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DOUBLE B-FIBRATIONS AND DESINGULARIZATION OF
THE X-RAY TRANSFORM ON MANIFOLDS WITH
STRICTLY CONVEX BOUNDARY

BY Rare Mazzeo & Frangors Monarp

Asstract. — We study the mapping properties of the X-ray transform and its adjoint on spaces
of conormal functions on Riemannian manifolds with strictly convex boundary. After desingular-
izing the double fibration, and expressing the X-ray transform and its adjoint using b-fibrations
operations, we employ tools related to Melrose’s pushforward theorem to describe the mapping
properties of these operators on various classes of polyhomogeneous functions, with special fo-
cus to computing how leading order coefficients are transformed. The appendix explains that a
naive use of the pushforward theorem leads to a suboptimal result with non-sharp index sets.
Our improved results are obtained by closely inspecting Mellin functions which arise in the
process, showing that certain coefficients vanish. This recovers some sharp results known by
other methods. A number of consequences for the mapping properties of the X-ray transform
and its normal operator(s) follow.

Riisumi (Doubles b-fibrations et désingularisation de la transformée en rayons X sur les variétés
& bord strictement convexe)

Nous étudions les propriétés fonctionnelles de la transformée en rayons X et de son adjointe
dans les espaces conormaux, sur les variétés riemanniennes a bord strictement convexe. Apres
une désingularisation préalable de la double fibration sous-jacente en une double b-fibration,
nous exprimons les deux opérateurs étudiés comme des compositions d’intégration le long des
fibres et de précompositions par des b-fibrations. Nous utilisons ensuite des techniques reliées
aux théorémes d’intégration le long des fibres et de précomposition de Melrose pour en déduire
l’action de ces opérateurs sur des espaces de fonctions polyhomogenes conormales, décrivant
notamment comment les développements ainsi que les termes principaux sont transformés. Nous
expliquons dans I'appendice qu’une application naive du théoreme d’intégration le long des
fibres donne une surestimation des ensembles d’indices qui ne permet pas d’obtenir la précision
de certains résultats existant dans la littérature. Notre approche retrouve cette précision et
la généralise, en inspectant de plus prés les fonctionnelles de Mellin qui entrent en jeu, et
en montrant ’annulation de certains coefficients. Nous discutons de quelques applications des
résultats principaux, concernant la transformation en rayons X et ses opérateurs normaux
associés.
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1. INnTRODUCTION

In this article we study the mapping properties of the geodesic X-ray transform
and its adjoint on manifolds with convex boundary.

To set the stage and introduce the main objects of study, let (M?, g) be a Rie-
mannian manifold with strictly convex boundary (in the sense of having positive
definite second fundamental form). Denote by SM —— M its unit tangent bundle.
The boundary of SM splits into outward (-) and inward (+) boundaries:

OSM =0,SMUO_SM,
0+ SM = {(x,v) € SM, x € OM, £g,(v,v;) > 0},

with v, the unit inward normal at x € OM. Note that 0, SM is naturally diffeo-
morphic to 9_SM under the reflection involution (z,v) — (x, —v), and furthermore
that 0, SM No_SM is naturally identified with SOM; this is called the glancing set.
We also denote by ¢;: SM — SM the geodesic flow. This is defined for (z,v) € SM
and t € [—7(z, —v),7(z,v)], where 7(x,v) € [0,00] is the smallest time for which
t(z,v) € 0SM. Throughout, we will assume that (M, g) is non-trapping in the sense
that supg,; 7 < co. The footpoint map

(1)

me: SM 3 (.1?,1}) — pr‘r(z,fv)(xav) € 8+5Ma

assigns to any point and direction the initial (or ‘final in backward time’) point on the
boundary and inward-pointing direction determined by the geodesic through (z,v);
this is continuous on SM and smooth on (SM)° (Here and below the superscript o
denotes the interior of the set in question.). We then define the geodesic X-ray trans-
form I and the backprojection operator Ig:

(z,v)
@) Iof(z,v) = / fr(oi(e o)) dt,  (2,0) € 94 SM,

3) Iig(x) = /S g(me(x,0))dS,(v), =€ M.

x

The operator I is continuous from L%(M,dM) to L?(0.SM, ud¥2?=2), where

(@, v) = go(v, va),
dM is the Riemannian density on M, and d¥??~2 is the hypersurface measure inher-
ited by 04 SM from the Sasaki volume form d¥??~! on SM. Given these choices of

measure, Ig is the Hilbert space adjoint of Ij.

JE.P — M., 2024, tome 11



DOUBLE B-FIBRATIONS AND DESINGULARIZATION OF THE X-RAY TRANSFORM... 8n

Recent works [20, 21, 22] justify the necessity of addressing mapping properties
of Ig]o in a way that does not require use of an extension of M. For manifolds with
strictly geodesically convex boundaries, the results in the literature are sparse. These
offer a variety of unrelated insights:

— Pestov and Uhlmann construct in [25] a space C5°(04SM) (see Equation (9)
below) of functions whose extensions as first integrals of the geodesic flow are smooth
on SM. This space satisfies

(4) I{(C (04, SM)) € C=(M).

They go on to characterize C2°(94+.SM) in terms of the scattering relation using fold
theory. We also refer to [24] for a more recent take on this issue.

— In [20], the authors show that IgIo extends to a larger manifold engulfing M:;
assuming it satisfies a (—1/2)-transmission condition at M, they conclude that

. fare=on — o),
(5) Iily: N
HEYDs (M) — HFY (M) (s> —1),

are isomorphisms. Here H(—1/ 2)"(M ) is the scale of Hérmander transmission spaces,
and H°®(M) the classical Sobolev scale. Even though (5) implies a set of estimates,
these mapping properties do not fully predict the mapping properties of iterates of
the operator Iglo, which must be understood when using Landweber’s iteration for
purposes of inversion.

— In [19] it is shown that in the class of simple geodesic disks with constant curva-
ture, the operator Ig p~ 11 is an isomorphism of C°°(M). This is done by constructing
a Sobolev scale H (M), defined using a degenerate elliptic operator, which have in-
tersection C*°(M) and which satisfy

I u Ty HR (M) —— H*Y(M).

In other words, by introducing the singular weight 1/u, one can identify spaces which
are stable under iteration of the modified normal operator Ig .

— In [11], the mapping properties for the Euclidean dual Radon transform (i.e.,
integration over hyperplanes) are given. These allow one to understand how index
sets on R x S~ ! translate into index sets on R™. In particular, this explains much
about the Euclidean X-ray transform on the plane.

The present work presents a first step towards a unified understanding of these
various results about mapping properties of Iy, Ig and the normal operators built out
of them, at the level of Fréchet spaces.

As is well known in integral geometry, it is very helpful to recast the problem in
terms of double fibrations, cf. Helgason’s work on symmetric spaces [8], Guillemin’s
realization of integral-geometric operators as FIO’s [7], and the formulation of the
Bolker condition [23, 9], which leads to a more precise understanding of the impact
of interior conjugate points on the X-ray transform. A famous and basic example of

JISP. — M., 2024, tome 11



812 R. Mazzeo &« F. MonarD

double fibrations in the homogeneous space setting is that of Euclidean motions on R?
via centralizers of points and lines:

R? +— E(2) — R x S'.

Using this, the two-dimensional X-ray transform can be viewed as the composition
of pullback by the map onto R? followed by pushforward by the map onto R x S!.
For the geodesic X-ray transform on non-homogeneous Riemannian manifolds, one
can construct a local double fibration out of the point-geodesic relation [23, 5], or a
double fibration of SM by (base-) points and geodesics. However, if M has a strictly
convex boundary, such fibrations cannot be extended globally due to the presence of
‘short’ geodesics. The difficulty arises because as (z,v) € SM approaches S(OM),
the maximal geodesic passing through (x, v) collapses to a point. Because of this, the
extensions to SM of certain smooth functions on 0, SM as first integrals of geodesic
flow are neither smooth nor even conormally regular. In this article, we show that this
difficulty can be ‘resolved’ (in two senses of the word): there is a desingularization by
means of a map

(6) T: a—l‘SM X [Oa 1] > (($7U)7u) — @uT(I7v)(x7’U) € SMv
recently introduced in [22], which gives rise to a double b-fibration in the sense of

geometric microlocal analysis [16, 6] (see Lemma 3.1 below), represented by the dashed
lines in Figure 1.

0, SM x [0, 1]
; SM N

// y x\
!

\

\

NS
M

Iicure 1. Desingularization of the double fibration into a double b-
fibration via the map T

Moreover, the operators Iy and Ig can be written as weighted compositions of push-
forward and pullback by the maps 7 := mo Y and 7; := 7 o T. In this setup, one can
then in principle apply Melrose’s pullback and pushforward Theorems to understand
the mapping properties of Iy and Ig on smooth or polyhomogeneous functions. How-
ever, this process (carried out in the appendix for comparison to our main results)
produces polyhomogeneous functions which apparently have index sets, i.e., the set
of exponents in their expansion, significantly larger than desired. This is less sharp
than the result obtained by Pestov and Uhlmann (4).

Our main results, Theorems 2.1 and 2.2 below, provide mapping properties for Iy
and Ig which recover the result by Pestov and Uhlmann, while extending the functional
setting to spaces with polyhomogeneous behavior at the boundaries of M and 0, SM.

JE.P — M., 2024, tome 11
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Notably, much of the work is in the study of Ig, which displays a variety of interesting
phenomena (e.g. index set creation or cancellation, see Theorem 2.2) depending on
the index set of the input function. To obtain such refinements, we first introduce new
singular coordinates on 8;.SM (or more accurately, we blow up certain p-submanifolds
in this space) which have the effect of resolving the scattering relation. We also need to
examine the mechanism behind the pushforward theorem in greater detail, i.e., study
the Mellin functionals, whose poles and residues give the index set and associated
leading coefficients. We can then see that certain poles do not in fact occur. This
cancellation is ultimately due to fact that the Beta function,

(7) B(z,z) = /0 (u(1 —u))*"tdu

(and appropriate generalizations of it) has zeros at the negative half integers —Ny —
1/2. Another important part of this is the introduction of a parity condition on
the Taylor series (resulting in CZ°-index sets below, see Section 2.1). Such parity
conditions have been used in other applications of geometric microlocal analysis,
in particular in local index theory and spectral geometry [17, 15], asymptotics of
Poincaré-Einstein metrics [4] and renormalized volume [1, 2|, analytic continuation
and resolvent estimates for the Laplacian on asymptotically hyperbolic spaces [26, 27],
and inverse problems related to the above contexts [13, 3].

In the next section, we formulate the main results before discussing some conse-
quences, including refined boundary determination of polyhomogeneous integrands,
and natural candidates for Fréchet spaces where it should be possible to formulate sta-
ble mapping properties of normal operators (i.e., weighted compositions of Iy and Ig).
We give an outline of the remainder of the article at the end of the next section.

Acknowledgements. — The authors thank Gabriel P. Paternain for helpful discussions,
Joey Zou for pointing out a mistake in an earlier statement of Theorem 2.2, and the
anonymous referees whose comments greatly improved the exposition of the article.
R.M. thanks both Gunther Uhlmann and Andras Vasy for many years of patient
guidance on inverse problems.

2. STATEMENT OF THE MAIN RESULTS

After first defining in Section 2.1 appropriate regularity classes and notions of index
set (unrestricted on M, and with parity constraints on 0;.SM), Section 2.2 gives the
main results, Theorems 2.1 and 2.2, describing how polyhomogeneous functions are
transformed under the operators Iy and Ig; in other words, we determine how these
operators act on index sets. In Section 2.3, we formulate and prove some consequences
of the main results. We also propose Conjecture 2.11 on the mapping properties of
normal operators in singularly weighted situations.

JEP — M., 2024, lome 11
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|

2.1. PRELIMINARIES: POLYHOMOGENEOUS FUNCTIONS ON MANIFOLDS WITH BOUNDARY

Let N™ be a manifold with boundary, and choose adapted coordinates (z,y) near
ON, where x > 0 is a boundary defining function (bdf) for ON and y = (y1,- .., Yn—1)
restricting to a coordinate system on the boundary. Although C*°(N) is the most
obvious class of ‘nice’ functions on N, it is not the most natural in many analytic and
geometric problems. There are two standard characterizations of C'°°: smooth func-
tions enjoy stable reqularity, i.e., maintain regularity upon repeated differentiation, or
that they admit Taylor series expansions. Each of these can be generalized in slightly
different ways, the first by restricting the types of differentiations which are allowed,
and the second by allowing slightly more general asymptotic expansions as x — 0.
These lead to the class of conormal functions and to the notion of polyhomogeneity,
respectively.

The key to finding a suitable generalization of stable regularity is to weaken the set
of allowable differentiations. Accordingly, we define V,(NN) to be the space of smooth
vector fields on N which are unconstrained in the interior but which lie tangent to
the boundary. With (z,y) a local coordinate system as above, we have

(8) Vo(M) = C*-span{x0,,0y,,...,0y, .}
Now define the space of conormal functions of order s € R on N by
A*(N) :={u e C®°(N°) : V... Viyu € 2°L>¥(N)
for all V; € Vy(N) and for all k£ € Np}.

(Here and below the superscript o denotes the interior of the set in question.) Note
that A(N) contains functions of the form 2% [logz|® for any s’ with Res’ > s,
a € R (or Res’ > s if a < 0). More generally, A°(N) contains functions which
are discrete or continuous superpositions of these basic ones. As a rule of thumb,
conormal functions are completely smooth in tangential directions and have special
regularity properties normal to the boundary. The intersection [ . A*(N) is just
the space C°° (N) of smooth functions vanishing to infinite order at ON. Here and
below, we denote A (N) := J g A*(NV).

We next define the particularly nice families of polyhomogeneous functions, which
are subspaces of the space of conormal functions. Polyhomogeneous function are
conormal, but in addition have classical asymptotic expansions involving powers
2*(logz)* (2 € C and k € Ny) as z — 0. A particular space of polyhomogeneous
functions is determined by its index set E, which is the set of exponent pairs (z, k)
which can appear in the expansions of its elements. By definition, an index set E is
a subset of C x Ny with the following properties:

(a) For every s € R, the set E¢, := {(z,k) € E : Re(z) < s} is finite.

(b) If (2,k) € E, then (z,() € E for any £ =0,1,...,k — 1.

If E also satisfies
(c) If (z,k) € E, then (2 + 1,k) € E,

then it is called a C'*° index set.

JE.P — M., 2024, tome 11



DOUBLE B-FIBRATIONS AND DESINGULARIZATION OF THE X-RAY TRANSFORM... 815

Given any index set E, define

flfhg(]\f) = {u EA®(N) :u~ Z uz7k(y)arz(logx)k, Us ks € C’oo(@N)}.
(z,k)EE
This asymptotic expansion is ‘classical’ in the sense that the difference between v and
any finite partial sum of this series decays as x \, 0 like the next term in the series,
and with corresponding decay properties for any derivative of v and the corresponding
term-by-term derivative of the series.

Condition (a) implies the existence of a real number inf £ := inf{Re(z), (z,k) € E}
such that A% (N) C A*(N) for all s < inf E. If & = 0 for all (z,k) € E with
Re(z) = inf E, then A% (N) c A™F(N). If condition (c) is satisfied, then the
moniker C* index set ensures that Afhg(N ) is a C°°(N) module and is invariant
under any smooth change of variables of N.

As examples, Agﬁg{o}(N) = C°(N) and Agﬁ;{o’l}(N) = C®(N) +logz C*(N).

Fven structures: CP-index sets on 0+ SM. — When the manifold N has additional
symmetries, the spaces Afhg may not encode these symmetries, and refinements of the
objects above are needed. In our setting, the manifold of interest is 0+ SM, as defined
in (1); it has boundary

0oSM =0,:SMNO_SM = {(z,v) € SM : z € dM, g,(v,v,) =0}.

When (M, g) is non-trapping with strictly convex boundary, then 0SM carries a
natural involution called the scattering relation a.: 9SM — 0SM. This is defined by

O((Q?,’U) = Pir(z,+v) (.’E,U), (.’IJ,U) € aﬁ:SM;

it leaves each (z,v) € 9pSM fixed. Using this involution, one may define the important
subspaces of C*°(04SM)

9) 24 (04.SM) == {u € C=(8;SM), Aru e C®(ISM)},

where

{u(m,v), (x,v) € 0+ SM,

Asu(z,v) ==
tu(a(z,v)), (x,v)€ d_SM,

for u € C>°(04SM). (Note that C3°, coincides with the space C5°(04+.SM) described
in the introduction.) Functions in C3°, ,_ (04+5M) are smooth in the interior of 0, SM
with Taylor expansions at 9dpSM which involve only even/odd terms. This makes
sense only if these expansions are written with respect to a restricted class of ‘even’
boundary defining functions, described below. To state our main results, we introduce
the key definitions and relegate details to Section 4.3.

On 0;:5M, a bdf t for 9pSM is called an a-boundary defining function (a-bdf)
if moreover t € C3°_(04+SM). A good example of an a-bdf is the exit time function
T7: 0:SM — R. A C-index set on 0 5M is an index set as defined via conditions
(a)—(b) above, and where condition (c) is replaced by

(¢)) If (2,k) € E, then (2 + 2,k) € E.

JIEP. — M., 2024, tome 11
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Given a C$°-index set E, we then say that ueﬂghg!a(&rSM) if ue C>®((04+SM)°)

and if for some a-bdf t, we have the asymptotic expansion off of 0y.SM

U ~ Z tz(logt)kuzk, Uy € C(00SM).
(z,k)eE

In Section 4.3, we establish that such a definition is invariant under change of a-bdf

and stable under multiplication by elements of C3°, (9;.SM). As notable examples,
O (01SM) = A2 1 (9, SM) and C_ (9, SM) = AG D09, gr).

phg,a phg,a

2.2, MAIN RESULTS
Weighted X-ray transforms

Let (M,g) be convex and non-trapping, let ¢ € C*°(SM) be a smooth weight
function, and for f € C°((SM)°), define

7(z,v)
19 f(z,v) = / O(e(m,0) fpele,v) dt,  (0,0) € B, SM.

Then I?f € C®((0;SM)°) and our first result, whose proof is given Section 5.1,
shows that if f is polyhomogeneous, then I? f is also polyhomogeneous with index set
determined by that of f.

Tucorem 2.1. — Let (M,g) be convex, non-trapping, and let ¢ € C*(SM). Sup-
pose f € .Aphg(SM) for some C™-index set E with s = inf(E) > —1. Then I?f €

phga(8+SM) where F is a C-index set contained in (and possibly equal to)
{22+ 1,0), (2,¢) € E}.

More precisely, fix v€ C with Re(vy) > —1, k€ Ny, he C*®(0SM) and xe C([0, 0))
a cutoff function equal to 1 near 0. Using coordinates (p,&) € [0,€) x SM on SM
near O0SM and (T,w) on 0+SM near 0oSM with w = (y,w) € dpSM, as defined in
Lemma 4.1, and denoting by T the geodesic length, we have

I?Ix(p)p" log" ph(&)](r,w) ~ 7271 N 727 (log 7) a2y 411, (w).

p=0
0<e<k

If p(x) = dy(x,0M) near OM, the coefficient in front of the most singular term equals
(10) a1,k (W) = 2°A(W)P(W)IL(W)Y By +1,v+1),  wedSM,
where II(w) := I, (w,w) is the second fundamental form, and B is the Beta func-

tion (7).

Letting ¢ = 1 and supposing that h(£) is independent of the tangent variable v
(i.e., replace £ € 9SM by y € OM) this result includes the operator Iy. This result
generalizes [22, Prop. 6.13].

JE.P — M., 2024, tome 11
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Backprojection operator. Now turn to the backprojection operator Ig. As an ele-
mentary input function, consider a(w)x(7)7 log® 7, where w € 9ySM, a(w) is smooth,
X € C°([0,00)) is a cutoff function equal to 1 near 0, and 7 is the geodesic length.
Here and below, for y € OM, dA(y) denotes the Riemannian hypersurface density on
OM and dS, denotes the Euclidean measure on the unit sphere S, (0M). Our second
main result, whose proof is given in Section 5.3, is the following.

Turorem 2.2, Fixy e C, ke Ny anda € C®(0pSM). Then Ig(a(w)x(T)T’y log" )
is polyhomogeneous, with index set contained in (and possibly equal to) the union

No x {0} U E, 1, where

(’YTH—i_NO)X{O""vk_l}? ’762N0,
(11) Eypi=1 (B +No)x{0,...,k}U(NoN (L + No))x{k+ 1}, v € 2Z + 1,
(VTH + No)x{0,...,k}, otherwise,

where in the first case, Ey ), = @ if k= 0.
In coordinates (p,y) € [0,e) x OM on M near OM with p(z) = dy(z,0M), we con-
clude that
La@x(n)r log" )~ 3" ase(y)p*log’p,
(2,£)ENQUE
where the lowest order coefficient in the part of the expansion corresponding to E. j
s given by

Q20,80 (y) = Czo,4o / a(yaw)lly(w)(_’ﬁ_l)/z dSy(w)> W= (yaw> € pSM.

Sy (OM)
Here,
(12)
- 2m+2 —1
Y= 2m = (Zo,go) = (m + 1/2,]{) - 1), Czo g = 22,‘,’_'_’% 42m+2 (27:}::_12) , mE N(),

vy=2m—1= (20,00) = (M, k+1), s, = —(i’:)/((k +1)2542) ) m € Ny,
¢ No— 1= (20,0) = (Y+1)/2,k), o0 = 27FFIB(=(741)/2, = (7+1)/2) .

The other coefficients of the expansion with exponents in F, j are locally deter-
mined, and in principle computable, while the coefficients in the part of the expansion
with coefficients in Ny x {0} are non-local.

Remark 2.3. — To put the first half of Theorem 2.2 in invariant terms, fix £ a C5°-

gh&a (04SM) with respect to an a-bdf, any element of

h € Afhg’a(&rSM ) may be written as an asymptotic sum in the a-bdf function 7,

and applying Theorem 2.2 to each term separately yields
I} (AD, o (01SM)) € AL (M), where F := Ny x {0} U ( g EEM,
v.k)e

with E, ; defined in (11). One easily verifies that F' is a C*°-index set.

index set. By invariance of A

Remark 2.4. — As the scheme of proof of Theorem 2.2 is based on a correspondence
between index sets of a phg function and the set of poles of its associated ‘Mellin

JEP — M., 2024, lome 11
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functional’ (see 5.2.2), the first case of Equation (11) is an instance where poles
cancel at the Mellin level. This case recovers the result (4), which a standard use
of the pushforward theorem could not recover (see the discussion at the end of the
appendix).

The second case in Equation (11) is an instance where poles of higher order (or,
equivalently, higher powers of log p in expansion terms) become created. This only
affects the most singular term in the expansion if v € 2Ny — 1, hence the discrepancy
between the cases of (11) and those of (12).

2.3. CONSEQUENCES OF MAIN RESULTS

2.3.1. Boundary determination

Tueorewm 2.5 (Boundary determination for functions on M). — Let ¢ € C°(SM) be
such that for every y € OM, there exists some w € S, (OM) with ¢(y,w) # 0. Suppose
fe Afhg(M) for some index set E with inf(E) > —1.

By

() If I?f € AM25' (8, SM) for some s' > inf E, then f € Ane

(i) If I?f € C®(d; SM), then f € C®(M).

(M).

Proof of Theorem 2.5. — For (i), suppose that I? f € A'25' (9, SM) with s’ > inf(E),
and assume by contradiction that the most singular term in the expansion of f is of
the form h(&)p” (log p)* with Re(v) < s’. By assumption, the corresponding coefficient
a1424,k(w), as given by (10), must vanish for all w = (y,w) € 9pSM. Note that in
the case where f is a function on M, h only depends on y and not on w. Fixing
an arbitrary y € OM, we evaluate the product (10) at an w € S,(0M) such that
o(y,w) # 0. There, we have B(y+1,v+ 1) # 0 since Re(y) > —1, and II, (w,w) > 0
by convexity, and hence we must have h(y) = 0.

Notice that this result is local: if I?f € ALt2s’ only in a neighborhood of some
point o, then the coefficients of the terms in the expansion of f with Re(z) < s’ must
vanish in that neighborhood.

The proof of (i) follows from (i) and the fact that C°°(M) = Neer A°(M). Tt is
likely that this follows from other techniques, but we include this here for complete-
ness. ]

The same proof (without the assumption that the coefficient h in the proof above
only depends on the basepoint) yields the following result.

Tueorewm 2.6 (Boundary determination for functions on SM). — Let ¢ € C*(SM)
and let Ny C 0gSM be the set of points of 0pSM where ¢ is nonzero. Suppose

fe Afhg(SM) for some C™ index set E with inf(E) > —1.

() If I?f € A2 (8, SM) for some s’ > inf E, then for all (v,k) € E such that
Re(y) < &', fy,x vanishes on Ng.
(ii) If I?f € C>=(0.SM), then for all (v,k) € E, f,.) vanishes on Ng.
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2.3.2. Mapping properties
The operator Iglo. The following result explains why iterative use of Ig]o is inher-
ently unstable in terms of fine regularity properties.

Cororrary 2.7. — Let (M,g) be a convex, non-trapping Riemannian manifold of
dimension = 2, and let p be a boundary defining function. For any k € Ny,
k
(I§10)* (C>(M)) C Y (plog p)*C™ (M),
£=0
and there are functions f € C°(M) for which (Ig[o)kf include (plog p)* in their
exTpansion.

Proof. We prove the following statement by induction on k£ > 0. Defining
(13) Ey :={(z,p),z € Ny, 0 < p < min(z,k)},

if f has index set E}, then IgIO f has index set Ejy1. This follows immediately from
Theorem 2.1 along with the second case (pole creation) of Theorem 2.2. The second
assertion follows from the explicit formulas for leading coefficients. ]

Recalling the additional mapping property Ig[o(p_1/2C°° (M)) C C>®(M), we de-
duce the sequence of spaces, each continuously mapped into the next by Ig[o:

(14)  p Y2C®(M) — C®(M) — AL

(M) — - — AZK

phg(M) — e,
where Ej, is defined in (13). It is natural to wonder if there is a space which extends
the sequence to the left, i.e., which maps to p~1/2C>°(M). If it were to exist, such a

space would not contain only polyhomogeneous functions since

— Using (17) below, we see that Iop* = 725+1 fol (u(1 — u))*F? du, which makes
sense only when Re(z) > —1.

— With this integrability condition in mind, Iglopz has index set contained in
(No x {0})U((z + N) x {0}), and the minimum index has real part 0. In particular,
Ig[o can never generate terms which blow-up near OM.

The operator Ig 77 . — We now discuss another example which shows that the
various cases in Theorem 2.2 can interact ‘cyclically’ (in contrast to (14)).

Cororrary 2.8. — Let (M, g) be a convex, non-trapping Riemannian manifold. Then
I
C>®(M) +1log p C*°(M) —2— -2,

L1,

O™ (M) + p*/2C>= (M) C®(M) +1logp C=(M).

The first map annihilates the log terms through pole cancellation (first case of
Theorem 2.2), while the second map re-creates them (second case of Theorem 2.2).
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Singularly weighted normal operators. There is already a precedent for finding (sin-
gularly) weighted versions for the Euclidean Radon transform where the singular value
decomposition is sometimes computable, see e.g. [12]. The two-dimensional examples
there, applied to the X-ray transform, motivate a more general class of singularly
weighted functional settings.

Prorosirion 2.9. Let (M, g) be a convex, non-trapping Riemannian manifold with
boundary and bdf p, let t an a-bdf on 0 SM and fix v € R. Then for § <2y +1, the
operator IypY, which sends f to In(p" f), yields a bounded map

Iop”: L*(M, p°dM) — L*(04SM,t2°~4 =1 1 ax2d-2),

The proof of Proposition 2.9 is given Section 5.1. A special case of Proposition 2.9
is when § = v > —1. In this case,
Top”: L*(M,p"dM) — L?(0, SM,t=>"1 1dx??-2),

—2y—1

is bounded, and its adjoint relative to these Hilbert spaces is Igt , as the following

computation shows, valid for all f € C*°(M), h € C>*(0.SM):
[ o pme a2 = [ e
94 SM M

Above we have used that Ig is the L2(M,dM) — L?(0.SM, udx%4=2) adjoint of I,
(see e.g. [24, Lem. 4.1.4]). In particular, the operators
Lt~ op7: L2(M, pYdM) —s L*(M, p"dM), > —1,

are all self-adjoint. Moreover, these operators are isomorphisms of C°°(M) in the
following cases:

- v =0, (M, g) asimple geodesic disk of constant curvature and t = u (in circularly
symmetric cases, y is an a-bdf), cf. [19].

— v =—1/2 and (M, g) is a simple surface (as formulated in (5)), cf. [21].

-5 > —1 and (M,g) is a simple geodesic disk in a constant curvature model,
cf. [18].

From Theorem 2.1, we deduce the following
Lemva 2.10. For any v > —1, any bdf p and a-bdf t, the operator I§t727’1[0p7
maps C>°(M) into itself.
Proof. — If f € C®°(M), then for v > —1, p7 f has index set (7 + Np) x {0} and by
Theorem 2.1, Iy(p? f) ~ 37 F! 2 p>0 t?Pa,(w) for some coefficients a, € C*(9pSM).
Thus t=>7" o (p" f) € C°, (04 5M). Applying 1% and using (4), we obtain the result.

O

It is natural to ask whether this is an isomorphism for all v > —1.

Conyecrure 2.11. — Let (M, g) be a simple Riemannian manifold with bdf p, and fix
v > —1. Then, there exists an a-bdf t for 0.SM such that the operator Igt_Q'Y_llop’Y
is an isomorphism of C*(M).
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It is easily seen that if the C'°°(M)-isomorphism property holds, it holds indepen-
dently of the choice of bdf p. However, its dependence on the choice of a-bdf t (except
for v = —1/2, where no a-bdf appears) remains unclear.

Unless v = —1/2, the operator here is not extendable across M, and thus we
cannot invoke the transmission conditions of Boutet de Monvel.

Structure of the article. — The remainder of the article is organized as follows.

In Section 3, we first carry out the desingularization of the double fibration into
a double b-fibration (see Lemma 3.1) and show in Lemma 3.2 that the operators I
and Ig can be written as weighted compositions of pushforwards and pullbacks by
these b-fibrations. As a necessary ingredient to our main theorems, this justifies that I
and Ig map conormal spaces to conormal spaces.

In Section 4.2, we construct special coordinates on 0, SM with good parity prop-
erties with respect the scattering relation (an important tool in the proof of Theo-
rem 2.2), before covering C°-index sets and polyhomogeneous spaces on 0;.5M in
detail in Section 4.3.

Section 5 then covers the proofs of the main results: the proofs of Theorem 2.1
and Proposition 2.9 on forward mapping properties of Iy are given Section 5.1; after
a digression on the Mellin transform and functionals generalizing the Beta function
in Section 5.2, we then prove Theorem 2.2 in Section 5.3; Sections 5.4 and 5.5 then
cover proofs of auxiliary lemmas (on properties of Beta functionals, and on Sasaki
volume factors) stated during the proof of Theorem 2.2.

Finally, in the appendix, we explain how the use of Melrose’s pushforward and
pullback theorems can be used to derive mapping properties akin to Theorems 5.1
and 2.2, and discuss how such an approach overestimates the resulting index sets.

3. THE DOUBLE b-FIBRATION

3.1. PRELIMINARIES: b-FIBRATIONS ON MANIFOLDS WITH CORNERS. A key theme in this
paper is that the basic maps that play a role in the analysis of the X-ray transform I
(and related operators) are b-fibrations. We briefly recall the definition of this class
of maps and refer to [6, 16, 14] for more complete definitions and descriptions of all
of the material below.

Let M and N be two manifolds with corners, and enumerate the boundary hyper-
surfaces of these two spaces by {Ha}aca and {Hj}gep, respectively. We say that p,
is a boundary defining function (bdf) for H, if H, = p;'(0) and dp, # 0 on that
face. A map F': M — N is called a b-map if, for every g € B,

* 4 R
Fipy =G pg, - pa,
for some C* strictly positive function G and some positive integers ¢;. The set of

exponents which occur here, as 3 ranges over B, is called the geometric data associated

to F. It is more efficiently represented by the nonnegative integer valued matrix

(er(a, B))aca,pen, where F*ply contains the factor pir(eh)
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On a manifold with corners M, the space V(M) of b-vector fields can be analo-
gously defined as in Section 2.1, as the space of all smooth vector fields which are
unconstrained in the interior, and which are tangent to all boundaries of M.

There is a natural vector-bundle *T'M over M, called the b-tangent bundle, which
has the property that V(M) is the full space of smooth sections of *T'M. The vector
fields on the right in (8) constitute a local basis of sections. There is a natural map
YTM — TM which is an isomorphism over the interior. If p lies on a boundary or
corner of M, then the nullspace of this map at p is called the b-normal bundle prM .
For example, if M is a manifold with boundary, as in Section 2.1, then prM is
the 1-dimensional space spanned by zd,. If M has corners and p lies on a corner
of codimension k, then prM is k-dimensional, and naturally splits into a sum of
1-dimensional subspaces corresponding to the b-normal spaces of the codimension
one boundary faces intersecting at p.

If F: M — N is a b-map, then there is a naturally induced bundle map °F, :
TM — *TN which agrees with the ordinary differential of F' in the interior of M.
We say that F is a b-submersion if *F, is surjective at every point; similarly, F is
called b-normal if the natural restriction bF*|p : prM — b f(p)N is surjective.
Finally, F' is called a b-fibration if it is both a b-submersion and b-normal. These last
two conditions are equivalent to something more familiar. Following [6, Def. 3.9], they
are equivalent to

(a) If K is any boundary face (i.e., hypersurface or corner), then codim F(K) <
codim K;

(b) The restriction of f to the interior of any boundary face K is a fibration
from K° to F(K)°.

3.2, Tue mars T = oY annp i = g0 Y. — If (M, g) is a non-trapping manifold with
strictly convex boundary, the first-exit-time function 7 defined in the introduction,
when restricted to 0. SM, can be extended smoothly to dSM by defining

- ;) ,v) € 04.5M,
(15) T(z,v) = 7(@v) (z,0) € 04
—7(z,—v), (x,v) € I_SM,
see e.g. [24, Lem. 3.2.6]. This allows to extend the map Y defined in (6) smoothly to
T:05SM x [0,1] — SM, Y(2,v,u) := Quz(aw) (T, ).

Note that Y(x,v,0) = (z,v), T(z,v,1) = a(z,v) and T(a(z,v),u) = T(z,v,1 — u).
In other words, if we define

I':9SM x[0,1] — 9SM x [0,1]

by T'(z,v,u) := (a(z,v),1 —u), then T o' = Y. Thus T is a 2:1 cover away from
00SM x [0,1]. Each interval {(z,v)} x [0, 1] with (z,v) € 99pSM collapses to the point

(z,v).
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We now claim that the pullback of the Sasaki volume form on SM is given in terms
of the induced volume form on dSM by

(16) T*dx?! = 7 d¥242 du,

where, as we recall, u(x,v) = g.(v,v;). Note that the Jacobian factor vanishes at
0oSM x [0,1], as expected since T collapses this submanifold to a lower dimensional
one. To prove (16), suppose f € L'(SM) and write

deQdfl — (f ° T) T*dEQdfl
SM T-1(SM)

7(x,v)
= / / fpi(z,v)) dt pdx?d—2 (Santald’s formula)
845M Jo

1
- / / f(T((E, U, U’)) du T/J’dZQd_Q (Setting t= Tu)'
oy SM JO

This establishes the claim.

We consider the map Y restricted to D = 04 SM x [0, 1] in greater detail. As a first
step, observe that this domain is a manifold with corners up to codimension two. Its
boundary hypersurfaces are

Go = 0:5M x {0}, G1=04SM x {1}, G2 = 09pSM x [0,1].
The corresponding boundary defining functions are u, 1 — u and u, respectively. The
lift of 7 from 0, SM to D is also a bdf for G5. Finally, there are two codimension two
corners:
E:GiﬁGQZaQSMX{i}, i:(),l.
Figure 2 gives a schematic of the arrangement of these faces.
G(J \\‘ l—u ‘/ Gy
t W/ "
/ 1 U
G2
Ficure 2. Local boundary model for Y=(SM)

Fo/\‘

U
0

Observe that
T(Go) = 0+5SM, Y(Gy) =0-SM, YT (G2) = 0pSM (blow-down).

By (16), Y|p is a diffeomorphism on the interior. If p is a bdf for M equal to the
geodesic distance to OM near OM, then by [22, Prop. 6.12],
(17) po Y (z,v,u) = F(z,v,u)m*(x,v)u(l — u), (x,v,u) € D,
where F' is a smooth strictly positive function. It is further proved in [22, Prop.6.12]
that F' extends to a map F': 0SM x [0,1] — R such that

(a) Fla(z,v),u) = F(z,v,1 — u);

(b) F(z,v,0) = p(z,v)/7(x,v) and F(z,v,1) = p(a(z,v))/T(a(z,v));

(¢) F(z,v,u) =1I,(v,v) when (z,v,u) € 9pSM x [0, 1].
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Lemva 3.1. The maps 7: D — M and 7g: D — 9. SM are b-fibrations with
geometric data (encoding the order of vanishing at each boundary face) given by

Gﬁ‘Go‘Gl‘GQ (S ‘GO‘Gl‘GQ
oM[ 1] 1 ]2 9SM|0]0]|1
Proof
First case: w. — First note that (17) already asserts that 7 is a b-map. The geometric

data for this map is computed directly from (17). We now check the two conditions in
the auxiliary characterization of b-fibrations stated at the end of Section 3.1. Suppose
that K € {Go,G1,Gs, Fo, F1} is a boundary face.

Condition (a) is obvious since T maps any such K onto OM, which has codimen-
sion 1.

As for condition (b), first note that Fjy and F; are closed (hence equal their interiors)
and each is mapped diffeomorphically to 9pSM by T; these are then mapped to M
via the canonical projection 9gSM = S(OM) — OM, which is a fibration.

As for the boundary hypersurfaces, consider the map mo Y: G¢ — M, i = 0,1, 2.
When ¢ = 0, this is the composition

{pn >0} x {0} > (x,v,0) »;I;% (2,0) — ;

the first map is a diffeomorphism and the second is a fibration. The analogous rea-
soning applies when i = 1. Finally, for ¢ = 2, the map T projects onto the first factor
of 9pSM x [0,1], and 7 projects down to M, so this too is a fibration.

Second case: 7. — The map 7; is simply the projection map onto the left factor
0+SM x[0,1] — 0+ SM, and this is trivially a b-fibration. The geometric data follows
from the relation 7 o 7 = 7. O

3.3. TueE X-RAY TRANSFORM AND THE BACKPROJECTION VIA PUSHFORWARDS AND PULLBACKS
A smooth map ¢ : N; — N, between open manifolds induces the pullback operation
¢": C(Ng) — C(Ny), " f = fod, f € C™(Na).

If ¢ is proper, then we also have that ¢*: C°(Ng) — C°(Ny). Furthermore, if v a
smooth density on N, its pushforward ¢,v is then defined by duality

<¢*V7 Q>N2 = <V7 ¢*Q>N17 g€ COO(NQ)7

where (v, f) = [ fv. If ¢ is a submersion, then ¢,v can be regarded as integration
over the fibers of ¢, and it is well known in that case that ¢, maps C'*° to C*°.

We now express Iy and Ig as weighted sequences of pushforwards and pullbacks.
At first we consider these only in the interiors of their domains of definition, but later
will investigate how they affect regularity near the boundaries and corners (notably in
the proof of Theorem 2.2 given in Section 5.3), which is where the b-fibration property
will enter. In addition, by virtue of [16, Th.3 & 5], Lemma 3.2 factors Iy and Ig in
a way that it becomes obvious that they map conormal spaces to conormal spaces, a
necessary ingredient to our main Theorems 2.1 and 2.2.
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Lemwva 3.2 Let (M, g) be a convex, non-trapping Riemannian manifold with bound-
ary, and definem =mwo X, 1t = w0 Y as above. Then the maps Iy, Ig defined (2)—(3)
can be written as follows:

1
(18)  (Shof(w,v)) a2 = &, (7[5 2du), [ CF(M?)

T
(19) (I8h) AM, = 7. (7" (Tph) S22 du), b€ O®((0:5M)°).
Proof. — When h(z,v,u) is a smooth function on dSM x [0,1] or D, we have

T (h(z,v,u) dX?2du) = (/ h(z,v,u) )dEQdQ.

In particular, if h = 7* f for some function f on M, then

Tt ([7* FldS*42du) = </ Fr(uren (@, U)))du) J52d—2

- <T(w7v) /OT(a: ”)f( (Wt(z,v)))dt> d524-2,

and similarly for Y|p. We arrive at (18).
Next, to prove (19), suppose h € C*®(91SM), so that its pullback (7;"h)(z,v, )
equals h(z,v). Now push forward the density h(z,v)dX2¢=2du: for any f € C*®(M),

(77 hdS? 2 du), f) = (h(z,v) dE**2 du, 7 f)
1
:/ h(x,v)/ f(ﬂ-((pu’r(z,v) (x,U))) du d22d_2
0+ SM 0

- M e x,v 2d—2
-/ ., 5 T st o denas

x v)u(x v

// o ﬂfxv))dS()f()d

In particular, we arrive at the relation
P - h
T[T h dX?072 du] = Ig<—) dM,,
TH
which amounts to (19). O

4. SPECIAL COORDINATES AND INDEX SETS NEAR THE GLANCING SET

4.1. Previminaries: sBLowurs. — We first recall, the notion of blowing up a p-sub-
manifold in a manifold with corners. Let N be a manifold with corners, and
(1, , Tk Y1, - -+, Yn—k) an ‘adapted’ set of coordinates; this means that each z; is
a bdf for a boundary hypersurface H; of N and each y; is an interior variable, lying
n (—¢,e). We say that a submanifold Z C N is a p-submanifold if there exists a set
of adapted coordinates such that Z = {(z,y) : 21 = =2, =0,y1 = --- =y, = 0}.

The utility of this notion is that if Z is a p-submanifold, then a neighborhood of the
0-section in the inward-pointing orthant of the normal bundle NZ is diffeomorphic
to a neighborhood of Z in N.
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With Z as above, we define the blowup [N; Z] to be the new manifold with corners
obtained by replacing each point z € Z by its inward-pointing spherical normal bun-
dle, and endowing this set with the obvious topology and the minimal C'*° structure
for which the lifts of smooth functions on /N and spherical polar coordinates around Z
are all smooth. Thus, for example, the origin {0} is a p-submanifold in R™ and the
blowup [R™; {0}] is diffeomorphic to a half-cylinder [0, 00), x S; ™', where (r,0) are
spherical polar coordinates on R™.

4.2. SprEcIAL COORDINATES ON O SM Near 0gpSM. — The considerations below rely
crucially on choosing a coordinate system on 0SM near dypSM for which 2d — 2 of
the coordinates are even with respect to the scattering relation, and the remaining
one, which is a bdf for 9gSM C 0+SM, is odd. Following [10, Th. C.4.5], one can
obtain such coordinates by symmetrizing and skew-symmetrizing any local chart near
any p € 0pSM with respect to «, yielding 2(2d — 1) functions which are of course
dependent, but then discarding a judicious half of these to obtain independent set
which is the desired coordinate system. We shall choose these in a slightly different
and more geometric way.

The following result does not need that M be non-trapping since we only consider
almost glancing geodesics, which lie near the boundary and are never trapped.

Lemma 4.1 (Scattering-friendly coordinates). — Let (M, g) be a Riemannian manifold
with strictly convex boundary, and let « be its scattering relation, which is well-defined
and smooth in a neighborhood of 0gSM. Then there exists an a-invariant neighbor-
hood U of 09SM in 9SM and coordinates (t,w): U — R x 9gSM satisfying

(t,w)(a(z,v)) = (—t,w)(x,v) Y (z,v) € U.

When (z,v) € UN ;. SM, then (t,w)(z,v) is interpreted as follows. Let ¢? the
geodesic flow on S(OM) = 9ySM. Choose U sufficiently small so that 2 and 7 (a(z, v))
are joined by a unique minimal length geodesic in dM for all (x,v) € U, directed
from z to m(a(z,v)). Then ¢ is half the length of that geodesic, and w = (y,w) €
0oSM = S(OM) is the geodesic midpoint y and velocity w at this midpoint between x
and w(a(z,v)) on OM.

Before proving this, we first recall a result which is very close to the original
definition of blowups in Section 4.1.

Lemma 4.2, — Let (N, g) be a Riemannian manifold.
(i) Let y € N and suppose that e > 0 is such that the exponential map
Ey,: SyN x (0,e) — N ~{y}
is a diffeomorphism onto its image. Then the map Ey lifts to a smooth diffeomorphism
By: SyN x[0.6) — [N, {y}]

which has image a neighborhood of the front face in [N, {y}].
(ii) Suppose that U is a punctured neighborhood of the diagonal in N x N such that

®: SN x (0,¢) 3 (x,v,t) — (z,Exp,(tv)) € U
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is a diffeomorphism onto its image, then ® lifts to a smooth diffeomorphism
$: SN x [0,¢) 3 (z,v,t) — (z,Exp,(tv)) € [N x N, A],
onto a meighborhood of the front face.

Proof. — For (i), take exponential normal coordinates centered at y and define polar
coordinates ((z — y)/|x — y|, |x — y|). By definition, these are smooth on [N, {y}] near
the front face. Furthermore, ®(v,t) = (v/|v|,t), and this extends smoothly and dif-
feomorphically to ¢ = 0. This is obviously a local diffeomorphism.

The second assertion follows by simply noting that the construction in (i) varies
smoothly in parameters along the diagonal. O

Proof of Lemma 4.1. — Let ©?: S(OM) — S(OM) be the geodesic flow on S(OM).
For € > 0 small, define

UFSM = {(z,v) € 0SM : 0 < p(z,v) < &},
U-SM = {(z,v) € 0SM : —¢ < p(z,v) < 0}.
Then the maps
0: 9SM x (0,€) 3 (w,t) — (m(¢?, (W), 7(p?(w))) € IM x OM,

U: UFSM > (z,v) — (’/T(iL';U),ﬂ'(Oé(x,’U))) € OM x OM,

are diffeomorphisms onto punctured neighborhoods of the diagonal in M x M. Sim-
ilarly, one can define © and ¥ on 9y SM x (—¢,0) and U SM, respectively. Thus (w, t)
is a coordinate chart on U.SM := U} SM UUZ SM. Denoting by S(z,2’) = (2/,x)
the involution swapping the two factors of OM x OM, then O(w, —t) = S(O(w, 1)),
and similarly, ¥(a(x,v)) = S(¥(x,v)) for all (x,v) € U.SM. Note that U.SM is a
punctured neighborhood of 35S M in dSM that is stable under the scattering relation.
This gives

(w, t)(a(z,v)) = 07 (¥(a(z,v)))

(20) o B
=0 (S(¥(z,v))) = (w, —t)(z,v), (z,v) e U.SM

and hence (w,t) are the coordinates we are looking for, provided that they extend
smoothly to dgSM.
To prove this last fact, we show that ©, ¥ extend to smooth maps

©: 9SM x [0,¢) — [OM x OM,A],  W: UFSM UdSM —s [OM x dM, A,

where, if (z, (¢’ — z)/|2’ — x|, |2’ — z|) denote local coordinates on [OM x OM, A] near
the front face (|- | is Euclidean distance and [v] denotes the equivalence class of v in
the spherical normal bundle of A), we have

~ ~

6((yaw)’0) - (ya [w},O) - \Ij((va))v (va) € 9pSM.

Assuming this, for the moment, then the proof follows by setting (w,t) = o1 O{I\f(x, v)
on U SMUdySM. Note that t = 0 on 9y SM and w is the identity map there. By (20),
this extends to a(UFSM) U dpSM.
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Finally, to construct O: for each y € OM, and in terms of coordinates
(@, (2" = 2)/|a" — 2], |2’ — )

on [OM x OM, A] (where x, 2’ are written in normal exponential coordinates w.r.t. y),
we have R
9((yaw)vt) = (y — tw, [’LU], 2t|w‘)7

which clearly extends smoothly to ¢ = 0. The basepoint y is a parameter in this
construction and everything can be carried out in such a way as to depend smoothly
on y.

As for \Tf, Let M be a smooth extension of M ,y € OM and V a small neighborhood
of y in M. By Lemma 4.2.(i), the exponential map E, in M lifts to a smooth map

E;: S’yﬂ x [0,e) = [U, {y}]. Now define the composition
U 8,M U008, M 3 v (0,7(y,v)) — Uy, v) := By(v,7(y,v)),

This is smooth. To show that it takes values in [V N IM,{y}] (and not just in
[M,{y}]), first suppose that v € UFS,M. Then ¥(y,v) remains in M ~\ {y}.
Asv — w € 005y M, convexity of M implies that 7(y, v) — 0 and thus for w € 9yS, M,

E,(w,m(y,w)) = (w/|w|,0) € [VNIM,{y}]. Once again, this may be carried out
smoothly in y. O

4.3. SPECIAL INDEX SETS AND THE spPAcES C5° (04 SM). — Recall the definition (9)
of C°, (04 SM). A first observation is that the function 7 € C*°(dSM) defined
in (15) satisfies Toa = —7, and hence T = A_(7|s, sn) and 7|o, s € C3°_ (04 SM).
Moreover, by [22, Lem. 6.11], the strict convexity implies that there is a positive
function h on 9SM such that 7 = hp on 0SM with h(y, w) = 2/I1, (w, w) for (y,w) €
0oSM, so that T vanishes simply at dypSM. With these considerations in mind, we
first prove the following.

b

Lemma 4.3. — The space of all smooth functions on 0;.SM decomposes as
C®(048M) = O, (0+SM) + C°_(04.SM).

Furthermore,

(21) Co(04SM) = 7C7, (04 SM).

Proof. — To prove the first assertion, fix any f € C°°(01SM). Using a Seeley exten-
sion operator across the hypersurface 9ySM, extend f to 0_SM into fE C>®(0SM).
Now write f = f+ + f_ where fi = %(fi a*f). Since fi € C® (0SM), we have that
fr = fi|a+5M € C5°y; since f = fi + f—, the result follows.

As for the second assertion, the implication D is clear. The other inclusion follows
from the fact that if f € C3°_, then it vanishes to order at least 1 at 9pSM, so the
ratio f/7 is well-defined, smooth on 9, SM, and belongs to Cg°, since A, (f/7) =
(A_f)/(A_7). o

The intersection Cg°, N CF°_ equals C’°°(6+SM ), the space of smooth functions

o, —

vanishing to infinite order at dySM.
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C index sets on 1SM. We now define a class of polyhomogeneous functions
which are a slight generalization of these classes of even and odd functions. As above,
this definition is natural given the existence of the involution .

DeriNition 4.4 (a-boundary defining function). — We say that a boundary defin-
ing function ¢ for 9pSM in OSM is an a-boundary defining function (a-bdf) if
te OP (0,5M).

Three examples of a-bdfs are 7, 4 — p o o, and the coordinate ¢ from Lemma 4.1.

Lemwvia 4.5 (Characterization of Cg% (04 SM)). — Let t be any a-bdf for 0, SM.
Then for any f € C3° (04 SM), there exist smooth functions agy on 0pSM such that

f ~ Z t2ka2k.

k>0
Likewise, if f € C5°_(0+SM), then there exist smooth functions agx11 on 9gSM such
that
[~ Zt2k+la2k+1o
k>0

Proof. — 1f f € C3°, (04 SM), then
A feC®OSM) and Aif(x,v)= A4 f(a(z,v)).

Fix coordinates (t,w) as in Lemma 4.1 in a neighborhood of 9pSM. If t denotes
any other a-bdf, the function t/t belongs to C5°, and is non-vanishing in a neigh-
borhood of 9pSM. In particular the jacobian of the map (t,w) +— (t,w) is non-
vanishing in a neighborhood of 9pSM, and thus we can use (¢,w) as local coor-
dinates near 9pSM. Taylor-expanding A, f near {t = 0} = 9ySM, we have that
Apfz,v) ~ 32 5 ap(w)t? for some functions a, € C*°(9pSM). Then the symmetry
AL ft,w) = Ay fa(t,w)) = AL f(—t,w) forces all odd coefficients agp+1 to vanish.
The case f € C37_ is a direct consequence of what was just proved, equation (21),
and the fact that t/7 € C3°,. O

Derivirion 4.6 (Cg%-index sets on 91 SM and Ay, (94 SM) spaces)

A C*-index set on 0;.SM is an index set, as defined in Section 2.1, which satisfies
(¢”) if (2,k) € E, then (2 +2,k) € E,
rather than condition (c¢) which distinguishes what we have been calling C* index sets.
With E a C°-index set, we say that a function f € C°°((0+SM)°) belongs to
Afhg’a(a_s_SM) if for some a-bdf ¢ for 94 SM, there exist a, € C*°(9ySM) for each
(z,k) € E such that
f~ Y t(logt)Fa. .

(z,k)EE
Note in particular that, by Lemma 4.5,

C2y (0.8M) = AL O 0, 5M), €2 (9,5M) = AG O (0, M),
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Coordinate invariance. We now show that the spaces Afhg,a(&r SM) are invariant
under change of a-bdf and multiplication by C3°, (04 SM) functions.

Prorosirion 4.7. — Fiz E o C3°-index set.
(a) If f € C®°((0+SM)°) has an asymptotic expansion with index set E relative
to some a-bdf t, and if t' is any a-bdf for 0, SM, then
fr~ Yt (logt) b g

(z,k)EE

where the b, ;, € C*(0ySM). Hence elements of AL, (04 SM) indeed have asymp-
totic expansions with index set at most E with respect to any «-bdf.

(b) The set Afhg’a(a_s_SM) is stable under multiplication by C3° (04SM) func-
tions.

Proof

(a) By assumption, f has an expansion of the desired type, with index set F, with
respect to one particular a-bdf t.

If ¢ is any other a-bdf, then £/t is a smooth, everywhere positive function which

has only even terms in its Taylor expansion at 9ySM with respect to either ¢ or ¢'.
Using Lemma 4.5 and writing

t
7 ~ (t/)2p02p, C2p € C’°°(805M), co >0,
p=20
then B .
t*(logt)* = (t')*c3 (1 + Z(t')2pc2p> (log t' +logcy + log(l + Z(t’)2p02p>> .
Co Co
p=1 p=1

All terms are of the form (log#')*(+')**2P for 0 < £ < k and p > 0, and these exponent
pairs all lie in FE.

(b) By Lemma 4.5, at the level of index sets and relative to an a-bdf ¢, multiplying
an element of A% by f € C3°, will induce operations of the form (z, k) — (2+2p, )
(where 2p € 2Ny denotes an exponent appearing in the Taylor expansion of f) for
(z,k) € E, and by virtue of property (¢’), the terms generated remain within the

index set E. O

Finally, we show that (17), originally established for the geodesic distance func-
tion p and geodesic length function 7, holds for any bdf for M and any a-bdf for
00SM.

Prorosition 4.8. — Let (M, g) be conver and non-trapping, and p1 a bdf for OM
and 11 an a-bdf for 9gSM. Then there exists a smooth positive function Fy on 9SM x
[0,1] such that

p1(Y(z,v,u) = 72 (2, v)u(l — u)Fy (x,v,u).
for all (z,v,u) € OSM x [0,1].

Proof. — This follows immediate by combining (17) with the facts that p/p; €
C>*(M) and 7/7 € C3°, (04 SM) are both everywhere nonvanishing. O
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5. PROOFS OF THE MAIN RESULTS
5.1. MAPPING PROPERTIES OF WEIGHTED X-RAY TRANSFORM. PROOF oF THEOREM 2.1 AND
Prorosition 2.9
Proof of Theorem 2.1. — Fix the bdf p for M (which induces a bdf for SM), and write

e > pPogp) fok,  far € C(OSM).
(z,k)EE

If h € C°(OSM), then setting t = 7u and using that po T = 72u(1 — u)F for some
strictly positive F' € C*(0;SM x [0, 1]), we have
1
I*(p*(10g)"h) = 7 [ (po 1) (og o T) H(T)6(Y) du
0

1
— 2ot / (u(1 — w))*(F)(log(r>u(l — u) F))*h(T)$(Y) du.
0
Expanding the logarithm, we arrive at

k
(22) P o)) = 72 32} ) Qo) ar sl
£=0

where, for 0 < £ < k, )
142, ¢(z,v) = /0 (u(l —w))*F(z,v,u)?(log(u(l — u)F))k_éh(T)(b(T) du.

Using the symmetries Y (a(z,v),u) = Y(z,v,1—u) and F(a(zr,v),u) = F(z,v,1—u),
we see that aijo.¢ € O3 (945M), thus ajy2. contributes with an asymptotic
expansion of the form aiyo. 0 ~ 3307 7Pa] 5, 4 (W) with @)y, ,, € C®(0SM).
Hence (22) is an asymptotic sum involving only the terms 7' 2*T2P(log 7)¢, 0 < £ < k
and p > 0. Since 7 is an a-bdf, we see that the corresponding index set generated
takes the asserted form.

Finally, the most singular term is when ¢ = k, and its coefficient at (y,w) € 9pSM

equals
1
/ 28 (u(l = w))* Fy, w,u)*h(T)$(Y) du = 2" B(z + 1, 2 + DL (w, w)d(y, w)h(y, w).
0
This uses the identity (c) written just before Lemma 3.1. O

Proofof Proposition 2.9. — Let p be a bdf on M and t an a-bdf on 84 SM. By Propo-
sition 4.8, there exists a smooth positive function F' on dSM x [0,1] such that

(23) p(T(CL’,U,U)) = t2(.’[, v)u(l - U)F(xava 'I.L).

Assume that F' is uniformly bounded by some constant F... Fixing some constant (3,
to be chosen later, we have

[ e pase < [

dy SM 8, SM

:/a SM(/Ol(f.pW)onu)QtﬂTQMdZQd_Q (t=Tu)

1 1
g/ (/ (f2p5)o'rdu)</ p27_5onu>t’872ud22d_2.
a,5M Mo 0

JEP — M., 2024, lome 11

(/OT(f -p7) () dt)Qtﬁ [ dx21-2



839 R. Mazzeo &« F. MonarD

Now, using (23),
1 1
/ P70 Y du =t / (uw(l —w)?~°F(z,v,u)> "% du
0 0

1
< t47_25ng_5/ (u(1 — u))2'~° du.
0
The u-integral is finite provided 2v — § > —1, so we arrive at
(Io( 'Yf))Qtﬁ dz?d—Q < C (f2 5)( t) dt tﬁ+4’y+1—25 dEZd—Z’
p H %) (p M
0+5M a.5M o

where C := F29B(2y — § + 1,2y — § + 1)(7/t)oo. Here B is the Beta function as
defined in (7), and 7/t is bounded above since they are both a-bdfs. We now set
B =26 — 4y — 1 and use Santald’s formula to conclude that

/ (Io(p" )P pds?=2 < ¢ 20 dx?i=t < O'Vol(Sh) / f2p° dM.
d.SM SM M

This is the desired conclusion. O

5.2. Inpex seTs oN M via MELLIN TrRansrorM. — We now undertake a closer exam-
ination of the integrals which give the coeflicients of the terms in the expansions
appearing in Theorem 2.2, with the dual goals of showing that certain of these van-
ish, and of computing the leading coefficients. A closer understanding of the Beta
function and certain generalizations of it are the crucial components in this analysis.

5.2.1. Beta-type functions

Facts about the Beta function. The Beta function is given in terms of the Gamma
function by the classical formula B(z,z) = I'(2)['(z) /T'(22). It is also well known that
I'(z) has simple poles at the negative integers, with

. _ R G

lim (z+n)I'(2) = Res(T', —n) = ,

2 —n n!

hence B(z, z) also has only simple poles at negative integers. Moreover, for n € Ny,

. o EHnTE)E+T()
zl_l)IIln(Z +n)B(z,2) =2 ZE)IE,L 2(z +n)'(22)

B ((71)”/71!)2 _ 2n
=D/ 2n) 2<n)

In addition, B(z,z) has a simple zero at every z € —Ny — 1/2, with
B(z,2) ) I'(z)?
m — = lim
zs—n—-1/2z2+n+1/2 z=-—n-1/2 22+ 2n+ 1)T'(2z + 2n + 1)
1
lime, 9,1 T((+2n+1)((+2n+1)
—2(2n + 1)!T(—n — 1/2)%

(24)

=21 (—n — 1/2)?
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. 4™ (n41)
Since I'(—n — 1/2) = W‘[ we obtain, finally,
B 22 (o 2\ 7
(25) lim (z:2) _ nt2)
sven—1/22+n+1/2 Thntl \n+1
Generalized Beta functions. We now consider expressions of the form

- / Fu) (u(l — )y~ du,
0

where f is continuous on [0, 1] and satisfies f(u) = f(1 — ). The integral defining
Bf] converges absolutely and defines a holomorphic function on the open right half
plane {Re(z) > 0}. If f has higher regularity, it admits a meromorphic extension to
a larger half-plane:

Prorostrion 5.1. — If f € C¥([0,1]), then B[f] continues meromorphically to
{Re(z) > —k}, with at most simple poles at 0,—1,—2,...,—k + 1.

Proof of Proposition. — The identity (u—1/2)? = 1/4—u(1—u) leads to the recursion
formula

(26) Bl(u—1/271)() = 61() — Al +1).
Thus if f € C1([0,1]), then
(1) BIAE) = 2 (@2 + DB+ D+ Blw—1/2f 1= +1)),  Re(2) >0

this defines the continuation to {Re(z) > —1} with a simple pole at z = 0 and residue
there 28[f](1) + B[(v — 1/2) f'](1). This formula is proved by integration by parts:

Blu=1/2)£Y+1) = [ (=172 ) (w1 = w)* du

/ F)[(u(l —u)® + 2(u — 1/2)(1 = 2u)(u(l — u))*~ '] du
(z 4+ 1) +228[(u — 1/2)%f](z)

—B[f]1(z + 1) + 22(38(f)(2) — BIf] (2 + 1)),
The extension to larger values of k follows by repeated application of (27). O

(26)

5.2.2. Mellin functionals. — Let (M,g) be a smooth Riemannian manifold with
boundary M, volume form dM and boundary defining function p. First recall that
a b-density is a density with a ‘simple pole’ in the bdf, i.e., a smooth multiple of
dM /p. Fix a cutoff function x € C°[0,¢) with x = 1 near 0. Then for any H € A?,
define the Mellin functional

Hy(y; 2) = /OE p*H(p, y)x(p)% dA(y),

This is a (weakly) holomorphic function {Re(z) > —t} — D’(OM).
If H is polyhomogeneous, a standard result relates the index set of H with the
poles of Hyy.
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Levmva 5.2 The function H is polyhomogeneous with index set E, where inf E > t,
if and only if Hyy extends meromorphically to the entire complex plane, with a pole of
order k 4+ 1 at —y whenever (v, k) € E, and where n— Hy (€ + in,y) decays rapidly
for each & (for z = £ + in outside the set of poles). Specifically, given a € C*°(OM),
the term a(y)p” logk p is present in the asymptotic expansion of H off of OM if and
only if the Laurent expansion of Hyt about the pole —v takes the form
(—1)*k!

G+
The proof is well-known, see [16], [14, App. A].

Hy(z,y) = (a(y) + O(z +7)).

Remark 5.3. — The rapid decay of Hy in vertical directions mirrors the conormality
of H. In other words, if (pd,)*H lies in some fixed function space for all £ > 0,
then (“Hy lies in the Fourier transform of that space. The functions encountered
throughout this paper are usually very easy to recognize as conormal; it is their
polyhomogeneous nature which is our main focus.

5.3. Proor or THEOREM 2.2
Suppose g takes the form
g =a(w)x(r)™ log" 7, a € C®(0ySM),

where x € C*([0,¢)) with 1j./3 < X < 1[,2¢/3] for € small enough. This function
is obviously conormal, then as a result of Lemma 3.2 and [16, Th.3 & 5], so is Igg.
Then by Remark 5.3 the decay of its Mellin transform in the imaginary direction is
clear.
We now determine the index set of Ig gdM /p and the coefficients of its expansion,
at least in the range where these are local. Recall that, by Lemma 3.2,
7t dM d¥24=2qdy
09 P) T (X(T)T’ugTzu(l - u)F)
N Tg pdx?=2  du
- (X(T)F 72 w(l-— u))
1 ogh r pdv2d-2  du
F 72 u(l—wu) )

=7 (x(7)a(w)
By Lemma 5.2, if h € C*°(0M), we have
(28) ((I5g)a, M) (2) .-

€ 7 ogh r pdx?=2  du
— h 27
/8M (y)/o - (a(w) F x() 2 u(l— u))

du  pdx?d—2
u(l—w) 72

1
= / / h(y o )72  ogh 7(u(1 — w))* F* 1 x(7)a(w)
ay8M Jo
E2d_2

d
= / a(w)rZ 7  ogh 7x (1) B(1,w; 2) me= R
8, SM T
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where, for (7,w) € 0;SM, we have defined
1
(29) B(r,w;z) = / h(y o mo Y (z,v,u))F(x,v,u)*  (u(l —u))*~! du.
0

Note that we used (x,v) and (7, w) interchangeably above. Certainly B is holomorphic
for Re(z) > 0.

The following three lemmas will be used to complete the proof of Theorem 2.2.
Their proofs appear in the two subsequent sections 5.4 and 5.5.

Lemva 5.4, — For all z with Re(z) > 0, the function B(:; z) belongs to C3°, (04.SM).
Furthermore, B(-; z) continues meromorphically to C as a C5°, (04 SM)-valued func-
tion with at most simple poles at —Nj.

By the first part of this,

0| —oB(1,w; 2).

(30) B(r,w;z) ZTQkBk w;z), where By(w;z)= (Qk)'

In particular, combining (29) with the fact that F(z,v,u) = II,(v,v) and T (z,v,u) =
(z,v) for all (z,v) € 9SM and u € [0, 1], we directly have

Bo(w; 2) = h(m(w)II(w)* ' B(z, 2).

Using the structure of the poles and zeroes of the Beta function described in Sec-
tion 5.2.1, we can say a bit more:

Lemma 5.5. For each k, By(w;z) has at most simple poles at —Ng and at least
simple zeros at —Ng —1/2 — k

The density pd%??~2 is the restriction to 04 SM of a smooth density on 0SM
that is invariant under scattering relation. Indeed, o*(ud¥24=%) = ;1 dx?1=2 (see
[24, Prop.3.6.10]). Locally near 0pSM, using coordinates (7,w), write this density
as £(T,w) d7 d) for some smooth function ¢. The invariance under a* and the fact
that a*d7 = —d7 and a*d) = d€) implies that ¢ o o = —/, and hence {|o, sps €
Cao_ (04 SM). This implies that, upon restricting to 9, SM where 7 = T,

(31) pdS? 2 N s ()T drdQ, s, € C(90SM).
p=0
Lemva 5.6. — The coefficient sq is given by
1I 2
(32) solte) = BT () € a8,

4 )
where 11, is the second fundamental form of OM.
Now, combining (31) with (30) yields

2d4-2 > p -
(33) B(r,w; 2) Z ZTQP [Z By (w; 2)sp—q(w )] dr dQ.
q=0
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Returning to the main calculation (28) with the asymptotic expansion (33) in mind,
the contribution of the p*® term of (33) to <(I§g)jv[7 h)(z) equals

P
| atwremiog T[Z By(w: z)sp-q«u)}x( A
84 SM

q=0
p €
d
/ [ZBq w; 2)Sp—q( )} dQ-/ 2=4p)Hr+H gk Tx(T)— i
BOSM 9=0 0 T
A (2) Aral®)

Thus the pole structure of the pt* term is a result of the interaction of the pole and
zero structures of these two factors. By Lemma 5.5, A, 1(2) has at most simple poles
at —Np and at least simple zeros at —Ng —p — 1/2. The A, 5 term equals

¢ dr 1
A — 2—k k / 2(z+p)+'y+1 _ 2—k k E
P72(’z) az ( 0 T X(T) T a (2<Z+p) +7+ 1 + (Z))

— (—1)"k!
2z +p) + o+ 1) + By e (2),

where E, j,(2) := 27*0%E(z) is entire. Hence A, has a pole of order k + 1 at
z2=—(y+1)/2—-p.

We now split cases according to (11), discussing how the zeros and poles structures
of A, and A, 5 interact.

Case v € 2Ng. — Write v = 2m for some m € Ny. For all p > 0, the product
Ap1(2)A, 2(%) inherits the simple poles of A, 1, and the pole of A, 5 loses one order
(or disappears if the pole was originally simple) due to its interaction with one of the
simple zeros of A, 1.

In the case where k > 1, there is a pole of order k at —(vy + 1)/2 — p associated
with the term p(7TD/247 1og" =1 ) with coefficient

<a((v+1)/2+p»k71)7 h> ot

—k - By (w; z)
T 9k dQ.
2kt /0051\/1 Zoz—> ('y+1)/2 p(z+(7+1)/2 +p> p—q(w)

When p = 0, we compute

(A(mt1/2,k—1), M)onr - - -

—k . Bo(w; 2)
= Sk+1 1 _ 20\ ) Q
ok+1 /<90$M a(w) ngl,l/z(z ap— 1/2>50(w) d

_ —k : B(z, 2) —m+1/2
T 9R S L, e 1/2(z +m+ 1/2) /&)OSM a(w)h(m(w))Tl{w) ds2

(25) 2mk 42™+2 (9m 4 2
T2k 9m 42\ m+1

) / () h( (@) T (w) =™ +2 4.
SoSM

This gives the first expression in (12).
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Casey € 27 + 1. Write v = 2m — 1 for some m € Z and fix p > 0.

If p < —m (this is vacuous if m > 0), then the pole of A, 9 at z = —m — p does
not interact with the poles of A, 1, and the product A, ; A4, 2 has simple poles at —N
and a pole of order £ + 1 at —m — p. The most singular coefficient in that case is
unaffected by the pole interaction, thus the computation of the coefficient is similar
computation to case 3 below.

If p > —m, then —m — p € Ny and the pole of 4, > at 2 = —m — p interact with
the poles of A, 1 at —Ny. The product A, 14,2 has simple poles at —Nj and a pole
of order k + 2 at z = —m — p. The latter yields the term p(+1/2+P1ogk*! 5 with
coefficient

(A((ya1)/24p k1) 1) g

-1 P
= W/a oy ) {Z Res_(y41)/2-p (By(w; ) sp—q(w) | A
o q=0

When m < 0 and p = 0, the coefficient of the most singular term takes the form
-1
<@(m,k+1)7h>3M = W /805M a(w) Res_, (Bo(w; -))so0(w) dS
(24) —Res_n (B(2,2))
(B 1)2kH
@ G / a(@)II(w) =™ hn(w)) dO2.
(k+1)25%2 Jo sm
Decomposing the Sasaki measure as dQ? = dA(y)dS,(w), we obtain the middle
expression in (12).

/ (@) TT(w) =™ B (w)) 50 (w) A
OoSM

Case v ¢ Nog U 27Z + 1. For every p > 0, the pole of A, 5 never interacts with the
zeros or poles of Ay, 1, hence the product A, 14, 2 has simple poles at —Ng and a pole
of order k + 1 at —(y+1)/2 — p. The latter gives the term p(*t1)/2+rlog* p with
coefficient

1 P
(arn/24p00 M) onr = 37 /8 ) [Z By (wi =(y+1)/2 = p) sp—q(w) | d2.

q=0
When p =0,
1
(arnr2m Mg = 7T / a(w) By (w; —(v + 1)/2) so(w) d
BoSM
1
— oo | atwh(r()ine) 00 (i) d
2 BoSM
1
= grr3 B (=(v+1)/2,-(v+1)/2)
x / h(y) / a(y, w)IL, (w) /248, (w) dA(y).
oM Sy (M)
This is the bottom expression of (12). The proof of Theorem 2.2 is complete. O
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5.4. Facts asout Beta FuncTiONALS. PROOF OF LEMMAS 5.4 AND 5.5

Proofof Lemma5.4. — Considering (29), note that the functions T and F' are defined
and smooth on 9SM x [0, 1] and satisfy

(34) F(z,v,u) = F(a(z,v),1 —u), Y(z,v,u) = T(a(z,v),1 —u).

This implies that B(-;z) is the restriction to d,SM of a function B € C>(dSM)
which satisfies, by virtue of the change of variables u — 1 — u,

~ 1 u
Bla(z,v); 2) = /0 h(y o Y(a(z,v),u))F(a(z,v), U)Zl(u(l_du))l—z

1
(34)/ 1 du ~
= h(yoY(x,v,1 —u))F(z,v,1—u —— = B(z,v; 2),
[ty r( NF( s = Bl

hence B(+; z) € C3°, (01 SM).

Next, the integrand in B is smooth in all its arguments, so we can use Propo-
sition 5.1 (with an inconsequential parameter dependence) to extend B meromor-
phically to C with at most simple poles at —Ny. An inductive use of the functional

relation (27) shows that B(a(z,v); z) = B(z,v; z) holds on each strip

{=k —1 < Re(z) < =k} ~ {—k}.

Restricting B to 01 SM, we obtain the conclusion. O
Proofof Lemma3.5. — We find an expression for each By. First rewrite
plm 0 T(a,v,u))
F ) ) = TN L\
(z,0,u) T(Y(z,v,u))

where for (z,v) € SM, T(x,v) = 7(x,v)7(x, —v). Note that T is smooth on SM, even
on each fiber, and satisfies XT = T, see [24, Lem. 3.2.11]. The function

(@, 0,8) — p(r(@e(,0)))T (i(, )

is smooth in all its arguments and nonvanishing for (z,v) near 9pSM and t €
[0,7(z,v)]. The function H(z,v;z) = h(y)(p/T)° is smooth in (z,v) and entire
in z. If (z,v) € U(E’E)SM, ie., p(z,v) € (0,¢e), the Taylor expansion centered at
t = 7(x,v)/2 takes the form

YA 7(w,v) ) 2+
Hipi(,0)i2) = Y (1= 55 ) Holwyviz) + (1= T52) 7 Ralaov,2),
=0
where
1
Hy(z,v;z) := L4 H(pi(z,v);2) = lXZH((p (z,0)/2(T,0); 2)
y Uy 1 dit y V) 7 T(z,v)/ sy V) <)y
t t=7(x,v)/2
1 1
Rop(z,v,t;2) := w/o (1- S)QkXQkHH(%/%s(tfr/z) (z,v); 2) ds.
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This gives
2%
H(Y(xz,v,u);2z) = ZTZ(’LL —1/2)Hy(z,v; 2) + 724 (w — 1/2) 1Ry (2, v, Tu; 2).
£=0

Note that Hay is entire in 2 for every £ > 0 and also lies in €57, since it is the restriction
to 04 SM of the function Hoy(z,v; 2) := ﬁX”H(@;(%U)/Q(x, v); z) which is smooth
on 9SM and a-invariant.

Inserting this expansion into the expression for B(z,v;z), all integrals involving
odd powers of (u — 1/2) vanish, so we are left with

B(z,v; z) :/0 H(Y(x,v,u);2)(u(l —u))* 'du

k

= 72 Hop(z,v; 2 1u— (w1 —w)* tdu
= (o) [ (=12 (1 - w)

=0
1
4 2l / (u — 1/2)* T Ry (z,v, Tu; 2) (u(l — u))? du.
0

Using the identity

(=172 = (3 -t - ) = 3 (1) C5 i -y,

p=0

we obtain

! 2 z—1 : ¢ —1)P
/0 (w—1/2)% (u(1l —u))* "t du = Z (p) (4472) B(z+p,z+Dp).

p=0

Further expanding Hoy(x, v; 2) ~ Z;io 724 Hyy 4(2;w), we obtain

B(r,w;2) ~ 27% 2 72 Hy (3 2) {ZZ: <€) Y Bz tpzt p)}

p=0 p
[ k £
0\ (=17
~ oS Haaedlei) [ () G B )|
k=0 £=0 p=0 p
By (w;z)

Interchanging the sums in ¢ and p, we arrive at

Bu(win) =3 Blet x4 D)1 [Z <€> Hﬂ(“’)}

p=0 {=p P

Using the pole and zero structure of B(z,z), we see that B(z + p, z + p) has simple
poles at =Ny — p and simple zeroes at —Ng —1/2 —p for each 0 < p < k. Furthermore,
all coeflicients in brackets are entire functions of z. This gives the result. |
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5.5. VoLuMmE racrors ANp proOF oF LEmma 5.6. Let (M4, g) be a Riemannian man-
ifold with boundary, with tangent bundle 7: T'M — M, and recall the connection map
Kyv:T(TM) — TM: for {£ € T, TM, choose a curve c(t) = (z(t), W(t)) € TM
such that ¢(0) = & and W (t) € Ty M, and define

D
Kyé = aW(t)\t:O (D : covariant differentiation).

Writing H(x,v) := ker Ky and V(z,v) := ker dm, we have a direct sum decomposition
T(E,’U)TM = H(Iv ’U) S V(Ia U)a
where the restrictions dm: H(z,v) — T,M and Ky: V(z,v) — T,M are iso-
morphisms. Thus every § € T{, . T'M is uniquely identified with a pair (§x,&v) =
(dn (&), Kv&) € T.M x T, M, and the Sasaki metric is defined by
G(:z:,v) (57 77) = gw(£H7 nH) + gw(&Va 77V)a 57 ne T(m,v)TM~

In local coordinates, any chart (x1,...,x4) on M induces a chart
(z1,...,zq,y . yd)
on T'M, where the 3’ are linear coordinates on each fiber, and
H(z,v) = span (8, := 0y, — Fijjﬁyk, 1<i<d),
V(z,v) = span <8yi, 1<i< d>.

Furthermore, dr(d,,) = Kv(0yi) = Ox, .
If (x,v) € SM, the Sasaki-orthogonal decomposition is

1L
T(I’U)TM = T(xyv)SM (&) R(O, ’U).
Since (0,v) € V(x,v), we also have
Tiz,0)SM = RX © H(z,v) ®V(z,v), V(z,v) :={(0,w), w € Ty M, g,(w,v) =0},
—_———
H(z,v)

where X = (v,0) and H(z,v) := {(w,0), w € T, M, g,(w,v) = 0}. As we have written
throughout the paper, d%?? and d%2¢-! = L(O’v)ded denote the Sasaki volume forms
on T(TM) and SM, respectively.

A unit normal to 9SM at (z,v) € dSM is given by (v,,0), where v, is the unit
inner normal at x € M. We denote the Sasaki volume form on dSM by dx??—2 =
L(l,z,(])dZZd_l.

Recalling the function p: OTM — R by pu(z,v) := g, (v, v), we can write the tan-
gent bundles of the glancing manifolds 0gTM = {u = 0} and 9ySM := {u|sy = 0} as

T(I,U)GOTM = {<£H7£V): §H € TwaM7 g(g‘/)VI) = IIw(UagH)}a
Tio)00SM = {(Em,&v): €m € TLOM, &y € {v}*, g(&v,ve) = (v, €m)}.

In particular, if s is the shape operator of OM, then

1
Ny i= ——— (=50, 1)
g(sv,sv) +1
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is a unit normal to JpSM in OSM and to dyT'M in T M. Hence these glancing
manifolds inherit the volume forms ¢(,, oyt d¥?? on 9yTM and L(V70)LNOL(07U)d22d on
0oSM.

On the other hand, identifying 9yT M and 9ySM with T(OM) and S(OM), respec-
tively, then in terms of the induced metric i*g on M, they inherit M -Sasaki volume
forms d¥2%? and dQ = ¢(g ,),dE5" 2. On T(T(9M)), the Sasaki identification

T(T(OM)) ~ T(OM) & T(OM)

is denoted (-, -)s.
We now relate the ambient and intrinsic volume forms.

Levma 5.7. On OTM =T(0OM),
L(V’O)LNOdEQd = mdzgd—% (z,y) € T(OM).
Consequently, since (0,v) = (0,v)s, we also have
(35) Lw,0) N L(0,0)dE2 = 1y, dD* 72 = /g, (sv, sv) + 1dQ
on T(S(OM)).

Proofof Lemma5.7. — Given boundary normal coordinates (1, ..., Zq—1,7), where r

is a bdf, we take the induced coordinates (x1,...,Z4-1,7 Y1, .-, Yd—1, p) on TM. Thus

any tangent vector takes the form y=v'd,, +pd, and the unit inner normal is 9.
We first claim that

(36) (w,0)o = (w, I, (w,y)v), (z,y) € T(OM), w € T,(OM).

Indeed, in these local coordinates, and for 1 < i< d—1,

(8, 11(Bay, )V Z IEy7 0y + 110, )0,
j k=1
d—1 ‘
= Z TEyi o, — anpak > T80, + (0, y)0,,
g k=1 j=1

where yq = p. The last two terms cancel, and the middle sum is zero since p = 0 at
OM. The remaining terms are simply (0,,0)s, which proves (36).

Now fix (z,y) € T(OM) and choose an orthonormal basis (ej,...,eq—1) for
T,(OM). Then A; = (e;,0)9 and B; = (0, e;)g, i < d— 1, is an orthonormal basis for
the Sasaki metric associated to i*g on TOM, so

|dx2"2(A1,..., Ag—1,B1,...,Ba_1)| = 1.

On the other hand, by (36),
A; = (ei, (sy)iva),  Bi=(0,e;), 1<i<d-1,
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where (sy); = g(e;, sy) = II(e;,y)). Hence,
{L(%O)LNOdEzd(Al, ey Ad—l, Bl, Bd_1)|

1
= —‘dzzd(Ala s 7Ad—1a (V7 O)aBlv cee 7Bd—1a (sy, 71/))|

V(sy,sy) +1

(sy)1
_ 1 idg_1 Co| L glsysy) 41
g(sy,sy) +1 (5y)a_1 g(sy,sy) +1
(sy)r -+ (sy)a—1| -1

by writing the determinant using the orthonormal basis
(6170)7 ceey (ed—la O)’ (Va 0)3 (07 61), sy (07 ed—1)7 (Oa V))

This proves the result. O
We now use this to prove Lemma 5.6:

Proof'of Lemma 5.6. — We must compute the first term in the expansion
B gx2d—2 — so(w)drdQ + O(72).
=

On 9ySM, /7= 111, (w, w) and dp= 311 dr there. Contracting with Ny and using (35)

gives

11 2

5\/gy(sw, sw) + 1d2 = sg(w)d7(Np)dQ2 = sg(w) i du(Nop)dS.
Following the proof of [24, Lem. 3.3.6], for (z,v) € 9SM and ({u,&v) € T(4,,)0SM,

Ap(Er, &v) = —TIy(w,m) + g, (Ev,v) = —gy (5, €1) + 9,1, €v).
In particular,
dp(No) = 1/ gy(sw, sw) + 1,
which proves (32). O

ArPENDIX. NON-SHARP MAPPING PROPERTIES FOR IO AND Ig

In this appendix, we explain how the pushforward and pullback theorems of Melrose
[16], combined with Lemmas 3.1 and 3.2, help provide polyhomogeneous mapping
properties akin to Theorems 2.1 and 2.2, although they tend to overestimate the
resulting index sets. We explain this in further detail at the end.

Polyhomogeneity on manifolds with corners. If N is a manifold with corners, we defi-
ne an index family € = (E,)qeca to be a collection of index sets, one for each boundary
hypersurface of N. An element u € Aghg(N ) is then a function with an asymptotic
expansion associated to E, at H,, and with a product type expansion (see (37) for
the codimension two case) at all corners.
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Pullback and pushforward of polyhomogeneous functions by b-fibrations. As seen in
Lemmas 3.1 and 3.2, the operators I and Ig can be expressed in terms of pullbacks
and pushforwards by b-fibrations. We recall here the main facts concerning the anal-
ysis of pullbacks of polyhomogeneous functions by b-maps, and of pushforwards of
polyhomogeneous functions by b-fibrations. In particular, we explain how these oper-
ations act on index sets.

For convenience, we shall only explain this in the somewhat simpler setting of
a b-map F': Ny — N5 between manifolds with corners, where N; has corners of
codimension two and Ny is a manifold with boundary but no corners. This reduces
the amount of notation needed. Thus let z; and xo be bdfs for the two boundary
hypersurfaces of N1 meeting at the corner {z; = 2o = 0} and t a bdf for dN;. Thus

F*t = Ga{'x3?

holds near this corner, where G is smooth and everywhere positive. The geometric
constants for F' are the elements of the pair (eq,es).
First, suppose that v € Afhg(Ng), and let u = F*v. The pullback theorem states

that u € Ag:gE(Nl), where f#E = (EM), E?)) is a pair of C* index sets correspond-
ing to the two hypersurfaces of V7. These are given by

EY = {(ejz+4,k): (2,k) € E and £ € N}.

The proof is based on the identity F*(t*(logt)*) = (Gx$'25?)* (log Gr172)¥; the extra
terms (ejz+ ¢, k), £ > 1, are added to ensure that EU) satisfies condition (c), i.e., are
C* index sets.

Turning to the pushforward theorem, now suppose that u € Aghg(Nl), where
&= (El,EQ), SO

!’ ’
U~ E a1 5 (log :El)k near Hi, U~ g bk x5 (log xg)k near Ho,
(2,k)€E (z',k")€E,

and with a product type expansion

(37) un S o iloge)Fas (logxs)
(z,k)EE",
(2" k") EES

near the corner where x; = 9 = 0. Set

Ej(e;) = {(z/ej, k) : (2, k) € Ej},
and finally define the so-called ‘extended union’ of index sets

f#((: = El(el)UEQ(BQ)
= El(el) U Eg(eg) U {(27]{3 + K+ 1) : (Z,k) S E1(61)7 (Z, k/) S Eg(eg)}.

Note that if £y and Es are C* index sets, then so is Fy(e1)UF3(e2).
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Pushforwards act on densities rather than functions, and we fix the b-densities
(a b-density is a smooth density on the interior which extends smoothly and nonde-
generately to the closed manifold if we multiply by the bdf of each boundary hyper-
surface). Thus, for example,

B dx1dzody o B dtds

du n Ny, dv —~ on Ny,

T1T2

where y and s are the tangential coordinates on the corner of N7 and boundary of Ny,
respectively. The pushforward theorem then states that if F' is a b-fibration, then

F.(udy) = hdv,  where he AlfS(N,).

Observe that the fibres F~1(¢) for t > 0 do not meet N7, so no positivity assumptions
on the index sets are needed to ensure that the integrals converge. (The pushforward
theorem may of course be stated in terms of ordinary smooth densities rather than
b-densities, but the expressions for how the index sets combine would then involve
some offsets.) Further discussion and proofs of both of these theorems can be found
in [16].

Mapping properties. Lemmas 3.1 and 3.2 express Iy and Ig in terms of pushfor-
wards and pullbacks by b-fibrations, so we can apply the pushforward and pullback
theorems explained just above, to obtain preliminary results on how these maps trans-
form index sets. The labeling of the boundary faces of ;. SM x [0, 1] is the same as
in Section 3.2.

Lemva A1, — Let K be a C*®-index set for OM. If f € Affhg(M) where inf K > —1,
then Inf € AKX (0,SM), where

phg
K'={(q+2zp), ¢€N, (z,p) € K}.

Proof. — If f € Affhg(M ), then the pullback theorem gives

7 f e ALK (0,5M x [0,1]),
where
7A-(-#]:((C’IO) = %#K(Gl) = {(q + Z7p)7 qc N07 (Zap) € K}ﬂ

%#K(Gﬁ ={(¢+22,p), €Ny, (2,p) € K}.

Next, the density [7* f]d%24~2du is equivalent to the b-density

dx2-2 gy N
Tm, where /,LU(]. - U)']T f c Aghg

and where the index set collection L satisfies
L(Go) = L(G1) = {(¢ + 2z,p),a €N, (2,p) € K},
L(Gs) ={(qg+22,p),g e N,(z,p) € K}.

w = [pu(l —u)7" f] (045M % [0,1]),
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The integrability condition to apply the pushforward theorem becomes inf L(G3) > 0.
Assuming this, and since in the equality Iof d%2?2 /7 = 7, w, the left side is already
in b-density form, and the pushforward theorem immediately implies that

If € ASIZL(@+SM), where 7L = {(¢+22,p), ¢ €N, (2,p) € K}.

Note that inf L(G2) =142 inf K, which explains the integrability condition inf K > —1.
O

Now consider the backprojection operator

Lemva A2, — If g € Affhg(('LSM) for some index set K, then Igg € Aé(}:;(M)a

where

(38) K" = (No % {op@{(w

5 ’p>, (z,p) € K, KGNO}.

Proof. — The index set of Ty g is
K'={2+z+(p), (z,p) € K, £ € No}.

Thus 7" (T g) € AEAEZK/ (D), where

(7P K')(Go) = (RFK')(G1) =No x {0}, and (77 K')(Ga) = K.
Next consider
w = 71" (Tpg) d¥? du = pu(l — u)7i" (Tpg) d§2 u(ldﬁu)'
As a b-density, it has index set
(39) L(Gy) = L(Gy) =N x {0}, L(Gs) ={(8+ 2+ 4,p), (2,p) € K, £ € Ny}
The pushforward theorem now gives that T.w is a b-density of the form h(dM/p), for
some function h € AiﬁgL(M ), where

L' =74 L(OM) = (po 7)4 L = E(Fp) U E(F),

and where, for i = 0,1,

E(F;) = {(map)a (2,p) € L(Gi)}U{ (@m), (z,p) € L(G2)}-

Using (39) and that e,07(Go) = €,02(G1) = 1, €,02(G2) = 2, we see that

~ ~ — (/3 4
B(Ry) = B(R) = I' = N x {on O { (-
Notice that there is no integrability condition here because ez is never zero.
Now by (19), we have the relation h = pfgg. Thus L’ is the index set of pfgg, and
hence (38) is the index set of Igg. O

727), (z,p) €K, L e NO}.
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Discussion: Lemmas A1-A.2 os Theorems 2.1-2.2. We briefly address how our main
results are sharpenings of Lemmas A.1-A.2.

The mapping properties of Iy are somewhat straightforward in that when using the
pushforward theorem, the geometric picture does not involve boundary hypersurface
interaction resulting in the creation of additional log terms. In this sense, Lemma A.1
almost entirely captures what needs to be captured, with the expectation that the
index set K (in the statement) can be made smaller: it is a C*°-index set on 94 SM for
which many terms vanish when expressed in certain boundary defining functions. For
example, for smooth integrands, Lemma A.1 would predict at best that In(C>(M)) C
T7C*(04+SM), while it is known that it lands into the strict subspace C5°_ (01 SM).
The latter is generally recovered by introducing a-bdfs, C3°-index sets on 0, SM and
the spaces .Aghg7a(8+SM).

On the mapping properties of Ig, an illustration of the main shortcoming of
Lemma A.2 is that it fails to recover (4): if g € C*(0,SM) = Agﬁg{o}(&rSM), then
Lemma A.2 concludes that

I§(C>(01SM)) € C*(M) + plog p C*(M) + p"/>C>(M).

Considering parity conditions (e.g. replacing ASE; {0}(8+SM ) by Aﬁgz{o} (0LSM)),

one then arrives at
I§(C324(94.SM) € C(M) + p'/>C> (M),

which still does not recover (4). This is where one need a closer examination of the
proof of the pushforward theorem, and the observation, in the proof of Theorem 2.2,
that certain expected poles of the Mellin functionals actually do not arise because of
some non obvious cancellations.
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