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BOUNDARY TRIPLES FOR A FAMILY OF
DEGENERATE ELLIPTIC OPERATORS OF KELDYSH TYPE

FRANÇOIS MONARD AND YUZHOU (JOEY) ZOU

We consider a one-parameter family of degenerately elliptic operators Lγ on the closed disk D, of Keldysh
(or Kimura) type, which appears in prior work by the authors and Mishra (2023), related to the geodesic
X-ray transform. Depending on the value of a constant γ ∈ R in the subprincipal term, we prove that
either the minimal operator is self-adjoint (case |γ | ≥ 1), or that one may construct appropriate trace maps
and Sobolev scales (on D and S1

= ∂D) on which to formulate mapping properties, Dirichlet-to-Neumann
maps, and extend Green’s identities (case |γ |< 1). The latter can be reinterpreted in terms of a boundary
triple for the maximal operator, or a generalized boundary triple for a distinguished restriction of it. The
latter concepts, objects of interest in their own right, provide avenues to describe sufficient conditions
for self-adjointness of extensions of Lγ,min that are parametrized in terms of boundary relations, and we
formulate some corollaries to that effect.

1. Introduction

This article is concerned with the study of boundary triples (or equivalently, the derivation of appropriate
settings where generalized Green’s identities1 hold) of a one-parameter family of degenerate elliptic
operators on the Euclidean unit disk D = {z ∈ C : |z| ≤ 1}: for γ ∈ R, using polar coordinates z = ρeiω

and using x = 1 − ρ2 as the boundary defining function and with dV = ρ dρ dω the Euclidean measure,
we define

Lγ := −ρ−1x−γ ∂ρ(ρxγ+1∂ρ)− ρ
−2∂2

ω + (1 + γ )2 (1)

= −x∂2
ρ − (ρ−1

− (3 + 2γ )ρ)∂ρ − ρ−2∂2
ω + (γ + 1)2 id. (2)

Expression (1) shows that Lγ is formally self-adjoint for the space L2
γ := L2(D, xγ dV ) (whose inner

product we denote ( f, g)L2
γ

:=
∫

D
f g xγ dV ), while expression (2) shows the degenerate behavior of Lγ ,

of first order in the top-degree term normal to the boundary. Although the coefficient γ only appears
in subprincipal terms, the operator-theoretic properties of Lγ (e.g., number of self-adjoint extensions,
associated traces and their regularity at the boundary) strongly depend on γ .

MSC2020: primary 35J67, 35J70, 47B25, 47F10; secondary 26B20.
Keywords: Keldysh operators, Kimura operators, boundary triple, generalized boundary triple, X-ray transform, degenerately

elliptic operators.
1For the Laplacian on a bounded domain � ⊂ R2 with smooth boundary and f, g ∈ C∞(�), Green’s first identity reads∫

�((−1 f )g +∇ f · ∇g)= −
∫
∂� ∂ν f g, while Green’s second identity is the skew-symmetrized version

∫
�(−g1 f + f1g)=∫

∂�( f ∂νg − g∂ν f ).
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There are many appearances of operators of this type in the literature:

• Such operators arise in the study of fluid flows, as operators that switch from being elliptic to hyperbolic
across a curve, two prototypes of which are Keldysh (our case) and Tricomi operators; see, e.g., the
book [Otway 2012]. Indeed, expression (1) of Lγ naturally extends past the unit circle, and the operator
becomes hyperbolic outside the unit disk. Here we are interested in confining ourselves to the “elliptic
region” D and studying the operator Lγ there.

• In recent advances on microlocal methods for asymptotically hyperbolic manifolds and spacetimes,
Vasy [2013a; 2013b] initiated a series of works which leverage some properties of Keldysh-type oper-
ators. On asymptotically hyperbolic manifolds, after compactification and change of smooth structure,
Laplace–Beltrami type of operators can be factored using model Keldysh operators, and the meromorphic
continuation of the resolvent of the former uses crucially that the latter enjoy radial point estimates; see also
[Zworski 2016]. Keldysh operators also arise as the restriction of the Minkowski Laplacian on the boundary
of radially compactified Minkowski space-time. There, the elliptic regions correspond to polar caps limit
points of timelike trajectories. See also [Lebeau and Zworski 2019; Galkowski and Zworski 2021].

• Going the opposite route, one may fit Keldysh-type operators into the framework of uniformly degenerate
(or 0-) operators of Mazzeo [1991], a framework originally designed to study (Hodge-)Laplacians on
asymptotically hyperbolic manifolds, providing a flexible context where such operators can be made
Fredholm. Such operators also arise as (the spatial part of) Heston diffusions in mathematical finance
[Feehan and Pop 2015], or Kimura diffusions in population genetics [Epstein and Mazzeo 2013; 2014].
In these cases, the study is further complicated by the fact that the model necessarily involves spatial
domains with corners. Of study there is the diffusion associated with these operators, and regularity
properties of solutions.

• The H 1-type spaces constructed below are example of Sobolev spaces associated with degenerate
quadratic forms in the sense of [Cavalheiro 2008; Sawyer and Wheeden 2010], though they benefit from a
slightly more specific degenerate behavior of the quadratic form (only at the boundary, uniform behavior
in terms of the boundary point).

The authors’ motivation for this work arises in the connection of the Lγ family with inverse problems
on Riemannian manifolds with (geodesically) convex boundary, notably, the description of appropriate
Hilbert scales which capture sharp mapping properties of the geodesic X-ray transform; see, e.g., [Mazzeo
and Monard 2021; Mishra et al. 2023; Monard 2020; Monard et al. 2019; 2021]. In [Mishra et al. 2023]
we proved that a one-parameter family of weighted geodesic X-ray transforms on the Euclidean disk had
its normal operators be functions of (a distinguished self-adjoint realization of) Lγ and i∂ω. As a step
toward exploring the connections between degenerate elliptic operators and X-ray transform on more
general Riemannian surfaces, this article endeavors to study the family Lγ in its own right, including
the existence (or nonexistence) of trace operators and their regularity, Dirichlet-to-Neumann map, and
appropriate Hilbert scales where mapping properties are sharply described.

The starting point of the work is the observation that for any f, g ∈ C∞(Dint) and R ∈ (0, 1),∫
DR

(
gLγ f − x∂ρ f ∂ρg −

1
ρ
∂ω f 1

ρ
∂ωg − (γ + 1)2 f g

)
xγ dV =

∫
∂DR

ρxγ+1g∂ρ f dω, (3)∫
DR

(gLγ f − f Lγ g) xγ dV =

∫
∂DR

ρxγ+1(g∂ρ f − f ∂ρg) dω, (4)
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and the classical question becomes to understand in what sense these identities can be understood as
Green’s first and second identities: for what spaces for f, g can we send R → 1 in the identities above,
and make sense of the right-hand sides as boundary traces? Once this can be obtained on domains of
definition of Lγ where it is a closed operator, the extension of identity (4) gives a measure of how close Lγ
is to being self-adjoint, and self-adjoint realizations of Lγ can be understood in terms of restrictions of Lγ
to subspaces with specified boundary constraints. Classically, one defines the minimal operator Lγ,min to
be the closure of Lγ equipped with domain Ċ∞(D) (smooth functions vanishing at infinite order at the
boundary). From (4), the operator Lγ,min is easily seen to be symmetric, and a classical question is to
understand and characterize all self-adjoint realizations of Lγ between Lγ,min and Lγ,max := L∗

γ,min.

We now briefly describe the main results of the article presented in the next section.

In Section 2.1, we first fix notation and state preliminary properties of the Lγ family, while recalling
some distinguished self-adjoint realizations given in [Wünsche 2005; Mishra et al. 2023].

In Section 2.2, we first characterize the Friedrichs extension of Lγ in terms of previously known
extensions, and deduce in Theorem 3 that for |γ | ≥ 1, the minimal operator Lγ,min is in fact self-adjoint.
In particular, there is only one self-adjoint extension of Lγ,min, and (3)–(4) can only have trivial right-hand
side if extended to R → 1 with f, g in a domain where Lγ is closed.

Section 2.3 then covers the case |γ |< 1, where the situation is markedly different: one may define
domains where Lγ is closed, and where the right-hand sides of (3)–(4) can be extended into Dirichlet and
Neumann trace operators whose precise mapping properties and tangential regularity are given in the
main theorems, Theorems 5 and 8. In this case, one can also naturally define a Dirichlet-to-Neumann
map; see Theorem 6. The main theorems provide ways of making sense of Green’s identities (3)–(4)
when f, g belong to the maximal domain (the domain of L∗

γ,min), see Theorem 8, or a subspace of it called
W 2
γ (see (28)) in Theorem 5. Unlike in Theorem 3, the operator Lγ now has infinitely many self-adjoint

realizations, whose domains of definition are obtained by prescribing certain boundary conditions.
To make this last point more precise, in Section 2.4, we reformulate our main results in the language

of boundary triples and generalized boundary triples. The latter objects allow, via a general functional-
analytic framework, to describe self-adjoint extensions of a given operator in terms of self-adjoint boundary
relations, see, e.g., [Behrndt and Langer 2007; 2012; Behrndt et al. 2020], in terms of classical notions
such as γ -fields (called “Poisson maps” here to avoid conflicts with the constant γ ) and Weyl M-functions.

We end this discussion by briefly describing the methodology. The family Lγ is rotation-invariant
and as such gives rise to countably many one-dimensional operators {Lγ,n}n∈Z on [0, 1]ρ defined by the
relation Lγ (einω f (ρ))= einωLγ,n f (ρ). Such operators can in principle be studied using Sturm–Liouville
theory. In the latter language, the endpoint ρ = 0 is always singular, while the properties of the endpoint
ρ = 1 depend on γ but not on n: the cases γ ∈ (−1, 0), γ ∈ [0, 1) and |γ | ≥ 1 respectively correspond
to ρ = 1 being a “regular point”, a “singular point in the limit circle case”, and a “singular point in
the limit point case”. The case of γ = 0 also involves a double indicial root, which requires refined
analysis. We use this a priori knowledge to construct H 1-type function spaces (directly on D rather
than on each separate angular Fourier mode) which are adapted to each Lγ , some of which require
a 2D version of “quasiderivative”, and/or log-type tangential Sobolev regularity in the case of double
indicial roots. We construct a number of trace operators (as well as their right-inverses when they exist),
whose boundedness is obtained by combining angular Fourier analysis with continuous families of 1D
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trace estimates (see, e.g., Lemmas 21 and 22), or at other times make use of specific knowledge about
generalized Zernike polynomials found in [Wünsche 2005]; see, e.g., Proposition 27. Once such trace
estimates are established and their right inverses are constructed, many results follows by density, duality
and functional-analytic arguments. One of the advantages of the current analysis is that it is direct and
self-contained, not requiring change of smooth structure or factorization of the operator Lγ . These results
provide new families of function spaces where boundary pairings, Green’s identities for Lγ and Fredholm
settings should be naturally understood. It should also be expected that these functional settings should
become robust to similar operators that may no longer be rotation-invariant.

2. Main results

2.1. Preliminaries.

Indicial roots and conormal spaces Aγ . Let Ċ∞(D) be the space of smooth functions on the closed unit
disk D, all of whose derivatives vanish on S1

= ∂D, with topological dual denoted C−∞(D). The latter is
the space of extendible distributions and will be the largest space considered in what follows.

Let us first define natural “smooth” spaces of definition for Lγ . Rewriting Lγ in the form2

Lγ = −x1+ (2 + 2γ )ρ∂ρ − ∂2
ω + (γ + 1)2 id,

where ρ∂ρ and ∂ω are smooth vector fields on D we see that Lγ has smooth coefficients in D. Hence we
naturally have

Lγ : Ċ∞(D)→ Ċ∞(D). (5)

We now enlarge this definition to some distinguished conormal spaces. For all γ ∈ R, α ∈ R and n ∈ Z, a
direct calculation gives

Lγ (ραeinω)= (α+ γ + 1)2ραeinω
+ (n2

−α2)ρα−2einω. (6)

Similarly,

Lγ (xα)= (2α+ γ + 1)2xα − 4α(γ +α)xα−1. (7)

In particular, the indicial roots (independent of the boundary point) are 0 and −γ , since unless α ∈ {0,−γ },
Lγ (xα) is more singular as x → 0 than xα.

In what follows, the following intertwining property, which can be checked directly, will allow us to
translate what is known of Lγ to obtain properties on L−γ :

Lγ ◦ x−γ
= x−γ

◦L−γ on C∞(Dint), γ ∈ R. (8)

In the case γ = 0, we also have the important property

L0(log x f )= log x L0 f + 4(ρ∂ρ f + f ), f ∈ C∞(Dint). (9)

2Note that this expression differs from that appearing in [Mishra et al. 2023, Proof of Theorem 6], where the term (2+2γ )ρ∂ρ
was erroneously given as (3 + 2γ )ρ∂ρ , although this is inconsequential for the purposes of [Mishra et al. 2023, Theorem 6].
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Identity (9) can be either checked directly, or derived exploiting (8) upon sending γ → 0 in the identity

Lγ ◦
x−γ

− 1
−γ

=
x−γ

− 1
−γ

◦L−γ +
Lγ −L−γ

γ
,

using that (x−γ
− 1)/(−γ )→ log x as γ → 0.

The above discussion on indicial roots together with (9) motivates the definition of

Aγ :=

{
x−γC∞(D)+ C∞(D) if γ ̸= 0,

log x C∞(D)+ C∞(D) if γ = 0,
(10)

subspaces of C∞(Dint) that encode boundary behavior, each stable under Lγ , and some of whose subspaces
form core domains of self-adjointness for Lγ . For example, for γ >−1, [Mishra et al. 2023, Theorem 6]
states that (Lγ ,C∞(D)) is essentially self-adjoint (further, its full eigendecomposition is known in terms
of generalized Zernike polynomials). This result, together with the intertwining property (8), also implies
immediately the existence of other self-adjoint extensions, which we state without proof:

Lemma 1. For any γ < 1, the operator (Lγ , x−γC∞(D)) acting on L2
γ is essentially self-adjoint.

As we will see below, Dirichlet and Neumann traces, when they exist, correspond to mechanisms
aiming at extracting the most and second most singular terms in the expansion of functions in Aγ off
of ∂D. Here, “singular” ordering is among polyhomogeneous terms {xζ logk x}ζ∈C, k∈N0 , where we have

xζ logk x = o(xζ
′

logk′

x) if and only if
{

Re(ζ ) > Re(ζ ′) or
Re(ζ )= Re(ζ ′) and k < k ′.

In this sense, Dirichlet and Neumann traces will be thought of as the coefficients in front of the terms
given below:

γ (−∞, 0) 0 (0,∞)

Dirichlet term 1 log x x−γ

Neumann term x−γ 1 1

Distributional facts. Let tLγ : C−∞(D)→ C−∞(D) the transpose operator of (5). There is a natural
injection ιγ : L2

γ ∪Aγ → C−∞(D) given by

⟨ιγ f, ψ⟩ := ( f, ψ)L2
γ
, f ∈ L2

γ ∪Aγ , ψ ∈ Ċ∞(D), (11)

Note that Aγ ⊂ L2
γ if and only if |γ |< 1. We will say that a distribution u ∈ C−∞(D) “belongs to L2

γ

(resp. Aγ )” if there is f ∈ L2
γ (resp. Aγ ) such that u = ιγ f .

As is visible through an integration by parts, we have that (Lγ f, ψ)L2
γ

= ( f,Lγψ)L2
γ

for all f ∈ Aγ
and ψ ∈ Ċ∞(D). This implies that

tLγ (ιγ f )= ιγ (Lγ f ) for all f ∈ Aγ . (12)

In particular, the “restriction” of tLγ to Ċ∞(D) or Aγ through the map ιγ agrees with Lγ . Thus, for
f ∈ L2

γ , we’ll say that Lγ f ∈ L2
γ if the distribution tLγ (ιγ f ) belongs to L2

γ .
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Two natural operators. One may define two natural closed operators out of Lγ :

(i) The minimal operator Lγ,min, closure of the operator defined in (5) (also called the preminimal
operator), i.e., whose domain is the completion of Ċ∞(D) for the graph norm

f 7→ nγ ( f ) := (∥ f ∥
2
L2
γ
+ ∥Lγ f ∥

2
L2
γ
)1/2. (13)

(ii) The maximal operator Lγ,max, the adjoint of Lγ,min, with domain

dom(Lγ,max)= { f ∈ L2
γ , Lγ f ∈ L2

γ }. (14)

2.2. Characterization of Dirichlet extensions. Self-adjointness of Lγ,min for |γ | ≥ 1. Let Lγ,D be the
Friedrichs extension for the quadratic form αγ : C∞

c (D
int)→ R defined by

αγ ( f ) := (Lγ f, f )L2
γ

(⋆)
= ∥

√
x ∂ρ f ∥

2
L2
γ
+ ∥ρ−1∂ω f ∥

2
L2
γ
+ (1 + γ )2∥ f ∥

2
L2
γ
, f ∈ C∞

c (D
int), (15)

where (⋆) follows from an integration by parts with no boundary term. Then we have the following
characterizations:

Lemma 2. The operator Lγ,D coincides with the closure of the following essentially self-adjoint operators:

(Lγ , x−γC∞(D)) if γ < 0 and (Lγ ,C∞(D)) if γ ≥ 0.

The spectral decomposition of the above operators is well-known: for γ ≥ 0, Lγ,D has full eigen-
decomposition

{Gγ

n,k, (n + 1 + γ )2}n≥0, 0≤k≤n, Gγ

n,k := Pγn−k,k, (16)

where Pγm,ℓ denotes the generalized Zernike polynomials in the convention of [Wünsche 2005]; for γ < 0,
Lγ,D has full eigendecomposition {x−γG−γ

n,k , (n + 1 − γ )2}n≥0, 0≤k≤n . In either case, we can define a
functional calculus for Lγ,D and a Dirichlet Sobolev scale

H̃ s,γ
D (D) := dom(Ls/2

γ,D), s ∈ R, (17)

so that the following operator makes sense and is in fact an isometry:

L−1
γ,D : H̃ s,γ

D (D)→ H̃ s+2,γ
D (D), s ∈ R. (18)

As a result of further density lemmas proved in Section 3.1, we have the following:

Theorem 3. If |γ | ≥ 1, then Lγ,min is self-adjoint.

In particular, such a result precludes the existence of trace maps on the maximal domain, or a Dirichlet-
to-Neumann map.

2.3. Traces, Green’s identities and Dirichlet-to-Neumann map for |γ | < 1. While Theorem 3 prevents
the existence of more than one self-adjoint extension for Lγ,min whenever |γ | ≥ 1, we now describe a
markedly different scenario for any value γ ∈ (−1, 1). The construction has varying degrees of simplicity
depending on whether γ ∈ (−1, 0), γ = 0 or γ ∈ (0, 1), though in the interest of conciseness, we will
unify the presentation. For each γ ∈ (−1, 1), there exists a radial function φγ (see (47)) nonvanishing
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on a neighborhood [0, xγ )x × S1
ω of ∂D, and satisfying Lγφγ = (γ + 1)2φγ on [0, xγ )x × S1

ω, with the
relevant behavior 

φγ ≡ 1 if γ ∈ (−1, 0),
limρ→1 xγφγ = 1, limρ→1 xγ+1∂ρφγ = 2γ if γ ∈ (0, 1),

limρ→1(φ0/ log x)= 1, limρ→1 x∂ρφ0 = −2 if γ = 0.
(19)

We may then define “regularized” Dirichlet and Neumann traces τ D,N
γ : Aγ → C∞(S1) as

τ D
γ f := ( f/φγ )|x=0, τ N

γ f := W ( f, φγ )|x=0, where W ( f, g)(ρ, ω) := ρxγ+1( f ∂ρg−g∂ρ f ). (20)

In particular, a direct calculation shows that, for f ∈ Aγ , taking the form f = f (0) + log x f (log) if γ = 0,
or f = f (0) + x−γ f (−γ ) if |γ | ∈ (0, 1), with f (0), f (log), f (−γ ) ∈ C∞(D), we have

τ D
γ f =


f (0)|x=0 if γ ∈ (−1, 0),

f (log)
|x=0 if γ = 0,

f (−γ )|x=0 if γ ∈ (0, 1),
and τ N

γ f =


−2γ f (−γ )|x=0 if γ ∈ (−1, 0),

−2 f (0) − 2c0 f (log)
|x=0 if γ = 0,

2γ f (0)|x=0 if γ ∈ (0, 1),
(21)

where c0 is the constant appearing in the definition (47) of φ0. In this sense, τ D
γ extracts the most singular

term and τ N
γ extracts the second most singular term (or a linear combination of them for γ = 0). Moreover,

the following intertwining property follows naturally: for γ ∈ (0, 1) and f ∈ Aγ , then xγ f ∈ A−γ and

τ D
γ f = τ D

−γ (x
γ f ) and τ N

γ f = τ N
−γ (x

γ f ). (22)

To discuss Green’s identities, we first need to define an “H 1” inner product where the Dirichlet trace
extends boundedly. A first guess would be to extend the form αγ defined in (15) to Aγ , but this only
makes sense for γ ∈ (−1, 0). Indeed, for γ ∈ (0, 1) for instance, the last right-hand side of (15) can
become infinite when applied to an element of x−γC∞(D), and the equality (⋆) there no longer holds;
see also the discussion in Section 4.1, titled “Case 0 ≤ γ < 1”.

To remedy this, we let ργ =
√

1 − xγ , and for a, b ∈ [0, 1] with a < b, we let Da be the centered disk
of radius a, with boundary Ca , and Aa,b be the annulus {a < ρ < b}. We then define, for f, g ∈ Aγ , and
b ∈ (ργ , 1),

tγ,b[ f, g] :=
(√

x φγ ∂ρ( f/φγ ),
√

x φγ ∂ρ(g/φγ )
)

xγ ,Ab,1
− b(x(b))γ+1 ∂ρφγ

φγ
(b)

∫
Cb

f g

+ (
√

x ∂ρ f,
√

x ∂ρg)xγ ,Db + (ρ−1∂ω f, ρ−1∂ωg)L2
γ
+ (γ + 1)2( f, g)L2

γ
,

(23)

where, here and below,
∫

Cb
h is shorthand for

∫ 2π
0 h(b, ω) dω. It can be checked for any f ∈ Aγ that

√
x ∂ρ f is in L2

γ away from the boundary, and that
√

x φγ ∂ρ( f/φγ ) is in L2
γ near the boundary, so

that (23) is well-defined.

Lemma 4. (1) For any f, g ∈ Aγ , the definition of tγ,b does not depend on b ∈ (bγ , 1). We thus denote
( ·, ·)H̃1,γ the value of tγ,b for any b.

(2) With αγ the form defined in (15), we have for γ ∈ [0, 1)

( f, f )H̃1,γ = αγ ( f ), f ∈ Aγ,D, where Aγ,D := ker τ D
γ , (24)

while for γ ∈ (−1, 0), the above equality holds trivially true on all of Aγ .
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(3) For any f, g ∈ Aγ , the first Green’s identity holds:

(Lγ f, g)L2
γ

= ( f, g)H̃1,γ + (τ N
γ f, τ D

γ g)L2(S1). (25)

(4) For any γ ∈ (−1, 1), the form ( ·, ·)H̃1,γ defined in (23) is positive definite on Aγ .

Skew-symmetrizing (25), the second Green’s identity reads

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= (τ N

γ f, τ D
γ g)L2(S1) − (τ

N
γ g, τ D

γ f )L2(S1), f, g ∈ Aγ , (26)

which is a way of quantifying the lack of self-adjointness of Lγ . The question is then to find spaces
where Lγ is closed and extend the traces (20) to those spaces.

Since by virtue of Lemma 4(4), the form ( ·, ·)H̃1,γ is positive definite, we then let

H̃ 1,γ (D) : the completion of (Aγ , ( ·, ·)H̃1,γ ),

H̃ 1,γ
0 (D) : the completion of (Ċ∞(D), ( ·, ·)H̃1,γ ).

(27)

We have the obvious inclusions H̃ 1,γ
0 (D)⊂ H̃ 1,γ (D)⊂ L2

γ ⊂ C−∞(D). An important subspace of H̃ 1,γ

for what follows is

W 2
γ := { f ∈ H̃ 1,γ (D), Lγ f ∈ L2

γ } = dom(Lγ,max)∩ H̃ 1,γ (D), (28)

equipped with the norm ∥ f ∥
2
W 2
γ

:= ∥ f ∥
2
H̃1,γ + ∥Lγ f ∥

2
L2
γ
.

On S1
= ∂D, we define H(γ ) to be the completion of (C∞(S1), ∥ · ∥(γ )), where for f =

∑
k∈Z fkeikθ ,

we define

∥ f ∥
2
(γ ) :=


∑
k∈Z

⟨k⟩
2|γ |

| fk |
2 if |γ | ∈ (0, 1),∑

k∈Z

(1 + log⟨k⟩)| fk |
2 if γ = 0.

(29)

For |γ | ∈ (0, 1), H(γ ) is the classical Sobolev space H |γ |(S1) with dual identified with H−|γ |(S1). For
γ = 0, H(0) is a log-weighted Sobolev space, whose dual is identified with the completion of C∞(S1)

for the norm f 7→
∑

k∈Z(1 + log⟨k⟩)−1
| fk |

2. Below, we write ⟨ ·, · ⟩H ′

(γ ),H(γ ) for the corresponding duality
pairing. Our first main theorem is the following:

Theorem 5. Let γ ∈ (−1, 1). The traces τ D,N
γ defined in (20) extend as bounded operators

τ D
γ : H̃ 1,γ (D)→ H(γ ) and τ N

γ : W 2
γ → H ′

(γ ),

with τ D
γ onto. Green’s first identity (25) extends to f ∈ W 2

γ and g ∈ H̃ 1,γ :

(Lγ f, g)L2
γ

= ( f, g)H̃1,γ + ⟨τ N
γ f, τ D

γ g⟩H ′

(γ ),H(γ ) . (30)

In particular, Green’s second identity (26) extends to f, g ∈ W 2
γ :

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= ⟨τ N

γ f, τ D
γ g⟩H ′

(γ ),H(γ ) − ⟨τ N
γ g, τ D

γ f ⟩H ′

(γ ),H(γ ) . (31)

Furthermore, for γ ∈ (−1, 1), one may define the analogue of a Dirichlet-to-Neumann map, defined with
respect to a spectral parameter λ ∈ ρ(Lγ,D) (where, for any operator B, ρ(B) denotes its resolvent set).
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Theorem 6. For any γ ∈ (−1, 1) and any λ ∈ ρ(Lγ,D), there exists a bounded Dirichlet-to Neumann map
operator

3γ (λ) : H(γ ) → H ′

(γ ), (32)

such that for any u ∈ W 2
γ ∩ ker(Lγ − λ), 3γ (λ)(τ D

γ u)= τ N
γ u.

Our second main result consists in extending Green’s second identity (26) to the maximal domain
dom(Lγ,max) defined in (14). This requires a splitting of the maximal domain in terms of a distinguished,
well-understood self-adjoint extension of Lγ , notably Lγ,D here. Here and below, we define Nλ(Lγ,max) :=

{ f ∈ dom(Lγ,max), Lγ f = λ f }.

Lemma 7. With dom(Lγ,D)= H̃ 2,γ
D (D), for any λ ∈ ρ(Lγ,D), we have

dom(Lγ,max)= dom(Lγ,D)⊕Nλ(Lγ,max) (33)

For f ∈ dom(Lγ,max), upon fixing λ ∈ ρ(Lγ,D), we write f = fD + fλ the decomposition of f
according to (33). Our second main theorem is as follows.

Theorem 8. The traces τ D,N
γ defined in (20) extend as bounded, surjective operators

τ N
γ : H̃ 2,γ

D (D)→ H 1−|γ |(S1), τ̃ D
γ : dom(Lγ,max)→ H−1+|γ |(S1).

Green’s second identity (26) extends to f, g ∈ dom(Lγ,max) as follows:

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= ⟨τ̃ D

γ g, τ N
γ fD⟩H−1+|γ |,H1−|γ | − ⟨τ̃ D

γ f, τ N
γ gD⟩H−1+|γ |,H1−|γ | . (34)

2.4. Consequences: boundary triples, self-adjoint extensions and more. The theory of boundary triples
is a functional-analytic framework to help describe all self-adjoint realizations of an operator and their
spectrum, through the use of their Poisson maps and Weyl functions; see [Behrndt et al. 2020]. Refined
concepts, such as generalized boundary triples and quasiboundary triples have been introduced (see, e.g.,
[Behrndt and Langer 2007; 2012; Derkach and Malamud 1995]), and we now explain how and why our
main Theorems 5 and 8 fit this framework, along with some natural corollaries.

2.4.1. Preliminaries.

Boundary triples and their Weyl functions. Here and below, we follow the exposition in [Behrndt and
Langer 2012] and refer to there for more details. Let S be a densely defined, closed, symmetric operator
acting on a Hilbert space (H, ( ·, ·)H). A triple {G, 00, 01} is said to be a boundary triple for the adjoint
operator S∗ if (G, ( ·, ·)G) is a Hilbert space and 00, 01 : dom(S∗) → G are linear mappings such that
the map (00, 01) : dom(S∗)→ G ×G is surjective and we have the following abstract Lagrange/Green
identity, true for all f, g ∈ dom(S∗),

(S∗ f, g)H − ( f, S∗g)H = (01 f, 00g)G − (00 f, 01g)G . (35)

By virtue of [Behrndt and Langer 2012, Proposition 1.2], a boundary triple helps parametrize all closed
extensions of S which are restrictions of S∗ in terms of closed, linear relations3 R in G via the bijection

R 7→ AR := S∗
|(00, 01)

−1(R).

3A closed linear relation R in G is a closed linear subspace of G ×G.
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Given a relation R on G, we define the adjoint relation

R∗
:= {( f, f ′) ∈ G ×G, ( f ′, h)G = ( f, h′)G for all (h, h′) ∈ R}.

The further identity AR∗ = A∗

R implies that AR is self-adjoint if and only if R is a self-adjoint relation in G.
To say something further about the spectral properties of such extensions, we should mention that

the results quoted below will sometimes constrain the relation R to be of the form {( f,2 f ), f ∈ G} for
some linear map 2 : G → G, in which we case we will denote the extension A2 := S∗

| ker(01 −200), or
of the form {(B f, f ), f ∈ G} for some linear map B : G → G, in which case we will denote the extension
A[B] := S∗

| ker(B01 −00).
Denoting A0 := A{0}×G = S∗

| ker00, a boundary triple gives rise to a notion of Poisson map4 P and a
Weyl function M ,

P(λ) := (00|Nλ(S∗))−1, M(λ) := 01 P(λ), λ ∈ ρ(A0).

By [Behrndt and Langer 2012, Propositions 1.5 and 1.6], P and M are holomorphic functions on ρ(A0)

with values in B(G,H) and B(G), respectively.
Further, M is a Herglotz function which allows to characterize the spectrum of any closed extension

A2 of S in the following way: in the “2” convention mentioned above, [Behrndt and Langer 2012,
Theorem 1.7(ii)] states that λ∈ σi (A2) if and only if 0 ∈ σi (2− M(λ)), i = p, c, r, where σp, σc, σr denote
the point, continuous and residual spectrum, respectively. The functions P and M also allow to write
Krein’s formula relating the resolvent of A2 with that of A0 := S∗

| ker00: for all λ ∈ ρ(A0)∩ ρ(A2),

(A2 − λ)−1
= (A0 − λ)−1

+ P(λ)(2− M(λ))−1 P(λ)∗. (36)

Given the usefulness of P and M , the attention then turns toward their computation, or how to relate
them to quantities such as a Dirichlet-to-Neumann map. As such, it is known that boundary triples for
maximal operators involve some operations which make this purpose more difficult, and this motivates
the definition of slightly weaker notions below, namely generalized boundary triples, first introduced in
[Derkach and Malamud 1995], or even weaker yet, quasiboundary triples, first introduced in [Behrndt
and Langer 2007].

Quasi/generalized-boundary triples and their Weyl functions. A triple {G, 00, 01} is said to be a quasi-
boundary triple for S∗ if (G, ( ·, ·)G) is a Hilbert space and there exists an operator T such that T = S∗

and 00, 01 : dom(T )→ G are linear mappings such that (00, 01) : dom(T )→ G×G has dense range, (35)
holds for all f, g ∈ dom(T ), and A0 := T | ker00 is self-adjoint in H. If, in addition, 00 is onto G, then
{G, 00, 01} is a generalized boundary triple.

Given R a linear relation in G, we define the extension AR of S in analogy to the above:

AR := T |{ f ∈ dom(T ) : (00 f, 01 f ) ∈ R},

although this no longer gives a bijective correspondence with self-adjoint extensions of S. Since the map
(00, 01) is no longer surjective, we define G0 := ran(00) and G1 := ran(01), and we may associate to the
above quasiboundary triple the Poisson map P and Weyl function M , for any λ ∈ ρ(A0)

P(λ) := (00|Nλ(T ))−1
: G0 → H, M(λ) := 01 P(λ) : G0 → G1.

4Note that the interpretation as a Poisson map arises in PDE contexts. In abstract boundary triple theory, such a map is
referred to as a γ -field, a terminology which we are avoiding here to avoid confusion with the constant γ in Lγ .
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In the “generalized” boundary triple situation, G0 =G, in which case P(λ) and M(λ) are defined on all of G.
Under additional assumptions, such functions share many properties of their “boundary triple” counterpart,
and they are used to obtain, via [Behrndt and Langer 2012, Theorem 1.18] in the “2” convention
above, sufficient conditions on 2 for T | ker(01 −200) to be self-adjoint, allowing a parametrization of
self-adjoint extensions of S which are restrictions of T . Specifically:

Theorem 9 [Behrndt and Langer 2012, Theorem 1.18]. Let S be a densely defined closed symmetric
operator in H and let {G, 00, 01} be a quasiboundary triple for T = S∗ with Ai = T | ker0i , i = 0, 1, and
Weyl function M. Assume that A1 is self-adjoint and that M(λ0)−1 is a compact operator in G for some
λ0 ∈ C\R. If 2 is a bounded self-adjoint operator in G such that

2(dom M(λ±))⊂ G1 (37)

holds for some λ+ ∈ C+ and λ− ∈ C−, then A2 := T | ker(01 −200) is a self-adjoint operator in H. In
particular, condition (37) is satisfied if ran(2)= G1.

A more recent refinement, dropping the above compactness requirement on M(λ0)−1, is the following
result, formulated in the “B” convention mentioned above.

Theorem 10 [Behrndt et al. 2017, Corollary 2.7]. Let {G, 00, 01} be a quasiboundary triple for T ⊂ S∗

with corresponding Poisson map P and Weyl function M. Let B be a bounded self-adjoint operator in G
and assume that there exists a λ0 ∈ ρ(A0)∩ R such that the following conditions are satisfied:

(i) 1 ∈ ρ(B M(λ0)).

(ii) B(ran M(λ0)))⊂ ran00.

(iii) B(ran01)⊂ ran00 or λ0 ∈ ρ(A1).

Then the operator A[B]:= T | ker(B01 −00) is a self-adjoint extension of S such that λ0 ∈ ρ(A[B]),
and the resolvent formula

(A[B] − λ)
−1

= (A0 − λ)−1
+ P(λ)(I − B M(λ))−1 B P(λ)∗ (38)

holds for all λ ∈ ρ(A[B])∩ ρ(A0).

Further, if {G, 00, 01} is a generalized boundary triple, then conditions (ii) and (iii) are automatically
satisfied and M(λ0) = M(λ0). In that case, the conditions for self-adjointness reduce to the condition
that 1 ∈ ρ(B M(λ0)).

2.4.2. Corollaries of Theorems 5 and 8. Identity (34) implies that, upon defining isometric isomorphisms

ι±(1−|γ |) : H±(1−|γ |)(S1)→ L2(S1)

such that ⟨ϕ,ψ⟩−1+|γ |,1−|γ | = (ι−ϕ, ι+ψ)L2(S1), we have, for all f, g ∈ dom(Lγ,max),

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= (ι1−|γ |τ

N
γ fD, ι−1+|γ |τ̃

D
γ g)L2(S1) − (ι−1+|γ |τ̃

D
γ f, ι1−|γ |τ

N
γ gD)L2(S1), (39)

where fD := (Lγ,D −λ)−1(Lγ −λ) f is the projection onto the left summand of (33) for any λ ∈ ρ(Lγ,D).
Following the definitions above, equation (39) exactly means the following:
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Corollary 11. Fix λ ∈ ρ(Lγ,D) and let f 7→ fD be the projection onto the left summand in (39). Upon
defining the maps 00,1 : dom(Lγ,max)→ L2(S1) by

00 f := ι−1+|γ |τ̃
D
γ f, 01g := ι1−|γ |τ

N
γ gD, f, g,∈ dom(Lγ,max), (40)

where τ̃ D
γ , τ N

γ are defined in Theorem 5, the triple {L2(S1), 00, 01} is a boundary triple for the opera-
tor Lγ,max.

From the previous section, Corollary 11 then allows to parametrize all self-adjoint extensions of Lγ,min

in terms of self-adjoint boundary relations. As mentioned in the previous section, the appearance of the
map g 7→ gD changes the computation of the M function, as the latter is no longer a factorization of the
Dirichlet-to-Neumann map. It could still in principle be computed, following ideas as in, e.g., [Behrndt
et al. 2020, Lemma 8.4.5], applied to Schrödinger operators there.

A way to simplify the description is to introduce the intermediate extension T := Lγ,max|W 2
γ , with W 2

γ

defined in (28). Identity (31) implies that, upon defining isometric isomorphisms ι(γ ) : H(γ ) → L2(S1)

and ι(γ )′ : H ′

(γ ) → L2(S1), we have for all f, g ∈ W 2
γ ,

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= (ι(γ )′τ

N
γ f, ι(γ )τ D

γ g)L2(S1) − (ι(γ )τ
D
γ f, ι(γ )′τ N

γ g)L2(S1).

Moreover, the operator 00 := ι(γ )τ
D
γ |W 2

γ is surjective, i.e., G0 = L2(S1) (indeed, inspecting the proof of
Theorem 6, for any f ∈ H(γ ), one constructs a function u f ∈ W 2

γ such that τ D
γ u f = f ) and 01 := ι(γ )′τ

N
γ has

dense range in L2(S1) since Aγ ⊂W 2
γ and τ N

γ (Aγ )=C∞(S1). Together with the fact that T | ker00 =Lγ,D
is self-adjoint, we can then conclude:

Corollary 12. The triple {L2(S1), ι(γ )τ
D
γ , ι(γ )′τ

N
γ } is a generalized boundary triple for S∗

= Lγ,max

via the extension T = Lγ,max|W 2
γ . Moreover, the Weyl function Mγ (λ) : L2(S1)→ L2(S1) is given by

Mγ (λ)= ι(γ )′3γ (λ)ι
−1
(γ ), where 3γ is the Dirichlet-to-Neumann map defined in Theorem 6.

This result, combined with Theorem 10 and the remark right after it, allows to give a simple criterion
for the self-adjointness of extensions of Lγ,min with domain included in W 2

γ , for a wide range of boundary
conditions including, e.g., conditions of Robin type relating both traces.

Corollary 13. Let γ ∈ (−1, 1), {L2(S1), ι(γ )τ
D
γ , ι(γ )′τ

N
γ }, T and Mγ (λ) be as in the previous result. Let B

be a bounded, self-adjoint operator in L2(S1) and assume that there exists λ0 ∈ ρ(Lγ,D)∩ R such that

1 ∈ ρ(B Mγ (λ0)).

Then the operator Lγ,[B] := T | ker(Bι(γ )′τ N
γ − ι(γ )τ

D
γ ) is a self-adjoint extension of Lγ,min such that

λ0 ∈ ρ(Lγ,[B]) and the resolvent formula

(Lγ,[B] − λ)
−1

= (Lγ,D − λ)−1
+ Pγ (λ)(I − B Mγ (λ))

−1 B Pγ (λ)∗

holds for all λ ∈ ρ(Lγ,[B])∩ ρ(Lγ,D), where Pγ (λ) := (ι(γ )τ
D
γ |Nλ(Lγ,max))

−1.

Refinements of the above results may leverage norm estimates of Mγ (λ0) to show that the remaining
condition is always satisfied, see, e.g., [Behrndt et al. 2017] situations where ∥M(λ)∥ → 0 as λ→ −∞.
A more in-depth inquiry of such aspects, particularizing to certain boundary conditions, will be the object
of future work.
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Outline of next sections. The remainder of the article is organized as follows. In Section 3, we treat the
case |γ | ≥ 1, first formulating some density results in Section 3.1, then showing the characterization of
the Friedrichs extension (Lemma 2) in Section 3.2, finally showing that Lγ,min is self-adjoint (Theorem 3)
in Section 3.3. In Section 4, we cover the construction of a generalized boundary triple (Theorem 5)
and a Dirichlet-to-Neumann map (Theorem 6) for Lγ,max when γ ∈ (−1, 1), with a refined roadmap of
proofs at the beginning of the section. In Section 5, we cover the construction of a(n ordinary) boundary
triple (Theorem 8) for Lγ,max when γ ∈ (−1, 1), with a refined roadmap of proofs at the beginning of the
section. Some proofs of auxiliary lemmas are provided in the Appendix.

3. Density results, proofs of Lemma 2 and Theorem 3

3.1. Some preliminary density results. We begin by exploring when C∞
c (D) is dense in spaces of the

form (log x)k xαC∞(D), with respect to the L2
γ topology and the graph-norm topology nγ defined in (13).

Theorem 14. (i) C∞
c (D) is dense in L2

γ for all γ ∈ R, and in particular it is dense in (log x)k xαC∞(D)

with respect to the L2
γ topology for all α > (−γ − 1)/2 and k ∈ N0.

(ii) C∞
c (D) is dense in (log x)k xαC∞(D) with respect to the graph norm nγ for all γ ∈ R, α > (1−γ )/2

and k ∈ N0.

To prove the density results, we use the following “cutoff” lemma:

Lemma 15. Let χ ∈ C∞
c (R) and g ∈ (log x)k xαC∞(D) for k ∈ N0 and α ∈ R. Then, if 2α+ γ >−1, or

if χ vanishes to infinite order at 0, we have

∥χ(x/ϵ)g∥L2
γ

= O(|log ϵ|kϵα+(γ+1)/2), as ϵ → 0+.

Proof of Lemma 15. Denote Cg := maxD |(log x)−k x−αg|, finite by assumption. Then we have

∥χ(x/ϵ)g∥
2
L2
γ

=

∫
D

|χ(x/ϵ)|2|g|
2 xγ dV

≤ C2
g

∫
S1

∫ 1

0
|χ(x/ϵ)|2x2α+γ

|log x |
2k dx dω

x = ϵy
= 2πC2

g

∫ 1/ϵ

0
|χ(y)|2(ϵy)2α+γ

|log(ϵy)|2k ϵ dy

≤

2k∑
i=0

Ci |log ϵ|iϵ2α+γ+1, Ci = 2π
(2k

i

)
Cg

∫
∞

0
|χ(y)|2 y2α+γ

|log(y)|2k−i dy,

where all constants are finite under the assumption that 2α+ γ >−1 or χ vanishes at infinite order. □

Proof of Theorem 14. Proof of (i). Since the weight xγ does not vanish on a set of positive measure
on D, it follows that functions in L2

γ can be approximated by functions whose support is a compact
subset of the interior of D. Such functions can be approximated by C∞

c (D) functions in the standard way,
noting that xγ is strictly positive on any compact subset of the interior of D. The second part follows
since xαC∞(D)⊂ L2

γ for all α > (−γ − 1)/2.
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To prove (ii), we argue by cutting off. That is, fix χ ∈ C∞
c (R) with χ ≡ 1 in a neighborhood of 0, and

for f ∈ xαC∞(D), let
fϵ = (1 −χ(x/ϵ)) f.

Then fϵ ∈ C∞
c (D) for ϵ > 0. We have fϵ → f in L2

γ , so it suffices to check if Lγ fϵ → Lγ f in L2
γ .

We have
Lγ fϵ = −ρ−1x−γ ∂ρ(ρ xγ+1∂ρ fϵ)− ρ−2∂2

ω fϵ + (1 + γ )2 fϵ .

The third term converges to (1 + γ )2 f in L2
γ , while the second term equals ρ−2(1 −χ(x/ϵ))∂2

ω f , which
converges to ρ−2∂2

ω f in L2
γ . It remains to check that ∥ρ−1x−γ ∂ρ(ρ xγ+1∂ρ[ f − fϵ])∥L2

γ
→ 0 as ϵ → 0.

We thus write

−ρ−1x−γ ∂ρ(ρxγ+1∂ρ[ f − fϵ])= −ρ−1x−γ ∂ρ(ρ xγ+1∂ρ(χ(x/ϵ) f ))

= −ρ−1x−γ ∂ρ(ρ xγ+1χ(x/ϵ)∂ρ f − 2ρ2 xγ+1ϵ−1χ ′(x/ϵ) f )

= χ(x/ϵ)g0 + ϵ−1χ ′(x/ϵ)g1 + ϵ−2χ ′′(x/ϵ)g2 (41)

where

g0 = −ρ−1 x−γ ∂ρ(ρ xγ+1∂ρ f ),

g1 = −ρ−1 x−γ (−2ρ2 xγ+1)∂ρ f − ρ−1 x−γ ∂ρ(−2ρ2 xγ+1 f )

= 4ρ x∂ρ f + (4x − 4(γ + 1)ρ2) f,

g2 = −4ρ2x f.

(42)

We now observe that if f ∈ (log x)k xαC∞(D), then the functions g0, g1, g2 defined in (42) satisfy
gi ∈

∑k
j=max(0,k−i) (log x) j xα−1+i C∞(D), and hence by Lemma 15 we have

∥ϵ−iχ (i)(x/ϵ)gi∥L2
γ

= O(|log ϵ|kϵ−i+(α−1+i)+(γ+1)/2)= O(|log ϵ|kϵα−(1−γ )/2)

for i = 0, 1, 2. It follows that if α > (1 − γ )/2, combining the above with (41), we arrive at

−ρ−1 x−γ ∂ρ(ρ xγ+1∂ρ[ f − fϵ])= OL2
γ
(| log ϵ|kϵα−(1−γ )/2)= oL2

γ
(1), as ϵ → 0. □

3.2. Friedrichs extensions and proof of Lemma 2. Recall the following result which holds for any sym-
metric and positive (more generally, semibounded) operator (see, e.g., [Helffer 2013, Theorem 4.4, p. 34]).

Theorem 16. A symmetric, positive operator T0 on H (with D(T0) dense in H) admits a self-adjoint
extension, called the Friedrichs extension.

The construction goes as follows. To T0 we associate the form α(u, v) := (T0u, v)H, with domain D(T0).
We then consider the Hilbert space completion V of D(T0) with respect to the norm u 7→ (α(u, u))1/2,
viewing V as injecting into H, and we extend α by continuity to a form α̃ with domain V (the form will
be continuous with respect to the norm on V ). Finally let

DF = {u ∈ V : there exists C > 0 such that |α̃(u, v)| ≤ C∥v∥H}, (43)

i.e., DF consists of u ∈ V where α̃(u, · ) is a bounded antilinear functional on H. For such u, there exists
a unique element TF u ∈ H such that α̃(u, · ) = (TF u, · )H; then TF with domain DF is the Friedrichs
extension. Note that D(T0)⊂ DF ⊂ D(T ∗

0 ), with T ∗

0 |DF = TF and TF |D(T0) = T0.
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We now give a criterion for when a self-adjoint extension is the Friedrichs extension, whose proof is
relegated to Section A.1. Recall that given a symmetric form α, we say that a sequence un in the domain
of α will α-converge to u ∈ H (not necessarily in the domain of α) if

un
n→∞
−−→ u in H and α(un − um, un − um)

m,n→∞
−−−−→ 0.

Lemma 17 (characterization of the Friedrichs extension). Let T0 be a symmetric semibounded operator,
and let T be a self-adjoint extension of T0. Then T is the Friedrichs extension of T0 if and only if D(T ) is
contained in the α-closure of D(T0), that is,

for all u ∈ D(T ), there exists a sequence un ∈ D(T0) such that un →α u.

Proof of Lemma 2. We aim to apply Lemma 17, working with the quadratic form αγ defined in (15). The
proof amounts to showing that the αγ -closure of C∞

c (D) contains

(i) C∞(D) if γ ≥ 0 and

(ii) x−γC∞(D) if γ < 0.

The domain of the αγ -closure is also closed with respect to the graph norm, hence it contains the graph
norm closure of C∞(D) (resp. x−γC∞(D)) for γ ≥ 0 (resp. γ < 0).

We briefly explain why (i) implies (ii). For γ < 0 and f ∈ x−γC∞(D), assuming (i) is true, xγ f can
be approximated in the α−γ norm by a sequence fn in C∞

c (D). Via the intertwining property (8), we then
see that α−γ ( fn − xγ f )= αγ (x−γ fn − f )→ 0, where x−γ fn ∈ C∞

c (D). Thus x−γC∞(D) is contained
in the αγ -closure of C∞

c (D), and (ii) holds.
On to the proof of (i), we recall, for γ ≥ 0, that the closure of (Lγ ,C∞(D)) is a self-adjoint operator

with eigenbasis {Gγ

n,k}n≥0, 0≤k≤n as defined in (16), satisfying

LγGγ

n,k = (n + 1 + γ )2Gγ

n,k, Gγ

n,k |S1(eiω)= ei(n−2k)ω,

where the second property uses [Wünsche 2005, equation (2.10)]. The domain equals H̃ 2,γ
D as defined

in (17), also characterized as

H̃ s,γ
D =

{
f =

∑
n,k

fn,k Ĝγ

n,k :

∑
n,k

(n + γ + 1)2s
| fn,k |

2 <∞

}
,

where Ĝγ

n,k = Gγ

n,k/∥Gγ

n,k∥L2
γ
. In light of Lemma 17, it suffices to show that for each f ∈ H̃ 2,γ

D , there
exists f ( j) in the αγ -closure of C∞

c (D), such that

f ( j) j→∞
−−→αγ f.

Noting that every f can be approximated in H̃ 2,γ
D by a finite linear combination of the Zernike poly-

nomials Gγ

n,k , and that a sequence convergent in H̃ 2,γ
D will also αγ -converge, it suffices to show the

above approximation when f = Gγ

n,k .
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We note, in light of Theorem 14(ii), that xC∞(D)⊂ C∞
c (D)

nγ for all γ >−1 (in particular for γ ≥ 0).
In particular, xC∞(D) is contained in the αγ -closure of C∞

c (D). Thus, we now aim to show: if f = Gγ

n,k
for some n, k, then there exists a sequence f ( j)

∈ xC∞(D) such that

f ( j) j→∞
−−→αγ f.

Note that f ∈ C∞(D) belongs to xC∞(D) if and only if f |S1 = 0. Furthermore, for a polynomial written
in the form

∑
n,k fn,k Gγ

n,k , we have∑
n,k

fn,k Gγ

n,k

∣∣
S1(eiω)=

∑
m∈Z

( ∑
n−2k=m

fn,k

)
eimω.

As such, for a fixed choice of (n, k), let m = n − 2k, and choose an ansatz

f ( j)
= Gγ

n,k −

∑
n′−2k′=m

f ( j)
n′,k′ G

γ

n′,k′ (44)

where, for each j , only finitely many coefficients f ( j)
n′,k′ are nonzero so that f ( j)

∈ C∞(D), and we have∑
n′−2k′=m

f ( j)
n′,k′ = 1 (45)

so that τ N
γ f ( j)

= 0, i.e., f ( j)
∈ xC∞(D). We aim to choose the coefficients so that

∥ f ( j)
− Gγ

n,k∥H̃1,γ
D

j→∞
−−→ 0.

Note that

∥ f ( j)
− Gγ

n,k∥H̃1,γ
D

=

∥∥∥∥ ∑
n′−2k′=m

f ( j)
n′,k′ G

γ

n′,k′

∥∥∥∥2

H̃1,γ
D

=

∑
n′−2k′=m

(n′
+ 1 + γ )2∥Gγ

n′,k′∥
2
L2
γ
| f ( j)

n′,k′ |
2.

We now use the following elementary lemma, whose proof appears in Appendix A.2:

Lemma 18. Suppose {ak}
∞

k=1 is a sequence of positive numbers satisfying
∑

∞

k=1 1/ak = ∞. Then
there exists a sequence of sequences {{c( j)

k }
∞

k=1}
∞

j=1, with only finitely many numbers c( j)
k nonzero for any

fixed j , satisfying
∞∑

k=1

c( j)
k = 1 and lim

j→∞

∞∑
k=1

ak |c
( j)
k |

2
= 0.

Thus, we aim to find f ( j)
n′,k′ satisfying (45) and such that∑

n′−2k′=m

(n′
+ 1 + γ )2∥Gγ

n′,k′∥
2
L2
γ
| f ( j)

n′,k′ |
2 j→∞
−−→ 0.

By Lemma 18, applied to ak′ = (n′
+ 1 + γ )2∥Gγ

n′,k′∥
2
L2
γ

and c( j)
k′ = f ( j)

n′,k′ (where n′
− 2k ′

= m), we see
that this is possible, provided that ∑

n′−2k′=m

1
(n′ + 1 + γ )2∥Gγ

n′,k′∥
2
L2
γ

= ∞.
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Note that, for fixed m, we can parametrize the terms in the above sum by k ′, with k ′
∈ N, k ′

≥ max(0,−m),
with

n′
= 2k ′

+ m =⇒ n′
− k ′

= k ′
+ m.

Thus

(n′
+ 1 + γ )2∥Gγ

n′,k′∥
2
L2
γ

= (n′
+ 1 + γ )2

π(n′
− k ′)!(k ′)!(γ !)2

(n′ + γ + 1)(n′ − k ′ + γ )!(k ′ + γ )!

= (2k ′
+ m + 1 + γ )2

π(k ′
+ m)!(k ′)!(γ !)2

(2k ′ + m + γ + 1)(k ′ + m + γ )!(k ′ + γ )!
,

and the latter is asymptotic to 2π(γ !)2(k ′)1−2γ as k ′
→ ∞. It follows that∑

n′−2k′=m

1
(n′ + 1 + γ )2∥Gγ

n′,k′∥
2
L2
γ

= ∞

as long as 1 − 2γ ≤ 1, or equivalently, γ ≥ 0. □

Inspecting the proof above, we can in fact prove the following result, which will be useful in later
sections.

Corollary 19. For γ ∈ (−1, 1), C∞
c (D

int) is dense in Aγ,D for the H̃ 1,γ topology.

Proof. Recall that the quadratic forms αγ and ( ·, ·)H̃1,γ agree on C∞
c (D). For γ ∈ (−1, 0), Aγ,D =

xC∞(D)+x−γC∞(D), where x−γC∞(D) is included in C∞
c (D

int)αγ by the previous proof, and xC∞(D)

is included in C∞
c (D

int)nγ by Theorem 14(ii), which itself is included in C∞
c (D

int)αγ (this is because, by
the Cauchy–Schwarz inequality, we immediately have αγ ( f )≤ nγ ( f )2). The proofs for the cases γ = 0
and γ ∈ (0, 1) are similar. □

3.3. Proof of Theorem 3. We are now ready to prove Theorem 3, namely that Lγ,min is self-adjoint for
|γ | ≥ 1, by showing that Lγ,min = Lγ,D . This amounts to proving that

(i) C∞
c (D)

nγ = C∞(D)nγ for γ ≥ 1, and

(ii) C∞
c (D)

nγ = x−γC∞(D)nγ for γ ≤ −1.

Assuming (i) holds, (ii) can be proved as follows. Fix γ ≤−1 and f ∈ x−γC∞(D). By (i), xγ f ∈C∞(D)

can be approximated in n−γ by a sequence fn ∈ C∞
c (D

int), and then, using the intertwining property (8),
∥x−γ fn − f ∥nγ = ∥ fn − xγ f ∥n−γ

→ 0 as n → ∞, i.e., the sequence x−γ fn ∈ C∞
c (D

int) approximates f
in the nγ topology.

We now prove (i), fixing γ ≥ 1. If γ > 1, then the conclusion follows from Theorem 14(ii). The limiting
case γ =1 requires special care, and the proof that follows works for all γ ≥1 a fortiori. By Theorem 14(ii),
we have that xC∞(D) ⊂ C∞

c (D
int)nγ , and hence it remains to show that C∞(D) ⊂ xC∞(D)nγ . Since

each f ∈ C∞(D) can be written as an nγ -convergent sum of Zernike polynomials, it suffices to show that
every Zernike polynomial Gγ

n,k can be nγ -approximated by elements of xC∞(D). Thus fixing (n, k) and



558 FRANÇOIS MONARD AND YUZHOU (JOEY) ZOU

setting m = n − 2k, we aim to approximate Gγ

n,k with a sequence { f ( j)
} j in xC∞(D) of the form (44),

whose coefficients are chosen to satisfy (45) to enforce f ( j)
|S1 = 0, and so that

∥ f ( j)
− Gγ

n,k∥H̃2,γ
D

=

∥∥∥∥ ∑
n′−2k′=m

f ( j)
n′,k′ G

γ

n′,k′

∥∥∥∥
H̃2,γ

D

j→∞
−−→ 0.

In this case, we have∥∥∥∥ ∑
n′−2k′=m

f ( j)
n′,k′ G

γ

n′,k′

∥∥∥∥2

H̃2,γ
D

=

∑
n′−2k′=m

(n′
+ 1 + γ )4∥Gγ

n′,k′∥
2
L2
γ
| f ( j)

n′,k′ |
2.

By Lemma 18, applied to ak′ = (n′
+ 1 + γ )4∥Gγ

n′,k′∥
2
L2
γ

and c( j)
k′ = f ( j)

n′,k′ (where n′
− 2k ′

= m), we can
find our desired sequences, provided that∑

n′−2k′=m

1
(n′ + 1 + γ )4∥Gγ

n′,k′∥
2
L2
γ

= ∞.

Note that, for fixed m, we can parametrize the terms in the above sum by k ′, with k ′
∈ N, k ′

≥ max(0,−m),
with

n′
= 2k ′

+ m =⇒ n′
− k ′

= k ′
+ m.

Thus

(n′
+ 1 + γ )4∥Gγ

n′,k′∥
2
L2
γ

= (n′
+ 1 + γ )4

π(n′
− k ′)!(k ′)!(γ !)2

(n′ + γ + 1)(n′ − k ′ + γ )!(k ′ + γ )!

= (2k ′
+ m + 1 + γ )4

π(k ′
+ m)!(k ′)!(γ !)2

(2k ′ + m + γ + 1)(k ′ + m + γ )!(k ′ + γ )!
,

which is asymptotic to 2π(γ !)2(k ′)3−2γ as k ′
→ ∞. It follows that∑

n′−2k′=m

1
(n′ + 1 + γ )4∥Gγ

n′,k′∥
2
L2
γ

= ∞

as long as 3−2γ ≤ 1, i.e., γ ≥ 1. Thus, we can construct f ( j)
∈ xC∞(D)⊂ dom (Lγ,min) approximating

any Gγ

n,k in the graph norm, and this concludes the proof of the case γ ≥ 1. The proof of Theorem 3
is complete. □

4. Proof of Lemma 4 and Theorems 5 and 6

This section aims at proving the first main theorem, Theorem 5. This is done through the following
roadmap.

In Section 4.1, we first prove Lemma 4, which consists in making sense of the appropriate H̃ 1,γ inner
product for which Green’s identities hold for functions in Aγ . Section 4.2 then covers the surjective
extension of τ D

γ to H̃ 1,γ , as stated in Theorem 20 below. This requires elementary one-dimensional traces
estimates as derived in Section 4.2.1, combined with Fourier expansions in the boundary coordinate to
complete the proof of Theorem 20 in Section 4.2.2. In Section 4.3, we first prove preliminary properties
in Lemma 25: characterizations of the space H̃ 1,γ

0 (D), Green’s first identity without boundary term, and



BOUNDARY TRIPLES FOR A FAMILY OF DEGENERATE ELLIPTIC OPERATORS OF KELDYSH TYPE 559

a weak setting where Lγ is bounded. Moving to the proof of Theorem 5, it remains to show the extension
of the Neumann trace to W 2

γ by duality arguments, and the extension of Green’s identities by density
arguments. Finally, we prove Theorem 6 in Section 4.4.

4.1. Proof of Lemma 4.

Case −1 < γ < 0. This case is the “simplest” in that the H̃ 1,γ space does not require the use of an
auxiliary function φγ , or equivalently, φγ = 1 can be used, definition (23) is equivalent to

Aγ ∋ f, g 7→ ( f, g)H̃1,γ := (
√

x ∂ρ f,
√

x ∂ρg)L2
γ
+ (ρ−1∂ω f, ρ−1∂ωg)L2

γ
+ (1 + γ )2( f, g)L2

γ
, (46)

hence the independence on b. Note that τ D
γ , τ

N
γ : Aγ → C∞(S1) defined in (20) take the simplified form

τ D
γ f = f |x=0, τ N

γ f = lim
x→0

(−xγ+1∂ρ f ), f ∈ Aγ .

Then (25) follows by sending R → 1 in (3).

Case 0 ≤ γ < 1. We first briefly explain what further treatment is required, explaining what happens
for γ ∈ (0, 1), though the case γ = 0 is similar. One may think about defining a space H̃ 1,γ to be the
completion of C∞(D) for the norm coming from the inner product (46), though one may find that such
a space does not have a good trace in the sense that, e.g., as a direct application of Corollary 19, for
any γ ∈ (0, 1), C∞

c (D) is dense in C∞(D) for the norm coming from the inner product (46). Since the
indicial root r = −γ is the most singular, one may think of taking the completion of Aγ with respect
to the same norm, though another issue arises: the norm (46) of elements in x−γC∞ is in general not
finite. In Sturm–Liouville theory, this situation is characteristic of the case of singular endpoint in the
limit circle case, for which a systematic remedy in 1D can be found in, e.g., [Behrndt et al. 2020, §6.9].
We adapt these ideas to the present two-dimensional context.

We first make the function φγ introduced in Section 2.3 explicit. For x ∈ (0, 1), we define

φγ (x) :=

 (−γ )
∞∑

k=0

xk−γ

k−γ
if γ ∈ (0, 1),

log x − log(1 − x)− c0 if γ = 0,
(47)

where c0> log(e4
−1) is a fixed constant. For any γ ∈ [0, 1), φγ is a radial solution of Lγφγ = (γ+1)2φγ

(this simplifies into ∂ρ(xγ+1ρ∂ρφγ )= 0), satisfying the relevant limits (19). Moreover, there exists xγ > 0
such that φγ is nonzero on (0, xγ ). If x ∈ (0, 1), then xγ solves the implicit equation γ

∑
∞

k=1 xk/(k−γ )=1,
and if γ = 0, then x0 = 1/(1 + e−c0). Set bγ :=

√
1 − xγ .

Let us fix γ ∈ [0, 1), and write φ = φγ for conciseness. Let us denote5

Nφ f := φ ∂ρ

(
f
φ

)
= ∂ρ f −

∂ρφ

φ
f. (48)

5The definition differs philosophically from [Behrndt et al. 2020, equation (6.9.2), p. 443] in a couple of ways: the
√

p is not
factored in; the derivative is the ∂ρ specific to our case.
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Given b ∈ (bγ , 1), let us define the bilinear form as in (23)

tγ,b[ f, g] = (
√

x Nφ f,
√

x Nφg)xγ ,Ab,1 − b(x(b))γ+1 ∂ρφ

φ
(b)

∫
Cb

f g + (
√

x∂ρ f,
√

x∂ρg)xγ ,Db

+ (ρ−1∂ω f, ρ−1∂ωg)L2
γ
+ (γ + 1)2( f, g)L2

γ
, (49)

where for 0 ≤ a < c ≤ 0, we denote Aa,c for the annulus {a < ρ < c}.

Proof of Lemma 4. We first derive some identities. We compute

Lγ f ρxγ g = −∂ρ(xγ+1ρ∂ρ f )g − gρ−2∂2
ω fρxγ + (γ + 1)2 f gρxγ .

The first term in the right-hand side is rewritten as

−∂ρ(xγ+1ρ∂ρ f )g = −∂ρ(xγ+1ρ∂ρ(φ f/φ))g

= −∂ρ(xγ+1ρ(∂ρφ) f/φ))g − g∂ρ(xγ+1ρNφ f )

= −�������
∂ρ(xγ+1ρ∂ρφ)( f/φ)g − xγ+1ρ

∂ρφ

φ
(Nφ f )g − g∂ρ(xγ+1ρNφ f )

= −xγ+1ρ
∂ρφ

φ
(Nφ f )g + ∂ρgxγ+1ρNφ f − ∂ρ(gxγ+1ρNφ f )

= (Nφg)xγ+1ρ(Nφ f )− ∂ρ(gxγ+1ρNφ f ).

Hence on an annulus Aa,b = {a < ρ < b}, we obtain the integration by parts formula

(Lγ f, g)xγ ,Aa,b = (
√

x Nφ f,
√

x Nφg)xγ ,Aa,b + (ρ−1∂ω f, ρ−1∂ωg)xγ ,Aa,b . . .

−

[
x(ρ)γ+1ρ

∫
Cρ

gNφ f
]ρ=b

ρ=a
+ (γ + 1)2( f, g)xγ ,Aa,b . (50)

We now rewrite the Nφ f Nφg term:

(Nφ f )(Nφg)ρxγ+1
= ρxγ+1

(
∂ρ f − f

∂ρφ

φ

)(
∂ρg − g

∂ρφ

φ

)
= ρxγ+1∂ρ f ∂ρg − ρxγ+1∂ρ( f g)

∂ρφ

φ
+ ρxγ+1 f g

(
∂ρφ

φ

)2

= ρxγ+1∂ρ f ∂ρg − ∂ρ

(
ρxγ+1 f g

∂ρφ

φ

)
+ f g∂ρ

(
ρxγ+1 ∂ρφ

φ

)
+ ρxγ+1 f g

(
∂ρφ

φ

)2

(19)
= ρxγ+1∂ρ f ∂ρg − ∂ρ

(
ρxγ+1 f g

∂ρφ

φ

)
,

and thus

(
√

x Nφ f,
√

x Nφg)xγ ,Aa,b = (
√

x∂ρ f,
√

x∂ρg)xγ ,Aa,b −

[
ρxγ+1 ∂ρφ

φ

∫
Cρ

f g
]ρ=b

ρ=a
. (51)
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Proof of (1). If
√

1 − xγ < a < b < 1, we compute

tγ,b[ f, g] − tγ,a[ f, g] = −(
√

x Nφ f,
√

x Nφg)xγ ,Aa,b − b(x(b))γ+1 ∂ρφ

φ
(b)

∫
Cb

f g

+ a(x(a))γ+1 ∂ρφ

φ
(a)

∫
Ca

f g + (
√

x∂ρ f,
√

x∂ρg)xγ ,Aa,b

(51)
= 0,

and hence tγ,b does not depend on b ∈ (bγ , 1).

Proof of (2). We note that if f ∈ Aγ with γ ∈ (−1, 0) or if f ∈ Aγ,D with γ ∈ [0, 1) that

lim
b→1

[
b(x(b))γ+1 ∂ρφ

φ
(b)

∫
Cb

| f |
2
]

= 0.

Indeed, if γ ∈ (−1, 0) then ∂ρφ ≡ 0, while otherwise

b(x(b))γ+1 ∂ρφ

φ
(b)=

{ O(x(b)γ ) if γ ∈ (0, 1),

O
(

1
| log(x(b))|

)
if γ = 0

= o(1)

as b → 1, and f ∈Aγ,D implies that f is uniformly bounded as x → 0, as Aγ,D = C∞(D)+ x1−γC∞(D)

if γ ∈ (0, 1), or Aγ,D = C∞(D)+ x(log x)C∞(D) for γ = 0. As such, given that

lim
b→1

∥
√

x Nφ f ∥
2
xγ ,Ab,1

= 0

since
√

x Nφ f ∈ L2
γ near the boundary, it follows that we can take the limit as b → 1 in (49) to obtain (24)

as desired.

Proof of (3). Using that, for b ∈ (0, 1),

(Lγ f, g)xγ ,Db

= −

∫
Cb

xγ+1ρg∂ρ f + (
√

x∂ρ f,
√

x∂ρg)xγ ,Db + (ρ−1∂ω f, ρ−1∂ωg)xγ ,Db + (γ + 1)2( f, g)xγ ,Db ,

combining with (49), we arrive at

tγ [ f, g] = (
√

x Nφ f,
√

x Nφg)xγ ,Ab,1 + (ρ−1∂ω f, ρ−1∂ωg)xγ ,Ab,1 + (γ + 1)2( f, g)xγ ,Ab,1

−

∫
Cb

(ρxγ+1 ∂ρφ

φ
f g − xγ+1ρg∂ρ f )︸ ︷︷ ︸

(g/φ)W ( f,φ)

+(Lγ f, g)xγ ,Db .

Equation (25) then follows by sending b → 1.

Proof of (4). We successively treat γ ∈ (−1, 0), γ ∈ (0, 1), and γ = 0.
For γ ∈ (−1, 0), we note that since φγ ≡ 1, we in fact have for any f ∈ Aγ

( f, f )H̃1,γ = ∥
√

x∂ρ f ∥
2
L2
γ
+ ∥ρ−1∂ω f ∥

2
L2
γ
+ (γ + 1)2∥ f ∥

2
L2
γ

≥ (1 + γ )2∥ f ∥
2
L2
γ
. (52)
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The case γ ∈ (0, 1) is deduced from the case γ ∈ (−1, 0) by intertwining. First notice that if f ∈ Aγ ,
then xγ f ∈ A−γ . Assuming the following holds true:

( f, g)H̃1,γ = (xγ f, xγ g)H̃1,−γ , f, g ∈ Aγ . (53)

The result then follows using the case γ ∈ (−1, 0): for any f ∈ Aγ ,

( f, f )H̃1,γ = (x−γ f, x−γ f )H̃1,−γ ≥ (1 + (−γ ))2∥x−γ f ∥
2
L2

−γ
= (1 − |γ |)2∥ f ∥

2
L2
γ
,

where the inequality follows from (52). To prove (53), also notice that the differential intertwining
property (8) implies Lγ f = x−γL−γ (xγ f ) for all f ∈ Aγ . We now compute

( f, g)H̃1,γ
(25)
= (Lγ f, g)L2

γ
− (τ N

γ f, τ D
γ g)L2(S1)

= (x−γL−γ (xγ f ), x−γ (xγ g))L2
γ
− (τ N

γ f, τ D
γ g)L2(S1)

(22)
= (L−γ (xγ f ), xγ g)L2

−γ
− (τ N

−γ (x
γ f ), τ D

−γ (x
γ g))L2(S1)

(25)
= (xγ f, xγ g)H̃1,−γ .

Finally the case γ = 0 requires special care. Recall that φ0(x) = log x − log(1 − x)− c0 as defined
in (47). Let x0 > 0 satisfy the property that φ0(x) < 0 for all x ∈ (0, x0). Then, for any b> b0 :=

√
1 − x0,

throwing away all first-order terms in (23) gives the crude bound

( f, f )H̃1,0 ≥ ∥ f ∥
2
L2 −

bx(b)∂ρφ0(x(b))
φ0(x(b))

∫
Cb

| f |
2.

Noting that bx(b)∂ρφ0(x(b))= −2 for all b, multiplying both sides by −b φ0(x(b))/2 and integrating
from b = b0 to b = 1, we obtain

c( f, f )H̃1,0 ≥ c∥ f ∥
2
L2 − ∥ f ∥

2
Ab0,1

, where c :=

∫ 1

b0

−φ0(x(b))
2

b db =

∫ x0

0

−φ0(x)
4

dx .

We can relate the constant c to c0 as follows: first note that the condition φ0(x0)=0 gives x0 =1/(1+e−c0).
Integrating by parts, we then get∫ x0

0
−φ0(x) dx = [−xφ0(x)]

x=x0
x→0︸ ︷︷ ︸

=0

+

∫ x0

0
xφ′

0(x) dx =

∫ x0

0

dx
1 − x

= − log(1 − x0)= log(1 + ec0),

and hence c =
1
4 log(1 + ec0). Returning to the estimate, we arrive at

( f, f )H̃1,0 ≥ ∥ f ∥
2
L2 − c−1

∥ f ∥
2
Ab0,1

≥ (1 − c−1)∥ f ∥
2
L2 .

In particular ( ·, · )H̃1,0 is positive definite if c> 1, which is then equivalent to the condition c0> log(e4
−1).

The proof of Lemma 4 is complete. □

4.2. Extension of the Dirichlet trace to H̃1,γ . The first part of Theorem 5 consists in extending the
Dirichlet trace to H̃ 1,γ (D), which we state as a separate result.
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Theorem 20. For any γ ∈ (−1, 1) and with H̃ 1,γ (D), H(γ ) respectively defined in (27) and (29), the
Dirichlet trace τ D

γ defined in (20) extends to a bounded, surjective operator

τ D
γ : H̃ 1,γ (D)→ H(γ ).

The right inverse R : H(γ ) → H̃ 1,γ (D) arises as the extension to H(γ ) of a continuous operator
R : C∞(S1)→ Aγ .

In the case γ ∈ (−1, 0), the construction of H̃ 1,γ is associated with operators with regular boundary
points, in which case this is relatively straightforward. The construction for γ ∈ (0, 1) is associated with
operators with singular points in the limit circle case, requiring a regularization approach, tying it with
the previous family of cases γ ∈ (−1, 0). Finally, the case γ = 0, linked with the case of double indicial
roots and log-weighted Sobolev spaces, also requiring regularization, is treated separately.

4.2.1. Some 1D trace estimates. Let a > 0. Let us first prove a lemma that will be useful for the case
γ ∈ (−1, 0). Define H̃ 1,γ

[0, a] to be the completion of C∞([0, a]) for the norm

∥ f ∥
2
H̃1,γ [0,a]

= ∥
√

x∂x f ∥
2
L2
γ [0,a]

+ (1 + γ )2∥ f ∥
2
L2
γ [0,a]

, (54)

where ∥ f ∥
2
L2
γ [0,a]

=
∫ a

0 | f (x)|2xγ dx . We prove the following trace estimate:

Lemma 21. The evaluation map C∞([0, a]) ∋ f 7→ f (0) extends by density to H̃ 1,γ
[0, a] and we have

the following estimate for all ℓ ∈ (0, a):

ℓγ | f (0)|2 ≤ (γ + 1)
(
ℓ−1

∥ f ∥
2
L2
γ [0,a]

+
2

−γ
∥
√

x f ′
∥

2
L2
γ [0,a]

)
. (55)

Proof. From the relation f (0)= f (x)−
∫ x

0 f ′(t) dt , we deduce

| f (0)|2 ≤ 2| f (x)|2 + 2
∣∣∣∣∫ x

0
f ′(t) dt

∣∣∣∣2

≤ 2| f (x)|2 + 2
∫ x

0
t−γ−1 dt︸ ︷︷ ︸

x−γ /(−γ )

∫ x

0
t | f ′(t)|2 tγ dt.

Now multiply by xγ and integrate from 0 to ℓ to obtain

ℓγ+1

γ + 1
| f (0)|2 ≤ 2∥ f ∥

2
L2
γ [0,a]

+ 2
ℓ

−γ
∥
√

x f ′
∥

2
L2
γ [0,a]

,

equivalent to (55). □

Considering now a log-type weight that will be relevant to γ = 0, let us now define H̃ 1,0
log [0, a] the

closure of C∞
[0, a] +

1
log x C∞

[0, a] for the norm

∥ f ∥
2
H̃1,0

log
=

∫ a

0
(x | f ′(x)|2 + | f (x)|2) log2 x dx . (56)
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Lemma 22. The evaluation map C∞
[0, a] +

1
log x C∞

[0, a] ∋ f 7→ f (0) extends to a bounded map on
H̃ 1,0

log [0, a]. More precisely, we have for every ℓ ∈ (0, a],∫ ℓ
0 log2 x dx∫ ℓ

0 − log x dx
| f (0)|2 ≤

2∫ ℓ
0 − log x dx

∫ a

0
(log x)2| f (x)|2 dx + 2

∫ a

0
x log2 x | f ′(x)|2 dx . (57)

Proof. If f ∈ C∞
+

1
log x C∞, then f ′ is integrable near 0 and we may write, for any x ≤ a, f (0) =

f (x)−
∫ x

0 f ′(t) dt . We then compute

| f (0)|2 ≤ 2| f (x)|2 + 2
∣∣∣∣∫ x

0
f ′(t) dt

∣∣∣∣2

≤ 2| f (x)|2 + 2
∫ x

0

dt

t log2 t︸ ︷︷ ︸
−1/ log x

∫ a

0
t log2 t | f ′(t)|2 dt.

Multiply by log2 x and integrate from 0 to ℓ ∈ (0, a) to obtain6∫ ℓ

0
log2 x dx | f (0)|2 ≤ 2

∫ a

0
(log x)2| f (x)|2 dx + 2

∫ ℓ

0
(− log x) dx

∫ a

0
t log2 t | f ′(t)|2 dt.

Divide by
∫ ℓ

0 − log x dx to obtain (57). □

Lemma 23. The equality
∫ ℓ

0 − log x dx = ϵ gives rise to a function ℓ : [0, 1] → [0, 1], continuous,
increasing with ℓ(0)= 0 and ℓ(1)= 1, satisfying limϵ→0

log(ℓ(ϵ))
log ϵ = 1.

Proof. The existence and increasing nature is obtained from inverse function theorem and differentiation.
This equality can also be seen as ℓ(1− log ℓ)= ϵ, which implies the obvious bound ℓ≤ ϵ, hence the zero
limit. To obtain the asymptotics: we already have that log ℓ≤ log ϵ by monotonicity of log. In addition,
for every α ∈ (0, 1), for ℓ small enough, we have 1 + log 1

ℓ
≤ Cα 1

ℓα
, and thus

ϵ = ℓ(1 − log ℓ)≤ ℓ1−αCα =⇒ log ϵ ≤ log Cα + (1 −α) log ℓ.

These inequalities imply

1
1 −α

≤ lim inf
ϵ→0

log ℓ
log ϵ

≤ lim sup
ϵ→0

log ℓ
log ϵ

≤ 1 for every α > 0,

hence the result follows. □

4.2.2. Proof of Theorem 20. The proof of Theorem 20 treats, in order, the cases γ ∈ (−1, 0), γ ∈ (0, 1),
and γ = 0.

Case γ ∈ (−1, 0). In a tubular neighborhood of the boundary [0, a]x ×S1
ω (with ∂D = {x = 0}), one may

expand a smooth function in the form f =
∑

n∈Z fn(x)einω. Apply (55) to each fn with ℓ= a/⟨n⟩
2, sum

over n to obtain

aγ
∑

n

⟨n⟩
−2γ

| fn(0)|2 ≤ (γ + 1)
(

a−1
∑

n

⟨n⟩
2
∥ fn∥

2
L2
γ [0,a]

+
2

−γ

∑
n

∥
√

x f ′

n∥
2
L2
γ [0,a]

)
,

6One could be more explicit and use that
∫ ℓ

0 log2 t dt = ℓ((1 − log ℓ)2 + 1) and
∫ ℓ

0 log t dt = ℓ(log ℓ− 1) but this may not be
useful.
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Observing that the right-hand side is equivalent to the squared H̃ 1,γ (D) norm of f and the left-hand side
is the squared H−γ (S1)-norm of ω 7→ f (0, ω), this boundedness estimate extends by density to H̃ 1,γ (D).

To prove surjectivity, let us construct an explicit right-inverse for τ D
γ . Fix g ∈ C∞

c ([0, a),R) with
g(0)= 1 and consider the map

R
(∑

n

aneinω
)

=

∑
n

aneinωg(n2x).

It is easy to see that R(C∞(S1))⊂ C∞([0, a]x × S1
ω) and that τ D

γ R = id |C∞(S1). To show that R extend
to a bounded map H−γ (S1) → H̃ 1,γ ([0, a]x × S1

ω), it is enough to show that for fn(x) := g(n2x),
n2

∥ fn∥
2
L2
γ ([0,a])

∼ ∥
√

x f ′
n(x)∥

2
L2
γ ([0,a])

≲ n−2γ with uniform constants in n ∈ Z. To see this, notice that
f ′
n(x)= n2g′(n2x), then

n2
∫ a

0
f 2(x)xγ dx u = n2x

= n−2γ
∫ n2

0
g(u)2uγ du = n−2γ

∫ a

0
g(u)2uγ du,∫ a

0
( f ′(x))2xγ+1 dx u = n2x

= n−2γ
∫ n2

0
g′(u)2uγ+1 du = n−2γ

∫ a

0
g′(u)2uγ+1 du,

This completes the proof of Theorem 20 in the case γ ∈ (−1, 0).

Case γ ∈ (0, 1). The proof is based on combining the previous case with the convenient intertwining
property (8). Fix γ ∈ (0, 1), and let ψ be a radial function equal to φγ on [0, xγ /2)x , of class C∞

on Dint and bounded away from zero. The map m1/ψ : Aγ ∋ f 7→ f/ψ ∈ A−γ extends by density into a
homeomorphism H̃ 1,γ (D)→ H̃ 1,−γ (D). Indeed, a direct calculation gives∥∥∥∥ f

ψ

∥∥∥∥2

H̃1,−γ
=

∥∥∥∥√
x∂ρ

f
ψ

∥∥∥∥2

L2
−γ

+

∥∥∥∥ρ−1∂ω
f
ψ

∥∥∥∥2

L2
−γ

+ (1 − γ )2
∥∥∥∥ f
ψ

∥∥∥∥2

L2
−γ

=

∥∥∥∥√
x

x−γ

ψ
Nψ f

∥∥∥∥2

L2
γ

+

∥∥∥∥ρ−1 x−γ

ψ
∂ω f

∥∥∥∥2

L2
γ

+ (1 − γ )2
∥∥∥∥ x−γ

ψ
f
∥∥∥∥2

L2
γ

.

The function x−γ

ψ
∈ C∞(D) is bounded above and below by positive constants. The upper bound gives

the boundedness of the map m1/ψ and the extension by density. The bound from below gives coercivity
and by the open mapping theorem, the homeomorphism property. Combining this with the previous case,
and noticing that τ D

γ = τ D
−γ ◦ m1/ψ gives the result.

The case γ = 0. While the singular case γ ∈ (0, 1) could make use of the space H̃ 1,−γ associated with a
“regular” quadratic form, we need to construct the analogue of a “preregularized” quadratic form with
good trace estimates in the case γ = 0. To this end, on a neighborhood of the boundary S1

a = [0, a]x ×S1
ω,

let us define the norm on C∞(S1
a)

∥ f ∥
2
H̃1,0

log (S
1
a)

:= ∥
√

x log x∂x f ∥
2
L2(S1

a)
+ ∥ log x∂ω f ∥

2
L2(S1

a)
+ ∥ log x f ∥

2
L2(S1

a)
. (58)

Writing f (x, ω)=
∑

k∈Z fn(x)einω near x = 0, this norm looks like

∥ f ∥
2
H̃1,0

log (S
1
a)

= 2π
∑
k∈Z

(
∥
√

x log x∂x fn∥
2
L2[0,a]

+ (n2
+ 1)∥ log x fn∥

2
L2[0,a]

)
.
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Upon defining H(0) as in (29), we now prove the following:

Lemma 24. The evaluation map C1(S1
a) ∋ f 7→ f (0, ω) ∈ C∞(S1) extends to a bounded, surjective

trace map H̃ 1,0
log (S

1
a)→ H(0).

Proof. To prove continuity, writing f (x, ω) =
∑

k∈Z fn(x)einω near x = 0, and use (57) on fn with
ℓn ∈ (0, a] (assume a ≤ 1 without loss of generality) chosen such that∫ ℓn

0
− log x dx =

a
⟨n⟩2 .

By Lemma 23, ℓn exists, is unique, and

1 = lim
n→∞

log ℓn

log(a/⟨n⟩2)
= lim

n→∞

log ℓn

−2 log⟨n⟩
.

Further, using l’Hôpital’s rule to show that

lim
t→0

∫ t
0 log2 x dx

log t
∫ t

0 log x dx
= 1,

we have ∫ ℓn
0 log2 x dx∫ ℓn

0 − log x dx
∼ − log ℓn ∼ 2 log⟨n⟩, as n → ∞.

On to the surjectivity, it remains to construct a right inverse. To this end, fix h ∈ C∞
c ([0, a),R) with

h(0)= 1, and define R : C∞(S1)→ C∞(S1
a)+

1
log x C∞(S1

a) as

R :

∑
n∈Z

aneinω
7→

∑
n∈Z

aneinω h(n2x)
(

1 +
2 log n
log x

)
︸ ︷︷ ︸

fn(x)

(59)

To show that R : H(0) → H̃ 1,0
log (S

1
a) is bounded, it suffices to show that for |n| large enough, the quantity

1
log n

(
∥
√

x log x∂x fn∥
2
L2[0,a]

+ n2
∥ log x fn∥

2
L2[0,a]

)
(60)

is uniformly bounded by a constant independent of n. To that end, and upon noting that

fn(x)= h(n2x)
log(n2x)

log x
and f ′

n(x)= n2
(

h′(n2x)
log(n2x)

log x
− 2 log n

h(n2x)

n2x log2 x

)
,

we now compute∫ a

0
(n2 fn(x)2 + x f ′

n(x)
2) log2 x dx

u = n2x
=

∫ an2

0

(
h2(u) log2 u + u

(
h′(u) log u − 2 log n

h(u)
u log(u/n2)

)2)
du

=

∫ an2

0

(
(h2(u)+ uh′(u)2) log2 u − 4

log n h′(u)h(u) log u
log(u/n2)

+ 4 log2 n
h2(u)

u log2(u/n2)

)
du

= In,1 + In,2 + In,3.
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The term In,1 is asymptotic to a constant, thus o(log n). On to In,2, we rewrite

−4 log n
h′(u)h(u) log u

log(u/n2)
= 2

h′(u)h(u) log u

1 −
log u

2 log n

,

which is dominated by the integrable function 2|h′(u)h(u) log u|, and converges pointwise to 2h′(u)h(u)log u.
By dominated convergence, In,2 is also asymptotically constant, thus o(log n). On to In,3, we write

In,3 = 4 log2 n
∫ n2a

0

h2(u)

u log2(u/n2)
du

u = n2x
= 4 log2 n

∫ a

0

h2(n2x)

x log2 x
dx

= 4 log2 n
[
����������∫ a

0

d
dx

(
h2(n2x)
− log x

)
dx + 2

∫ a

0

n2h′(n2x)h(n2x)
log x

dx
]

u = n2x
= 8 log2 n

∫ n2a

0

h′(u)h(u)
log(u/n2)

du

= −4 log n
∫ n2a

0

h′(u)h(u)

1 −
log u

2 log n

du.

Similarly to the analysis of In,2, this is asymptotic to −4 log n
∫ a

0 h′(u)h(u) du = 2 log n. As a conclusion,
(60) is uniformly bounded as claimed, and the map R defined in (59) is bounded from H(0) to H̃ 1,0

log (S
1
a).

Lemma 24 is proved. □

On to the proof of Theorem 20, let ψ be a radial function equal to φ0 on [0, x0/2)x , of class C∞

on Dint and bounded away from zero. One may view τ D
0 as the composition of

log xC∞(D)+ C∞(D) ∋ f 7→
f
ψ

∈ C∞
+

1
log x

C∞

(which extends to an homeomorphism H̃ 1,0(D)→ H̃ 1,0
log (D)), with the restriction map from Lemma 24.

The proof of Theorem 20 is complete. □

4.3. Proof of Theorem 5. The following lemma gathers a few important preliminary facts.

Lemma 25. (1) With the extended Dirichlet trace τ γD defined in Theorem 20, we have

H̃ 1,γ
0 (D)= H̃ 1,γ

D = H̃ 1,γ (D)∩ ker τ γD.

(2) For every f ∈ W 2
γ , and g ∈ H̃ 1,γ

0 (D), we have

(Lγ f, g)L2
γ

= ( f, g)H̃1,γ (D). (61)

(3) The operator Lγ : H̃ 1,γ (D)→ (H̃ 1,γ
0 (D))′ is bounded.
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Proof of Lemma 25. Proof of (1). We first show that H̃ 1,γ
0 (D)= H̃ 1,γ

D (D). We use Lemma 2, namely that
the Dirichlet domain H̃ 2,γ

D coincides with the domain of the Friedrichs extension.
By the construction of the Friedrichs extension, each element in the domain is the limit of functions in

C∞
c (D) with respect to the norm f 7→ ((Lγ f, f )L2

γ
)1/2, which for functions in C∞

c (D) coincides with
the H̃ 1,γ norm. It follows that the Dirichlet domain H̃ 2,γ

D (D) is contained in H̃ 1,γ
0 (D). On the other hand,

since C∞
c (D)⊂ H̃ 2,γ

D (D), taking closures yields that H̃ 1,γ
0 (D) is precisely the closure of H̃ 2,γ

D (D) with
respect to the H̃ 1,γ norm. However, since

∥ f ∥
2
H̃ s,γ

D
=

∑
n,k

(n + 1 + |γ |)2s
|an,k |

2 if f =

∑
n,k

an,ken,k

where en,k are the L2
γ -normalized multiples of Gγ

n,k if γ ≥ 0 and x−γG−γ

n,k if γ < 0, and

∥ f ∥
2
H̃1,γ = (Lγ f, f )L2

γ
=

∑
n,k

(n + 1 + |γ |)2|an,k |
2
= ∥ f ∥

2
H̃1,γ

D
,

it follows that the closure of H̃ 2,γ
D (D) with respect to the H̃ 1,γ norm is precisely H̃ 1,γ

D (D), as desired.
Next, the inclusion H̃ 1,γ

0 (D)⊂ H̃ 1,γ (D)∩ker τ γD follows from the continuity of τ γD on H̃ 1,γ (D), as well
as the fact that each element of H̃ 1,γ

0 (D) is a limit of functions in C∞
c (D), all of which have trace zero.

Finally, to show that H̃ 1,γ (D) ∩ ker τ γD ⊂ H̃ 1,γ
0 (D), pick f ∈ H̃ 1,γ (D) ∩ ker τ γD and let fn ∈ Aγ a

sequence approximating f in H̃ 1,γ . By continuity of τ γD, we must have that τ γD fn → τ
γ

D f = 0 in H(γ ).
With R a right-inverse for τ γD as in Theorem 20, then Rτ γD fn → 0 in H̃ 1,γ and hence gn := fn − Rτ γD fn is
a sequence of elements in Aγ,D , converging to f in H̃ 1,γ . Finally, by Corollary 19, C∞

c (D) is H̃ 1,γ -dense
in Aγ,D, and hence for each n, there is hn ∈ C∞

c (D) such that ∥gn − hn∥H̃1,γ <
1
n . The sequence hn

converges in H̃ 1,γ to f , which in turn belongs to H̃ 1,γ
0 .

Proof of (2). It is enough to show (61) for f ∈ W 2
γ and g ∈ Ċ∞, since (61) then extends to H̃ 1,γ

0 by
density. For f ∈ W 2

γ ⊂ H̃ 1,γ , let fn be a sequence in Aγ converging to f in H̃ 1,γ , and fix g ∈ Ċ∞. We
have, for every n,

( fn, g)H̃1,γ = (Lγ fn, g)L2
γ

= ⟨ιγLγ fn, g⟩ = ⟨
tLγ ιγ fn, g⟩.

Since fn → f in H̃ 1,γ , hence in L2
γ , ιγ fn → f in C−∞, and by sequential continuity, tLγ ιγ fn →

tLγ ιγ f
in C−∞. Hence we may send n → ∞ in the above equality to obtain

( f, g)H̃1,γ = ⟨
tLγ ιγ f, g⟩ for all g ∈ Ċ∞(D).

Finally, the assumption Lγ f ∈ L2
γ gives that the right-side equals (Lγ f, g)L2

γ
, and (61) follows for f ∈ W 2

γ

and g ∈ Ċ∞.

Proof of (3). By (61), we have the identity

|(Lγ f, g)L2
γ
| = |( f, g)H̃1,γ (D)| ≤ ∥ f ∥H̃1,γ ∥g∥H̃1,γ , f ∈ Aγ , g ∈ H̃ 1,γ

0 (D).

This implies that Lγ : Aγ → (H̃ 1,γ
0 )′ is bounded, and that

∥Lγ f ∥
(H̃1,γ

0 )′
≤ ∥ f ∥H̃1,γ for all f ∈ Aγ .

Since Aγ is dense in H̃ 1,γ , the latter inequality allows to extend Lγ to H̃ 1,γ as a bounded (H̃ 1,γ
0 )′-valued

map. □
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Proof of Theorem 5. We first show that the Neumann trace extends into a bounded operator τ N
γ : W 2

γ → H ′

(γ ).
Following ideas in [Helffer 2013, §4.4.4], we combine Theorem 20 with the second Green’s identity. By
virtue of Theorem 20, let R : H(γ ) → H̃ 1,γ be a bounded right-inverse for τ D

γ arising from a continuous
operator R : C∞(S1)→ Aγ . For f ∈ W 2

γ , define the map

ψ f (h) := (Lγ f, Rh)L2
γ
− ( f, Rh)H̃1,γ , h ∈ C∞(S1). (62)

It is easily seen to satisfy an estimate of the form

|ψ f (h)| ≤ (∥Lγ f ∥L2
γ
+ ∥ f ∥H̃1,γ )∥Rh∥H̃1,γ ≤ C(∥Lγ f ∥L2

γ
+ ∥ f ∥H̃1,γ )∥h∥H(γ ),

with C the operator norm of R. By Riesz representation, this defines a unique element τ N
γ f ∈ H ′

(γ ),
which further satisfies the estimate ∥τ N

γ f ∥H ′

(γ )
≤ C(∥Lγ f ∥L2

γ
+ ∥ f ∥H̃1,γ ). Moreover, for f ∈ Aγ and

h ∈ C∞(S1) such that Rh ∈ Aγ , the first Green’s identity (25) gives

ψ f (h)= (τ N
γ f, τ D

γ Rh)L2(S1) = (τ N
γ f, h)L2(S1) = ⟨τ N

γ f, h⟩H ′

(γ ),H(γ ),

hence the definition of τ N
γ on W 2

γ extends the original definition (20) on Aγ .
On to extending Green’s first identity to (30), given g ∈ H̃ 1,γ , we decompose g = Rτ D

γ g + g0, with
g0 ∈ H̃ 1,γ

0 , and write, for f ∈ W 2
γ ,

(Lγ f, g)L2
γ
− ( f, g)H̃1,γ = (Lγ f, Rτ D

γ g)L2
γ
− ( f, Rτ D

γ g)H̃1,γ + (Lγ f, g0)L2
γ
− ( f, g0)H̃1,γ

(62)
= ⟨τ N

γ f, τ D
γ g⟩H ′

(γ ),H(γ ) + (Lγ f, g0)L2
γ
− ( f, g0)H̃1,γ ,

and the last two terms cancel out by virtue of (61). Theorem 5 is proved. □

Remark 26. Similarly to [Behrndt et al. 2020, Remark 8.2.5], the extension of τ N
γ could be made to the

larger space W̃ 2
γ = {u ∈ H̃ 1,γ (D), Lγ u ∈ (H̃ 1,γ (D))′} into a bounded operator τ N

γ : W̃ 2
γ → H ′

(γ ), and one
would have a slightly more general first Green’s identity

⟨Lγ f, g⟩(H̃1,γ )′,H̃1,γ = ( f, g)H̃1,γ + ⟨τ N
γ f, τ D

γ g⟩H ′

(γ ),H(γ ), f ∈ W̃ 2
γ , g ∈ H̃ 1,γ .

Upon skew-symmetrizing, Green’s second identity generalizes to f, g ∈ W̃ 2
γ in the obvious way.

4.4. DN map — Proof of Theorem 6. We end this section with the construction of the Dirichlet-to-
Neumann map, i.e., the proof of Theorem 6.

Proof of Theorem 6. The construction of the DN map is done as follows. Consider RD
γ : H(γ ) → H̃ 1,γ (D)

a continuous right inverse to τ D
γ as in Theorem 20. For f ∈ H(γ ), the construction of a unique solution

u f ∈ W 2
γ ∩ ker(Lγ − λ) to

(Lγ − λ)u = 0 (D), u|S1 = f (63)

is done as follows: Setting f̃ = RD
γ f ∈ H̃ 1,γ (D), write u f = w+ f̃ for some unknown w, which in turn

should solve
(Lγ − λ)w = −(Lγ − λ) f̃ (D), w|S1 = 0, (64)

where the right-hand side belongs to (H̃ 1,γ
0 (D))′ by Lemma 25(3), a space which coincides with

(H̃ 1,γ
D (D))′ = H̃−1,γ

D (D) by Lemma 25(1). By setting up a weak formulation and invoking Riesz
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representation theorem on H̃ 1,γ
D , or simply using (Lγ,D − λ)−1 which is well-understood, this gives a

unique solution to (64) in H̃ 1,γ
D , given by

w := −(Lγ,D − λ)−1(Lγ − λ) f̃ .

Then u f =w+ f̃ is a solution to (63) (which can also be proved to be unique since Lγ,D −λ is injective).
Originally, it belongs to H̃ 1,γ , so in particular in L2

γ , so (63) also implies that Lγ u f ∈ L2
γ , and hence

u f ∈ W 2
γ ∩ ker(Lγ − λ).

More succinctly, the DN map is then defined by

3γ (λ) f := τ N
γ u f = τ N

γ (id −(Lγ,D − λ)−1(Lγ − λ))RD
γ f,

which boundedly lands into H ′

(γ ) by Theorem 5. The uniqueness of the solution to (63) makes it
independent of the choice of right-inverse for τ D

γ . □

5. Proof of Theorem 8

The idea is to follow the template of [Behrndt et al. 2020, Theorem 8.4.1, p. 601] to construct boundary
triples for Lγ,max when γ ∈ (−1, 1). In proving Theorem 8, we first prove in Section 5.1 how to extend
the Neumann trace on the Dirichlet Sobolev scale (17), this is formulated as Proposition 27 below, and
makes crucial use of facts about generalized Zernike polynomials. In Section 5.2, we then show how
to extend the Dirichlet trace, a result formulated in Proposition 30. Finally, we complete the proof of
Theorem 8 in Section 5.3, first proving Lemma 7 on the decompositions of the maximal domain, then
using these decompositions to extend Green’s second identity to (34).

5.1. Extension of the Neumann trace.

Proposition 27. For γ ∈ (−1, 1) and any s > 1 + |γ |, the map τ N
γ defined in (20) extends to a bounded,

surjective map

τ N
γ : H̃ s,γ

D (D)→ H s−1−|γ |(S1), (65)

with a right inverse arising as the extension to H s−1−|γ |(S1) of a continuous operator C∞(S1)→ C∞(D).
In particular, for s = 2, where H̃ 2,γ

D (D)= dom(Lγ,D),

τ N
γ : dom(Lγ,D)→ H 1−|γ |(S1) (66)

is a bounded and surjective map, and we have the further characterization

dom(Lγ,min)= H̃ 2,γ
D ∩ ker τ N

γ . (67)

Proof. Case 0 ≤ γ < 1. With {Gγ

n,k}n,k defined in (16), the main two fundamental properties needed are

τ N
γ (G

γ

n,k)= cγGγ

n,k |S1 = cγ ei(n−2k)β, (68)

∥Gγ

n,k∥
2
L2
γ

=
π

n + γ + 1
(n − k)!γ !k!γ !

(k + γ )!(n − k + γ )!
=: (nγn,k)

2, (69)
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where we write for short x ! :=0(x +1), and where cγ = 2γ for γ ∈ (0, 1), and c0 = −2. The first equality
uses [Wünsche 2005, equation (2.10)]. Hence, for u ∈ H̃ s,γ

D , of the form

u =

∞∑
n=0

n∑
k=0

un,k
Gγ

n,k

nγn,k

with ∥u∥
2
H̃ s,γ

D
=

∑
∞

n=0
∑n

k=0(n + 1 + γ )2s
|un,k |

2 <∞, we have

τ N
γ u = cγ

∑
n,k

un,k

nγn,k
ei(n−2k)β

= cγ
∑
m∈Z

eimβ
[τ N
γ u]m, [τ N

γ u]m :=

∑
n−2k=m

un,k

nγn,k
.

Then

∥τ N
γ u∥

2
H s−γ−1 = 2πc2

γ

∑
m∈Z

⟨m⟩
2s−2γ−2

|[τ N
γ u]m |

2

≤ 2πc2
γ

∑
m∈Z

⟨m⟩
2s−2γ−2

( ∑
n−2k=m

(n + 1 + γ )2s
|un,k |

2
)( ∑

n−2k=m

(n + 1 + γ )−2s

(nγn,k)2

)
(70)

and the proof is complete if we can show that

Cm;s,γ := ⟨m⟩
2s−2γ−2

∑
n−2k=m

(n + 1 + γ )−2s

(nγn,k)2

is uniformly bounded for all m ∈ Z. Note that Cm;s,γ = C−m;s,γ so it enough to check it for m ≥ 0, for
which we have

Cm;s,γ = ⟨m⟩
2s−2γ−2

∑
ℓ≥0

(m + 2ℓ+ 1 + γ )−2s

(nγm+2ℓ,ℓ)
2

=
⟨m⟩

2s−2γ−2

π(γ !)2

∑
ℓ≥0

(m + 2ℓ+ 1 + γ )1−2s (m + ℓ+ γ )!

(m + ℓ)!

(ℓ+ γ )!

ℓ!
.

To this end, we state the following estimate, which is relegated to Section A.3:

Lemma 28. There exist C ′,C ′′ > 0 such that C ′
≤ Cm;s,γ ≤ C ′′ for all m ≥ 0.

Using Lemma 28, we thus see that

∥τ N
γ u∥

2
H s−γ−1 ≤ 2πc2

γ

∑
m∈Z

Cm;s,γ

( ∑
n−2k=m

(n + 1 + γ )2s
|un,k |

2
)

≤ 2πc2
γ (sup

m∈Z

Cm;s,γ )∥u∥
2
H̃ s,γ

D (D)
,

thus establishing the forward trace estimate.
To establish surjectivity, it suffices to construct a bounded right inverse R : H s−γ−1(S1)→ H̃ s,γ

D (D).
We construct the following map:

R
(∑

m∈Z

ameimω
)

=
1
cγ

∑
m∈Z

am

1 + |m|

∑
n−2k=m,n≤3|m|

Gγ

n,k . (71)
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Note that the set {(n, k) : n − 2k = m, 0 ≤ k ≤ n} can be parametrized by

n = |m| + 2ℓ, k =
|m| − m

2
+ ℓ= max(0,−m)+ ℓ, ℓ≥ 0,

so the inner sum is over 1 + |m| elements. Specifically, R sends eimω to the average over the |m| + 1
weighted Zernike polynomials of lowest degree whose trace equals eimω. In particular, that R is a
right-inverse directly follows from property (68).

Moreover we have∥∥∥∥R
(∑

m∈Z

ameimω
)∥∥∥∥2

H̃ s,γ
D (D)

=
1
c2
γ

∑
m∈Z

|am |
2

(1 + |m|2)

∑
n−2k=m,n≤3|m|

(n + 1 + γ )2s(nγn,k)
2

=
1
c2
γ

∑
m∈Z

⟨m⟩
2s−2γ−2

|am |
2 ⟨m⟩

2

(1 + |m|)2
C ′

m

≤

(
sup
m∈Z

⟨m⟩
2C ′

m

c2
γ (1 + |m|)2

)∥∥∥∥∑
m∈Z

ameimω
∥∥∥∥2

H s−1−γ

,

where we have defined

C ′

m := ⟨m⟩
−2s+2γ

∑
n−2k=m,n≤3|m|

(n + 1 + γ )2s(nγn,k)
2.

Thus, that R : H s−1−|γ |(S1) → H̃ s,γ
D (D) is bounded will follow upon showing that C ′

m is uniformly
bounded in m. This is implied by the asymptotics∑

n−2k=m,n≤3|m|

(n + 1 + γ )2s(nγn,k)
2
= O(⟨m⟩

2s−2γ ), as |m| → ∞, (72)

which we prove now. As before, C ′
−m = C ′

m , so it suffices to assume m ≥ 0, in which case we parametrize
n = m + 2ℓ and k = ℓ, with 0 ≤ ℓ≤ m. Similarly as before we assume m is sufficiently large, say m > γ .
Then the sum then becomes∑

n−2k=m,n≤3|m|

(n + 1 + γ )2s(nγn,k)
2 (69)

=
π

(γ !)2

m∑
ℓ=0

(m + 2ℓ+ 1 + γ )2s−1 (m + ℓ)!

(m + ℓ+ γ )!

ℓ!

(ℓ+ γ )!
.

Using the asymptotic

lim
x→∞

x !

(x + γ )!(x + 1)−γ
= 1,

and using that m + 2ℓ+ 1 + γ ≤ 4(m + 1) and 2s − 1 ≥ 1 + 2γ ≥ 1, the above sum is bounded above by
some multiple of

m∑
ℓ=0

(m + 2ℓ+ 1 + γ )2s−1(m + ℓ+ 1)−γ (ℓ+ 1)−γ ≲ (m + 1)2s−γ−1
m∑
ℓ=0

(ℓ+ 1)−γ .
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Finally, the function x 7→ (x + 1)γ is decreasing, so we can estimate
m∑
ℓ=0

(ℓ+ 1)−γ = 1 +

m∑
ℓ=1

(ℓ+ 1)−γ ≤ 1 +

∫ m

0
(x + 1)−γ dx = 1 +

(m + 1)1−γ
− 1

1 − γ
.

It follows that ∑
n−2k=m,n≤3|m|

(n + 1 + γ )2s(nγn,k)
2 ≲ (m + 1)2s−γ−1

m∑
ℓ=0

(ℓ+ 1)γ ≲ (m + 1)2s−2γ ,

i.e., (72) follows.

Case γ < 0. Notice that the map mxγ : x−γC∞(D) ∋ f 7→ xγ f ∈ C∞(D) extends into an isometry
H̃ s,γ

D 7→ H̃ s,−γ
D , and that we have τ N

γ = τ N
−γ ◦ mxγ . The result for γ ∈ (−1, 0) follows.

Finally, we prove the characterization (67) of the minimal domain. The second Green’s identity (26)
extends, for f ∈ H̃ 2,γ

D (D), to the equation

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= (τ N

γ f, τ D
γ g)L2(S1), g ∈ Aγ . (73)

Since H̃ 2,γ
D (D) is the domain of the Dirichlet realization Lγ,D , it follows the minimal domain is contained

in H̃ 2,γ
D (D). As such, let f ∈ dom (Lγ,min); then f ∈ H̃ 2,γ

D (D). Moreover, since Lγ,min = (Lγ,max)
∗, it

follows that for all g ∈ Lγ,max we have

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= 0.

In particular this holds for all g ∈ Aγ , in which case this combined with (73) gives

(τ N
γ f, τ D

γ g)L2(S1) = 0 for all g ∈ Aγ ,

i.e., τ N
γ f is orthogonal (in L2(S1)) to τ D

γ (Aγ )= C∞(S1). By density of the latter, this forces τ N
γ f ≡ 0.

It follows that dom (Lγ,min)⊂ H̃ 2,γ
D (D)∩ ker τ N

γ .
To show the other inclusion, we will use density arguments. First considering the case γ ∈ [0, 1), first

notice that by Theorem 14(ii), we have xC∞(D)⊂ C∞
c (D)

nγ = dom(Lγ,min), and upon taking nγ -closures,
xC∞(D)nγ ⊂ dom(Lγ,min). Then H̃ 2,γ

D (D)∩ ker τ N
γ ⊂ dom(Lγ,min) will hold provided that

H̃ 2,γ
D (D)∩ ker τ N

γ = xC∞(D)nγ . (74)

The inclusion ⊃ in (74) is clear since the space on the left is nγ -closed and contains xC∞(D). On to
the inclusion ⊂, for any f ∈ H̃ 2,γ

D (D), there is a sequence fn ∈ C∞(D) with fn → f in H̃ 2,γ
D (D). If f

also satisfies τ N
γ f ≡ 0, then τ N

γ fn → 0 in H 1−|γ |(S1). With R the right inverse for τ N
γ defined in (71),

Rτ N
γ fn ∈ C∞(S1) and Rτ N

γ fn → 0 in H̃ 2,γ
D (D). Considering

gn = fn − Rτ N
γ fn ∈ C∞(D),

since τ N
γ gn = τ N

γ fn − τ N
γ Rτ N

γ fn = 0, gn in fact belongs to xC∞(D) and converges to f in H̃ 2,γ
D (D).

This gives (74).
For γ ∈ (−1, 0), we follow a similar strategy to show that H̃ 2,γ

D (D)∩ ker τ N
γ = x1−γC∞(D)nγ , and

noting that C∞
c (D) is nγ -dense in x1−γC∞(D) for all γ ∈ (−1, 0) (in fact for all γ < 1). □
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From this, we can also show:

Lemma 29. For γ ∈ (−1, 1), we have dom(Lγ,max)= Aγ nγ .

Proof. Consider the operator Lγ,Aγ
whose domain is Aγ . It suffices to show that

dom ((Lγ,Aγ
)∗)⊂ dom (Lγ,min),

since by taking adjoints we would have

dom (Lγ,max)= dom ((Lγ,min)
∗)⊂ dom ((Lγ,Aγ

)∗∗)= Aγ nγ .

Note that
H̃ 2,γ

D (D)⊂ dom (Lγ,Aγ
)nγ

by taking closures on either C∞(D) or x−γC∞(D), and hence taking adjoints gives

dom ((Lγ,Aγ
)∗)⊂ H̃ 2,γ

D (D).

As such, suppose f ∈ dom ((Lγ,Aγ
)∗); then f ∈ H̃ 2,γ

D (D). For all g ∈ Aγ , equation (73) gives that

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= (τ N

γ f, τ D
γ g)L2(S1).

But we also have ( f,Lγ g)= ( f, (Lγ,Aγ
)g)= ((Lγ,Aγ

)∗ f, g)= (Lγ f, g), so we have

(τ N
γ f, τ D

γ g)L2(S1) = 0 for all g ∈ Aγ .

Similar reasoning as above yields τ N
γ f ≡ 0, except now that the characterization (67) has been proven,

we can conclude that f ∈ dom (Lγ,min), as desired. □

5.2. Extension of the Dirichlet trace.

Proposition 30. For γ ∈ (−1, 1), the restriction to W 2
γ of the Dirichlet trace τ D

γ defined in Theorem 20
extends to a bounded, surjective map

τ̃ D
γ : dom(Lγ,max)→ H−1+|γ |(S1).

Moreover, we have, for any f ∈ dom(Lγ,max) and g ∈ H̃ 2,γ
D (D),

(Lγ f, g)L2
γ
− ( f,Lγ g)L2

γ
= −⟨τ̃ D

γ f, τ N
γ g⟩H−1+|γ |,H1−|γ | . (75)

Proof of Proposition 30. Let R : H 1−|γ |(S1)→ H̃ 2,γ
D (D) a right inverse for the map (66), in particular

τ N
γ (Rh)= h for all h ∈ H 1−|γ |(S1). For f ∈ dom(Lγ,max), define the functional φ f on H 1−|γ |(S1) by

φ f (h)= −(Lγ f, Rh)L2
γ
+ ( f,Lγ Rh)L2

γ
, h ∈ H 1−|γ |(S1). (76)

The map φ f obviously satisfies

|φ f (h)| ≤ ∥Lγ f ∥L2
γ
∥Rh∥L2

γ
+ ∥ f ∥L2

γ
∥Lγ Rh∥L2

γ

≤ (∥ f ∥L2
γ
+ ∥Lγ f ∥L2

γ
)(∥Rh∥L2

γ
+ ∥Lγ Rh∥L2

γ
)≤ C(∥ f ∥L2

γ
+ ∥Lγ f ∥L2

γ
)∥h∥H1−|γ |(S1),
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by boundedness of R. By Riesz representation, this defines a unique element τ̃ D
γ f in H−1+|γ |(S1).

If f ∈ W 2
γ , then (31) implies that φ f (h)= ⟨τ N

γ (Rh), τ D
γ f ⟩H ′

(γ ),H(γ ) where, since τ D
γ f ∈ H(γ ) ⊂ H−1+|γ |,

and since τ N
γ (Rh)= h ∈ H 1−|γ |, the latter pairing also equals to ⟨τ D

γ f, h⟩H−1+|γ |,H1−|γ | . In particular, if
f ∈ W 2

γ , then τ̃ D
γ f = τ D

γ f as elements of H−1+|γ |.
On to proving (75), pick f ∈ dom(Lγ,max) and g ∈ H̃ 2,γ

D . Write g = Rτ N
γ g + g00, where τ N

γ g00 = 0
hence g00 ∈ dom(Lγ,min). Then, writing ( ·, ·) for the L2

γ inner-product for conciseness,

(Lγ f, g)− ( f,Lγ g)= (Lγ f, Rτ N
γ g)− ( f,Lγ Rτ N

γ g)+ (Lγ f, g00)− ( f,Lγ g00)

(76)
= −⟨τ̃ D

γ f, τ N
γ g⟩H−1+|γ |,H1−|γ | + (Lγ f, g00)− ( f,Lγ g00)

and the last two terms cancel out since Lγ,max = (Lγ,min)
∗.

To show surjectivity of τ̃ D
γ , let us now construct a right inverse. As a combination of Proposition 27

and (18), the operator ϒ := τ N
γ L−1

γ,D : L2
γ → H 1−|γ |(S1) is continuous and onto (with R defined in this

proof, Lγ R is a right inverse for ϒ), hence the transpose ϒ ′
: H−1+|γ |(S1)→ L2

γ is bounded.
We first claim that ϒ ′ is valued in N0(Lγ,max), whose topology is captured by L2

γ . This makes ϒ ′ a
continuous dom(Lγ,max)-valued map. To see this, for f ∈ H−1+|γ |(S1) so that ϒ ′ f ∈ L2

γ , let us check
that Lγϒ ′ f = 0 (in the distributional sense that tLγ ιγ (ϒ ′ f )= 0): for ψ ∈ Ċ∞,

⟨
tLγ ιγ (ϒ ′ f ), ψ⟩ = (ϒ ′ f,Lγψ)L2

γ

= ⟨ f, τ N
γ L−1

γ,DLγψ⟩H−1+|γ |,H1−|γ |

= 0,

since ψ ∈ dom(Lγ,D) and τ N
γ ψ = 0. Hence ϒ ′ is a continuous dom(Lγ,max)-valued map.

We finally show that τ̃ D
γ ϒ

′
= id |H−1+|γ |(S1). For f ∈ H−1+|γ |(S1) and h ∈ H 1−|γ |(S1), we have

⟨τ̃ D
γ ϒ

′ f, h⟩H−1+|γ |,H1−|γ |

(76)
= −(����Lγϒ ′ f , Rh)L2

γ
+ (ϒ ′ f,Lγ Rh)L2

γ

= ⟨ f, τ N
γ L−1

γ,DLγ Rh⟩H−1+|γ |,H1−|γ |,

and since Rh ∈ dom(Lγ,D), τ N
γ L−1

γ,DLγ Rh = τ N
γ Rh = h, and hence τ̃ D

γ ϒ
′ f = f as elements of

H−1+|γ |(S1).
The proof of Proposition 30 is complete. □

5.3. Extension (34) of Green’s second identity. We first prove Lemma 7.

Proof of Lemma 7. With L−1
γ,D defined in (18), given f ∈ dom(Lγ,max), since (Lγ − λ) f ∈ L2

γ , we may
define fD := (Lγ,D −λ)−1(Lγ −λ) f ∈ H̃ 2,γ

D (D)⊂ dom(Lγ,max) such that (Lγ −λ) fD = (Lγ −λ) f and
τ D
γ fD = 0, and set fλ := f − fD . Clearly fλ ∈ dom(Lγ,max) and (Lγ − λ) fλ = 0, i.e., fλ ∈ Nλ(Lγ,max).

To show uniqueness, if f ∈ dom(Lγ,D)∩Nλ(Lγ,max), then (Lγ − λ) f = 0 with τD f = 0 which, by
injectivity of Lγ,D − λ, implies f = 0. Lemma 7 is proved. □
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We finally prove how to extend Green’s second identity to (34). In this paragraph, inner products with
no subscripts are implicitly L2

γ -inner products. Using Lemma 7 with λ= 0, we compute

(Lγ f, g)− ( f,Lγ g)
(33)
= (Lγ f, gD)+ (Lγ f, g0)− ( fD,Lγ g)− ( f0,Lγ g)
(75)
= ( f,Lγ gD)− ⟨τ̃ D

γ f, τ N
γ g⟩−1+|γ |,1−|γ | + (Lγ f, g0) . . .

− (Lγ fD, g)+ ⟨τ̃ D
γ g, τ N

γ fD⟩−1+|γ |,1−|γ | − ( f0,Lγ g)
(33)
= ( fD,Lγ gD)+������

( f0,Lγ gD)− ⟨τ̃ D
γ f, τ N

γ g⟩−1+|γ |,1−|γ | +������
(Lγ fD, g0)+ (���Lγ f0, g0) . . .

− (Lγ fD, gD)−������
(Lγ fD, g0)+ ⟨τ̃ D

γ g, τ N
γ fD⟩−1+|γ |,1−|γ | −������

( f0,Lγ gD)− ( f0,�
��Lγ g0).

Finally, ( fD,Lγ gD)= (Lγ fD, gD) because (Lγ , H̃ 2,γ
D (D)) is self-adjoint, and (34) follows.

The proof of Theorem 8 is complete. □

Appendix: Proofs of auxiliary lemmas

A.1. Characterization of the Friedrichs extension — proof of Lemma 17.

Proof of Lemma 17. After adjusting T0 by a constant multiple of I (noting that this does not affect
any domains involved), we may assume that T0 ≥ 1. The α-closure of D(T0) is precisely the space V
described above, i.e., the Hilbert space closure of D(T0) with respect to the norm u 7→ (α(u, u))1/2. Since
the domain of the Friedrichs extension is DF as defined in (43), with DF ⊂ V , it follows that if T is the
Friedrichs extension of T0, then D(T )= DF must be contained in V , i.e., the α-closure of D(T0).

Conversely, suppose that D(T ) is contained in the α-closure of dom α, i.e., in V . We now claim that,
with α̃ the extension of α to V ,

α̃(u, v)= (T u, v)H, u ∈ D(T ), v ∈ V .

We first do so when v ∈ D(T0). Since u ∈ D(T )⊂ V , it follows that there is a sequence un ∈ D(T0) such
that un →α u. In that case, we also have α̃(u, v)= limn→∞ α̃(un, v)= limn→∞ α(un, v). But we also have

lim
n→∞

α(un, v)= lim
n→∞

(T0un, v)H = lim
n→∞

(un, T0v)H = (u, T0v)H = (u, T v)H = (T u, v)H.

The second equality follows from the symmetry of T0. The third equality follows since un →α u necessarily
implies un → u in H. The fourth equality follows from T being an extension of T0. Finally, the last
equality follows from the symmetry of T on D(T ), noting that both u and v belong to D(T ). Thus,
α̃(u, v) = (T u, v)H for u ∈ D(T ) and v ∈ dom α. To extend the result to v ∈ V , we note that v ∈ V
implies the existence of vn ∈ D(T0) such that vn →α v. Then

α̃(u, v)= lim
n→∞

α̃(u, vn)= lim
n→∞

(T u, vn)H = (T u, v)H.

The second equality follows from the case previously considered, while the third follows since vn →α v

necessarily implies vn → v in H. Hence, we have α̃(u, v)= (T u, v)H for u ∈ D(T ) and v ∈ V . It follows,
for u ∈ D(T ), that

|α̃(u, v)| ≤ ∥T u∥H∥v∥H,
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i.e., u ∈ DF . Thus, D(T ) is contained in the domain of the Friedrichs extension. Since T is also self-adjoint,
it follows that T must be the Friedrichs extension itself, since the domain of a self-adjoint extensions cannot
be properly contained in the domain of another self-adjoint extension (this follows by taking adjoints). □

A.2. Proof of Lemma 18.

Proof of Lemma 18. Let s j =
∑k

j=1 1/ak ; then s j → ∞ as j → ∞ by assumption. Let

c( j)
k =


1

s j ak
if 1 ≤ k ≤ j,

0 if k > j.

Then
∞∑

k=1

c( j)
k =

1
s j

j∑
k=1

1
ak

= 1

by construction, and ∑
k

ak |c
( j)
k |

2
=

j∑
k=1

1
s2

j ak
=

1
s j

→ 0

since s j → ∞ by assumption. □

A.3. Proof of Lemma 28. Recall the expression

Cm;s,γ =
⟨m⟩

2s−2γ−2

π(γ !)2

∑
ℓ≥0

(m + 2ℓ+ 1 + γ )1−2s (m + ℓ+ γ )!

(m + ℓ)!

(ℓ+ γ )!

ℓ!
(77)

We note, for γ ≥ 0 and s > γ + 1, that

1 − 2s ≤ 1 − 2s + 2γ = −1 − 2(s − γ − 1) <−1.

Noting the asymptotic

lim
x→∞

(x + γ )!

x !(x + 1)γ
= 1,

it follows that the summand in (77) is bounded from above and from below by a multiple of

(m + 2ℓ+ 1 + γ )1−2s(m + ℓ+ 1)γ (ℓ+ 1)γ .

Thus, it suffices to establish upper and lower bounds on the sum

⟨m⟩
2s−2γ−2

∑
ℓ≥0

(m + 2ℓ+ 1 + γ )1−2s(m + ℓ+ 1)γ (ℓ+ 1)γ .

For the upper bound, note that

m + 2ℓ+ 1 + γ ≥ m + ℓ+ 1 =⇒ (m + 2ℓ+ 1 + γ )1−2s
≤ (m + ℓ+ 1)1−2s

since 1 − 2s < 0, and

ℓ+ 1 ≤ m + ℓ+ 1 =⇒ (ℓ+ 1)γ ≤ (m + ℓ+ 1)γ
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since γ > 0. Hence, we can estimate

Cm;s,γ ≤ C⟨m⟩
2s−2γ−2

∑
ℓ≥0

(m + 2ℓ+ 1 + γ )1−2s(m + ℓ+ 1)γ (ℓ+ 1)γ

≤ C⟨m⟩
2s−2γ−2

∑
ℓ≥0

(m + ℓ+ 1)1−2s+2γ ,

where C does not depend on m. Note that the sum does converge since 1 − 2s + 2γ < −1. Since
x 7→ (m + x)1−2s+2γ is decreasing, we have

∑
ℓ≥0

(m + ℓ+ 1)1−2s+2γ
≤

∫
∞

0
(m + x)1−2s+2γ dx =

m2−2s+2γ

2s − 2γ − 2
.

It follows that

Cm;s,γ ≤ C⟨m⟩
2s−2γ−2 m2−2s+2γ

2s − 2γ − 2
≤

C
2s − 2γ − 2

,

thus establishing the upper bound. For the lower bound, we assume without loss of generality that m is suf-
ficiently large, say m>γ , and discard the (positive) terms for 0 ≤ ℓ<m. For the remaining terms, we have

2ℓ+ 2> m + ℓ+ 1 =⇒ ℓ+ 1> 1
2(m + ℓ+ 1) =⇒ (ℓ+ 1)γ > 2γ (m + ℓ+ 1)γ ,

m + 2ℓ+ 1 + γ < 2(m + ℓ+ 1) =⇒ (m + 2ℓ+ 1 + γ )1−2s > 21−2s(m + ℓ+ 1)1−2s .

We conclude that

Cm;s,γ ≥ c⟨m⟩
2s−2γ−2

∑
ℓ≥m

(m + 2ℓ+ 1 + γ )1−2s(m + ℓ+ 1)γ (ℓ+ 1)γ

≥ 21−2s+γ c⟨m⟩
2s−2γ−2

∑
ℓ≥m

(m + ℓ+ 1)1−2s+2γ ,

where c does not depend on m. Again using that x 7→ (m + x)1−2s+2γ is decreasing, we have

∞∑
ℓ=m

(m + ℓ+ 1)1−2s+2γ
≥

∫
∞

m+1
(m + x)1−2s+2γ dx =

(2m + 1)2−2s+2γ

2s − 2γ − 2
.

It follows that

Cm;s,γ ≥ 21−2s+γ c⟨m⟩
2s−2γ−2 (2m + 1)2−2s+2γ

2s − 2γ − 2
≥ c′

for all m > γ , where

c′
=

21−2s+γ c
2s − 2γ − 2

(
inf

m≥0

⟨m⟩

2m + 1

)2s−2γ−2

=
21−2s+γ 51−s+γ c

2s − 2γ − 2
> 0.

This establishes the desired lower bound.
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