C∞

α -index set on ∂+SM is an index set as defined via conditions
(a)–(b) above, and where condition (c) is replaced by

(c’) If (z, k) ∈ E, then (z + 2, k) ∈ E.

J.É.P. — M., 2024, tome 11
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Given a C∞
α -index set E, we then say that u∈AE

phg,α(∂+SM) if u∈C∞((∂+SM)o)

and if for some α-bdf t, we have the asymptotic expansion off of ∂0SM

u ∼
∑

(z,k)∈E

tz(log t)kuz,k, uz,k ∈ C∞(∂0SM).

In Section 4.3, we establish that such a definition is invariant under change of α-bdf
and stable under multiplication by elements of C∞

α,+(∂+SM). As notable examples,
C∞

α,+(∂+SM) = A
2N0×{0}
phg,α (∂+SM) and C∞

α,−(∂+SM) = A
(2N0+1)×{0}
phg,α (∂+SM).

2.2. Main results

Weighted X-ray transforms

Let (M, g) be convex and non-trapping, let ϕ ∈ C∞(SM) be a smooth weight
function, and for f ∈ C∞

c ((SM)o), define

Iϕf(x, v) =

∫ τ(x,v)

0

ϕ(φt(x, v))f(φt(x, v)) dt, (x, v) ∈ ∂+SM.

Then Iϕf ∈ C∞((∂+SM)o) and our first result, whose proof is given Section 5.1,
shows that if f is polyhomogeneous, then Iϕf is also polyhomogeneous with index set
determined by that of f .

Theorem 2.1. — Let (M, g) be convex, non-trapping, and let ϕ ∈ C∞(SM). Sup-
pose f ∈ AE

phg(SM) for some C∞-index set E with s = inf(E) > −1. Then Iϕf ∈
AF

phg,α(∂+SM), where F is a C∞
α -index set contained in (and possibly equal to)

{(2z + 1, ℓ), (z, ℓ) ∈ E}.
More precisely, fix γ∈C with Re(γ)>−1, k∈N0, h∈C∞(∂SM) and χ∈C∞

c ([0,∞))

a cutoff function equal to 1 near 0. Using coordinates (ρ, ξ) ∈ [0, ε) × ∂SM on SM

near ∂SM and (τ, ω) on ∂+SM near ∂0SM with ω = (y, w) ∈ ∂0SM , as defined in
Lemma 4.1, and denoting by τ the geodesic length, we have

Iϕ[χ(ρ)ργ logk ρ h(ξ)](τ, ω) ∼ τ2γ+1
∑
p⩾0

0⩽ℓ⩽k

τ2p(log τ)ℓa2γ+1+p,ℓ(ω).

If ρ(x) = dg(x, ∂M) near ∂M , the coefficient in front of the most singular term equals

(10) a2γ+1,k(ω) = 2kh(ω)ϕ(ω)II(ω)γ B(γ + 1, γ + 1), ω ∈ ∂0SM,

where II(ω) := IIy(w,w) is the second fundamental form, and B is the Beta func-
tion (7).

Letting ϕ ≡ 1 and supposing that h(ξ) is independent of the tangent variable v

(i.e., replace ξ ∈ ∂SM by y ∈ ∂M) this result includes the operator I0. This result
generalizes [22, Prop. 6.13].

J.É.P. — M., 2024, tome 11
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Backprojection operator. — Now turn to the backprojection operator I♯0. As an ele-
mentary input function, consider a(ω)χ(τ)τγ logk τ , where ω ∈ ∂0SM , a(ω) is smooth,
χ ∈ C∞

c ([0,∞)) is a cutoff function equal to 1 near 0, and τ is the geodesic length.
Here and below, for y ∈ ∂M , dA(y) denotes the Riemannian hypersurface density on
∂M and dSy denotes the Euclidean measure on the unit sphere Sy(∂M). Our second
main result, whose proof is given in Section 5.3, is the following.

Theorem 2.2. — Fix γ ∈ C, k ∈ N0 and a ∈ C∞(∂0SM). Then I♯0(a(ω)χ(τ)τ
γ logk τ)

is polyhomogeneous, with index set contained in (and possibly equal to) the union
N0 × {0} ∪ Eγ,k, where

(11) Eγ,k :=


(γ+1

2 + N0)×{0, . . . , k − 1}, γ ∈ 2N0,

(γ+1
2 + N0)×{0, . . . , k} ∪ (N0 ∩ (γ+1

2 + N0))×{k + 1}, γ ∈ 2Z+ 1,

(γ+1
2 + N0)×{0, . . . , k}, otherwise,

where in the first case, Eγ,k = ∅ if k = 0.
In coordinates (ρ, y) ∈ [0, ε)×∂M on M near ∂M with ρ(x) = dg(x, ∂M), we con-

clude that
I♯0(a(ω)χ(τ)τ

γ logk τ) ∼
∑

(z,ℓ)∈N0∪Eγ,k

az,ℓ(y)ρ
z logℓ ρ,

where the lowest order coefficient in the part of the expansion corresponding to Eγ,k

is given by

az0,ℓ0(y) = cz0,ℓ0

∫
Sy(∂M)

a(y, w)IIy(w)
(−γ+1)/2 dSy(w), ω = (y, w) ∈ ∂0SM.

Here,
(12)

γ = 2m⇒ (z0, ℓ0) = (m+ 1/2, k − 1), cz0,ℓ0 = 2πk
2k+3

42m+2

2m+2

(
2m+2
m+1

)−1
, m ∈ N0,

γ = 2m− 1⇒ (z0, ℓ0) = (m, k + 1), cz0,ℓ0 = −
(
2m
m

)
/((k + 1)2k+2), m ∈ N0,

γ /∈ N0 − 1⇒ (z0, ℓ0) = ((γ+1)/2, k), cz0,ℓ0 = 2−(k+3)B (−(γ+1)/2,−(γ+1)/2) .

The other coefficients of the expansion with exponents in Eγ,k are locally deter-
mined, and in principle computable, while the coefficients in the part of the expansion
with coefficients in N0 × {0} are non-local.

Remark 2.3. — To put the first half of Theorem 2.2 in invariant terms, fix E a C∞
α -

index set. By invariance of AE
phg,α(∂+SM) with respect to an α-bdf, any element of

h ∈ AE
phg,α(∂+SM) may be written as an asymptotic sum in the α-bdf function τ ,

and applying Theorem 2.2 to each term separately yields

I♯0
(
AE

phg,α(∂+SM)
)
⊂ AF

phg(M), where F := N0 × {0} ∪
⋃

(γ,k)∈E

Eγ,k,

with Eγ,k defined in (11). One easily verifies that F is a C∞-index set.

Remark 2.4. — As the scheme of proof of Theorem 2.2 is based on a correspondence
between index sets of a phg function and the set of poles of its associated ‘Mellin
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functional’ (see 5.2.2), the first case of Equation (11) is an instance where poles
cancel at the Mellin level. This case recovers the result (4), which a standard use
of the pushforward theorem could not recover (see the discussion at the end of the
appendix).

The second case in Equation (11) is an instance where poles of higher order (or,
equivalently, higher powers of log ρ in expansion terms) become created. This only
affects the most singular term in the expansion if γ ∈ 2N0 − 1, hence the discrepancy
between the cases of (11) and those of (12).

2.3. Consequences of main results

2.3.1. Boundary determination

Theorem 2.5 (Boundary determination for functions on M). — Let ϕ ∈ C∞(SM) be
such that for every y ∈ ∂M , there exists some w ∈ Sy(∂M) with ϕ(y, w) ̸= 0. Suppose
f ∈ AE

phg(M) for some index set E with inf(E) > −1.

(i) If Iϕf ∈ A1+2s′(∂+SM) for some s′ > inf E, then f ∈ A
E⩾s′

phg (M).
(ii) If Iϕf ∈ Ċ∞(∂+SM), then f ∈ Ċ∞(M).

Proof of Theorem 2.5. — For (i), suppose that Iϕf ∈ A1+2s′(∂+SM) with s′ > inf(E),
and assume by contradiction that the most singular term in the expansion of f is of
the form h(ξ)ργ(log ρ)k with Re(γ) < s′. By assumption, the corresponding coefficient
a1+2γ,k(ω), as given by (10), must vanish for all ω = (y, w) ∈ ∂0SM . Note that in
the case where f is a function on M , h only depends on y and not on w. Fixing
an arbitrary y ∈ ∂M , we evaluate the product (10) at an w ∈ Sy(∂M) such that
ϕ(y, w) ̸= 0. There, we have B(γ + 1, γ + 1) ̸= 0 since Re(γ) > −1, and IIy(w,w) > 0

by convexity, and hence we must have h(y) = 0.
Notice that this result is local: if Iϕf ∈ A1+2s′ only in a neighborhood of some

point y0, then the coefficients of the terms in the expansion of f with Re(z) < s′ must
vanish in that neighborhood.

The proof of (ii) follows from (i) and the fact that Ċ∞(M) =
⋂

s∈R As(M). It is
likely that this follows from other techniques, but we include this here for complete-
ness. □

The same proof (without the assumption that the coefficient h in the proof above
only depends on the basepoint) yields the following result.

Theorem 2.6 (Boundary determination for functions on SM). — Let ϕ ∈ C∞(SM)

and let Nϕ ⊂ ∂0SM be the set of points of ∂0SM where ϕ is nonzero. Suppose
f ∈ AE

phg(SM) for some C∞ index set E with inf(E) > −1.

(i) If Iϕf ∈ A1+2s′(∂+SM) for some s′ > inf E, then for all (γ, k) ∈ E such that
Re(γ) < s′, fγ,k vanishes on Nϕ.

(ii) If Iϕf ∈ Ċ∞(∂+SM), then for all (γ, k) ∈ E, fγ,k vanishes on Nϕ.
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2.3.2. Mapping properties

The operator I♯0I0. — The following result explains why iterative use of I♯0I0 is inher-
ently unstable in terms of fine regularity properties.

Corollary 2.7. — Let (M, g) be a convex, non-trapping Riemannian manifold of
dimension ⩾ 2, and let ρ be a boundary defining function. For any k ∈ N0,

(I♯0I0)
k(C∞(M)) ⊂

k∑
ℓ=0

(ρ log ρ)ℓC∞(M),

and there are functions f ∈ C∞(M) for which (I♯0I0)
kf include (ρ log ρ)k in their

expansion.

Proof. — We prove the following statement by induction on k ⩾ 0. Defining

(13) Ek := {(z, p), z ∈ N0, 0 ⩽ p ⩽ min(z, k)},

if f has index set Ek, then I♯0I0f has index set Ek+1. This follows immediately from
Theorem 2.1 along with the second case (pole creation) of Theorem 2.2. The second
assertion follows from the explicit formulas for leading coefficients. □

Recalling the additional mapping property I♯0I0(ρ
−1/2C∞(M)) ⊂ C∞(M), we de-

duce the sequence of spaces, each continuously mapped into the next by I♯0I0:

(14) ρ−1/2C∞(M) −→ C∞(M) −→ AE1

phg(M) −→ · · · −→ AEk

phg(M) −→ · · · ,

where Ek is defined in (13). It is natural to wonder if there is a space which extends
the sequence to the left, i.e., which maps to ρ−1/2C∞(M). If it were to exist, such a
space would not contain only polyhomogeneous functions since

– Using (17) below, we see that I0ρ
z = τ2z+1

∫ 1

0
(u(1 − u))zF z du, which makes

sense only when Re(z) > −1.
– With this integrability condition in mind, I♯0I0ρ

z has index set contained in
(N0 × {0})∪ ((z + N) × {0}), and the minimum index has real part 0. In particular,
I♯0I0 can never generate terms which blow-up near ∂M .

The operator I♯0 τ
−1I0. — We now discuss another example which shows that the

various cases in Theorem 2.2 can interact ‘cyclically’ (in contrast to (14)).

Corollary 2.8. — Let (M, g) be a convex, non-trapping Riemannian manifold. Then

C∞(M) + log ρ C∞(M)
I♯0 τ

−1I0−−−−−−−−→ · · ·

C∞(M) + ρ1/2C∞(M)
I♯0 τ

−1I0−−−−−−−−→ C∞(M) + log ρ C∞(M).

The first map annihilates the log terms through pole cancellation (first case of
Theorem 2.2), while the second map re-creates them (second case of Theorem 2.2).
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Singularly weighted normal operators. — There is already a precedent for finding (sin-
gularly) weighted versions for the Euclidean Radon transform where the singular value
decomposition is sometimes computable, see e.g. [12]. The two-dimensional examples
there, applied to the X-ray transform, motivate a more general class of singularly
weighted functional settings.

Proposition 2.9. — Let (M, g) be a convex, non-trapping Riemannian manifold with
boundary and bdf ρ, let t an α-bdf on ∂+SM and fix γ ∈ R. Then for δ < 2γ + 1, the
operator I0ρ

γ , which sends f to I0(ρ
γf), yields a bounded map

I0ρ
γ : L2(M,ρδdM) −→ L2(∂+SM, t2δ−4γ−1 µdΣ2d−2).

The proof of Proposition 2.9 is given Section 5.1. A special case of Proposition 2.9
is when δ = γ > −1. In this case,

I0ρ
γ : L2(M,ργdM) −→ L2(∂+SM, t−2γ−1 µdΣ2d−2),

is bounded, and its adjoint relative to these Hilbert spaces is I♯0t−2γ−1, as the following
computation shows, valid for all f ∈ C∞(M), h ∈ C∞(∂+SM):∫

∂+SM

(I0ρ
γf)ht−2γ−1µdΣ2d−2 =

∫
M

ργfI♯0(ht
−2γ−1)dM.

Above we have used that I♯0 is the L2(M,dM) → L2(∂+SM,µdΣ2d−2) adjoint of I0
(see e.g. [24, Lem. 4.1.4]). In particular, the operators

I♯0t
−2γ−1I0ρ

γ : L2(M,ργdM) −→ L2(M,ργdM), γ > −1,

are all self-adjoint. Moreover, these operators are isomorphisms of C∞(M) in the
following cases:

– γ = 0, (M, g) a simple geodesic disk of constant curvature and t = µ (in circularly
symmetric cases, µ is an α-bdf), cf. [19].

– γ = −1/2 and (M, g) is a simple surface (as formulated in (5)), cf. [21].
– γ > −1 and (M, g) is a simple geodesic disk in a constant curvature model,

cf. [18].
From Theorem 2.1, we deduce the following

Lemma 2.10. — For any γ > −1, any bdf ρ and α-bdf t, the operator I♯0t
−2γ−1I0ρ

γ

maps C∞(M) into itself.

Proof. — If f ∈ C∞(M), then for γ > −1, ργf has index set (γ + N0)× {0} and by
Theorem 2.1, I0(ργf) ∼ t2γ+1

∑
p⩾0 t

2pap(ω) for some coefficients ap ∈ C∞(∂0SM).
Thus t−2γ−1I0(ρ

γf) ∈ C∞
α,+(∂+SM). Applying I♯0 and using (4), we obtain the result.

□

It is natural to ask whether this is an isomorphism for all γ > −1.

Conjecture 2.11. — Let (M, g) be a simple Riemannian manifold with bdf ρ, and fix
γ > −1. Then, there exists an α-bdf t for ∂+SM such that the operator I♯0t

−2γ−1I0ρ
γ

is an isomorphism of C∞(M).
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It is easily seen that if the C∞(M)-isomorphism property holds, it holds indepen-
dently of the choice of bdf ρ. However, its dependence on the choice of α-bdf t (except
for γ = −1/2, where no α-bdf appears) remains unclear.

Unless γ = −1/2, the operator here is not extendable across ∂M , and thus we
cannot invoke the transmission conditions of Boutet de Monvel.

Structure of the article. — The remainder of the article is organized as follows.
In Section 3, we first carry out the desingularization of the double fibration into

a double b-fibration (see Lemma 3.1) and show in Lemma 3.2 that the operators I0
and I♯0 can be written as weighted compositions of pushforwards and pullbacks by
these b-fibrations. As a necessary ingredient to our main theorems, this justifies that I0
and I♯0 map conormal spaces to conormal spaces.

In Section 4.2, we construct special coordinates on ∂+SM with good parity prop-
erties with respect the scattering relation (an important tool in the proof of Theo-
rem 2.2), before covering C∞

α -index sets and polyhomogeneous spaces on ∂+SM in
detail in Section 4.3.

Section 5 then covers the proofs of the main results: the proofs of Theorem 2.1
and Proposition 2.9 on forward mapping properties of I0 are given Section 5.1; after
a digression on the Mellin transform and functionals generalizing the Beta function
in Section 5.2, we then prove Theorem 2.2 in Section 5.3; Sections 5.4 and 5.5 then
cover proofs of auxiliary lemmas (on properties of Beta functionals, and on Sasaki
volume factors) stated during the proof of Theorem 2.2.

Finally, in the appendix, we explain how the use of Melrose’s pushforward and
pullback theorems can be used to derive mapping properties akin to Theorems 5.1
and 2.2, and discuss how such an approach overestimates the resulting index sets.

3. The double b-fibration

3.1. Preliminaries: b-fibrations on manifolds with corners. — A key theme in this
paper is that the basic maps that play a role in the analysis of the X-ray transform I0
(and related operators) are b-fibrations. We briefly recall the definition of this class
of maps and refer to [6, 16, 14] for more complete definitions and descriptions of all
of the material below.

Let M and N be two manifolds with corners, and enumerate the boundary hyper-
surfaces of these two spaces by {Hα}α∈A and {H ′

β}β∈B , respectively. We say that ρα
is a boundary defining function (bdf) for Hα if Hα = ρ−1

α (0) and dρα ̸= 0 on that
face. A map F : M → N is called a b-map if, for every β ∈ B,

F ∗ρ′β = G · ρℓ1α1
. . . ρℓsαs

for some C∞ strictly positive function G and some positive integers ℓi. The set of
exponents which occur here, as β ranges over B, is called the geometric data associated
to F . It is more efficiently represented by the nonnegative integer valued matrix
(eF (α, β))α∈A,β∈B , where F ∗ρ′β contains the factor ρ

eF (α,β)
α .
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On a manifold with corners M , the space Vb(M) of b-vector fields can be analo-
gously defined as in Section 2.1, as the space of all smooth vector fields which are
unconstrained in the interior, and which are tangent to all boundaries of M .

There is a natural vector-bundle bTM over M , called the b-tangent bundle, which
has the property that Vb(M) is the full space of smooth sections of bTM . The vector
fields on the right in (8) constitute a local basis of sections. There is a natural map
bTM → TM which is an isomorphism over the interior. If p lies on a boundary or
corner of M , then the nullspace of this map at p is called the b-normal bundle bNpM .
For example, if M is a manifold with boundary, as in Section 2.1, then bNpM is
the 1-dimensional space spanned by x∂x. If M has corners and p lies on a corner
of codimension k, then bNpM is k-dimensional, and naturally splits into a sum of
1-dimensional subspaces corresponding to the b-normal spaces of the codimension
one boundary faces intersecting at p.

If F : M → N is a b-map, then there is a naturally induced bundle map bF∗ :
bTM → bTN which agrees with the ordinary differential of F in the interior of M .
We say that F is a b-submersion if bF∗ is surjective at every point; similarly, F is
called b-normal if the natural restriction bF∗|p : bNpM → bNf(p)N is surjective.
Finally, F is called a b-fibration if it is both a b-submersion and b-normal. These last
two conditions are equivalent to something more familiar. Following [6, Def. 3.9], they
are equivalent to

(a) If K is any boundary face (i.e., hypersurface or corner), then codimF (K) ⩽
codimK;

(b) The restriction of f to the interior of any boundary face K is a fibration
from Ko to F (K)o.

3.2. The maps π̂ = π◦Υ and π̂f = πf ◦Υ. — If (M, g) is a non-trapping manifold with
strictly convex boundary, the first-exit-time function τ defined in the introduction,
when restricted to ∂+SM , can be extended smoothly to ∂SM by defining

(15) τ̃(x, v) =

{
τ(x, v), (x, v) ∈ ∂+SM,

−τ(x,−v), (x, v) ∈ ∂−SM,

see e.g. [24, Lem. 3.2.6]. This allows to extend the map Υ defined in (6) smoothly to

Υ : ∂SM × [0, 1] −→ SM, Υ(x, v, u) := φuτ̃(x,v)(x, v).

Note that Υ(x, v, 0) = (x, v), Υ(x, v, 1) = α(x, v) and Υ(α(x, v), u) = Υ(x, v, 1− u).
In other words, if we define

Γ : ∂SM × [0, 1] −→ ∂SM × [0, 1]

by Γ(x, v, u) := (α(x, v), 1 − u), then Υ ◦ Γ = Υ. Thus Υ is a 2:1 cover away from
∂0SM × [0, 1]. Each interval {(x, v)}× [0, 1] with (x, v) ∈ ∂0SM collapses to the point
(x, v).
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We now claim that the pullback of the Sasaki volume form on SM is given in terms
of the induced volume form on ∂SM by

(16) Υ∗dΣ2d−1 = τµ dΣ2d−2 du,

where, as we recall, µ(x, v) = gx(v, νx). Note that the Jacobian factor vanishes at
∂0SM × [0, 1], as expected since Υ collapses this submanifold to a lower dimensional
one. To prove (16), suppose f ∈ L1(SM) and write∫

SM

f dΣ2d−1 =

∫
Υ−1(SM)

(f ◦Υ) Υ∗dΣ2d−1

=

∫
∂+SM

∫ τ(x,v)

0

f(φt(x, v)) dt µ dΣ2d−2 (Santaló’s formula)

=

∫
∂+SM

∫ 1

0

f(Υ(x, v, u)) du τ µ dΣ2d−2 (setting t = τu).

This establishes the claim.
We consider the map Υ restricted to D = ∂+SM× [0, 1] in greater detail. As a first

step, observe that this domain is a manifold with corners up to codimension two. Its
boundary hypersurfaces are

G0 = ∂+SM × {0}, G1 = ∂+SM × {1}, G2 = ∂0SM × [0, 1].

The corresponding boundary defining functions are u, 1− u and µ, respectively. The
lift of τ from ∂+SM to D is also a bdf for G2. Finally, there are two codimension two
corners:

Fi = Gi ∩G2 = ∂0SM × {i}, i = 0, 1.

Figure 2 gives a schematic of the arrangement of these faces.

u0 1

τ

u 1− uG0 G1

G2

F0

F1

Figure 2. Local boundary model for Υ−1(SM)

Observe that
Υ(G0) = ∂+SM, Υ(G1) = ∂−SM, Υ(G2) = ∂0SM (blow-down).

By (16), Υ|D is a diffeomorphism on the interior. If ρ is a bdf for M equal to the
geodesic distance to ∂M near ∂M , then by [22, Prop. 6.12],
(17) ρ ◦Υ(x, v, u) = F (x, v, u)τ2(x, v)u(1− u), (x, v, u) ∈ D,

where F is a smooth strictly positive function. It is further proved in [22, Prop. 6.12]
that F extends to a map F : ∂SM × [0, 1]→ R such that

(a) F (α(x, v), u) = F (x, v, 1− u);
(b) F (x, v, 0) = µ(x, v)/τ̃(x, v) and F (x, v, 1) = µ(α(x, v))/τ̃(α(x, v));
(c) F (x, v, u) = IIx(v, v) when (x, v, u) ∈ ∂0SM × [0, 1].
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Lemma 3.1. — The maps π̂ : D → M and π̂f : D → ∂+SM are b-fibrations with
geometric data (encoding the order of vanishing at each boundary face) given by

eπ̂ G0 G1 G2

∂M 1 1 2

eπ̂f
G0 G1 G2

∂0SM 0 0 1

Proof

First case: π̂. — First note that (17) already asserts that π̂ is a b-map. The geometric
data for this map is computed directly from (17). We now check the two conditions in
the auxiliary characterization of b-fibrations stated at the end of Section 3.1. Suppose
that K ∈ {G0, G1, G2, F0, F1} is a boundary face.

Condition (a) is obvious since π̂ maps any such K onto ∂M , which has codimen-
sion 1.

As for condition (b), first note that F0 and F1 are closed (hence equal their interiors)
and each is mapped diffeomorphically to ∂0SM by Υ; these are then mapped to ∂M

via the canonical projection ∂0SM = S(∂M)→ ∂M , which is a fibration.
As for the boundary hypersurfaces, consider the map π ◦Υ: Go

i → ∂M , i = 0, 1, 2.
When i = 0, this is the composition

{µ > 0} × {0} ∋ (x, v, 0) 7 Υ−−−→ (x, v) 7 π−−→ x;

the first map is a diffeomorphism and the second is a fibration. The analogous rea-
soning applies when i = 1. Finally, for i = 2, the map Υ projects onto the first factor
of ∂0SM × [0, 1], and π projects down to ∂M , so this too is a fibration.

Second case: π̂f . — The map π̂f is simply the projection map onto the left factor
∂+SM× [0, 1]→ ∂+SM , and this is trivially a b-fibration. The geometric data follows
from the relation τ ◦ π̂f = τ . □

3.3. The X-ray transform and the backprojection via pushforwards and pullbacks

A smooth map ϕ : N1 → N2 between open manifolds induces the pullback operation

ϕ∗ : C∞(N2) −→ C∞(N1), ϕ∗f = f ◦ ϕ, f ∈ C∞(N2).

If ϕ is proper, then we also have that ϕ∗ : C∞
c (N2) → C∞

c (N1). Furthermore, if ν a
smooth density on N1, its pushforward ϕ∗ν is then defined by duality

⟨ϕ∗ν, g⟩N2
= ⟨ν, ϕ∗g⟩N1

, g ∈ C∞(N2),

where ⟨ν, f⟩ =
∫
fν. If ϕ is a submersion, then ϕ∗ν can be regarded as integration

over the fibers of ϕ, and it is well known in that case that ϕ∗ maps C∞ to C∞.
We now express I0 and I♯0 as weighted sequences of pushforwards and pullbacks.

At first we consider these only in the interiors of their domains of definition, but later
will investigate how they affect regularity near the boundaries and corners (notably in
the proof of Theorem 2.2 given in Section 5.3), which is where the b-fibration property
will enter. In addition, by virtue of [16, Th. 3 & 5], Lemma 3.2 factors I0 and I♯0 in
a way that it becomes obvious that they map conormal spaces to conormal spaces, a
necessary ingredient to our main Theorems 2.1 and 2.2.
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Lemma 3.2. — Let (M, g) be a convex, non-trapping Riemannian manifold with bound-
ary, and define π̂ = π ◦Υ, π̂f = πf ◦Υ as above. Then the maps I0, I

♯
0 defined (2)–(3)

can be written as follows:(1
τ
I0f(x, v)

)
dΣ2d−2 = π̂f∗

(
[π̂∗f ]dΣ2d−2du

)
, f ∈ C∞

c (Mo)(18)

(I♯0h) dMx = π̂∗
(
π̂f

∗(τµh) dΣ2d−2 du
)
, h ∈ C∞((∂+SM)o).(19)

Proof. — When h(x, v, u) is a smooth function on ∂SM × [0, 1] or D, we have

π̂f∗(h(x, v, u) dΣ
2d−2du) =

(∫ 1

0

h(x, v, u) du

)
dΣ2d−2.

In particular, if h = π̂∗f for some function f on M , then

π̂f∗
(
[π̂∗f ]dΣ2d−2du

)
=

(∫ 1

0

f(π(φuτ̃(x,v)(x, v))) du

)
dΣ2d−2

=

(
1

τ̃(x, v)

∫ τ̃(x,v)

0

f(π(φt(x, v))) dt

)
dΣ2d−2,

and similarly for Υ|D. We arrive at (18).
Next, to prove (19), suppose h ∈ C∞(∂+SM), so that its pullback (π̂f

∗h)(x, v, u)

equals h(x, v). Now push forward the density h(x, v) dΣ2d−2du: for any f ∈ C∞(M),〈
π̂∗[π̂f

∗h dΣ2d−2 du], f
〉
=

〈
h(x, v) dΣ2d−2 du, π̂∗f

〉
=

∫
∂+SM

h(x, v)

∫ 1

0

f(π(φuτ(x,v)(x, v))) du dΣ
2d−2

=

∫
∂+SM

h(x, v)

τ(x, v)µ(x, v)

∫ τ(x,v)

0

f(π(φt(x, v))) dt µ dΣ2d−2

=

∫
M

∫
Sx

( h

τµ

)
(πf(x, v)) dS(v) f(x) dMx.

In particular, we arrive at the relation

π̂∗[π̂f
∗h dΣ2d−2 du] = I♯0

( h

τµ

)
dMx,

which amounts to (19). □

4. Special coordinates and index sets near the glancing set

4.1. Preliminaries: blowups. — We first recall, the notion of blowing up a p-sub-
manifold in a manifold with corners. Let N be a manifold with corners, and
(x1, . . . , xk, y1, . . . , yn−k) an ‘adapted’ set of coordinates; this means that each xj is
a bdf for a boundary hypersurface Hj of N and each yj is an interior variable, lying
in (−ε, ε). We say that a submanifold Z ⊂ N is a p-submanifold if there exists a set
of adapted coordinates such that Z = {(x, y) : x1 = · · · = xr = 0, y1 = · · · = ys = 0}.

The utility of this notion is that if Z is a p-submanifold, then a neighborhood of the
0-section in the inward-pointing orthant of the normal bundle NZ is diffeomorphic
to a neighborhood of Z in N .
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With Z as above, we define the blowup [N ;Z] to be the new manifold with corners
obtained by replacing each point z ∈ Z by its inward-pointing spherical normal bun-
dle, and endowing this set with the obvious topology and the minimal C∞ structure
for which the lifts of smooth functions on N and spherical polar coordinates around Z

are all smooth. Thus, for example, the origin {0} is a p-submanifold in Rn and the
blowup [Rn; {0}] is diffeomorphic to a half-cylinder [0,∞)r × Sn−1

θ , where (r, θ) are
spherical polar coordinates on Rn.

4.2. Special coordinates on ∂+SM near ∂0SM . — The considerations below rely
crucially on choosing a coordinate system on ∂SM near ∂0SM for which 2d − 2 of
the coordinates are even with respect to the scattering relation, and the remaining
one, which is a bdf for ∂0SM ⊂ ∂+SM , is odd. Following [10, Th. C.4.5], one can
obtain such coordinates by symmetrizing and skew-symmetrizing any local chart near
any p ∈ ∂0SM with respect to α, yielding 2(2d − 1) functions which are of course
dependent, but then discarding a judicious half of these to obtain independent set
which is the desired coordinate system. We shall choose these in a slightly different
and more geometric way.

The following result does not need that M be non-trapping since we only consider
almost glancing geodesics, which lie near the boundary and are never trapped.

Lemma 4.1 (Scattering-friendly coordinates). — Let (M, g) be a Riemannian manifold
with strictly convex boundary, and let α be its scattering relation, which is well-defined
and smooth in a neighborhood of ∂0SM . Then there exists an α-invariant neighbor-
hood U of ∂0SM in ∂SM and coordinates (t, ω) : U → R× ∂0SM satisfying

(t, ω)(α(x, v)) = (−t, ω)(x, v) ∀ (x, v) ∈ U.

When (x, v) ∈ U ∩ ∂+SM , then (t, ω)(x, v) is interpreted as follows. Let φ∂
t the

geodesic flow on S(∂M) ∼= ∂0SM . Choose U sufficiently small so that x and π(α(x, v))

are joined by a unique minimal length geodesic in ∂M for all (x, v) ∈ U , directed
from x to π(α(x, v)). Then t is half the length of that geodesic, and ω = (y, w) ∈
∂0SM = S(∂M) is the geodesic midpoint y and velocity w at this midpoint between x

and π(α(x, v)) on ∂M .
Before proving this, we first recall a result which is very close to the original

definition of blowups in Section 4.1.

Lemma 4.2. — Let (N, g) be a Riemannian manifold.
(i) Let y ∈ N and suppose that ε > 0 is such that the exponential map

Ey : SyN × (0, ε) −→ N ∖ {y}

is a diffeomorphism onto its image. Then the map Ey lifts to a smooth diffeomorphism
Êy : SyN × [0, ε) −→ [N, {y}],

which has image a neighborhood of the front face in [N, {y}].
(ii) Suppose that U is a punctured neighborhood of the diagonal in N×N such that

Φ: SN × (0, ε) ∋ (x, v, t) −→ (x,Expx(tv)) ∈ U
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is a diffeomorphism onto its image, then Φ lifts to a smooth diffeomorphism

Φ̂ : SN × [0, ε) ∋ (x, v, t) −→ (x,Expx(tv)) ∈ [N ×N,∆],

onto a neighborhood of the front face.

Proof. — For (i), take exponential normal coordinates centered at y and define polar
coordinates ((x− y)/|x− y|, |x−y|). By definition, these are smooth on [N, {y}] near
the front face. Furthermore, Φ(v, t) = (v/|v|, t), and this extends smoothly and dif-
feomorphically to t = 0. This is obviously a local diffeomorphism.

The second assertion follows by simply noting that the construction in (i) varies
smoothly in parameters along the diagonal. □

Proof of Lemma 4.1. — Let φ∂
t : S(∂M) → S(∂M) be the geodesic flow on S(∂M).

For ε > 0 small, define

U+
ε SM = {(x, v) ∈ ∂SM : 0 < µ(x, v) < ε},

U−
ε SM = {(x, v) ∈ ∂SM : −ε < µ(x, v) < 0}.

Then the maps

Θ: ∂0SM × (0, ε) ∋ (ω, t) 7−→ (π(φ∂
−t(ω)), π(φ

∂
t (ω))) ∈ ∂M × ∂M,

Ψ: U+
ε SM ∋ (x, v) 7−→ (π(x, v), π(α(x, v))) ∈ ∂M × ∂M,

are diffeomorphisms onto punctured neighborhoods of the diagonal in ∂M×∂M . Sim-
ilarly, one can define Θ and Ψ on ∂0SM×(−ε, 0) and U−

ε SM , respectively. Thus (ω, t)
is a coordinate chart on UεSM := U+

ε SM ∪ U−
ε SM . Denoting by S(x, x′) = (x′, x)

the involution swapping the two factors of ∂M × ∂M , then Θ(ω,−t) = S(Θ(ω, t)),
and similarly, Ψ(α(x, v)) = S(Ψ(x, v)) for all (x, v) ∈ UεSM . Note that UεSM is a
punctured neighborhood of ∂0SM in ∂SM that is stable under the scattering relation.
This gives

(ω, t)(α(x, v)) = Θ−1(Ψ(α(x, v)))

= Θ−1(S(Ψ(x, v))) = (ω,−t)(x, v), (x, v) ∈ UεSM
(20)

and hence (ω, t) are the coordinates we are looking for, provided that they extend
smoothly to ∂0SM .

To prove this last fact, we show that Θ,Ψ extend to smooth maps

Θ̂ : ∂0SM × [0, ε) −→ [∂M × ∂M,∆], Ψ̂ : U+
ε SM ∪ ∂0SM −→ [∂M × ∂M,∆],

where, if (x, (x′ − x)/|x′ − x|, |x′−x|) denote local coordinates on [∂M×∂M,∆] near
the front face (| · | is Euclidean distance and [v] denotes the equivalence class of v in
the spherical normal bundle of ∆), we have

Θ̂((y, w), 0) = (y, [w], 0) = Ψ̂((y, w)), (y, w) ∈ ∂0SM.

Assuming this, for the moment, then the proof follows by setting (ω, t) = Θ̂−1◦Ψ̂(x, v)

on U+
ε SM∪∂0SM . Note that t = 0 on ∂0SM and ω is the identity map there. By (20),

this extends to α(U+
ε SM) ∪ ∂0SM .
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Finally, to construct Θ̂: for each y ∈ ∂M , and in terms of coordinates

(x, (x′ − x)/|x′ − x|, |x′ − x|)

on [∂M×∂M,∆] (where x, x′ are written in normal exponential coordinates w.r.t. y),
we have

Θ̂((y, w), t) = (y − tw, [w], 2t|w|),
which clearly extends smoothly to t = 0. The basepoint y is a parameter in this
construction and everything can be carried out in such a way as to depend smoothly
on y.

As for Ψ̂, Let M̃ be a smooth extension of M , y ∈ ∂M and V a small neighborhood
of y in M̃ . By Lemma 4.2.(i), the exponential map Ey in M̃ lifts to a smooth map
Êy : SyM̃ × [0, ε)→ [U, {y}]. Now define the composition

U+
ε SyM ∪ ∂0SyM ∋ v 7−→ (v, τ(y, v)) 7−→ Ψ̂(y, v) := Êy(v, τ(y, v)),

This is smooth. To show that it takes values in [V ∩ ∂M, {y}] (and not just in
[M̃, {y}]), first suppose that v ∈ U+

ε SyM . Then Ψ̂(y, v) remains in ∂M ∖ {y}.
As v → w ∈ ∂0SyM , convexity of M implies that τ(y, v)→ 0 and thus for w ∈ ∂0SyM ,
Êy(w, τ(y, w)) = (w/|w|, 0) ∈ [V ∩ ∂M, {y}]. Once again, this may be carried out
smoothly in y. □

4.3. Special index sets and the spaces C∞
α,±(∂+SM). — Recall the definition (9)

of C∞
α,±(∂+SM). A first observation is that the function τ̃ ∈ C∞(∂SM) defined

in (15) satisfies τ̃ ◦α = −τ̃ , and hence τ̃ = A−(τ |∂+SM ) and τ |∂+SM ∈ C∞
α,−(∂+SM).

Moreover, by [22, Lem. 6.11], the strict convexity implies that there is a positive
function h on ∂SM such that τ̃ = hµ on ∂SM with h(y, w) = 2/IIy(w,w) for (y, w) ∈
∂0SM , so that τ̃ vanishes simply at ∂0SM . With these considerations in mind, we
first prove the following.

Lemma 4.3. — The space of all smooth functions on ∂+SM decomposes as

C∞(∂+SM) = C∞
α,+(∂+SM) + C∞

α,−(∂+SM).

Furthermore,

(21) C∞
α,−(∂+SM) = τC∞

α,+(∂+SM).

Proof. — To prove the first assertion, fix any f ∈ C∞(∂+SM). Using a Seeley exten-
sion operator across the hypersurface ∂0SM , extend f to ∂−SM into f̃ ∈ C∞(∂SM).
Now write f̃ = f̃++ f̃− where f̃± = 1

2 (f̃ ±α∗f̃). Since f̃± ∈ C∞(∂SM), we have that
f± := f̃±|∂+SM ∈ C∞

α,±; since f = f+ + f−, the result follows.
As for the second assertion, the implication ⊃ is clear. The other inclusion follows

from the fact that if f ∈ C∞
α,−, then it vanishes to order at least 1 at ∂0SM , so the

ratio f/τ is well-defined, smooth on ∂+SM , and belongs to C∞
α,+ since A+(f/τ) =

(A−f)/(A−τ). □

The intersection C∞
α,+ ∩ C∞

α,− equals Ċ∞(∂+SM), the space of smooth functions
vanishing to infinite order at ∂0SM .
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C∞
α index sets on ∂+SM . — We now define a class of polyhomogeneous functions

which are a slight generalization of these classes of even and odd functions. As above,
this definition is natural given the existence of the involution α.

Definition 4.4 (α-boundary defining function). — We say that a boundary defin-
ing function t for ∂0SM in ∂SM is an α-boundary defining function (α-bdf) if
t ∈ C∞

α,−(∂+SM).

Three examples of α-bdfs are τ̃ , µ− µ ◦ α, and the coordinate t from Lemma 4.1.

Lemma 4.5 (Characterization of C∞
α,±(∂+SM)). — Let t be any α-bdf for ∂+SM .

Then for any f ∈ C∞
α,+(∂+SM), there exist smooth functions a2k on ∂0SM such that

f ∼
∑
k⩾0

t2ka2k.

Likewise, if f ∈ C∞
α,−(∂+SM), then there exist smooth functions a2k+1 on ∂0SM such

that
f ∼

∑
k⩾0

t2k+1a2k+1.

Proof. — If f ∈ C∞
α,+(∂+SM), then

A+f ∈ C∞(∂SM) and A+f(x, v) = A+f(α(x, v)).

Fix coordinates (t, ω) as in Lemma 4.1 in a neighborhood of ∂0SM . If t denotes
any other α-bdf, the function t/t belongs to C∞

α,+ and is non-vanishing in a neigh-
borhood of ∂0SM . In particular the jacobian of the map (t, ω) 7→ (t, ω) is non-
vanishing in a neighborhood of ∂0SM , and thus we can use (t, ω) as local coor-
dinates near ∂0SM . Taylor-expanding A+f near {t = 0} = ∂0SM , we have that
A+f(x, v) ∼

∑
p⩾0 ap(ω)t

p for some functions ap ∈ C∞(∂0SM). Then the symmetry
A+f(t, ω) = A+f(α(t, ω)) = A+f(−t, ω) forces all odd coefficients a2k+1 to vanish.

The case f ∈ C∞
α,− is a direct consequence of what was just proved, equation (21),

and the fact that t/τ ∈ C∞
α,+. □

Definition 4.6 (C∞
α -index sets on ∂+SM and A∗

phg,α(∂+SM) spaces)
A C∞

α -index set on ∂+SM is an index set, as defined in Section 2.1, which satisfies
(c’) if (z, k) ∈ E, then (z + 2, k) ∈ E,

rather than condition (c) which distinguishes what we have been calling C∞ index sets.
With E a C∞

α -index set, we say that a function f ∈ C∞((∂+SM)o) belongs to
AE

phg,α(∂+SM) if for some α-bdf t for ∂+SM , there exist az,k ∈ C∞(∂0SM) for each
(z, k) ∈ E such that

f ∼
∑

(z,k)∈E

tz(log t)kaz,k.

Note in particular that, by Lemma 4.5,

C∞
α,+(∂+SM) = A

2N0×{0}
phg,α (∂+SM), C∞

α,−(∂+SM) = A
(2N0+1)×{0}
phg,α (∂+SM).
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Coordinate invariance. — We now show that the spaces AE
phg,α(∂+SM) are invariant

under change of α-bdf and multiplication by C∞
α,+(∂+SM) functions.

Proposition 4.7. — Fix E a C∞
α -index set.

(a) If f ∈ C∞((∂+SM)o) has an asymptotic expansion with index set E relative
to some α-bdf t, and if t′ is any α-bdf for ∂+SM , then

f ∼
∑

(z,k)∈E

t′z(log t′)kbz,k.

where the bz,k ∈ C∞(∂0SM). Hence elements of AE
phg,α(∂+SM) indeed have asymp-

totic expansions with index set at most E with respect to any α-bdf.
(b) The set AE

phg,α(∂+SM) is stable under multiplication by C∞
α,+(∂+SM) func-

tions.

Proof

(a) By assumption, f has an expansion of the desired type, with index set E, with
respect to one particular α-bdf t.

If t′ is any other α-bdf, then t/t′ is a smooth, everywhere positive function which
has only even terms in its Taylor expansion at ∂0SM with respect to either t or t′.
Using Lemma 4.5 and writing

t

t′
∼

∑
p⩾0

(t′)2pc2p, c2p ∈ C∞(∂0SM), c0 > 0,

then

tz(log t)k = (t′)zcz0

(
1 +

∑
p⩾1

(t′)2p
c2p
c0

)z(
log t′ + log c0 + log

(
1 +

∑
p⩾1

(t′)2p
c2p
c0

))k

.

All terms are of the form (log t′)ℓ(t′)z+2p for 0 ⩽ ℓ ⩽ k and p ⩾ 0, and these exponent
pairs all lie in E.

(b) By Lemma 4.5, at the level of index sets and relative to an α-bdf t, multiplying
an element of AE

phg,α by f ∈ C∞
α,+ will induce operations of the form (z, k)→ (z+2p, k)

(where 2p ∈ 2N0 denotes an exponent appearing in the Taylor expansion of f) for
(z, k) ∈ E, and by virtue of property (c′), the terms generated remain within the
index set E. □

Finally, we show that (17), originally established for the geodesic distance func-
tion ρ and geodesic length function τ , holds for any bdf for ∂M and any α-bdf for
∂0SM .

Proposition 4.8. — Let (M, g) be convex and non-trapping, and ρ1 a bdf for ∂M

and τ1 an α-bdf for ∂0SM . Then there exists a smooth positive function F1 on ∂SM×
[0, 1] such that

ρ1(Υ(x, v, u)) = τ21 (x, v)u(1− u)F1(x, v, u).

for all (x, v, u) ∈ ∂SM × [0, 1].

Proof. — This follows immediate by combining (17) with the facts that ρ/ρ1 ∈
C∞(M) and τ/τ1 ∈ C∞

α,+(∂+SM) are both everywhere nonvanishing. □
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5. Proofs of the main results

5.1. Mapping properties of weighted X-ray transform. Proof of Theorem 2.1 and
Proposition 2.9

Proof of Theorem 2.1. — Fix the bdf ρ for M (which induces a bdf for SM), and write
f ∼

∑
(z,k)∈E

ρz(log ρ)kfz,k, fz,k ∈ C∞(∂SM).

If h ∈ C∞(∂SM), then setting t = τu and using that ρ ◦Υ = τ2u(1− u)F for some
strictly positive F ∈ C∞(∂+SM × [0, 1]), we have

Iϕ(ρz(log ρ)kh) = τ

∫ 1

0

(ρ ◦Υ)z(log ρ ◦Υ)kh(Υ)ϕ(Υ) du

= τ2z+1

∫ 1

0

(u(1− u))z(F z)(log(τ2u(1− u)F ))kh(Υ)ϕ(Υ) du.

Expanding the logarithm, we arrive at

(22) Iϕ(ρz(log ρ)kh) = τ1+2z
k∑

ℓ=0

2k
(
k

ℓ

)
(log τ)ℓa1+2z,ℓ(x, v),

where, for 0 ⩽ ℓ ⩽ k,

a1+2z,ℓ(x, v) =

∫ 1

0

(u(1− u))zF (x, v, u)z(log(u(1− u)F ))k−ℓh(Υ)ϕ(Υ) du.

Using the symmetries Υ(α(x, v), u) = Υ(x, v, 1−u) and F (α(x, v), u) = F (x, v, 1−u),
we see that a1+2z,ℓ ∈ C∞

α,+(∂+SM), thus a1+2z,ℓ contributes with an asymptotic
expansion of the form a1+2z,ℓ ∼

∑∞
p=0 τ

2pa′1+2z,ℓ,p(ω) with a′1+2z,ℓ,p ∈ C∞(∂0SM).
Hence (22) is an asymptotic sum involving only the terms τ1+2z+2p(log τ)ℓ, 0 ⩽ ℓ ⩽ k

and p ⩾ 0. Since τ is an α-bdf, we see that the corresponding index set generated
takes the asserted form.

Finally, the most singular term is when ℓ = k, and its coefficient at (y, w) ∈ ∂0SM

equals∫ 1

0

2k(u(1− u))zF (y, w, u)zh(Υ)ϕ(Υ) du = 2kB(z + 1, z + 1)IIzy(w,w)ϕ(y, w)h(y, w).

This uses the identity (c) written just before Lemma 3.1. □

Proof of Proposition 2.9. — Let ρ be a bdf on M and t an α-bdf on ∂+SM . By Propo-
sition 4.8, there exists a smooth positive function F on ∂SM × [0, 1] such that
(23) ρ(Υ(x, v, u)) = t2(x, v)u(1− u)F (x, v, u).

Assume that F is uniformly bounded by some constant F∞. Fixing some constant β,
to be chosen later, we have∫

∂+SM

(I0(ρ
γf))2tβ µdΣ2d−2 =

∫
∂+SM

(∫ τ

0

(f · ργ)(φt) dt
)2

tβ µdΣ2d−2

=

∫
∂+SM

(∫ 1

0

(f · ργ) ◦Υ du
)2

tβτ2 µdΣ2d−2 (t = τu)

⩽
∫
∂+SM

(∫ 1

0

(f2ρδ) ◦Υ du
)(∫ 1

0

ρ2γ−δ ◦Υ du
)
tβτ2µdΣ2d−2.
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Now, using (23),∫ 1

0

ρ2γ−δ ◦Υ du = t4γ−2δ

∫ 1

0

(u(1− u))2γ−δF (x, v, u)2γ−δ du

⩽ t4γ−2δF 2γ−δ
∞

∫ 1

0

(u(1− u))2γ−δ du.

The u-integral is finite provided 2γ − δ > −1, so we arrive at∫
∂+SM

(I0(ρ
γf))2tβµdΣ2d−2 ⩽ C

∫
∂+SM

(∫ τ

0

(f2ρδ)(φt) dt
)
tβ+4γ+1−2δµdΣ2d−2,

where C := F 2γ−δ
∞ B(2γ − δ + 1, 2γ − δ + 1)(τ/t)∞. Here B is the Beta function as

defined in (7), and τ/t is bounded above since they are both α-bdfs. We now set
β = 2δ − 4γ − 1 and use Santaló’s formula to conclude that∫

∂+SM

(I0(ρ
γf))2tβ µdΣ2d−2 ⩽ C

∫
SM

f2ρδ dΣ2d−1 ⩽ C Vol(Sd−1)

∫
M

f2ρδ dM.

This is the desired conclusion. □

5.2. Index sets on M via Mellin transform. — We now undertake a closer exam-
ination of the integrals which give the coefficients of the terms in the expansions
appearing in Theorem 2.2, with the dual goals of showing that certain of these van-
ish, and of computing the leading coefficients. A closer understanding of the Beta
function and certain generalizations of it are the crucial components in this analysis.

5.2.1. Beta-type functions

Facts about the Beta function. — The Beta function is given in terms of the Gamma
function by the classical formula B(z, z) = Γ(z)Γ(z)/Γ(2z). It is also well known that
Γ(z) has simple poles at the negative integers, with

lim
z→−n

(z + n)Γ(z) = Res(Γ,−n) = (−1)n

n!
,

hence B(z, z) also has only simple poles at negative integers. Moreover, for n ∈ N0,

(24)
lim

z→−n
(z + n)B(z, z) = 2 lim

z→−n

(z + n)Γ(z)(z + n)Γ(z)

2(z + n)Γ(2z)

= 2
((−1)n/n!)2

(−1)2n/(2n)!
= 2

(
2n

n

)
.

In addition, B(z, z) has a simple zero at every z ∈ −N0 − 1/2, with

lim
z→−n−1/2

B(z, z)

z + n+ 1/2
= 2 lim

z→−n−1/2

Γ(z)2

(2z + 2n+ 1)Γ(2z + 2n+ 1)

= 2Γ(−n− 1/2)2
1

limζ→−2n−1 Γ(ζ + 2n+ 1)(ζ + 2n+ 1)

= −2(2n+ 1)! Γ(−n− 1/2)2.
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Since Γ(−n− 1/2) = (−4)n+1(n+1)!
(2n+2)!

√
π, we obtain, finally,

(25) lim
z→−n−1/2

B(z, z)

z + n+ 1/2
= −42n+2

n+ 1
π

(
2n+ 2

n+ 1

)−1

.

Generalized Beta functions. — We now consider expressions of the form

β[f ](z) :=

∫ 1

0

f(u)(u(1− u))z−1 du,

where f is continuous on [0, 1] and satisfies f(u) = f(1 − u). The integral defining
β[f ] converges absolutely and defines a holomorphic function on the open right half
plane {Re(z) > 0}. If f has higher regularity, it admits a meromorphic extension to
a larger half-plane:

Proposition 5.1. — If f ∈ Ck([0, 1]), then β[f ] continues meromorphically to
{Re(z) > −k}, with at most simple poles at 0,−1,−2, . . . ,−k + 1.

Proof of Proposition. — The identity (u−1/2)2 = 1/4−u(1−u) leads to the recursion
formula

(26) β[(u− 1/2)2f ](z) =
1

4
β[f ](z)− β[f ](z + 1).

Thus if f ∈ C1([0, 1]), then

(27) β[f ](z) =
2

z
((2z + 1)β[f ](z + 1) + β[(u− 1/2)f ′](z + 1)) , Re(z) > 0;

this defines the continuation to {Re(z) > −1} with a simple pole at z = 0 and residue
there 2β[f ](1) + β[(u− 1/2)f ′](1). This formula is proved by integration by parts:

β[(u− 1/2)f ′](z + 1) =

∫ 1

0

(u− 1/2)f ′(u)(u(1− u))z du

= −
∫ 1

0

f(u)[(u(1− u)z + z(u− 1/2)(1− 2u)(u(1− u))z−1] du

= −β[f ](z + 1) + 2zβ[(u− 1/2)2f ](z)

(26)
= −β[f ](z + 1) + 2z( 14β[f ](z)− β[f ](z + 1)),

The extension to larger values of k follows by repeated application of (27). □

5.2.2. Mellin functionals. — Let (M, g) be a smooth Riemannian manifold with
boundary ∂M , volume form dM and boundary defining function ρ. First recall that
a b-density is a density with a ‘simple pole’ in the bdf, i.e., a smooth multiple of
dM/ρ. Fix a cutoff function χ ∈ C∞

c [0, ε) with χ ≡ 1 near 0. Then for any H ∈ At,
define the Mellin functional

HM(y; z) :=

∫ ε

0

ρzH(ρ, y)χ(ρ)
dρ

ρ
dA(y),

This is a (weakly) holomorphic function {Re(z) > −t} 7→ D′(∂M).
If H is polyhomogeneous, a standard result relates the index set of H with the

poles of HM.
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Lemma 5.2. — The function H is polyhomogeneous with index set E, where inf E ⩾ t,
if and only if HM extends meromorphically to the entire complex plane, with a pole of
order k + 1 at −γ whenever (γ, k) ∈ E, and where η 7→ HM(ξ + iη, y) decays rapidly
for each ξ (for z = ξ + iη outside the set of poles). Specifically, given a ∈ C∞(∂M),
the term a(y)ργ logk ρ is present in the asymptotic expansion of H off of ∂M if and
only if the Laurent expansion of HM about the pole −γ takes the form

HM(z, y) =
(−1)kk!

(z + γ)k+1
(a(y) + O(z + γ)).

The proof is well-known, see [16], [14, App. A].

Remark 5.3. — The rapid decay of HM in vertical directions mirrors the conormality
of H. In other words, if (ρ∂ρ)

ℓH lies in some fixed function space for all ℓ ⩾ 0,
then ζℓHM lies in the Fourier transform of that space. The functions encountered
throughout this paper are usually very easy to recognize as conormal; it is their
polyhomogeneous nature which is our main focus.

5.3. Proof of Theorem 2.2

Suppose g takes the form

g = a(ω)χ(τ)τγ logk τ, a ∈ C∞(∂0SM),

where χ ∈ C∞([0, ε)) with 1[0,ε/3] ⩽ χ ⩽ 1[0,2ε/3] for ε small enough. This function
is obviously conormal, then as a result of Lemma 3.2 and [16, Th. 3 & 5], so is I♯0g.
Then by Remark 5.3 the decay of its Mellin transform in the imaginary direction is
clear.

We now determine the index set of I♯0gdM/ρ and the coefficients of its expansion,
at least in the range where these are local. Recall that, by Lemma 3.2,

I♯0g
dM

ρ
= π̂⋆

(
χ(τ)τµg

dΣ2d−2du

τ2u(1− u)F

)
= π̂⋆

(
χ(τ)

τg

F

µ dΣ2d−2

τ2
du

u(1− u)

)
= π̂⋆

(
χ(τ)a(ω)

τγ+1 logk τ

F

µ dΣ2d−2

τ2
du

u(1− u)

)
.

By Lemma 5.2, if h ∈ C∞(∂M), we have

(28) ⟨(I♯0g)M, h⟩(z) . . .

=

∫
∂M

h(y)

∫ ε

0

ρzπ̂⋆

(
a(ω)

τγ+1 logk τ

F
χ(τ)

µdΣ2d−2

τ2
du

u(1− u)

)
=

∫
∂+SM

∫ 1

0

h(y ◦ π̂)τ2z+γ+1 logk τ(u(1− u))zF z−1χ(τ)a(ω)
du

u(1− u)

µdΣ2d−2

τ2

=

∫
∂+SM

a(ω)τ2z+γ+1 logk τχ(τ)B(τ, ω; z)
µdΣ2d−2

τ2
,
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where, for (τ, ω) ∈ ∂+SM , we have defined

(29) B(τ, ω; z) :=

∫ 1

0

h(y ◦ π ◦Υ(x, v, u))F (x, v, u)z−1(u(1− u))z−1 du.

Note that we used (x, v) and (τ, ω) interchangeably above. Certainly B is holomorphic
for Re(z) > 0.

The following three lemmas will be used to complete the proof of Theorem 2.2.
Their proofs appear in the two subsequent sections 5.4 and 5.5.

Lemma 5.4. — For all z with Re(z) > 0, the function B(·; z) belongs to C∞
α,+(∂+SM).

Furthermore, B(·; z) continues meromorphically to C as a C∞
α,+(∂+SM)-valued func-

tion with at most simple poles at −N0.

By the first part of this,

(30) B(τ, ω; z) ∼
∞∑
k=0

τ2kBk(ω; z), where Bk(ω; z) =
1

(2k)!
∂2k
τ |τ=0B(τ, ω; z).

In particular, combining (29) with the fact that F (x, v, u) = IIx(v, v) and Υ(x, v, u) =

(x, v) for all (x, v) ∈ ∂0SM and u ∈ [0, 1], we directly have

B0(ω; z) = h(π(ω))II(ω)z−1B(z, z).

Using the structure of the poles and zeroes of the Beta function described in Sec-
tion 5.2.1, we can say a bit more:

Lemma 5.5. — For each k, Bk(ω; z) has at most simple poles at −N0 and at least
simple zeros at −N0 − 1/2− k.

The density µdΣ2d−2 is the restriction to ∂+SM of a smooth density on ∂SM

that is invariant under scattering relation. Indeed, α∗(µdΣ2d−2) = µdΣ2d−2 (see
[24, Prop. 3.6.10]). Locally near ∂0SM , using coordinates (τ̃ , ω), write this density
as ℓ(τ̃ , ω) dτ̃ dΩ for some smooth function ℓ. The invariance under α∗ and the fact
that α∗dτ̃ = −dτ̃ and α∗dΩ = dΩ implies that ℓ ◦ α = −ℓ, and hence ℓ|∂+SM ∈
C∞

α,−(∂+SM). This implies that, upon restricting to ∂+SM where τ̃ = τ ,

(31) µdΣ2d−2 ∼
∞∑
p=0

sp(ω)τ
2p+1dτdΩ, sp ∈ C∞(∂0SM).

Lemma 5.6. — The coefficient s0 is given by

(32) s0(ω) =
IIy(w,w)

2

4
, ω = (y, w) ∈ ∂0SM,

where IIy is the second fundamental form of ∂M .

Now, combining (31) with (30) yields

(33) B(τ, ω; z)
µdΣ2d−2

τ2
∼

∞∑
p=0

τ2p
[ p∑
q=0

Bq(ω; z)sp−q(ω)

]
dτ

τ
dΩ.
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Returning to the main calculation (28) with the asymptotic expansion (33) in mind,
the contribution of the pth term of (33) to ⟨(I♯0g)M, h⟩(z) equals∫

∂+SM

a(ω)τ2(z+p)+γ+1 logk τ

[ p∑
q=0

Bq(ω; z)sp−q(ω)

]
χ(τ)

dτ

τ
dΩ

=

∫
∂0SM

a(ω)

[ p∑
q=0

Bq(ω; z)sp−q(ω)

]
dΩ︸ ︷︷ ︸

Ap,1(z)

·
∫ ε

0

τ2(z+p)+γ+1 logk τ χ(τ)
dτ

τ︸ ︷︷ ︸
Ap,2(z)

.

Thus the pole structure of the pth term is a result of the interaction of the pole and
zero structures of these two factors. By Lemma 5.5, Ap,1(z) has at most simple poles
at −N0 and at least simple zeros at −N0 − p− 1/2. The Ap,2 term equals

Ap,2(z) = 2−k∂k
z

(∫ ε

0

τ2(z+p)+γ+1χ(τ)
dτ

τ

)
= 2−k∂k

z

( 1

2(z + p) + γ + 1
+ E(z)

)
=

(−1)kk!
(2(z + p) + γ + 1)k+1

+ Eγ,k,p(z),

where Eγ,k,p(z) := 2−k∂k
zE(z) is entire. Hence Ap,2 has a pole of order k + 1 at

z = −(γ + 1)/2− p.
We now split cases according to (11), discussing how the zeros and poles structures

of Ap,1 and Ap,2 interact.

Case γ ∈ 2N0. — Write γ = 2m for some m ∈ N0. For all p ⩾ 0, the product
Ap,1(z)Ap,2(z) inherits the simple poles of Ap,1, and the pole of Ap,2 loses one order
(or disappears if the pole was originally simple) due to its interaction with one of the
simple zeros of Ap,1.

In the case where k ⩾ 1, there is a pole of order k at −(γ + 1)/2 − p associated
with the term ρ(γ+1)/2+p logk−1 ρ, with coefficient〈
a((γ+1)/2+p,k−1), h

〉
∂M

=
−k
2k+1

∫
∂0SM

a(ω)

p∑
q=0

lim
z→−(γ+1)/2−p

( Bq(ω; z)

z + (γ + 1)/2 + p

)
sp−q(ω) dΩ.

When p = 0, we compute

⟨a(m+1/2,k−1), h⟩∂M . . .

=
−k
2k+1

∫
∂0SM

a(ω) lim
z→−m−1/2

( B0(ω; z)

z +m+ 1/2

)
s0(ω) dΩ

=
−k
2k+3

lim
z→−m−1/2

( B(z, z)

z +m+ 1/2

)∫
∂0SM

a(ω)h(π(ω))II(ω)−m+1/2 dΩ

(25)
=

2πk

2k+3

42m+2

2m+ 2

(
2m+ 2

m+ 1

)−1 ∫
∂0SM

a(ω)h(π(ω))II(ω)−m+1/2 dΩ.

This gives the first expression in (12).
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Case γ ∈ 2Z+ 1. — Write γ = 2m− 1 for some m ∈ Z and fix p ⩾ 0.
If p < −m (this is vacuous if m > 0), then the pole of Ap,2 at z = −m − p does

not interact with the poles of Ap,1, and the product Ap,1Ap,2 has simple poles at −N0

and a pole of order k + 1 at −m − p. The most singular coefficient in that case is
unaffected by the pole interaction, thus the computation of the coefficient is similar
computation to case 3 below.

If p ⩾ −m, then −m − p ∈ N0 and the pole of Ap,2 at z = −m − p interact with
the poles of Ap,1 at −N0. The product Ap,1Ap,2 has simple poles at −N0 and a pole
of order k + 2 at z = −m − p. The latter yields the term ρ(γ+1)/2+p logk+1 ρ, with
coefficient〈
a((γ+1)/2+p,k+1), h

〉
∂M

=
−1

(k + 1)2k+1

∫
∂0SM

a(ω)

[ p∑
q=0

Res−(γ+1)/2−p(Bq(ω; ·))sp−q(ω)

]
dΩ.

When m ⩽ 0 and p = 0, the coefficient of the most singular term takes the form〈
a(m,k+1), h

〉
∂M

=
−1

(k + 1)2k+1

∫
∂0SM

a(ω)Res−m(B0(ω; ·))s0(ω) dΩ

(24)
=
−Res−m(B(z, z))

(k + 1)2k+1

∫
∂0SM

a(ω)II(ω)−m−1h(π(ω))s0(ω) dΩ

(32)
=

−
(
2m
m

)
(k + 1)2k+2

∫
∂0SM

a(ω)II(ω)−m+1h(π(ω)) dΩ.

Decomposing the Sasaki measure as dΩ = dA(y) dSy(w), we obtain the middle
expression in (12).

Case γ /∈ N0 ∪ 2Z + 1. — For every p ⩾ 0, the pole of Ap,2 never interacts with the
zeros or poles of Ap,1, hence the product Ap,1Ap,2 has simple poles at −N0 and a pole
of order k + 1 at −(γ + 1)/2 − p. The latter gives the term ρ(γ+1)/2+p logk ρ, with
coefficient〈

a((γ+1)/2+p,k), h
〉
∂M

=
1

2k+1

∫
∂0SM

a(ω)

[ p∑
q=0

Bq (ω;−(γ + 1)/2− p) sp−q(ω)

]
dΩ.

When p = 0,〈
a((γ+1)/2,k), h

〉
∂M

=
1

2k+1

∫
∂0SM

a(w)B0 (w;−(γ + 1)/2) s0(w) dΩ

=
1

2k+3

∫
∂0SM

a(w)h(π(w))II(w)−(γ+1)/2−1(II(w))2 dΩ

=
1

2k+3
B (−(γ + 1)/2,−(γ + 1)/2)

×
∫
∂M

h(y)

∫
Sy(∂M)

a(y, w)IIy(w)
(−γ+1)/2 dSy(w) dA(y).

This is the bottom expression of (12). The proof of Theorem 2.2 is complete. □
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5.4. Facts about Beta functionals. Proof of Lemmas 5.4 and 5.5

Proof of Lemma 5.4. — Considering (29), note that the functions Υ and F are defined
and smooth on ∂SM × [0, 1] and satisfy

(34) F (x, v, u) = F (α(x, v), 1− u), Υ(x, v, u) = Υ(α(x, v), 1− u).

This implies that B(· ; z) is the restriction to ∂+SM of a function B̃ ∈ C∞(∂SM)

which satisfies, by virtue of the change of variables u 7→ 1− u,

B̃(α(x, v); z) =

∫ 1

0

h(y ◦Υ(α(x, v), u))F (α(x, v), u)z−1 du

(u(1− u))1−z

(34)
=

∫ 1

0

h(y ◦Υ(x, v, 1− u))F (x, v, 1− u)z−1 du

(u(1− u))1−z
= B̃(x, v; z),

hence B(·; z) ∈ C∞
α,+(∂+SM).

Next, the integrand in B̃ is smooth in all its arguments, so we can use Propo-
sition 5.1 (with an inconsequential parameter dependence) to extend B̃ meromor-
phically to C with at most simple poles at −N0. An inductive use of the functional
relation (27) shows that B̃(α(x, v); z) = B̃(x, v; z) holds on each strip

{−k − 1 < Re(z) ⩽ −k}∖ {−k}.

Restricting B̃ to ∂+SM , we obtain the conclusion. □

Proof of Lemma 5.5. — We find an expression for each Bk. First rewrite

F (x, v, u) =
ρ(π ◦Υ(x, v, u))

T (Υ(x, v, u))
,

where for (x, v) ∈ SM , T (x, v) = τ(x, v)τ(x,−v). Note that T is smooth on SM , even
on each fiber, and satisfies XT = τ̃ , see [24, Lem. 3.2.11]. The function

(x, v, t) 7−→ ρ(π(φt(x, v)))T (φt(x, v))

is smooth in all its arguments and nonvanishing for (x, v) near ∂0SM and t ∈
[0, τ(x, v)]. The function H(x, v; z) = h(y) (ρ/T )

z is smooth in (x, v) and entire
in z. If (x, v) ∈ U+

(0,ε)SM , i.e., µ(x, v) ∈ (0, ε), the Taylor expansion centered at
t = τ(x, v)/2 takes the form

H(φt(x, v); z) =

2k∑
ℓ=0

(
t− τ(x, v)

2

)ℓ

Hℓ(x, v; z) +
(
t− τ(x, v)

2

)2k+1

R2k(x, v, t; z),

where

Hℓ(x, v; z) :=
1

ℓ!

dℓ

dtℓ

∣∣∣∣
t=τ(x,v)/2

H(φt(x, v); z) =
1

ℓ!
XℓH(φτ(x,v)/2(x, v); z),

R2k(x, v, t; z) :=
1

(2k)!

∫ 1

0

(1− s)2kX2k+1H(φτ/2+s(t−τ/2)(x, v); z) ds.
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This gives

H(Υ(x, v, u); z) =

2k∑
ℓ=0

τ ℓ(u− 1/2)ℓHℓ(x, v; z) + τ2k+1(u− 1/2)2k+1Rk(x, v, τu; z).

Note that H2ℓ is entire in z for every ℓ ⩾ 0 and also lies in C∞
α,+ since it is the restriction

to ∂+SM of the function H̃2ℓ(x, v; z) :=
1

(2ℓ)!X
2ℓH(φτ̃(x,v)/2(x, v); z) which is smooth

on ∂SM and α-invariant.
Inserting this expansion into the expression for B(x, v; z), all integrals involving

odd powers of (u− 1/2) vanish, so we are left with

B(x, v; z) =

∫ 1

0

H(Υ(x, v, u); z)(u(1− u))z−1 du

=
k∑

ℓ=0

τ2ℓH2ℓ(x, v; z)

∫ 1

0

(u− 1/2)2ℓ(u(1− u))z−1 du

+ τ2k+1

∫ 1

0

(u− 1/2)2k+1Rk(x, v, τu; z)(u(1− u))z du.

Using the identity

(u− 1/2)2ℓ =
(1
4
− u(1− u)

)ℓ

=

ℓ∑
p=0

(
ℓ

p

)
(−1)p

4ℓ−p
(u(1− u))p,

we obtain ∫ 1

0

(u− 1/2)2ℓ(u(1− u))z−1 du =

ℓ∑
p=0

(
ℓ

p

)
(−1)p

4ℓ−p
B(z + p, z + p).

Further expanding H2ℓ(x, v; z) ∼
∑∞

q=0 τ
2qH2ℓ,q(z;ω), we obtain

B(τ, ω; z) ∼
∞∑
ℓ=0

τ2ℓ
∞∑
q=0

τ2qH2ℓ,q(ω; z)

[ ℓ∑
p=0

(
ℓ

p

)
(−1)p

4ℓ−p
B(z + p, z + p)

]

∼
∞∑
k=0

τ2k
k∑

ℓ=0

H2ℓ,k−ℓ(ω; z)

[ ℓ∑
p=0

(
ℓ

p

)
(−1)p

4ℓ−p
B(z + p, z + p)

]
︸ ︷︷ ︸

Bk(ω;z)

.

Interchanging the sums in ℓ and p, we arrive at

Bk(ω; z) =

k∑
p=0

B(z + p, z + p)(−1)p
[ k∑
ℓ=p

(
ℓ

p

)
H2ℓ,k−ℓ(ω; z)

4ℓ−p

]
.

Using the pole and zero structure of B(z, z), we see that B(z + p, z + p) has simple
poles at −N0−p and simple zeroes at −N0−1/2−p for each 0 ⩽ p ⩽ k. Furthermore,
all coefficients in brackets are entire functions of z. This gives the result. □
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5.5. Volume factors and proof of Lemma 5.6. — Let (Md, g) be a Riemannian man-
ifold with boundary, with tangent bundle π : TM →M , and recall the connection map
K∇ : T (TM) → TM : for ξ ∈ T(x,v)TM , choose a curve c(t) = (x(t),W (t)) ∈ TM

such that ċ(0) = ξ and W (t) ∈ Tx(t)M , and define

K∇ξ :=
D

dt
W (t)|t=0 (D : covariant differentiation).

Writing H(x, v) := kerK∇ and V (x, v) := ker dπ, we have a direct sum decomposition

T(x,v)TM = H(x, v)⊕ V (x, v),

where the restrictions dπ : H(x, v)
∼=−→ TxM and K∇ : V (x, v)

∼=−→ TxM are iso-
morphisms. Thus every ξ ∈ T(x,v)TM is uniquely identified with a pair (ξH , ξV ) =

(dπ(ξ),K∇ξ) ∈ TxM × TxM , and the Sasaki metric is defined by

G(x,v)(ξ, η) := gx(ξH , ηH) + gx(ξV , ηV ), ξ, η ∈ T(x,v)TM.

In local coordinates, any chart (x1, . . . , xd) on M induces a chart

(x1, . . . , xd, y
1, . . . , yd)

on TM , where the yj are linear coordinates on each fiber, and

H(x, v) = span
〈
δxi

:= ∂xi
− Γk

ijy
j∂yk , 1 ⩽ i ⩽ d

〉
,

V (x, v) = span
〈
∂yi , 1 ⩽ i ⩽ d

〉
.

Furthermore, dπ(δxi
) = K∇(∂yi) = ∂xi

.
If (x, v) ∈ SM , the Sasaki-orthogonal decomposition is

T(x,v)TM = T(x,v)SM
⊥
⊕ R(0, v).

Since (0, v) ∈ V (x, v), we also have

T(x,v)SM = RX ⊕H(x, v)︸ ︷︷ ︸
H(x,v)

⊕V(x, v), V(x, v) := {(0, w), w ∈ TxM, gx(w, v) = 0},

where X = (v, 0) and H(x, v) := {(w, 0), w ∈ TxM, gx(w, v) = 0}. As we have written
throughout the paper, dΣ2d and dΣ2d−1 = ι(0,v)dΣ

2d denote the Sasaki volume forms
on T (TM) and SM , respectively.

A unit normal to ∂SM at (x, v) ∈ ∂SM is given by (νx, 0), where νx is the unit
inner normal at x ∈ ∂M . We denote the Sasaki volume form on ∂SM by dΣ2d−2 =

ι(νx,0)dΣ
2d−1.

Recalling the function µ : ∂TM → R by µ(x, v) := gx(νx, v), we can write the tan-
gent bundles of the glancing manifolds ∂0TM = {µ = 0} and ∂0SM := {µ|SM = 0} as

T(x,v)∂0TM = {(ξH , ξV ) : ξH ∈ Tx∂M, g(ξV , νx) = IIx(v, ξH)},

T(x,v)∂0SM = {(ξH , ξV ) : ξH ∈ Tx∂M, ξV ∈ {v}⊥, g(ξV , νx) = IIx(v, ξH)}.

In particular, if s is the shape operator of ∂M , then

N0 :=
1√

g(sv, sv) + 1
(−sv, νx)
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is a unit normal to ∂0SM in ∂SM and to ∂0TM in ∂TM . Hence these glancing
manifolds inherit the volume forms ι(ν,0)ιN0dΣ

2d on ∂0TM and ι(ν,0)ιN0ι(0,v)dΣ
2d on

∂0SM .
On the other hand, identifying ∂0TM and ∂0SM with T (∂M) and S(∂M), respec-

tively, then in terms of the induced metric i∗g on ∂M , they inherit ∂M -Sasaki volume
forms dΣ2d−2

∂ and dΩ = ι(0,v)∂dΣ
2d−2
∂ . On T (T (∂M)), the Sasaki identification

T (T (∂M)) ≈ T (∂M)⊕ T (∂M)

is denoted (·, ·)∂ .
We now relate the ambient and intrinsic volume forms.

Lemma 5.7. — On ∂0TM = T (∂M),

ι(ν,0)ιN0dΣ
2d =

√
gx(sy, sy) + 1 dΣ2d−2

∂ , (x, y) ∈ T (∂M).

Consequently, since (0, v) = (0, v)∂ , we also have

(35) ι(ν,0)ιN0
ι(0,v)dΣ

2d = ιN0
dΣ2d−2 =

√
gx(sv, sv) + 1 dΩ

on T (S(∂M)).

Proof of Lemma 5.7. — Given boundary normal coordinates (x1, . . . , xd−1, r), where r
is a bdf, we take the induced coordinates (x1, . . . , xd−1, r, y1, . . . , yd−1, ρ) on TM . Thus
any tangent vector takes the form y=yi∂xi

+ρ∂r and the unit inner normal is ∂r.
We first claim that

(36) (w, 0)∂ = (w, IIx(w, y)ν), (x, y) ∈ T (∂M), w ∈ Tx(∂M).

Indeed, in these local coordinates, and for 1 ⩽ i ⩽ d− 1,

(∂xi
, II(∂xi

, y)ν) = ∂xi
−

d∑
j,k=1

Γk
ijy

j∂yk + II(∂xi
, y)∂ρ

= ∂xi −
d−1∑
j,k=1

Γk
ijy

j∂yk −
d∑

k=1

Γk
idρ∂yk −

d−1∑
j=1

Γd
ijy

j∂ρ + II(∂xi , y)∂ρ,

where yd = ρ. The last two terms cancel, and the middle sum is zero since ρ = 0 at
∂M . The remaining terms are simply (∂xi

, 0)∂ , which proves (36).
Now fix (x, y) ∈ T (∂M) and choose an orthonormal basis (e1, . . . , ed−1) for

Tx(∂M). Then Ai = (ei, 0)∂ and Bi = (0, ei)∂ , i ⩽ d− 1, is an orthonormal basis for
the Sasaki metric associated to i∗g on T∂M , so∣∣dΣ2d−2

∂ (A1, . . . , Ad−1, B1, . . . , Bd−1)
∣∣ = 1.

On the other hand, by (36),

Ai = (ei, (sy)iνx), Bi = (0, ei), 1 ⩽ i ⩽ d− 1,
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where (sy)i = g(ei, sy) = II(ei, y)). Hence,∣∣ι(ν,0)ιN0
dΣ2d(A1, . . . , Ad−1, B1, Bd−1)

∣∣
=

1√
g(sy, sy) + 1

∣∣dΣ2d(A1, . . . , Ad−1, (ν, 0), B1, . . . , Bd−1, (sy,−ν))
∣∣

=
1√

g(sy, sy) + 1

∣∣∣∣∣∣∣∣∣∣
(sy)1

idd−1

...
(sy)d−1

(sy)1 · · · (sy)d−1 −1

∣∣∣∣∣∣∣∣∣∣
=

g(sy, sy) + 1√
g(sy, sy) + 1

,

by writing the determinant using the orthonormal basis
(e1, 0), . . . , (ed−1, 0), (ν, 0), (0, e1), . . . , (0, ed−1), (0, ν)).

This proves the result. □

We now use this to prove Lemma 5.6:

Proof of Lemma 5.6. — We must compute the first term in the expansion
µ

τ̃
dΣ2d−2 = s0(ω)dτdΩ+ O(τ2).

On ∂0SM , µ/τ̃= 1
2 IIy(w,w) and dµ= 1

2 II dτ there. Contracting with N0 and using (35)
gives

II

2

√
gy(sw, sw) + 1 dΩ = s0(ω)dτ(N0)dΩ = s0(ω)

2

II
dµ(N0)dΩ.

Following the proof of [24, Lem. 3.3.6], for (x, v) ∈ ∂SM and (ξH , ξV ) ∈ T(x,v)∂SM ,

dµ(ξH , ξV ) = −IIy(w, ξH) + gy(ξV , ν) = −gy(sw, ξH) + gy(ν, ξV ).

In particular,

dµ(N0) =
√

gy(sw, sw) + 1,

which proves (32). □

Appendix. Non-sharp mapping properties for I0 and I♯0

In this appendix, we explain how the pushforward and pullback theorems of Melrose
[16], combined with Lemmas 3.1 and 3.2, help provide polyhomogeneous mapping
properties akin to Theorems 2.1 and 2.2, although they tend to overestimate the
resulting index sets. We explain this in further detail at the end.

Polyhomogeneity on manifolds with corners. — If N is a manifold with corners, we defi-
ne an index family E = (Eα)α∈A to be a collection of index sets, one for each boundary
hypersurface of N . An element u ∈ AE

phg(N) is then a function with an asymptotic
expansion associated to Eα at Hα, and with a product type expansion (see (37) for
the codimension two case) at all corners.
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Pullback and pushforward of polyhomogeneous functions by b-fibrations. — As seen in
Lemmas 3.1 and 3.2, the operators I0 and I♯0 can be expressed in terms of pullbacks
and pushforwards by b-fibrations. We recall here the main facts concerning the anal-
ysis of pullbacks of polyhomogeneous functions by b-maps, and of pushforwards of
polyhomogeneous functions by b-fibrations. In particular, we explain how these oper-
ations act on index sets.

For convenience, we shall only explain this in the somewhat simpler setting of
a b-map F : N1 → N2 between manifolds with corners, where N1 has corners of
codimension two and N2 is a manifold with boundary but no corners. This reduces
the amount of notation needed. Thus let x1 and x2 be bdfs for the two boundary
hypersurfaces of N1 meeting at the corner {x1 = x2 = 0} and t a bdf for ∂N2. Thus

F ∗t = Gxe1
1 xe2

2

holds near this corner, where G is smooth and everywhere positive. The geometric
constants for F are the elements of the pair (e1, e2).

First, suppose that v ∈ AE
phg(N2), and let u = F ∗v. The pullback theorem states

that u ∈ A
f#E
phg (N1), where f#E = (E(1), E(2)) is a pair of C∞ index sets correspond-

ing to the two hypersurfaces of N1. These are given by

E(j) = {(ejz + ℓ, k) : (z, k) ∈ E and ℓ ∈ N}.

The proof is based on the identity F ∗(tz(log t)k) = (Gxe1
1 xe2

2 )z(logGx1x2)
k; the extra

terms (ejz+ ℓ, k), ℓ ⩾ 1, are added to ensure that E(j) satisfies condition (c), i.e., are
C∞ index sets.

Turning to the pushforward theorem, now suppose that u ∈ AE
phg(N1), where

E = (E1, E2), so

u ∼
∑

(z,k)∈E1

az,k x
z
1(log x1)

k near H1, u ∼
∑

(z′,k′)∈E2

bz′,k′ xz′

2 (log x2)
k′

near H2,

and with a product type expansion

(37) u ∼
∑

(z,k)∈E1,
(z′,k′)∈E2

cz,z′,k,k′ xz
1(log x1)

kxz′

2 (log x2)
k′

near the corner where x1 = x2 = 0. Set

Ej(ej) = {(z/ej , k) : (z, k) ∈ Ej},

and finally define the so-called ‘extended union’ of index sets

f#E = E1(e1)∪E2(e2)

= E1(e1) ∪ E2(e2) ∪ {(z, k + k′ + 1) : (z, k) ∈ E1(e1), (z, k′) ∈ E2(e2)}.

Note that if E1 and E2 are C∞ index sets, then so is E1(e1)∪E2(e2).
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Pushforwards act on densities rather than functions, and we fix the b-densities
(a b-density is a smooth density on the interior which extends smoothly and nonde-
generately to the closed manifold if we multiply by the bdf of each boundary hyper-
surface). Thus, for example,

dµ =
dx1dx2dy

x1x2
on N1, dν =

dtds

t
on N2,

where y and s are the tangential coordinates on the corner of N1 and boundary of N2,
respectively. The pushforward theorem then states that if F is a b-fibration, then

F∗(u dµ) = h dν, where h ∈ A
f#E

phg (N2).

Observe that the fibres F−1(t) for t > 0 do not meet ∂N1, so no positivity assumptions
on the index sets are needed to ensure that the integrals converge. (The pushforward
theorem may of course be stated in terms of ordinary smooth densities rather than
b-densities, but the expressions for how the index sets combine would then involve
some offsets.) Further discussion and proofs of both of these theorems can be found
in [16].

Mapping properties. — Lemmas 3.1 and 3.2 express I0 and I♯0 in terms of pushfor-
wards and pullbacks by b-fibrations, so we can apply the pushforward and pullback
theorems explained just above, to obtain preliminary results on how these maps trans-
form index sets. The labeling of the boundary faces of ∂+SM × [0, 1] is the same as
in Section 3.2.

Lemma A.1. — Let K be a C∞-index set for ∂M . If f ∈ AK
phg(M) where infK > −1,

then I0f ∈ AK′

phg(∂+SM), where

K ′ = {(q + 2z, p), q ∈ N, (z, p) ∈ K}.

Proof. — If f ∈ AK
phg(M), then the pullback theorem gives

π̂∗f ∈ Aπ̂#K
phg (∂+SM × [0, 1]),

where

π̂#K(G0) = π̂#K(G1) = {(q + z, p), q ∈ N0, (z, p) ∈ K},

π̂#K(G2) = {(q + 2z, p), q ∈ N0, (z, p) ∈ K}.

Next, the density [π̂∗f ]dΣ2d−2du is equivalent to the b-density

ω = [µu(1− u)π̂∗f ]
dΣ2d−2

µ

du

u(1− u)
, where µu(1− u)π̂∗f ∈ AL

phg(∂+SM × [0, 1]),

and where the index set collection L satisfies

L(G0) = L(G1) = {(q + z, p), q ∈ N, (z, p) ∈ K},
L(G2) = {(q + 2z, p), q ∈ N, (z, p) ∈ K}.
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The integrability condition to apply the pushforward theorem becomes inf L(G2) > 0.
Assuming this, and since in the equality I0f dΣ2d−2/τ = π̂f∗ω, the left side is already
in b-density form, and the pushforward theorem immediately implies that

I0f ∈ A
π̂f#L

phg (∂+SM), where π̂f#L = {(q + 2z, p), q ∈ N, (z, p) ∈ K}.

Note that inf L(G2)=1+2 infK, which explains the integrability condition infK>−1.
□

Now consider the backprojection operator

Lemma A.2. — If g ∈ AK
phg(∂+SM) for some index set K, then I♯0g ∈ AK′′

phg(M),
where

(38) K ′′ = (N0 × {0})∪
{(1 + z + ℓ

2
, p
)
, (z, p) ∈ K, ℓ ∈ N0

}
.

Proof. — The index set of τµ g is

K ′ = {(2 + z + ℓ, p), (z, p) ∈ K, ℓ ∈ N0}.

Thus π̂f
∗(τµ g) ∈ Aπ̂f

#K′

phg (D), where

(π̂f
#K ′)(G0) = (π̂f

#K ′)(G1) = N0 × {0}, and (π̂f
#K ′)(G2) = K ′.

Next consider

ω = π̂f
∗(τµg) dΣ2 du = µu(1− u)π̂f

∗(τµg)
dΣ2

µ

du

u(1− u)
.

As a b-density, it has index set

(39) L(G0) = L(G1) = N× {0}, L(G2) = {(3 + z + ℓ, p), (z, p) ∈ K, ℓ ∈ N0}.

The pushforward theorem now gives that π̂∗ω is a b-density of the form h(dM/ρ), for
some function h ∈ A

π̂#L
phg (M), where

L′ = π̂#L(∂M) = (ρ ◦ π̂)#L = Ẽ(F0) ∪ Ẽ(F1),

and where, for i = 0, 1,

Ẽ(Fi) =
{( z

eρ◦π̂(Gi)
, p
)
, (z, p) ∈ L(Gi)

}
∪
{( z

eρ◦π̂(G2)
, p
)
, (z, p) ∈ L(G2)

}
.

Using (39) and that eρ◦π̂(G0) = eρ◦π̂(G1) = 1, eρ◦π̂(G2) = 2, we see that

Ẽ(F0) = Ẽ(F1) = L′ = (N× {0})∪
{(3 + z + ℓ

2
, p
)
, (z, p) ∈ K, ℓ ∈ N0

}
.

Notice that there is no integrability condition here because eπ̂ is never zero.
Now by (19), we have the relation h = ρI♯0g. Thus L′ is the index set of ρI♯0g, and

hence (38) is the index set of I♯0g. □
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Discussion: Lemmas A.1–A.2 vs Theorems 2.1–2.2. — We briefly address how our main
results are sharpenings of Lemmas A.1–A.2.

The mapping properties of I0 are somewhat straightforward in that when using the
pushforward theorem, the geometric picture does not involve boundary hypersurface
interaction resulting in the creation of additional log terms. In this sense, Lemma A.1
almost entirely captures what needs to be captured, with the expectation that the
index set K ′ (in the statement) can be made smaller: it is a C∞-index set on ∂+SM for
which many terms vanish when expressed in certain boundary defining functions. For
example, for smooth integrands, Lemma A.1 would predict at best that I0(C∞(M)) ⊂
τC∞(∂+SM), while it is known that it lands into the strict subspace C∞

α,−(∂+SM).
The latter is generally recovered by introducing α-bdfs, C∞

α -index sets on ∂+SM and
the spaces AE

phg,α(∂+SM).
On the mapping properties of I♯0, an illustration of the main shortcoming of

Lemma A.2 is that it fails to recover (4): if g ∈ C∞(∂+SM) = A
N0×{0}
phg (∂+SM), then

Lemma A.2 concludes that

I♯0(C
∞(∂+SM)) ⊂ C∞(M) + ρ log ρ C∞(M) + ρ1/2C∞(M).

Considering parity conditions (e.g. replacing A
N0×{0}
phg (∂+SM) by A

2N0×{0}
phg,α (∂+SM)),

one then arrives at

I♯0(C
∞
α,+(∂+SM)) ⊂ C∞(M) + ρ1/2C∞(M),

which still does not recover (4). This is where one need a closer examination of the
proof of the pushforward theorem, and the observation, in the proof of Theorem 2.2,
that certain expected poles of the Mellin functionals actually do not arise because of
some non obvious cancellations.

References
[1] P. Albin – “Renormalizing curvature integrals on Poincaré-Einstein manifolds”, Adv. Math. 221

(2009), no. 1, p. 140–169.
[2] E. Bahuaud, R. Mazzeo & E. Woolgar – “Ricci flow and volume renormalizability”, SIGMA

Symmetry Integrability Geom. Methods Appl. 15 (2019), article no. 057 (21 pages).
[3] N. Eptaminitakis & C. R. Graham – “Local X-ray transform on asymptotically hyperbolic mani-

folds via projective compactification”, New Zealand J. Math. 52 (2021 [2021–2022]), p. 733–763.
[4] C. Fefferman & C. R. Graham – “Conformal invariants”, in Élie Cartan et les mathématiques

d’aujourd’hui (Lyon, 1984), Astérisque, Société Mathématique de France, Paris, 1985, p. 95–116.
[5] I. M. Gel’fand, M. I. Graev & Z. J. Šapiro – “Differential forms and integral geometry”,

Funkcional. Anal. i Priložen. 3 (1969), no. 2, p. 24–40.
[6] D. Grieser – “Basics of the b-calculus”, in Approaches to singular analysis (Berlin, 1999), Oper.

Theory Adv. Appl., vol. 125, Birkhäuser, Basel, 2001, p. 30–84.
[7] V. Guillemin & S. Sternberg – “Some problems in integral geometry and some related problems

in microlocal analysis”, Amer. J. Math. 101 (1979), no. 4, p. 915–955.
[8] S. Helgason – Integral geometry and Radon transforms, Springer, New York, 2011.
[9] S. Holman & G. Uhlmann – “On the microlocal analysis of the geodesic X-ray transform with

conjugate points”, J. Differential Geometry 108 (2018), no. 3, p. 459–494.
[10] L. Hörmander – The analysis of linear partial differential operators. III. Pseudo-differential

operators, Classics in Mathematics, Springer, Berlin, 2007.
[11] A. Katsevich – “New range theorems for the dual Radon transform”, Trans. Amer. Math. Soc.

353 (2001), no. 3, p. 1089–1102.

J.É.P. — M., 2024, tome 11



Double b-fibrations and desingularization of the X-ray transform... 847

[12] A. K. Louis – “Orthogonal function series expansions and the null space of the Radon transform”,
SIAM J. Math. Anal. 15 (1984), no. 3, p. 621–633.

[13] J. Marx-Kuo – “An inverse problem for renormalized area: determining the bulk metric with
minimal surfaces”, 2024, arXiv:2401.07394.

[14] R. Mazzeo – “Elliptic theory of differential edge operators. I”, Comm. Partial Differential Equa-
tions 16 (1991), no. 10, p. 1615–1664.

[15] R. Mazzeo & B. Vertman – “Elliptic theory of differential edge operators, II: Boundary value
problems”, Indiana Univ. Math. J. 63 (2014), no. 6, p. 1911–1955.

[16] R. B. Melrose – “Calculus of conormal distributions on manifolds with corners”, Internat. Math.
Res. Notices (1992), no. 3, p. 51–61.

[17] , The Atiyah-Patodi-Singer index theorem, Research Notes in Math., vol. 4, A K Peters,
Ltd., Wellesley, MA, 1993.

[18] R. K. Mishra, F. Monard & Y. Zou – “The C∞-isomorphism property for a class of singularly-
weighted x-ray transforms”, Inverse Problems 39 (2023), no. 2, article no. 024001 (24 pages).

[19] F. Monard – “Functional relations, sharp mapping properties, and regularization of the X-ray
transform on disks of constant curvature”, SIAM J. Math. Anal. 52 (2020), no. 6, p. 5675–5702.

[20] F. Monard, R. Nickl & G. P. Paternain – “Efficient nonparametric Bayesian inference for X-ray
transforms”, Ann. Statist. 47 (2019), no. 2, p. 1113–1147.

[21] , “Consistent inversion of noisy non-Abelian X-ray transforms”, Comm. Pure Appl. Math.
74 (2021), no. 5, p. 1045–1099.

[22] , “Statistical guarantees for Bayesian uncertainty quantification in nonlinear inverse prob-
lems with Gaussian process priors”, Ann. Statist. 49 (2021), no. 6, p. 3255–3298.

[23] F. Monard, P. Stefanov & G. Uhlmann – “The geodesic ray transform on Riemannian surfaces
with conjugate points”, Comm. Math. Phys. 337 (2015), no. 3, p. 1491–1513.

[24] G. P. Paternain, M. Salo & G. Uhlmann – Geometric inverse problems—with emphasis on two
dimensions, Cambridge Studies in Advanced Math., vol. 204, Cambridge University Press, Cam-
bridge, 2023.

[25] L. Pestov & G. Uhlmann – “Two dimensional compact simple Riemannian manifolds are bound-
ary distance rigid”, Ann. of Math. (2) 161 (2005), no. 2, p. 1093–1110.

[26] A. Vasy – “Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent
estimates”, in Inverse problems and applications: inside out. II, Math. Sci. Res. Inst. Publ.,
vol. 60, Cambridge Univ. Press, Cambridge, 2013, p. 487–528.

[27] , “Analytic continuation and high energy estimates for the resolvent of the Laplacian on
forms on asymptotically hyperbolic spaces”, Adv. Math. 306 (2017), p. 1019–1045.

Manuscript received 28th July 2022
accepted 29th May 2024

Rafe Mazzeo, Department of Mathematics, Stanford University,
Stanford CA 94305, USA
E-mail : rmazzeo@stanford.edu
Url : https://web.stanford.edu/~rmazzeo/cgi-bin/

François Monard, Department of Mathematics, University of California
Santa Cruz CA 95064, USA
E-mail : fmonard@ucsc.edu
Url : https://people.ucsc.edu/~fmonard/

J.É.P. — M., 2024, tome 11

http://arxiv.org/abs/2401.07394
mailto:rmazzeo@stanford.edu
https://web.stanford.edu/~rmazzeo/cgi-bin/
mailto:fmonard@ucsc.edu
https://people.ucsc.edu/~fmonard/

	1. Introduction
	2. Statement of the main results
	3. The double b-fibration
	4. Special coordinates and index sets near the glancing set
	5. Proofs of the main results
	Appendix. Non-sharp mapping properties for adj
	References

