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Abstract

In an era of climate change, impacts on the marine environment include warming and ocean

acidification. These effects can be amplified in shallow coastal regions where conditions

often fluctuate widely. This type of environmental variation is potentially important for many

nearshore species that are broadcast spawners, releasing eggs and sperm into the water

column for fertilization. We conducted two experiments to investigate: 1) the impact of water

temperature on sperm swimming characteristics and fertilization rate in sand dollars (Den-

draster excentricus; temperatures 8-38˚C) and sea urchins (Mesocentrotus franciscanus;

temperatures 8-28˚C) and; 2) the combined effects of multiple stressors (water temperature

and pH) on these traits in sand dollars. We quantify thermal performance curves showing

that sand dollar fertilization rates, sperm swimming velocities, and sperm motility display

remarkably wide thermal breadths relative to red urchins, perhaps reflecting the wider range

of water temperatures experienced by sand dollars at our field sites. For sand dollars, both

temperature (8, 16, 24˚C) and pH (7.1, 7.5, 7.9) affected fertilization but only temperature

influenced sperm swimming velocity and motility. Although sperm velocities and fertilization

were positively correlated, our fertilization kinetics model dramatically overestimated mea-

sured rates and this discrepancy was most pronounced under extreme temperature and pH

conditions. Our results suggest that environmental stressors like temperature and pH likely

impair aspects of the reproductive process beyond simple sperm swimming behavior.
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Introduction

Increases in atmospheric CO2 have led to dramatic warming and increased acidification of the

global ocean [1, 2]. These effects are further amplified in coastal regions, where shallow waters,

persistent upwelling, and substantial biological activity contribute to significant variability in

temperature [3–5] and pH [6, 7]. Such changes in the physical environment can lead to a wide

array of biological consequences for organisms that inhabit nearshore ecosystems. For

instance, thermal variation can lead to changes in distribution [8–10], feeding rate [11, 12],

respiration rate [13–15], heart rate [16, 17], symbiont loss [18–20], larval developmental rate

[21–23], post-settlement growth [24–26], developmental stability [27, 28], epigenetic modifica-

tion and gene expression [29–34]. Similarly, acidification can have significant effects on rates

of calcification [35, 36], production of non-calcified strucutures like byssal threads [37–39],

patterns of gene expression [40, 41], and larval development and behavior [22, 42, 43]. In

coastal ecosystems where physical factors can vary independently, understanding the effects of

multiple environmental stressors is also important [44–46]. Specifically, the combined effects

of temperature and pH can have varied effects on feeding [47, 48], physiological performance

[28, 49], and growth [50, 51] yielding responses that may be linear, hyperbolic, or unimodal in

nature. Understanding the shape of these physiological response curves is crucial in predicting

how marine organisms may or may not respond to environmental change. Thus, an investiga-

tion into the effects of multiple environmental stressors on early life-history processes associ-

ated with fertilization in marine invertebrates appears warranted.

Broadcasting spawning is a mode of reproduction adopted by many marine organisms

including echinoderms such as sea urchins and sand dollars. For broadcast spawners, whose

gametes are directly exposed to conditions in ambient seawater, early developmental stages are

often more susceptible to environmental stress and may, therefore, represent important bottle-

necks for population growth and persistence under climate change [52–54]. The degree to

which future warming and acidification may or may not affect organisms depends on the

shape of their thermal performance curves (TPCs; e.g., physiological optima, thermal breadth).

In the northeast Pacific, echinoderms show a wide range of fertilization rates and sperm swim-

ming velocities in response to changes in temperature and pH (Table 1) [55, 56] and for some

species, faster swimming sperm may indeed lead to higher fertilization rates [57]. For near-

shore echinoderms like sea urchins and sand dollars, water temperature and pH can impact

both sperm swimming velocity and fertilization rates (Table 1). Specifically, fertilization rates

can show positive, negative, or optimal peak patterns in response to variable temperatures

whereas, sperm swimming is generally slower under higher temperatures with some species

showing an optimal peak. For both traits, however, studies largely focus on a limited number

of thermal treatments preventing accurate estimates of thermal performance curves. More-

over, the combined effects of temperature and pH on sperm swimming and fertilization suc-

cess remain somewhat equivocal [52]. For tropical urchins in the southern hemisphere, there

is contrasting evidence that temperature is more important than pH in affecting fertilization

[58], as opposed to work that suggests both pH and temperature are significant determinants

of fertilization [59] (Table 1). The degree to which multiple environmental stressors such as

temperature and pH influence these reproductive processes appears to be species-specific.

In the Northeast Pacific, sand dollar (Dendraster excentricus) and red urchin (Mesocentrotus
franciscanus) distributions extend from Alaska to Baja California and overlap in parts of the

Salish Sea [80–82]. Ecologically, red urchins are important in structuring kelp communities

through grazing and capture of drift kelp, whereas sand dollars act as ecosystem engineers in

infaunal communities through biogenic advection of porewater [83, 84]. Whereas, the effects

of temperature on fertilization and sperm swimming have been investigated in these species
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[75, 76], the limited number of thermal treatments generally reported are not suitable for esti-

mating detailed thermal performance curves. Similarily, the combined effects of acidification

and thermal stress has been demonstrated on metabolic rate, gene expression, and larval swim-

ming behavior in these echinoderms, but less is known about the effects on reproductive traits

such as fertilization and sperm swimming [22, 85–87].

The waters of the Salish Sea are characterized by outflow of the Fraser River and upwelling

from the California Undercurrent that can lead to cool temperatures and persistent aragonite

undersaturation [88, 89]. Moreover, pH levels in local surface waters are naturally low (7.86

±0.05 [90]; 7.82±0.07 [91]; 7.92±0.30 [92]) and appear to be decreasing rapidly [90, 91, 93, 94].

In the Salish Sea, surface temperatures are predicted to rise 1.5˚C over the course of this cen-

tury [95]. Understanding the consequences of this type of environmental variation on early life

Table 1. Effects of temperature and pH on reproductive traits in echinoderms.

Taxon Location Temperature (˚C) pH Response sperm velocity (μm s-1) Response fertilization (%) Source

SEA URCHINS

Mesocentrotus franciscanus Vancouver Island, CAN 10 7.55–8.04 - /- - / # [60]

California, USA 15 7.26–8.00 - /- - / # �[61]

Strongylocentrotus purpuratus California/Oregon, USA 14–15 7.61–8.03 - /- - / # [62]

California, USA 15 7.26–7.95 - /- - / # �[61]

S. droebachiensis Svalbard, NOR 3–5 7.40–8.31 - /- - / # [63]

Arctic 0–8 - - / - # / - [64]

S. nudus Pohang, KOR 20 6.31–8.03 - / no effect - / # �[65]

Hemicentrotus pulcherrimus Shimoda, JPN 20 7.59–7.99 - / - - / no effect �[65]

Wakayama, JPN 14 6.83–8.01 - / - - / # [66]

7.15–8.3 - / - - / no effect

Echinometra mathaei Wakayama, JPN 24 6.79–8.11 - / - - / # [66]

E. lucunter Pedra da Sereia, BRA 26–38 7.4–8.0 - / - # / # [59]

Florida, USA 6–44 - - / - \ / - [67]

Lytechinus pictus Ireland, GBR 15 7.75–8.07 - / # - / # [68]

Psammechinus miliaris Isle of Cumbrae, GBR 14–20 7.67–8.06 # / " - / - [69]

Paracentrotus lividus Ireland, GBR 14 7.71–8.18 - / # - / - �[70]

Pseudoboletia Indiana Sydney, AUS 8–25 7.6–8.1 - / - " / # [71]

Paracihinus angulosus Cape Town, ZAF 5–25 - \ / - / - [72]

Heliocidaris crassispina Hong Kong, CHN 28–43 - - / - - / # �[73]

Heliocidaris erythrogramma Sydney, AUS 20 7.75–8.07 - / " - / no effect [68]

SAND DOLLARS

Arachnoides placenta Queensland, AUS 26 7.12–8.14 - / - - / # [74]

Dendraster excentricus San Juan Islands, USA 12–22 - " / - - / - [56]

Salish Sea, WA, USA 7–19 - - / - no effect / - [75]

San Juan Islands, USA 10–20.5 - / - " / - - / - [76]

SEA STARS

Acanthaster cf. solaris Guam, FSM 20–36 7.4–8.2 \ / # \ / # [77]

Heliocidaris erythrogramma Sydney, AUS 20–26 7.6–8.17 - / # - / no effect [58]

Sydney, AUS 20.5 7.6–8.12 - / no effect - / no effect [78]

Sydney, AUS - 7.7–8.0 23–26 - / # [79]

The type/shape of response is indicated as positive ("), negative (#) or thermal performance curve (\). For response columns, first symbol represents temperature

responses and the second pH responses.

� values estimated/digitized from published figure.

https://doi.org/10.1371/journal.pone.0276134.t001
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history stages is important in predicting the potential impacts of future climate change on

marine broadcast spawners. Here, we investigated the effects of variable temperature and pH

conditions on sperm swimming and fertilization in two species of echinoderm—sand dollars,

Dendraster excentricus (Eschscholtz) and red sea urchins, Mesocentrotus franciscanus (A. Agas-

siz, 1863). These data will provide insight into the potential impact that ocean warming and

acidification may have on the reproductive ecology of these temperate echinoderms.

Materials and methods

Study organisms

Specimens were collected at field sites near the University of Washington-Friday Harbor Labo-

ratories (FHL) on San Juan Island, WA during the summers of 2020 and 2021 (Collection per-

mits held by FHL, not protected species). Sand dollars were collected from shallow beds (<20

cm depth at low tide) at Argyle Lagoon (48–31’12’’ N, 123–00’53’’ W) and sea urchins were

collected from tidepools or by snorkel from shallow subtidal habtitats (~2 m depth) at Dead-

man Bay (48.5353˚ N, 122.5927˚ W).

Organisms were maintained at Friday Harbor Laboratories in seatrays supplied with unfil-

tered, once-through flowing seawater (12.65 ± 0.01˚C). Experimental temperatures approxi-

mated current and potential future water temperatures at our field sites which were monitored

with Bluetooth temperature loggers (HOBO MX2201; Onset, Bourne, MA; temperature logged

every 5 or 15 min) to determine the range of conditions experienced.

Temperature effects on sand dollars and sea urchins

The effects of water temperature on fertilization and sperm swimming performance in both

sand dollars and sea urchins was tested in single factor laboratory experiments. A total of 12

temperature treatments were tested for sand dollars (8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 34, and

38˚C) and 7 for sea urchins (8, 10, 12, 14, 16, 22˚C, and 28˚C). These dramatic temperature

ranges were designed to capture: 1) the measured field temperatures at each collection site

(11.16–33.37˚C for sand dollars and 9.68–15.03˚C for sea urchins); 2) potential future warm-

ing and; 3) the physiological limits of fertilization. For each temperature treatment, gametes

were obtained from three independent male-female pairs, each representing a biological repli-

cate (N = 36 unique male-female pairs for sand dollars and 21 unique pairs for sea urchins).

Spawning was induced via intracoelomic injections of 1 ml of 0.5M KCl. Eggs were released by

inverted females into FSW (salinity = 32.10 ppt, pH = 7.82) for 20–30 minutes, after which

eggs were washed 2–3 times. Sperm were kept dry until used and diluted to concentrations of

105 sperm ml-1 (estimated via hemocytometer), which was determined to be the optimal con-

centration based on our preliminary study and previous works (S1 Fig; [76]). To ask whether

there are detrimental effects of temperature and pH, we used sperm concentrations that ensure

sperm concentrations that neither oversaturate, nor limit gamete concentration permitting a

focus on the effects of environmental stressors. Egg solution (1 ml) was mixed with 10 mL of

temperature-adjusted water in a 60 × 15 mm Petri-dish ensuring an egg layer no more than

two cells thick [64]. 50 μl of diluted sperm solution was added and after 15 minutes [58] fertili-

zation was stopped with the addition of 1 mL of 0.5M KCl to halt sperm motility without

inducing additional fertilization [60, 96]. Embryos were incubated in recirculating water baths

at appropriate treatment temperatures (Isotemp 4100, Fisher Scientific, Waltham, MA, USA).

After 3 hour incubations, development was halted with the addition of 1 mL 4% formaldehyde

[60] and fertilization success was determined as the proportion of embryos that had a fertiliza-

tion membrane or exhibited cleavage [58, 97]. For each male:female pair, fertilization was
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scored in three 50 embryo subsamples (e.g., three technical replicates = 150 total embryos for

each biological replicate).

Sperm swimming performance was also measured under each different temperature. Sam-

ples were taken from sperm used in the fertilization experiment and immediately tested for

swimming velocity. Specifically, for each male-female pair (e.g., biological replicate), three 3 μl

sperm subsamples (e.g., technical replicates) were loaded into a multi-chambered counting

slide (20 μm depth; Leja Products, Nieuw-Vennep, Netherlands). Swimming motion was

recorded at 60 Hz via a digital camera (20 MP USB 3.0; Amscope, Irvine, CA, USA) mounted

on a compound microscope (Olympus BX-40, Center Valley, PA) and recorded via a PC lap-

top (Alienware 17 R4 or Alienware M17 R3, Dell Technologies, Round Rock, Texas). All

sperm in each video recording were tracked for 10 seconds and mean curvilinear velocities

were extracted from videos using the DLTdv digitizing tool, a MATLAB-based package [98].

Motility was scored as sperm with curvilinear velocities >0 mm s-1. For each biological repli-

cate, sperm velocities from three technical replicates were averaged to generate an estimate of

sperm swimming velocity. Only sperm that were confirmed to swim continuously in circular

patterns were analyzed [99, 100].

Temperature and pH effects in sand dollars

Fertilization and sperm swimming responses were also measured in sand dollars under differ-

ent temperatures and pHs. Three pH treatments were set based on calculated target pCO2 lev-

els (e.g., 425, 700, 1825 μatm CO2 that broadly correlated to pHNIST = 7.9, 7.5 and, 7.1

respectively [101]). These conditions were maintained via CO2 bubbled into 1 micron filtered

seawater and pH levels were confirmed from water samples taken at the beginning and end of

each fertilization trial using a multiparameter water quality meter (HI98194, Hanna Instru-

ments, Woonsocket, RI, USA) calibrated with pHNIST buffers 4, 7, and 10 (Thermo Fisher Sci-

entific). The probe was also checked against an Accumet AB150 pH probe on a bi-weekly

basis. Total alkalinity of the lab seawater supply was measured via titration six times through-

out the experiment and also spot checked with a seawater alkalinity colorimeter every 1–2 days

(Hanna HI772).

Three experimental water temperatures of 8, 16, and 24˚C were maintained by incubating

35 × 10 mm petri dishes (Corning, Glendale, AZ) in recirculating chillers. This resulted in a

total of nine temperature × pH treatments. Gametes from each male:female pair (e.g., each bio-

logical replicate) were tested under one temperature but across all three pH treatments (see S1

Table). For each biological replicate, fertilization success was averaged from three technical

replicates of 50 eggs each. For sperm swimming performance, three 3 ul sperm samples were

averaged as technical replicates for each trial as described above.

Statistical analyses

We evaluated the effects of temperature on fertilization rate, sperm swimming velocity, and

the percent sperm motile using a non-linear approach described by Padfield et al. [102]. For

each variable, we fitted 10 TPC models (S2 and S3 Tables) using non-linear least squares with

the R package rTPC and bootstrapping for 1000 iterations. For each dataset, optimal fit was

determined as the model with the lowest Akaike Information Criterion (AICc) corrected for

small sample sizes [103]. From the optimal model, several derived TPC parameters were esti-

mated: maximum rate (rmax); optimum temperature (Topt) as the temperature where maxi-

mum rate is achieved and; thermal breadth (Tbr) as the range of temperatures at which rates

exceed 80% of the rate at Topt. Uncertainty in TPC parameter estimates was assessed with boot-

strap (N = 5000) confidence intervals for each parameter.
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In the second experiment examining multiple stressors, variation in the three reproductive

measures (e.g., fertilization, swimming velocity, motility) was assessed. Where the assumptions

of the general linear model failed, we employed a nonparametric aligned rank transform

(ART) ANOVA procedure [104]. This nonparametric method addresses detection of interac-

tion effects in factorial designs. Analyses were performed with the R stats package “ARTool”

[105] (RStudio, 2021.09.1 Build 372) and pairwise differences were assessed with Bonferroni

adjusted posthoc tests. Effect sizes were estimated for each independent variable (partial eta

squared; η2) and also for each pairwise comparison (Cohen’s d) and then classified according

to [106–108].

Fertilization kinetics model

To assess the potential effects of sperm swimming on fertilization rates, we estimated fertiliza-

tion for the conditions used in our experiments using a fertilization kinetics model [97, 109].

Specifically, we used our model to explore the notion that extreme temperature and pH condi-

tions alone can slow swimming speeds enough to lead to the lower fertilization rates that we

observed in our experiments. The proportion of fertilized eggs (φ) was calculated as,

φ ¼ 1 � exp �
bS0

b0E0

1 � e�b0E0t
� �

� �

ð1Þ

where S0 is sperm concentration (number of sperm μl-1), E0 is egg concentration (number of

eggs μl-1), t is time of egg exposure to sperm (s), β is the fertilization rate constant of fertiliza-

tion (mm3 s) and β0 is the rate constant for egg-sperm contact. β/β0 ratios were estimated by

fitting our data with nonlinear regression and then compared for agreement with empirical

estimates of β0 that were calculated as,

b0 ¼ u � s0 ð2Þ

where υ is sperm velocity (μm s-1) and σ0 is egg cross-sectional area (μm2).

Results

Water temperatures were generally higher and showed a wider range at the field site where

sand dollars were collected compared to where sea urchins were collected in 2020 and 2021

(Argyle Lagoon = 19.22±0.07˚C versus Deadman Bay = 11.76±0.03˚C).

Effects of temperature on sand dollars

Successful fertilization occurred in all treatments indicated by cell division and/or the presence

of a fertilization envelope (Fig 1A and 1B).

In sand dollars, fertilization success remained high (e.g., mean fertilization > 87%) over a

wide range of temperatures from 12 to 24˚C (Fig 2A). Rates were lower at cooler temperatures

down to 8˚C (73%) and warmer temperatures up to 38˚C (~1%). Sperm swimming velocities

increased from 8 to 16˚C and then decreased markedly as temperatures approached 38˚C,

where velocities were nearly zero (Fig 2B). Similarly, the proportion of sperm that were motile

rose from 61 to 81% over temperatures from 8–18˚C and then dropped dramatically at higher

temperatures (Fig 2C).

Effects of temperature on sea urchins

For red urchins, fertilization was highest at temperatures between 12 and 22˚C (mean fertiliza-

tion >64%; Fig 3A). Rates were markedly reduced at cooler temperatures down to 8˚C (31%),
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Fig 1. Sand dollar embryos 3 hours post-fertilization. (A). fertilized and unfertilized embryos at 50× magnification.

(B). Close up at 112× magnification highlighting fertilization membrane. Z-stack images were captured using an Axio

Zoom V16 stereo microscope equipped with an Axiocam 506 color camera (Zeiss, Germany).

https://doi.org/10.1371/journal.pone.0276134.g001
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and warmer temperatures up to 28˚C (5%). Sperm velocity peaked at 16˚C (Fig 3B), whereas

sperm motility remained relatively high from 8 to 16˚C (e.g., >74%) and only decreased at

higher temperatures (Fig 3C).

Estimated parameters

Maximum sperm swimming velocity was significantly faster in sand dollars compared to red

sea urchins (Fig 4A; S4 Table). For sand dollars, thermal breadth (Tbr) and optimal tempera-

tures (Topt) were higher for fertilization rates than for sperm swimming velocity and motility

(Fig 4B and 4C). Similarly, in red urchins thermal breadth was higher for fertilization com-

pared to sperm swimming or motility. However, fertilization rates in urchins had a lower opti-

mal temperature than sperm swimming, but higher than motility.

Combined effects of temperature and pH on sand dollars

Fertilization rates for sand dollars ranged from 10 to 91% and was highest at moderate temper-

ature (16˚C) and highest pH (7.9) conditions. Fertilization was significantly affected by both

Fig 2. Effect of water temperature on reproductive traits of sand dollars, Dendraster excentricus. (A). fertilization

rates, (B). sperm curvilinear velocity, and (C). proportion of sperm that were motile. Data for the three traits were

fitted with non-linear functions (quadratic, modified gaussian and gaussian respectively) and plotted with 95%

confidence intervals (shaded areas) determined by residual bootstrapping [102].

https://doi.org/10.1371/journal.pone.0276134.g002

Fig 3. Effect of water temperature on reproductive traits of red urchins, Mesocentrotus franciscanus. (A).

fertilization rates (B). sperm swimming velocity, and (C). proportion of sperm that are motile. Data were fitted with

non-linear functions (modified gaussian for fertilization, quadratic for sperm velocity and motility) and plotted with

95% confidence intervals (shaded areas) determined by residual bootstrapping [102].

https://doi.org/10.1371/journal.pone.0276134.g003
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water temperatures (Fig 5A; F(2,18) = 5.607, p = 0.042), and pH (F(2,18) = 17.1935, p < 0.001)

with both being large effects (partial η2 = 0.451 and 0.628 respectively). Although there was no

statistically significant interaction between pH and temperature (F(4,18) = 1.146, p = 0.367), the

largest change occurred at the lowest pH (between 7.1 and 7.5) and the highest temperature

(24˚C). Pairwise post hoc tests indicate that fertilization was significantly higher at 16˚C com-

pared to 24˚C and that this was a large effect (Cohen’s d = 1.812). For pH, differences in fertili-

zation were between pH = 7.1 and 7.5 (large effect; Cohen’s d = 1.152), pH 7.5 and 7.9 (very

large effect; Cohen’s d = 1.440) and pH = 7.1 and 7.9 (huge effect; Cohen’s d = 2.592).

Swimming velocities ranged from 159 to 370 μm s-1 and were significantly affected by water

temperatures (Fig 5B; F(2,18) = 5.391, p = 0.016; partial η2 = 0.319 is a large effect), but not pH

(F(2,18) = 2.019, p = 0.165). Post hoc tests indicate that velocities were significantly faster at

24˚C compared to 8 and 16˚C and were “large” and “very large” effects respectively (Cohen’s

d = 1.07 and 1.27). More specifically, the largest difference in velocity occurred at 24˚C

between pH = 7.9 where velocities were slow (231 μm s-1) and pH = 7.1 and 7.5 where veloci-

ties were elevated (284 and 295 μm s-1 respectively).

The proportion of sperm that were motile ranged from 33 to 62% and was significantly

affected by water temperature (Fig 5C; F(2,18) = 6.680, p = 0.008; partial η2 = 0.433 is a large

effect), but not pH (F(2,18) = 2.131, p = 0.151). Post hoc tests indicate that sperm motility at

24˚C was significantly lower than 8˚C, representing a large effect (Cohen’s d = 1.647).

Although the pH effect was not statistically significant, differences among pH conditions were

most pronounced at 24˚C.

Fig 4. Estimates for derived parameters from thermal performance curves of sand dollar and sea urchin

reproductive traits. Reproductive parameters include rmax = maximum rate, Topt = thermal optimum, and

Breadth = thermal breadth in panels A-C respectively. Error bars represent the 95% bootstrap confidence intervals.

https://doi.org/10.1371/journal.pone.0276134.g004
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Measured versus model estimates of fertilization

For single factor experiments, measured sand dollar fertilization rates were positively corre-

lated with both swimming velocity and motility (Spearman’s ρ = 0.474, p = 0.003; Spearman’s

ρ = 0.480, p = 0.003 respectively; symbols in Fig 6). In sea urchins, fertilization rates positively

correlated with velocity, but not motility (Spearman’s ρ = 0.537, p = 0.012 and Spearman’s ρ =

0.334, p = 0.139 respectively). Model estimates predicted full fertilization for all conditions and

all swimming velocities in our experiments (Fig 6C and 6D). Modelled fertilization rates

(black lines in Fig 6) were higher than measured fertilization for all treatments.

In our temperature × pH experiments, fertilization rates decreased with increasing sperm

velocity (Fig 7A) and the correlation was significant (Spearman’s ρ = -0.420, p = 0.029). In con-

trast, motility and fertilization rates were not significantly correlated (Spearman’s ρ = -0.143,

p = 0.477). Modelled fertilization rates were 100% across all trials and significantly higher than

all corresponding measured fertilization rates.

Discussion

Variation in seawater temperature is characteristic of many nearshore ecosystems. Our results,

covering a wide range of temperatures, showed responses that were consistent with TPCs

reported for many traits from a wide array of species [110–114]. Although simple positive or

negative responses to increasing temperatures have been reported in some echinoderms

(Table 1), these results typically emerge from experiments covering a narrower thermal range

Fig 5. Combined effects of temperature and pH on reproductive traits of sand dollars, Dendraster excentricus. (A).

fertilization rate, (B). sperm curvilinear velocity and, (C). sperm motility. N = 3 adult pairs. Error bars represent 1 SE.

https://doi.org/10.1371/journal.pone.0276134.g005
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than tested here. In studies that use a similarly wide set of temperature treatments (e.g., �20˚C

range), nonlinear TPC-shaped responses are observed. For instance, although fertilization in

warm water urchins from Florida, USA and sea stars from Australia display higher optimal

temperatures (27–34˚C vs. 24-32˚C respectively), they also display nonlinear TPC shaped

response curve when tested across wide temperature ranges [67, 77]. Indeed, this is consistent

with the notion that when tested over a wide range of temperatures (20–35˚C), nonlinear

TPC-shaped functions are more appropriate compared to simple linear fits.

In sand dollars, the thermal optimum for fertilization rates was higher than previously

reported. Our specimens were collected during the late spring-early summer months, when

measured water temperatures at the sand dollar site exceeded 30˚C on hot days, which may

help explain why our Topt was higher than previously reported (14˚C) for the same region

[76]. The similarity of optimal temperatures for fertilization rates in both sand dollars and sea

urchins is notable given the stark differences in thermal conditions at the collection sites for

each species. Whereas, Topt for sand dollars (17.6˚C) was close to mean temperatures experi-

enced during the spring/early summer (19.22±0.07˚C), sea urchin Topt (16.7˚C) was higher

than the mean water temperatures in the field (e.g., 11.76±0.03˚C). Although Topt may be

influenced by regional rather than local temperatures, at our sites sand dollars appear to be liv-

ing closer to their thermal limits than red sea urchins.

Our results also suggest that sand dollars are tolerant to a wider range of temperatures com-

pared to red sea urchins as evidenced by broader thermal breadths in fertilization rate

(18.33˚C vs. 16.04˚C) and sperm swimming VCL (14.18˚C vs. 9.66˚C; see Fig 4B and S4

Table). Although our estimates of sand dollar sperm velocity were similar to previous reports,

they peaked at a lower temperature (13.9˚C) compared to previous work showing velocities

increasing up to 26˚C [76]. Moreover, sand dollar Topt for swimming velocity and motility

(~13˚C) were much lower than mean temperatures measured at the field site during collection

Fig 6. Comparison of empirical and modelled fertilization rates in single factor experiments. Fertilization

responses to sperm swimming velocity (panels A, D), motility (panels B, E) and water temperatures (panels C, F). Top

row are for sand dollars and bottom row are for sea urchins. Lines represent estimates from fertilization kinetics model

[97, 109] parameterized with swimming velocities and symbols represent empirical fertilization rates from this study.

https://doi.org/10.1371/journal.pone.0276134.g006
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(2020 = 19.0˚C, 2021 = 17.8˚C), daily tidal fluctuations dropped water temperatures to 12-

13˚C, much closer to Topt for both traits. For red urchins, our estimates of velocity are lower

than previously reported (77 and 94 μm s-1 at 8 and 10˚C in our experiments versus 130 μm s-1

at 9˚C from previous work [97]). It should be noted, however, that velocities in our experiment

rose rapidly at 12˚C (e.g., 134 μm s-1), suggesting that the discrepancy could be related to sensi-

tive physiological thresholds in the two populations.

Our measures of swimming were made on sperm that had not been exposed to eggs.

Indeed, sperm swimming activity and/or velocity increases in the presence of chemoattrac-

tants for a number of sea urchin species [115, 116]. Although sperm generally swim in stereo-

typical circular patterns, they also move towards chemical cues by tracing concentration

gradients [117, 118]. Such changes in behavior potentially affect swimming and fertilization

responses to environmental stress and await future investigation. Beyond single-factor effects,

our results also quantify responses to multiple environmental stressors. In sand dollars, fertili-

zation rates were lower at higher temperatures and lower pH (Fig 5). In Australian sea urchins,

Heliocidaris erythrogramma and Pseudoboletia indiana, temperature, but not pH affected sea

urchin fertilization [58, 71, 78]. However, work from single-factor experiments showed that

Fig 7. Comparison of empirically measured versus modelled sand dollar fertilization rates. Fertilization responses

to: (A). sperm swimming velocity; (B). sperm motility; (C). water temperature and; (D) pH. Lines represent estimates

from fertilization kinetics model parameterized with swimming velocities and symbols represent empirical fertilization

rates from this study [97, 109].

https://doi.org/10.1371/journal.pone.0276134.g007
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lower pH (7.7 vs 8.1 pH) can also impede fertilization success in Heliocidaris erythrogramma
and purple sea urchins (Strongylocentrotus purpuratus) [62, 79]. Although we detected effects

of both temperature and pH on sand dollar fertilization, we did not observe an interactive

effect as has been reported in Antarctic sea urchins [119]. Moreover, our results add to the

notion that both temperature and pH can reduce fertilization success.

For sand dollars, both sperm swimming velocity and percent motility were affected by tem-

perature whereas, pH did not. This is consistent with previous single-factor work in echinoids

showing that temperature influences sperm velocity and motility [72], but variable pH does

not [65]. Although low pH conditions lead to faster sperm swimming velocities in some sea

urchin species [68, 69], more commonly, low pH leads to slower and/or less motile sperm [70,

79, 115]. In one Australian sea urchin, pH (7.6–8.1) was important in reducing sperm motility,

but not velocity [78]. These differences may be, in part, due to the low and variable pH condi-

tions found in the Salish Sea, a notion that warrants further investigation.

Our model estimates predicted 100% fertilization rates over the entire range of sperm

swimming velocities in our experiments. This result is consistent with previous work on red

urchins that showed similarly high modelled fertilization rates using similar sperm and egg

concentrations as used in our experiments [120]. Previous work, however, used ideal (max or

near max) sperm swimming velocities when modeling fertilization, whereas our experiments

demonstrate that sperm swimming velocities slow, sometime markedly under extreme tem-

perature or pH conditions. Our model predicts that the slow sperm velocities observed in our

experiments should have little/no effect on fertilization rate. This result stands in contrast to

our observed fertilization rates that were lower at extreme temperatures or pH. Moreover, the

discrepancy between modelled and measured fertilization rates was most pronounced under

extreme temperature and pH conditions. These results suggest potential impairment of other

mechanisms involved with aspects of the reproductive process beyond simple sperm swim-

ming (e.g., chemoattraction, sperm receptors on the egg) [116, 121].

In this study, we investigated how environmental conditions impact the reproductive per-

formance of sea urchins and sand dollars. Results showed wider thermal breadths in sand dol-

lars relative to urchins, perhaps reflecting the wider range of water temperatures experienced

by sand dollars at our field sites. Whereas, sand dollar fertilization was affected by both tem-

perature and pH, only temperature influenced sperm swimming. A fertilization kinetics model

parameterized with our swimming data dramatically overestimated measured fertilization

rates and this discrepancy was most pronounced under extreme temperature and pH condi-

tions. Moreover, our results suggest that environmental stressors like temperature and pH

likely impair aspects of the reproductive process beyond simple sperm swimming behavior.

Supporting information

S1 Fig. Water temperatures from collection sites of sand dollars and sea urchins used in

fertilization experiments. Panel A represents temperatures from our sand dollar collection

site (Argyle Creek, WA, USA; N = 4908) and panel B represents our sea urchin collection site

(Deadman’s Bay, WA, USA; N = 4497).

(TIF)

S2 Fig. Standard curve of fertilization rates as a function of sperm concentrations in red

urchins, Mesostrongylocentrotus franciscanus. Gametes are from one male: female pair and

symbols represent means±SE of three subsamples at each concentration. Concentrations esti-

mated from hemocytometer counts.

(TIF)
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S1 Table. Experimental design for temperature × pH fertilization experiment with sand

dollars. Hatched arrows indicate males used across all pH treatments.

(DOCX)

S2 Table. List of models fitted for thermal performance curves.

(DOCX)

S3 Table. Fitted thermal performance curve models. Models ranked by small-sample cor-

rected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC) values

for each reproductive trait.

(DOCX)

S4 Table. Parameter estimates with 95% confidence intervals from thermal performance

curves of sand dollars and sea urchins. Topt = optimum temperature (˚C); Tbr = thermal

breadth (˚C) and; rmax = maximum rate. Parameters that differ significantly between accli-

mation treatments are shown in bold.

(DOCX)
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