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DEGENERATE ELLIPTIC OPERATORS OF KELDYSH TYPE

FRANCOIS MONARD AND YUZHOU (JOEY) ZOU

We consider a one-parameter family of degenerately elliptic operators £, on the closed disk D, of Keldysh
(or Kimura) type, which appears in prior work by the authors and Mishra (2023), related to the geodesic
X-ray transform. Depending on the value of a constant y € R in the subprincipal term, we prove that
either the minimal operator is self-adjoint (case |y | > 1), or that one may construct appropriate trace maps
and Sobolev scales (on D and S' = 9D) on which to formulate mapping properties, Dirichlet-to-Neumann
maps, and extend Green’s identities (case |y | < 1). The latter can be reinterpreted in terms of a boundary
triple for the maximal operator, or a generalized boundary triple for a distinguished restriction of it. The
latter concepts, objects of interest in their own right, provide avenues to describe sufficient conditions
for self-adjointness of extensions of £, i, that are parametrized in terms of boundary relations, and we
formulate some corollaries to that effect.

1. Introduction

This article is concerned with the study of boundary triples (or equivalently, the derivation of appropriate
settings where generalized Green’s identities! hold) of a one-parameter family of degenerate elliptic
operators on the Euclidean unit disk D = {z € C : |z| < 1}: for y € R, using polar coordinates z = pe'®
and using x = 1 — p? as the boundary defining function and with dV = p dp dw the Euclidean measure,
we define

Ly =—p x77,(px"3,) — p 202+ (1 +y)? (1)
= —x3; = (0~ = B +27)p)3, —p 205+ (y + D*id. )

Expression (1) shows that £, is formally self-adjoint for the space L)Z/ := L*(D, x¥dV) (whose inner
product we denote (f, g) 2= fD fg& x7dV), while expression (2) shows the degenerate behavior of £,,
of first order in the top-degree term normal to the boundary. Although the coefficient y only appears
in subprincipal terms, the operator-theoretic properties of £, (e.g., number of self-adjoint extensions,
associated traces and their regularity at the boundary) strongly depend on y.

MSC2020: primary 35J67, 35J70, 47B25, 47F10; secondary 26B20.
Keywords: Keldysh operators, Kimura operators, boundary triple, generalized boundary triple, X-ray transform, degenerately
elliptic operators.

IFor the Laplacian on a bounded domain Q2 C R2 with smooth boundary and f, g € C®°(R2), Green’s first identity reads
fQ ((—Af)g+Vf-Vg)=— fBQ dy fg, while Green’s second identity is the skew-symmetrized version fQ(—gAf + fAg) =

ng(favg =8 f).
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There are many appearances of operators of this type in the literature:

« Such operators arise in the study of fluid flows, as operators that switch from being elliptic to hyperbolic
across a curve, two prototypes of which are Keldysh (our case) and Tricomi operators; see, €.g., the
book [Otway 2012]. Indeed, expression (1) of £, naturally extends past the unit circle, and the operator
becomes hyperbolic outside the unit disk. Here we are interested in confining ourselves to the “elliptic
region” D and studying the operator £,, there.

« In recent advances on microlocal methods for asymptotically hyperbolic manifolds and spacetimes,
Vasy [2013a; 2013b] initiated a series of works which leverage some properties of Keldysh-type oper-
ators. On asymptotically hyperbolic manifolds, after compactification and change of smooth structure,
Laplace—Beltrami type of operators can be factored using model Keldysh operators, and the meromorphic
continuation of the resolvent of the former uses crucially that the latter enjoy radial point estimates; see also
[Zworski 2016]. Keldysh operators also arise as the restriction of the Minkowski Laplacian on the boundary
of radially compactified Minkowski space-time. There, the elliptic regions correspond to polar caps limit
points of timelike trajectories. See also [Lebeau and Zworski 2019; Galkowski and Zworski 2021].

» Going the opposite route, one may fit Keldysh-type operators into the framework of uniformly degenerate
(or 0-) operators of Mazzeo [1991], a framework originally designed to study (Hodge-)Laplacians on
asymptotically hyperbolic manifolds, providing a flexible context where such operators can be made
Fredholm. Such operators also arise as (the spatial part of) Heston diffusions in mathematical finance
[Feehan and Pop 2015], or Kimura diffusions in population genetics [Epstein and Mazzeo 2013; 2014].
In these cases, the study is further complicated by the fact that the model necessarily involves spatial
domains with corners. Of study there is the diffusion associated with these operators, and regularity
properties of solutions.

« The H'-type spaces constructed below are example of Sobolev spaces associated with degenerate
quadratic forms in the sense of [Cavalheiro 2008; Sawyer and Wheeden 2010], though they benefit from a
slightly more specific degenerate behavior of the quadratic form (only at the boundary, uniform behavior
in terms of the boundary point).

The authors” motivation for this work arises in the connection of the £, family with inverse problems
on Riemannian manifolds with (geodesically) convex boundary, notably, the description of appropriate
Hilbert scales which capture sharp mapping properties of the geodesic X-ray transform; see, e.g., [Mazzeo
and Monard 2021; Mishra et al. 2023; Monard 2020; Monard et al. 2019; 2021]. In [Mishra et al. 2023]
we proved that a one-parameter family of weighted geodesic X-ray transforms on the Euclidean disk had
its normal operators be functions of (a distinguished self-adjoint realization of) £, and id,,. As a step
toward exploring the connections between degenerate elliptic operators and X-ray transform on more
general Riemannian surfaces, this article endeavors to study the family £, in its own right, including
the existence (or nonexistence) of trace operators and their regularity, Dirichlet-to-Neumann map, and
appropriate Hilbert scales where mapping properties are sharply described.

The starting point of the work is the observation that for any f, g € C*°(D™) and R € (0, 1),

- _ 1 1, - _ -
[ (s2rr =t a5 = Laurtog— g arise) srav= [ prtigrae. 0
Dr P P DR

GLy f — fLy8) 37 AV = / px? (@0, f — £3,8) do, 4

DR 8DR
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and the classical question becomes to understand in what sense these identities can be understood as
Green’s first and second identities: for what spaces for f, g can we send R — 1 in the identities above,
and make sense of the right-hand sides as boundary traces? Once this can be obtained on domains of
definition of £,, where it is a closed operator, the extension of identity (4) gives a measure of how close £,
is to being self-adjoint, and self-adjoint realizations of £, can be understood in terms of restrictions of £,
to subspaces with specified boundary constraints. Classically, one defines the minimal operator £, min to
be the closure of £, equipped with domain C>(D) (smooth functions vanishing at infinite order at the
boundary). From (4), the operator £, mi, is easily seen to be symmetric, and a classical question is to

understand and characterize all self-adjoint realizations of £, between L, min and £, yax 1= LI; min®

We now briefly describe the main results of the article presented in the next section.

In Section 2.1, we first fix notation and state preliminary properties of the £, family, while recalling
some distinguished self-adjoint realizations given in [Wiinsche 2005; Mishra et al. 2023].

In Section 2.2, we first characterize the Friedrichs extension of £, in terms of previously known
extensions, and deduce in Theorem 3 that for [y| > 1, the minimal operator £, m;, 8 in fact self-adjoint.
In particular, there is only one self-adjoint extension of £, min, and (3)—(4) can only have trivial right-hand
side if extended to R — 1 with f, g in a domain where £, is closed.

Section 2.3 then covers the case |y| < 1, where the situation is markedly different: one may define
domains where £, is closed, and where the right-hand sides of (3)—(4) can be extended into Dirichlet and
Neumann trace operators whose precise mapping properties and tangential regularity are given in the
main theorems, Theorems 5 and 8. In this case, one can also naturally define a Dirichlet-to-Neumann
map; see Theorem 6. The main theorems provide ways of making sense of Green’s identities (3)—(4)
when f, g belong to the maximal domain (the domain of E;min), see Theorem 8, or a subspace of it called
W}% (see (28)) in Theorem 5. Unlike in Theorem 3, the operator £, now has infinitely many self-adjoint
realizations, whose domains of definition are obtained by prescribing certain boundary conditions.

To make this last point more precise, in Section 2.4, we reformulate our main results in the language
of boundary triples and generalized boundary triples. The latter objects allow, via a general functional-
analytic framework, to describe self-adjoint extensions of a given operator in terms of self-adjoint boundary
relations, see, e.g., [Behrndt and Langer 2007; 2012; Behrndt et al. 2020], in terms of classical notions
such as y-fields (called “Poisson maps” here to avoid conflicts with the constant y) and Weyl M -functions.

We end this discussion by briefly describing the methodology. The family £, is rotation-invariant
and as such gives rise to countably many one-dimensional operators {£,, ,},cz on [0, 1], defined by the
relation £,, " f(p)) = e"”“’ﬁy,n f(p). Such operators can in principle be studied using Sturm-Liouville
theory. In the latter language, the endpoint p = 0 is always singular, while the properties of the endpoint
p = 1 depend on y but not on n: the cases y € (—1,0), y €[0, 1) and |y| > 1 respectively correspond
to p = 1 being a “regular point”, a “singular point in the limit circle case”, and a ‘“singular point in
the limit point case”. The case of y = 0 also involves a double indicial root, which requires refined
analysis. We use this a priori knowledge to construct H'-type function spaces (directly on [ rather
than on each separate angular Fourier mode) which are adapted to each £,,, some of which require
a 2D version of “quasiderivative”, and/or log-type tangential Sobolev regularity in the case of double
indicial roots. We construct a number of trace operators (as well as their right-inverses when they exist),
whose boundedness is obtained by combining angular Fourier analysis with continuous families of 1D
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trace estimates (see, e.g., Lemmas 21 and 22), or at other times make use of specific knowledge about
generalized Zernike polynomials found in [Wiinsche 2005]; see, e.g., Proposition 27. Once such trace
estimates are established and their right inverses are constructed, many results follows by density, duality
and functional-analytic arguments. One of the advantages of the current analysis is that it is direct and
self-contained, not requiring change of smooth structure or factorization of the operator £, . These results
provide new families of function spaces where boundary pairings, Green’s identities for £,, and Fredholm
settings should be naturally understood. It should also be expected that these functional settings should
become robust to similar operators that may no longer be rotation-invariant.

2. Main results

2.1. Preliminaries.

Indicial roots and conormal spaces A,. Let C*>(D) be the space of smooth functions on the closed unit
disk D, all of whose derivatives vanish on S' = 3D, with topological dual denoted C~>°(D). The latter is
the space of extendible distributions and will be the largest space considered in what follows.
Let us first define natural “smooth” spaces of definition for £,,. Rewriting £, in the form?
L, =—xA+Q2+2y)pd, — 02+ (y + 1)?id,

where pd, and 9, are smooth vector fields on [) we see that £, has smooth coefficients in . Hence we
naturally have

L, : C®(D) — C®(D). (5)

We now enlarge this definition to some distinguished conormal spaces. Forall y e R, a e Randn €7, a
direct calculation gives

Ey(paeinw) =(a+y+ I)Zpaeina) + (1’12 _ C{2)/)05—261%00‘ (6)

Similarly,
L, (x*) = Qa+y+1)%x* —da(y +a)x® . (7)

In particular, the indicial roots (independent of the boundary point) are 0 and —y, since unless « € {0, —y},
L, (x%) is more singular as x — 0 than x“.

In what follows, the following intertwining property, which can be checked directly, will allow us to
translate what is known of £, to obtain properties on £_,,:

LyoxV=xTYoLl_, onC®DM™), yeR (8)
In the case y = 0, we also have the important property

Lo(logx f)=logx Lof +4(pd,f+ f), feC®D™). 9)

2Note that this expression differs from that appearing in [Mishra et al. 2023, Proof of Theorem 6], where the term (2+2y)0d,
was erroneously given as (3 +2y)00d,, although this is inconsequential for the purposes of [Mishra et al. 2023, Theorem 6].
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Identity (9) can be either checked directly, or derived exploiting (8) upon sending y — 0 in the identity

xV—-1 x7-1 L, —L_,
y O = oL_, +——,
-y Y 14
using that (x™” —1)/(—y) — logx as y — 0.
The above discussion on indicial roots together with (9) motivates the definition of

—y oo 00 .
y':{x C*D)+C>*D) ify#0, (10)

logx C®(D) +C®(D) ify =0,

subspaces of C* (D) that encode boundary behavior, each stable under L, , and some of whose subspaces
form core domains of self-adjointness for £, . For example, for y > —1, [Mishra et al. 2023, Theorem 6]
states that (£,,, C*°(D)) is essentially self-adjoint (further, its full eigendecomposition is known in terms
of generalized Zernike polynomials). This result, together with the intertwining property (8), also implies
immediately the existence of other self-adjoint extensions, which we state without proof:

Lemma 1. For any y < 1, the operator (L, x7Y C*(D)) acting on Lf, is essentially self-adjoint.

As we will see below, Dirichlet and Neumann traces, when they exist, correspond to mechanisms
aiming at extracting the most and second most singular terms in the expansion of functions in A, off
of dD. Here, “singular” ordering is among polyhomogeneous terms {x¢ logk X}ceC, keNy> Where we have

Re(¢) > Re(¢’) or

¢logk x = o(x¢ logh x) if and only if
x* log" x = o(x* log" x) y Re(z) =Re(¢’) and k <Kk

In this sense, Dirichlet and Neumann traces will be thought of as the coefficients in front of the terms
given below:

y [ (=00.0) 0 (0.00)
Dirichlet term 1 logx x77
Neumann term x77 1 1

Distributional facts. Let 'L, : C~°>°(D) — C~°°(D) the transpose operator of (5). There is a natural
injection ¢,, : L}z, UA, — C~>°(D) given by

(W) =¥z, [ELLUA, ¥ eC™D), (1)

Note that A, C Lf, if and only if |y| < 1. We will say that a distribution u € C~°°(D) “belongs to L)z,
(resp. A,)” if there is f € L)z, (resp. A, ) such that u =, f.

As is V.isible through an integration by parts, we have that (£, f, ) = (f. Ly¥r) L forall f €A,
and ¢ € C*°(D). This implies that

Loty f)=1,(L, f) forall feA,. (12)

In particular, the “restriction” of 'L, to C>(D) or A, through the map ¢, agrees with £,. Thus, for
f € L2, we’ll say that L,fe€ L)Q/ if the distribution 'L, (¢, f) belongs to LJZ/.
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Two natural operators. One may define two natural closed operators out of £, :

(i) The minimal operator £, min, closure of the operator defined in (5) (also called the preminimal
operator), i.e., whose domain is the completion of C*°(D) for the graph norm

feny () =Sz + 1Ly FIT) 2. (13)
(i1) The maximal operator £, yax, the adjoint of £, 1in, with domain
dom(Lymax) ={f € L2, Ly f € L2}. (14)

2.2. Characterization of Dirichlet extensions. Self-adjointness of L, win for |y| > 1. Let L, p be the
Friedrichs extension for the quadratic form «,, : C f.’o([lj)im) — R defined by

o, (f) = Ly . Dz ZINE 0 f 15 + 107 00 f 3 + A+ IS0 feCR@™,  (5)

where (%) follows from an integration by parts with no boundary term. Then we have the following
characterizations:

Lemma 2. The operator L, p coincides with the closure of the following essentially self-adjoint operators:
(Ly,x77C*¥MD) if y <0 and (L), C(D) if y=0.

The spectral decomposition of the above operators is well-known: for y > 0, £, p has full eigen-
decomposition

(G .+ 14+ ¥) u0,02kzn. Gl =Pl 1 (16)

where Pﬁn/’ , denotes the generalized Zernike polynomials in the convention of [Wiinsche 2005]; for y <0,
L, p has full eigendecomposition {x ™7 G,Z ),; n+1-— y)z}nzo, o<k<n- In either case, we can define a
functional calculus for £, p and a Dirichlet Sobolev scale

Hy" (D) :=dom(L/}), s eR, (17)
so that the following operator makes sense and is in fact an isometry:
ch Hy' (@) — Hy7" (@), seR. (18)
As a result of further density lemmas proved in Section 3.1, we have the following:
Theorem 3. If |y| > 1, then L, min is self-adjoint.

In particular, such a result precludes the existence of trace maps on the maximal domain, or a Dirichlet-
to-Neumann map.

2.3. Traces, Green’s identities and Dirichlet-to-Neumann map for |y| < 1. While Theorem 3 prevents
the existence of more than one self-adjoint extension for £, min whenever |y| > 1, we now describe a
markedly different scenario for any value y € (—1, 1). The construction has varying degrees of simplicity
depending on whether y € (—1,0), y =0 or y € (0, 1), though in the interest of conciseness, we will
unify the presentation. For each y € (-1, 1), there exists a radial function ¢, (see (47)) nonvanishing
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on a neighborhood [0, x,, ), x S}o of 0D, and satisfying £, ¢, = (y + 1)2¢y on [0, x)), X S}U, with the
relevant behavior
¢, =1 if y € (—1,0),
limy,1x7¢, =1, lim,_ x" 18,0, =2y ify €(0, 1), (19)
lim,—1(¢o/logx) =1, lim,_1x0,¢0=—-2 if y =0.

We may then define “regularized” Dirichlet and Neumann traces r)f) N A, — C®(SY) as

P fi=(flpp)limo.  T) fi=W(fdy)lmo, where W(f, g)(p, ) :=px" "' (fd,8—gd,[). (20)

In particular, a direct calculation shows that, for f € A,, taking the form f = f O 4 Jog x f19 if y =0,
or f=fO4x7fEMif |y € (0, 1), with f© floo) £=1) ¢ (D), we have

fOlL—o ifye(-1,0), =2y = if y € (—1,0),
) f =11, ify=0, and 7)) f={-2f0 —2cof1®|,y ify =0, 21)
o ify €(0, 1), 2y fO=o if y € (0, 1),

where cg is the constant appearing in the definition (47) of ¢g. In this sense, ryD extracts the most singular
term and tJfV extracts the second most singular term (or a linear combination of them for y = 0). Moreover,
the following intertwining property follows naturally: for y € (0, 1) and f € A, thenx” f € A_,, and

) f=t2,&"f) and ) f=1 (7 f). (22)

To discuss Green’s identities, we first need to define an “H'” inner product where the Dirichlet trace
extends boundedly. A first guess would be to extend the form «,, defined in (15) to A, but this only
makes sense for y € (—1,0). Indeed, for y € (0, 1) for instance, the last right-hand side of (15) can
become infinite when applied to an element of x~V C*°(D), and the equality (x) there no longer holds;
see also the discussion in Section 4.1, titled “Case 0 < y < 1”.

To remedy this, we let p, = /1 —x,,, and for a, b € [0, 1] with a < b, we let D, be the centered disk
of radius a, with boundary C,, and A, ; be the annulus {a < p < b}. We then define, for f, g € A,, and

b € (p}/7 1)9
0@ _
tyslfs 81= (VX &y 8p(f/$)s VX by 35(8/8))) 5 4, — DB T L) | fE
o by G (23)
+ (VX 0, fo VX Bp8)xr .0y + (07 00 fo p T 008) 12 + (v + DP(fe )1z
where, here and below, f s h is shorthand for fozn h(b, ) dw. It can be checked for any f € A, that

Vx 8, f isin L%, away from the boundary, and that \/x ¢,9,(f/¢,) is in L)Z, near the boundary, so
that (23) is well-defined.

Lemmad. (1) Forany f, g € A, the definition of t, ;, does not depend on b € (b, 1). We thus denote
(-, ) fjr.v the value of t,, , for any b.

(2) With a,, the form defined in (15), we have for y € [0, 1)

(f. Nipw =0y (), €A p, where A, p:=kert), (24)
while for y € (=1, 0), the above equality holds trivially true on all of A, .
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(3) For any f, g € A, the first Green’s identity holds:
Ly [0z = (f @ + (@) f.1,)8) 12 (25)
(4) For any y € (=1, 1), the form (-, -) g1, defined in (23) is positive definite on A, .

Skew-symmetrizing (25), the second Green’s identity reads

Ly [0 = ([ Ly = @) £, 7)) 12en — (1,8, 1) Nrxen,  f.8 €Ay, (26)

which is a way of quantifying the lack of self-adjointness of £,. The question is then to find spaces
where £, is closed and extend the traces (20) to those spaces.
Since by virtue of Lemma 4(4), the form (-, -) 771, is positive definite, we then let

H" (D) : the completion of (A,, (-,-)g1.r),
~ . (27)
H(:’y([lj)) : the completion of (C*(D), (-, ) g1.y)-

We have the obvious inclusions I-~IO1 (D) H Ly@) c L)% C C~*°(D). An important subspace of HYY
for what follows is

Wy i={f e H'(D), £, f €L} =dom(Lymu) N H"7 (D), (28)
equipped with the norm || f||2;v3 =1f1%., 112, f||’i§ .

On S' = 9D, we define H,y to be the completion of (C®(SH, |- ), where for f =5, fre'*o,
we define

> (kYA fil? if [y[ € (0, 1),
keZ

> (I+log(k)| fil* if y =0.
kez

For |y| € (0, 1), Hyy) is the classical Sobolev space H'"/(S!) with dual identified with H~17(S!). For
y =0, H) is a log-weighted Sobolev space, whose dual is identified with the completion of C*®(S')
for the norm f +— >, ,(1+ log(k))_l | fc|*>. Below, we write (-, -) H) ) Hy) for the corresponding duality
pairing. Our first main theorem is the following:

A5, = (29)

Theorem 5. Let y € (—1, 1). The traces ‘cyD N defined in (20) extend as bounded operators

L H'7 (D) — H,, and ) W)% — H(,),
with ryD onto. Green’s first identity (25) extends to f € Wf and g € H':

Ly fo )iz = (o Qi +(5) £.1,)8) 1y - (30)
In particular, Green’s second identity (26) extends to f, g € Wf:

Ly fo @)z = (f £y 12 = () .08y oy — (T 85 Ty F)h oy (31)

Furthermore, for y € (—1, 1), one may define the analogue of a Dirichlet-to-Neumann map, defined with
respect to a spectral parameter A € p(£, p) (wWhere, for any operator B, p(B) denotes its resolvent set).
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Theorem 6. Forany y € (—1, 1) and any A € p(L, p), there exists a bounded Dirichlet-to Neumann map
operator
Ay, (X)) Hpy — H(’y), (32)

such that for any u € Wf Nker(Ly, — 1), A, (A) ('c)f)u) = t;\’u.

Our second main result consists in extending Green’s second identity (26) to the maximal domain
dom(£, max) defined in (14). This requires a splitting of the maximal domain in terms of a distinguished,
well-understood self-adjoint extension of £,,, notably £, p here. Here and below, we define N (£, max) 1=

{f € dom(ﬁy,max)v E)/f :)‘f}
Lemma 7. With dom(L, p) = ﬁ[z)’y([D), forany A € p(L, p), we have

dom(ﬁy,max) = dom(ﬁy,D) @NA (Ey,max) (33)

For f € dom(L, max), upon fixing A € p(L, p), we write f = fp + f; the decomposition of f
according to (33). Our second main theorem is as follows.

Theorem 8. The traces ryD ‘N defined in (20) extend as bounded, surjective operators

oY HYY @) - H'TYISY, P dom(Ly max) — HTHYI(SY).

Green’s second identity (26) extends to f, g € dom(Ly, max) as follows:
Ly fo @12 = (f: Ly 12 = (£ 8, T o) v — (&0 £ 1) @) v pom. (34)

2.4. Consequences: boundary triples, self-adjoint extensions and more. The theory of boundary triples
is a functional-analytic framework to help describe all self-adjoint realizations of an operator and their
spectrum, through the use of their Poisson maps and Weyl functions; see [Behrndt et al. 2020]. Refined
concepts, such as generalized boundary triples and quasiboundary triples have been introduced (see, e.g.,
[Behrndt and Langer 2007; 2012; Derkach and Malamud 1995]), and we now explain how and why our
main Theorems 5 and 8 fit this framework, along with some natural corollaries.

2.4.1. Preliminaries.

Boundary triples and their Weyl functions. Here and below, we follow the exposition in [Behrndt and
Langer 2012] and refer to there for more details. Let S be a densely defined, closed, symmetric operator
acting on a Hilbert space (H, (-, -)#). A triple {G, [y, I'1} is said to be a boundary triple for the adjoint
operator S* if (G, (-, )g) is a Hilbert space and 'y, I'; : dom(S*) — G are linear mappings such that
the map (I'g, ') : dom(S*) — G x G is surjective and we have the following abstract Lagrange/Green
identity, true for all f, g € dom(S¥),

S, 9u—(f,.5n=T1f£,Tog)g — Tof. T18)g. (35)

By virtue of [Behrndt and Langer 2012, Proposition 1.2], a boundary triple helps parametrize all closed
extensions of S which are restrictions of S* in terms of closed, linear relations® R in G via the bijection

R Ag = S*|(To, [1) " 1(R).

3 A closed linear relation R in G is a closed linear subspace of G x G.
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Given a relation R on G, we define the adjoint relation
R*:={(f, fHegxg, (f,h)g=(f, h)gforall (h,h’) € R}.

The further identity Ag+ = A% implies that Ay, is self-adjoint if and only if R is a self-adjoint relation in G.

To say something further about the spectral properties of such extensions, we should mention that
the results quoted below will sometimes constrain the relation R to be of the form {(f, ®f), f € G} for
some linear map ® : G — G, in which we case we will denote the extension Ag := S*| ker(I'; — ©T), or
of the form {(Bf, f), f € G} for some linear map B : G — G, in which case we will denote the extension
A[B] = S*| ker(BF1 — F()).

Denoting Ag := Ajoyxg = S*|ker I'g, a boundary triple gives rise to a notion of Poisson map* P and a

Weyl function M,

P() = [TolNo (S )™, M) :=T1PQ). i€ p(Ay).
By [Behrndt and Langer 2012, Propositions 1.5 and 1.6], P and M are holomorphic functions on p(Ag)
with values in B(G, H) and B(G), respectively.

Further, M is a Herglotz function which allows to characterize the spectrum of any closed extension
Ap of § in the following way: in the “®” convention mentioned above, [Behrndt and Langer 2012,
Theorem 1.7(ii)] states that A € 0;(Ag) if and only if 0 € 0;(® — M (1)), i =p, ¢, 1, where oy, o¢, o; denote
the point, continuous and residual spectrum, respectively. The functions P and M also allow to write
Krein’s formula relating the resolvent of Ag with that of Ag := S*| ker I'g: for all A € p(Ap) N p(Ag),

(Ao - "=A—0T+HPMO-MO)T PR (36)

Given the usefulness of P and M, the attention then turns toward their computation, or how to relate
them to quantities such as a Dirichlet-to-Neumann map. As such, it is known that boundary triples for
maximal operators involve some operations which make this purpose more difficult, and this motivates
the definition of slightly weaker notions below, namely generalized boundary triples, first introduced in
[Derkach and Malamud 1995], or even weaker yet, quasiboundary triples, first introduced in [Behrndt
and Langer 2007].

Quasi/generalized-boundary triples and their Weyl functions. A triple {G, I'g, ['1} is said to be a quasi-
boundary triple for S* if (G, (-,-)g) is a Hilbert space and there exists an operator T such that T = §*
and [y, I'1 : dom(T) — G are linear mappings such that (I'g, [';) : dom(7T") — G x G has dense range, (35)
holds for all f, g € dom(T), and Aq := T'| ker Iy is self-adjoint in . If, in addition, 'y is onto G, then
{G, o, I'1} is a generalized boundary triple.

Given R a linear relation in G, we define the extension Ag of S in analogy to the above:

Ap:=T|{f edom(T) : (o f, "1 f) € R},

although this no longer gives a bijective correspondence with self-adjoint extensions of S. Since the map
(I'o, I'1) is no longer surjective, we define Gg := ran(I'g) and G; :=ran(I"{), and we may associate to the
above quasiboundary triple the Poisson map P and Weyl function M, for any A € p(Ayp)

P() = (olNu(T) ™" :Go—H, M@O):=T1P():Go— Gi.

4Note that the interpretation as a Poisson map arises in PDE contexts. In abstract boundary triple theory, such a map is
referred to as a y-field, a terminology which we are avoiding here to avoid confusion with the constant y in £, .
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In the “generalized” boundary triple situation, Go = G, in which case P (A) and M (A) are defined on all of G.
Under additional assumptions, such functions share many properties of their “boundary triple” counterpart,
and they are used to obtain, via [Behrndt and Langer 2012, Theorem 1.18] in the “®” convention
above, sufficient conditions on ® for 7’| ker(I"'; — ®Ty) to be self-adjoint, allowing a parametrization of
self-adjoint extensions of S which are restrictions of 7. Specifically:

Theorem 9 [Behrndt and Langer 2012, Theorem 1.18]. Let S be a densely defined closed symmetric
operator in H and let {G, Ty, T'1} be a quasiboundary triple for T = S* with A; = T |kerI';,i =0, 1, and
Weyl function M. Assume that Ay is self-adjoint and that M (Lo)~' is a compact operator in G for some
Ao € C\R. If ® is a bounded self-adjoint operator in G such that

O(dom M (A+)) C Gy (37)

holds for some A, € CT and ._ € C™, then Ag := T|ker(I'y — OLy) is a self-adjoint operator in H. In
particular, condition (37) is satisfied if ran(®) = Gy.

A more recent refinement, dropping the above compactness requirement on M (Ao)~!, is the following
result, formulated in the “B”’ convention mentioned above.

Theorem 10 [Behrndt et al. 2017, Corollary 2.7]. Let {G, [y, I'1} be a quasiboundary triple for T C S§*
with corresponding Poisson map P and Weyl function M. Let B be a bounded self-adjoint operator in G
and assume that there exists a Lo € p(Ag) N R such that the following conditions are satisfied:

(i) 1 € p(BM (o).
(i1) B(ran M (Ag))) C ranI'.
(iii) B(ranT"y) CranI'gor Ay € p(Ay).

Then the operator A= T | ker(BI'1 —I'y) is a self-adjoint extension of S such that Ao € p(Arp)),
and the resolvent formula

(A =M '=Ag -+ PO —BMO)'BP(V)* (38)
holds for all A € p(Argy) N p(Ap).

Further, if {G, I'g, "1} is a generalized boundary triple, then conditions (ii) and (iii) are automatically
satisfied and M (Ag) = M (Ag). In that case, the conditions for self-adjointness reduce to the condition
that 1 € p(BM (Ag)).

2.4.2. Corollaries of Theorems 5 and 8. Identity (34) implies that, upon defining isometric isomorphisms
ey HED(Sh — L3S
such that (¢, ¥)—14y).1-1y| = (—@, 1+:¥) 2(s1), We have, for all f, g € dom(Ly max),
Ly fo9)12 = (F Ly &)1z = -ty Ty fo oty Ty ) 12sn) = (m1iy Ty o iy Ty 8D) 12, (39)

where fp:= (L, p— )7 (£, —A) f is the projection onto the left summand of (33) for any A € p(L, p).
Following the definitions above, equation (39) exactly means the following:
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Corollary 11. Fix A € p(L, p) and let f > fp be the projection onto the left summand in (39). Upon
defining the maps I'g 1 : dom(L, max) —> L%(Sh by

FOf = ['—1+|)/|fny7 Flg = ['1—|)/‘T;VgD9 f’ g’ € dom(ﬁy,max)a (40)

where f]f) , r)fv are defined in Theorem 5, the triple {L>(S"), Ty, T'1} is a boundary triple for the opera-

tor Ly max-

From the previous section, Corollary 11 then allows to parametrize all self-adjoint extensions of £, min
in terms of self-adjoint boundary relations. As mentioned in the previous section, the appearance of the
map g — gp changes the computation of the M function, as the latter is no longer a factorization of the
Dirichlet-to-Neumann map. It could still in principle be computed, following ideas as in, e.g., [Behrndt
et al. 2020, Lemma 8.4.5], applied to Schrodinger operators there.

A way to simplify the description is to introduce the intermediate extension T := L, yax| W)%, with W;%
defined in (28). Identity (31) implies that, upon defining isometric isomorphisms () : H,) — L3(Sh
and ((yy 1 H(,) — L?(S"), we have for all f, g € W2,

Ly [ 8)12 = (f: £y8)12 = Coy Ty frtn Ty 812 — onty frloy Ty 8)12s)-

Moreover, the operator I'g := L(y)t]f) | Wf is surjective, i.e., Go = L*(S') (indeed, inspecting the proof of
Theorem 6, for any f € H(,), one constructs a function u s € W}% such that r]f) ur=f)andI'y:= L(y)/‘l,';v has
dense range in L2(S"') since A, C Wf and r)fv (A,)=C % (S!). Together with the fact that T'| ker o= Ly p
is self-adjoint, we can then conclude:

Corollary 12. The triple {L*(S"), L(y)r)f), L(y)/r)ﬂv} is a generalized boundary triple for S* = L, max
via the extension T = Cy’maxlw]%. Moreover, the Weyl function M, (L) : L2(SY) — L%2(SY) is given by
M,(}) =14y Ay (X)La/l), where A, is the Dirichlet-to-Neumann map defined in Theorem 6.

This result, combined with Theorem 10 and the remark right after it, allows to give a simple criterion
for the self-adjointness of extensions of £, i, with domain included in W2, for a wide range of boundary
conditions including, e.g., conditions of Robin type relating both traces.

Corollary 13. Lety € (—1, 1), {L*(S}), L(y)‘L'D, L(y)/r)f/}, T and M, (1) be as in the previous result. Let B
be a bounded, self-adjoint operator in L*(S') and assume that there exists Ay € p(Ly,p) NR such that

1 € p(BM, (1))

Then the operator L, 1) = T| ker(BL(yy'c;V - L(y)‘l,’yD) is a self-adjoint extension of L min such that
Ao € p(Ly (B)) and the resolvent formula

Ly —MN'=Lyp—0""+P,0)UT—-BM,()"'BP,()*
holds for all » € p(Ly ) Np(Ly p), where P, (L) := (L(y)T)P|Nx(Cy,max))_1-

Refinements of the above results may leverage norm estimates of M, (Ag) to show that the remaining
condition is always satisfied, see, e.g., [Behrndt et al. 2017] situations where |M (1)|| = 0 as A — —o0.
A more in-depth inquiry of such aspects, particularizing to certain boundary conditions, will be the object
of future work.
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Outline of next sections. The remainder of the article is organized as follows. In Section 3, we treat the
case |y| > 1, first formulating some density results in Section 3.1, then showing the characterization of
the Friedrichs extension (Lemma 2) in Section 3.2, finally showing that £, iy is self-adjoint (Theorem 3)
in Section 3.3. In Section 4, we cover the construction of a generalized boundary triple (Theorem 5)
and a Dirichlet-to-Neumann map (Theorem 6) for £, max when y € (—1, 1), with a refined roadmap of
proofs at the beginning of the section. In Section 5, we cover the construction of a(n ordinary) boundary
triple (Theorem 8) for £, max When y € (—1, 1), with a refined roadmap of proofs at the beginning of the
section. Some proofs of auxiliary lemmas are provided in the Appendix.

3. Density results, proofs of Lemma 2 and Theorem 3

3.1. Some preliminary density results. We begin by exploring when CZ°(D) is dense in spaces of the
form (log x)*x*C> (D), with respect to the L)z, topology and the graph-norm topology 7, defined in (13).

Theorem 14. (i) C°(D) is dense in L)Z, forall y € R, and in particular it is dense in (log x)kx*C® (D)
with respect to the LJZ/ topology for all a > (—y — 1)/2 and k € N.

(ii) C°(D) is dense in (log X)kx*C® (D) with respect to the graph normn,, forally e R, o > (1—y)/2
and k € N.

To prove the density results, we use the following “cutoff” lemma:

Lemma 15. Let x € C°(R) and g € (log x)*x*C>® (D) for k € Ny and a € R. Then, if 2a +y > —1, or
if x vanishes to infinite order at 0, we have

Ix (x/€)gllz = O(lloge[*e* V%), as e — 0F.

Proof of Lemma 15. Denote C, := maxp |(log x)*x~%g|, finite by assumption. Then we have
lx(x/€)glzs =/ X (x/€)Igl* x” dV
D

1
<C? X (x/€)Px***7 [log x[** dx dw
& st Jo

x=¢€y

1/€
= 2n 2 / X () R(ey) ™+ llogley) 2 e dy
0

2k

o
) [ 0P og* ay.
0

2k
<3 Cillogefi 7+, ¢ = 271( l
=0

where all constants are finite under the assumption that 2« + y > —1 or x vanishes at infinite order. [J

Proof of Theorem 14. Proof of (i). Since the weight x¥ does not vanish on a set of positive measure
on D, it follows that functions in L72/ can be approximated by functions whose support is a compact
subset of the interior of D. Such functions can be approximated by C2°(D) functions in the standard way,
noting that x7 is strictly positive on any compact subset of the interior of D). The second part follows
since x*C>(D) C L} forall a > (—=y —1)/2.
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To prove (ii), we argue by cutting off. That is, fix x € C2°(R) with x =1 in a neighborhood of 0, and
for f € x*C*>°(D), let
fe=0—=x(x/e)f.

Then f. € C°(D) for € > 0. We have f, — f in L2, so it suffices to check if Lyfe— L, fin L}Z,.
We have

Lyfe=—p "x7V8,(0 x" T8, fo) — p 202 fe + 1+ 1) f.

The third term converges to (1 + y)? f in L2, while the second term equals p~2(1 — x (x/€))d2 f, which
converges to ,o_zaf)f in L)z/. It remains to check that ||p_1x_V8p(p xV+18p[f — fé])||L§ —0ase— 0.
We thus write

—p ' x TV 0,(0x" T f — f D) =—p" "%V B,(p X710, (x (x/€) )
=—p T8, (p XM x(x/€)d, f = 20" X ey (x/fe) f)
=x(x/e)go+e X (x/)g1+e 7 x"(x/€)g @1
where
go=—p""x73,(p x"10, ),
gr=—p ' xV(=20" "Hd, f = p~! xTV (=207 1 f)
=4p x0,f + (4x —4(y + 1)p*) f.
g1 =—4p’x f.

(42)

We now observe that if f € (log x)kx*C%(D), then the functions 80, 81, &» defined in (42) satisfy
8 € Y5 naxiou—i (10g x)7x¢~1+1C% (D), and hence by Lemma 15 we have

e XV (x/e)gillLy = O(logel'e T HITITEZ) = O (Jloge e~ (171

fori =0, 1, 2. It follows that if « > (1 — y)/2, combining the above with (41), we arrive at
—p ' xTV3,(0 X7, f — f]) = 02( log e[ke¥=(1=1)/2) = op2(1), ase— 0. O
3.2. Friedrichs extensions and proof of Lemma 2. Recall the following result which holds for any sym-
metric and positive (more generally, semibounded) operator (see, e.g., [Helffer 2013, Theorem 4.4, p. 34]).

Theorem 16. A symmetric, positive operator Ty on H (with D(Ty) dense in H) admits a self-adjoint
extension, called the Friedrichs extension.

The construction goes as follows. To Ty we associate the form o (u, v) := (Tou, v)y, with domain D (Tp).
We then consider the Hilbert space completion V of D(Tp) with respect to the norm u — (o (u, u))'/2,
viewing V as injecting into #, and we extend « by continuity to a form & with domain V (the form will

be continuous with respect to the norm on V). Finally let
Dp ={u €V : there exists C > 0 such that |@(u, v)| < C||v|x}, (43)

i.e., Dp consists of u € V where &(u, - ) is a bounded antilinear functional on #. For such u, there exists
a unique element Tru € H such that a(u, - ) = (Tru, - )%; then Tr with domain Dy is the Friedrichs
extension. Note that D(Ty) C Dr C D(Ty)), with Tf|p, = Tr and Tr|p(z) = To.
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We now give a criterion for when a self-adjoint extension is the Friedrichs extension, whose proof is
relegated to Section A.1. Recall that given a symmetric form o, we say that a sequence u,, in the domain
of o will -converge to u € H (not necessarily in the domain of «) if

Uy =5 uin M and  a(uy — pm, Uy — ) 2225 0.
Lemma 17 (characterization of the Friedrichs extension). Let Ty be a symmetric semibounded operator,
and let T be a self-adjoint extension of Ty. Then T is the Friedrichs extension of Ty if and only if D(T) is
contained in the a-closure of D(Ty), that is,

forallu € D(T), there exists a sequence u, € D(Ty) such that u, —, u.

Proof of Lemma 2. We aim to apply Lemma 17, working with the quadratic form o, defined in (15). The
proof amounts to showing that the «, -closure of C2°(ID) contains

(i) C*®(D) if y >0 and
@) x7VC*®M) if y <O.

The domain of the a,, -closure is also closed with respect to the graph norm, hence it contains the graph
norm closure of C*°(D) (resp. x~V C° (D)) for y > 0 (resp. y < 0).

We briefly explain why (i) implies (ii). For y < 0 and f € x~Y C* (D), assuming (i) is true, x? f can
be approximated in the &_,, norm by a sequence f,, in C2°(D). Via the intertwining property (8), we then
see that o_y, (fr, —x7 f) =0, &7 f — f) — 0, where x 77 f,, € C2°(D). Thus x 77 C*°(D) is contained
in the oy, -closure of C2°(D), and (ii) holds.

On to the proof of (i), we recall, for y > 0, that the closure of (£,, C*°(D)) is a self-adjoint operator
with eigenbasis {GZ’ «In=0, 0<k<n as defined in (16), satisfying

L,G) =n+14+y)°Gl,. G} lsi(”) =",

where the second property uses [Wiinsche 2005, equation (2.10)]. The domain equals ITILZ)’V as defined
in (17), also characterized as

Y= {f =Y fuk Gyt Yy + D fusl® < oo},
n,k n,k

where GV k= =G’ il ||G «l 12 In light of Lemma 17, it suffices to show that for each f € i? "V there
exists f (] ¥ in the o, -closure of C>(D), such that

FP =50 f,

Noting that every f can be approximated in H . by a finite linear combination of the Zernike poly-
nomials Gy > and that a sequence convergent in q D ¥ will also o, -converge, it suffices to show the
above approximation when f = Gn
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We note, in light of Theorem 14(ii), that xC*°(D) C C°(D)"» for all y > —1 (in particular for y > 0).
In particular, xC*°(D) is contained in the e, -closure of C2°(DD). Thus, we now aim to show: if f = GZ’ k
for some 7, k, then there exists a sequence f) € xC>(D) such that

f(j) 17X o, f.

Note that f € C*°(D) belongs to xC*°(D) if and only if f|g1 = 0. Furthermore, for a polynomial written
in the form )~ ; fu.xG, ;. we have

Z fn,kG;k|§] (eiw) — Z ( Z fn,k)eimw-
n,k

meZ “n—2k=m
As such, for a fixed choice of (n, k), let m = n — 2k, and choose an ansatz
fP=Gli= X0 G (44)
n'—2k'=m

where, for each j, only finitely many coefficients £/ i are nonzero so that f/) € C*(D), and we have

Z f(j)/ — (45)
n'—2k'=m

so that r}ﬂv @ =0,ie., f e xC>®(D). We aim to choose the coefficients so that
1f9 =Gl iy =550,

Note that
2

Z fn(JL n' k'

—2k'=m

1 =Gyl =

= > 0GR P
n'—2k'=m

We now use the following elementary lemma, whose proof appears in Appendix A.2:

Lemma 18. Suppose {ai}32, is a sequence of positive numbers satisfying Y o, 1/ax = oo. Then

there exists a sequence of sequences { {ck )} v 11521, with only finitely many numbers c,(f ) nonzero for any
fixed j, satisfying

j=r

o
Zc,ﬁ”:l and hm Zak|c(1)| =0.
k=1

Thus, we aim to find f, G 3(, satisfying (45) and such that

Do W TEYPUG) I P S 0.
n'—2k'=m
By Lemma 18, applied to ap = (0’ + 1+ y)zllGn k,|| , and c,(j) = f(J) (where n’ — 2k’ = m), we see
that this is possible, provided that K

1
Z ( 1 )2 G =00
n' —2k'= n + + V || n' k' ”L)Z/
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Note that, for fixed m, we can parametrize the terms in the above sum by k', with k&’ € N, X’ > max (0, —m),
with

n=22+m = n—k=k+m.
Thus
a(n’ — VKD (y)?
(' +y+ D' =k +y)E +yp)!

(k' +m)! (k) (y)?
Qk +m+y+ DE +m+ )& +p)

'+ 141G ol = (0 +1+y)

=k +m+1+7y)?

and the latter is asymptotic to 277 (y!)?(k")' =% as k' — oo. It follows that

1
=00
2 TN
n'—2k'=m (”l/ + 1 + V) ||Gn’,k/ ||L12/

as long as 1 —2y < 1, or equivalently, y > 0. O

Inspecting the proof above, we can in fact prove the following result, which will be useful in later
sections.

Corollary 19. Fory € (—1, 1), C?O(I]]Jim) is dense in A, p for the Hlr topology.

Proof. Recall that the quadratic forms o, and (-,-) 1., agree on C°(D). For y € (—1,0), A, p =
xC®(D)+x77C*(D), where x ¥ C*(D) is included in C2°(D")* by the previous proof, and xC*(D)
is included in C2°(Din)"» by Theorem 14(ii), which itself is included in C2°(Din)* (this is because, by
the Cauchy—Schwarz inequality, we immediately have oy, (f) <n, (f )?). The proofs for the cases y =0
and y € (0, 1) are similar. O

3.3. Proof of Theorem 3. We are now ready to prove Theorem 3, namely that £, i, is self-adjoint for
ly| > 1, by showing that £, nin = £, p. This amounts to proving that

(1) CX (D) =C>(D)* for y > 1, and
(i) CX(D)"r =x—vC>®(D)"r for y < —1.

Assuming (i) holds, (ii) can be proved as follows. Fix y <—1and f ex~VC*(D). By (i), x¥ f € C*°(D)
can be approximated in n_,, by a sequence f, € Cé’o(lDim), and then, using the intertwining property (8),
1x7Y fu— flln, = I fu = XY flln_, — 0 as n — o0, i.e., the sequence x 7 f,, € Cfo([lj)im) approximates f
in the n,, topology.

We now prove (i), fixing y > 1. If y > 1, then the conclusion follows from Theorem 14(ii). The limiting
case y = 1 requires special care, and the proof that follows works for all y > 1 a fortiori. By Theorem 14(ii),
we have that xC*®(D) C C*(D")"r, and hence it remains to show that C*®(D) C xC>(D)"r. Since
each f € C°°(D) can be written as an n, -convergent sum of Zernike polynomials, it suffices to show that
every Zernike polynomial GZ’ « can be n,, -approximated by elements of xC°° (D). Thus fixing (n, k) and
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setting m = n — 2k, we aim to approximate G, , with a sequence {f*/)}; in xC>(D) of the form (44),
whose coefficients are chosen to satisfy (45) to enforce f () |s1 =0, and so that

) v
Z fn/,k’Gn/,k/

n'—2k'=m

j— 00
12 0.

1 = Gl g2y =

~2y
Hp

In this case, we have
2

) v
Z fn’,k/Gn’,k/

n'—=2k'=m

= > @ LENIG)
HYY Y 4
D n'—=2k'=m
. o 4 v 2 ) _ () I Al
By Lemma 18, applied to ay = (" + 1+ y)*|G,, 1/ |I7, and ¢;7” = f,7'}, (where n’ — 2k" = m), we can
find our desired sequences, provided that !

n'—2k'=m

1
2 ' +14+)*G), ||§§ B
Note that, for fixed m, we can parametrize the terms in the above sum by k’, with X’ € N, ¥’ > max (0, —m),
with
n=22+m = n—k=k+m.
Thus
7 (0 — KK (r)>
(' +y + D@ =K+ )l K +p)!
(k' +m) (k') (y!)?
QK +m+y+ DK +m+y) K +y)!

n' +1+ y)4||GZ/’k/IIi% = +1+p)*

=QkK+m+1+y)*

which is asymptotic to 2 (yN)?(k')372" as k' — oo. It follows that

1
=00
2 TV
n' =2k'=m (n’/ + l + V) || Gn/’k/ ||L%
as long as 3—2y <1, 1i.e., y > 1. Thus, we can construct f(j) € xC*(D) C dom (L min) approximating
any GZ, « in the graph norm, and this concludes the proof of the case y > 1. The proof of Theorem 3
is complete. U

4. Proof of Lemma 4 and Theorems 5 and 6

This section aims at proving the first main theorem, Theorem 5. This is done through the following
roadmap.

In Section 4.1, we first prove Lemma 4, which consists in making sense of the appropriate H' inner
product for which Green’s identities hold for functions in A, . Section 4.2 then covers the surjective
extension of t;) to H'7, as stated in Theorem 20 below. This requires elementary one-dimensional traces
estimates as derived in Section 4.2.1, combined with Fourier expansions in the boundary coordinate to
complete the proof of Theorem 20 in Section 4.2.2. In Section 4.3, we first prove preliminary properties
in Lemma 25: characterizations of the space ﬁol (D), Green’s first identity without boundary term, and
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a weak setting where £,, is bounded. Moving to the proof of Theorem 5, it remains to show the extension
of the Neumann trace to W)% by duality arguments, and the extension of Green’s identities by density
arguments. Finally, we prove Theorem 6 in Section 4.4.

4.1. Proof of Lemma 4.

Case —1 < y < 0. This case is the “simplest” in that the HY space does not require the use of an
auxiliary function ¢,,, or equivalently, ¢, = 1 can be used, definition (23) is equivalent to

Ay 3 fo80> (£ @iy = (WX 9 fd/x 3p8) 12 + (07 0uf. p7 808) 12 + (L +1)°(f.8)r2,  (46)
hence the independence on b. Note that r)f) , r)f’ A, = C (S!) defined in (20) take the simplified form
v f=flmo, T f=lm(=x""9,f), fed,.

Then (25) follows by sending R — 1 in (3).

Case 0 < y < 1. We first briefly explain what further treatment is required, explaining what happens
for y € (0, 1), though the case y = 0 is similar. One may think about defining a space H" H1'Y 1o be the
completion of C*°(D) for the norm coming from the inner product (46), though one may find that such
a space does not have a good trace in the sense that, e.g., as a direct application of Corollary 19, for
any y € (0, 1), C2°(D) is dense in C*°(D) for the norm coming from the inner product (46). Since the
indicial root r = —y is the most singular, one may think of taking the completion of A, with respect
to the same norm, though another issue arises: the norm (46) of elements in x =¥ C is in general not
finite. In Sturm—Liouville theory, this situation is characteristic of the case of singular endpoint in the
limit circle case, for which a systematic remedy in 1D can be found in, e.g., [Behrndt et al. 2020, §6.9].
We adapt these ideas to the present two-dimensional context.
We first make the function ¢, introduced in Section 2.3 explicit. For x € (0, 1), we define

k ify € (0, 1),
b, (x) == —o k—v (47)

log x —log(l —x)—co ify=0,

where co > log(e4 —1) is a fixed constant. For any y € [0, 1), ¢, is aradial solution of £, ¢, = (y + 1)2¢y
(this simplifies into 9, (x? ! p3,¢,) = 0), satisfying the relevant limits (19). Moreover, there exists x,, >0
such that ¢,, is nonzero on (0, x, ). If x € (0, 1), then x,, solves the implicit equation y Z,fil xk [k—y)=1,
and if y =0, then xo = 1/(1 +e ). Set b, :== /1 —x,,.

Let us fix y € [0, 1), and write ¢ = ¢, for conciseness. Let us denote’

Nof:=¢ %(é) =0,f— - "¢ (48)

SThe definition differs philosophically from [Behrndt et al. 2020, equation (6.9.2), p. 443] in a couple of ways: the ,/p is not
factored in; the derivative is the d, specific to our case.



560 FRANCOIS MONARD AND YUZHOU (JOEY) ZOU

Given b € (b, 1), let us define the bilinear form as in (23)

0
ty bl fs 81 = (VXN f, VX Np&)rr 4, —b(x(b))”“%b(b) ; 8+ (Vxd, f. Vx8p8)2r

+ (,o_lawf, ,o_lawg)L% +(y + l)z(f, g)Lg,

where for 0 < a < ¢ <0, we denote A, . for the annulus {a < p < c}.
Proof of Lemma 4. We first derive some identities. We compute
Lyf px’g=—=08,(x"*pd, g —gp 20, fox” + (v +1)* fapx”.
The first term in the right-hand side is rewritten as
~, ("1 p3p )§ = —8,(x" 3, (Df /9§
= =0, p(B,0) f/9))8 — §0,(x" ' pNy f)

0
= —0,P T8 (f18)3 — xy+1pf7¢<N¢f>g 0,7 N, f)

= =57 Ny )+ 8,857 pNo f = 0,(557 1 N )
= (Np)X" ' p(Ny f) = 9,(8x7* pNy f).

Hence on an annulus A, , = {a < p < b}, we obtain the integration by parts formula

(Ly fr &)xr Any = (WXNg o VINg ) Ay, + (0 00 fr 07 008)xr sy - - -

p=b
—[x(p)y“p /C g‘N¢f} + O+ DA v A

P p=a

We now rewrite the Ny f Nyg term:

(Ng £)(Ng@)px? 1 = px7 ! (w — fap—¢) (ap g — g”—¢)

oy ¢
_ +1 +1 d’ +1 p¢
= px"" 0, f0,8 — px" T 0, (fg)7+pxy g "
— y+1 = y+1 P¢ > y+1 ap¢ y+1 ¢~
=px" "0, f0,8 —0p| pX"T fE—— " + /89, px s +pox"7fg

and thus

3 p=b
(VXN [, VXNp&)xv Ary = (WX0p fo VX0 Q)x7 A0y — [pxy“% ; fé] .
P p=a

M)z

¢

(49)

(50)

(D
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Proof of (1). If \/1 —x, <a <b < 1, we compute

)
ty ol fs 81 =ty al f, 81 = —(VXNg f, XNy @)1 4., — b(x (b)) %(b) f8

Cb
0
+a(x<a))y+“j7¢(a> /C f&+ (Wxdp f, NX0p8)xv A,y

51

and hence t, , does not depend on b € (b, 1).
Proof of (2). We note thatif f € A, with y € (—=1,0) orif f € A, p with y € [0, 1) that

. +13p_¢ 2|
l}gnl[b(x(b))” " &) [ 1Sl ]—0-

Cb
Indeed, if y € (—1, 0) then d,¢ = 0, while otherwise

9,6 O(x(b)?) if y € (0, 1),
b(x(b)>y+1j’7<b>= {0< 1 ) I
logxenl) VT
=o(l)

asb—1,and f € A, p implies that f is uniformly bounded as x — 0, as A, p = C*(D) +x!77C>®(D)
ify €(0,1),0or A, p =C>(D) + x(log x)C*(D) for y = 0. As such, given that

Iim ||/xNg f 1137 4, =0

since /XNy f € L}Z, near the boundary, it follows that we can take the limit as » — 1 in (49) to obtain (24)
as desired.

Proof of (3). Using that, for b € (0, 1),
(Ly f, 8)xr.y
= [ g0, + (R V)00, 070 07 B0, + (DS D
b
combining with (49), we arrive at
tyLf. 81 = (VXN [, VXNp@)ar 4y + (07 80 [ 07 008)xr apy + (7 + DS, 8)v 4,

. _ _
e (nyHfog—xy+1pg3pf)+(ﬁyf’ 8)x7 Dy
b

&/OW(f.¢)
Equation (25) then follows by sending b — 1.
Proof of (4). We successively treat y € (—1,0), y € (0, 1), and y =0.

For y € (-1, 0), we note that since ¢, = 1, we in fact have for any f € A,

(fs Dy =I5 L + 107 00 f 172 + (7 + DAL = A+ )2 IF I - (52)
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The case y € (0, 1) is deduced from the case y € (-1, 0) by intertwining. First notice that if f € A,,
then x” f € A_,. Assuming the following holds true:

([ gy =" X", [, geA,. (53)
The result then follows using the case y € (=1, 0): forany f € A,,
s Dy = @727 Py = Ak I flle = A=y DIFIL,
where the inequality follows from (52). To prove (53), also notice that the differential intertwining
property (8) implies £,, f =x"VL_, (x” f) for all f € A,. We now compute

25
(f: Qa2 Ly £ 012 — (@) £ 1012

=@ Loy ()X — (Y £t e
2L & D — @67 ), 0 ) ey E 6 f A )

Finally the case y = 0 requires special care. Recall that ¢g(x) = logx —log(1 — x) — ¢ as defined
in (47). Let xo > O satisfy the property that ¢o(x) < O for all x € (0, xg). Then, for any b > by := /1 — xo,
throwing away all first-order terms in (23) gives the crude bound

bx(b)0,¢0(x (b))
¢o(x(D)) Cy

Noting that bx (b)0,¢o(x (b)) = —2 for all b, multiplying both sides by —b ¢o(x(b))/2 and integrating
from b = by to b = 1, we obtain

I

(f: Do = 1 £112, —

dx.

L g ®) / —¢o(x)
0

c(fs Poz el fl7 = IfNG,,,» Wwherec:= > 7
bo

We can relate the constant ¢ to cg as follows: first note that the condition ¢y (xg) =0 gives xo=1/(1+e~ ).
Integrating by parts, we then get

dx

1—x

/0 —¢o(x) dx = [=x¢o ()]} =g +/0 x¢p(x) dx =/O = —log(1 — xp) = log(1 +€),

—_———
=0

and hence ¢ = % log(1 + ). Returning to the estimate, we arrive at
2 —1y £12 —1 2
(s Do 2 Mf Il —e I F g, = (L= DS

In particular (-, - ) 1.0 is positive definite if ¢ > 1, which is then equivalent to the condition co > log(e4 —1).
The proof of Lemma 4 is complete. O

4.2. Extension of the Dirichlet trace to HVY. The first part of Theorem 5 consists in extending the
Dirichlet trace to H' (D), which we state as a separate result.
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Theorem 20. For any y € (—1, 1) and with H Ly (D), H, respectively defined in (27) and (29), the
Dirichlet trace r}f) defined in (20) extends to a bounded, surjective operator

) H" (D) — H).
The right inverse R : Hq,y — H'“7 (D) arises as the extension to H,) of a continuous operator
R:C®(SH) — 4,.

In the case y € (—1, 0), the construction of H'7 is associated with operators with regular boundary
points, in which case this is relatively straightforward. The construction for y € (0, 1) is associated with
operators with singular points in the limit circle case, requiring a regularization approach, tying it with
the previous family of cases y € (—1, 0). Finally, the case y = 0, linked with the case of double indicial
roots and log-weighted Sobolev spaces, also requiring regularization, is treated separately.

4.2.1. Some 1D trace estimates. Let a > 0. Let us first prove a lemma that will be useful for the case
y € (—1,0). Define HYY[0, a] to be the completion of C*°([0, a]) for the norm

1 W 10.0 = VX8 f 10,0+ A+ V1 120,01 (54)

where || f|? foa | f(x)[>x? dx. We prove the following trace estimate:

£2[0.q]
Lemma 21. The evaluation map C*°([0, a]) > f — f(0) extends by density to HY [0, a] and we have
the following estimate for all £ € (0, a):

2
CUOP = o+ 1><e1||f||ig[0,a] T _—ynﬁf’ui;m,ﬂ). (55)

Proof. From the relation f(0) = f(x) — fox f'(t) dr, we deduce

2

FOP < 2|f(X)|2+2V0 £y

§2|f(x)|2+2/ t‘y“dt/ £ ()% 17 dt.
0 0

x77/(=y)
Now multiply by x¥ and integrate from O to £ to obtain

y+1

|f(0)| <2||f||L2 Oa]+2 ”\/_f ||L2[0a]’

equivalent to (55). 0

Considering now a log type weight that will be relevant to y = 0, let us now define Hl %[0, a] the
closure of C*°[0, a] + C®[0, a] for the norm

log X

A1l ~10—/ @1 )P +1f @)1 log® x dx. (56)



564 FRANCOIS MONARD AND YUZHOU (JOEY) ZOU

1

Lemma 22. The evaluation map C*|[0, a] + C*®[0,al > f — f(0) extends to a bounded map on

- log x
HIL’Q[O, al. More precisely, we have for every £ € (0, a,
)
log” x dx a a
ng—v(O)F < / (log x)*| f (x)]* dx 42 / xlog® x| f')Pdx. (57
Jo —logxdx Jo —logxdx Jo 0

Proof. If f € C® + @C °° then f’ is integrable near O and we may write, for any x < a, f(0) =
f(x)— fox f'(¢) dt. We then compute

2 X
§2|f(x)|2+2/
0

|f(0)|2§2|f(x)|2+2'/0 fl(t)de /J tlog®t| f'(t)|* dt.

tlog?t
—1/logx
Multiply by log? x and integrate from 0 to £ € (0, a) to obtain®

4 a J4 a
/ 1og2xdx|f(0)|252/ (1ogx)2|f(x)|2dx+2/ (—logx)dx/ tlog? 1| f'(1)|* dr.
0 0 0 0

Divide by f(f —log x dx to obtain (57). O

Lemma 23. The equality f(f —logx dx = € gives rise to a function £ : [0, 1] — [0, 1], continuous,
log(£(€))
=1
loge

increasing with £(0) = 0 and £(1) = 1, satisfying lim._,¢

Proof. The existence and increasing nature is obtained from inverse function theorem and differentiation.
This equality can also be seen as £(1 —log £) = €, which implies the obvious bound ¢ < €, hence the zero
limit. To obtain the asymptotics: we already have that log £ < log € by monotonicity of log. In addition,
for every o € (0, 1), for £ small enough, we have 1 + log % < Cw%, and thus

e=¢(1—logt) <¢™%C, = loge<logCy+(1—a)logt.

These inequalities imply

log ¢ log ¢
< liminf =2 < lim sup —2

l -« e~0 loge es0 loge

<1 foreverya >0,

hence the result follows. O

4.2.2. Proof of Theorem 20. The proof of Theorem 20 treats, in order, the cases y € (—1,0), y € (0, 1),
and y = 0.

Case y € (—1,0). In a tubular neighborhood of the boundary [0, a], x Sclo (with 0D = {x = 0}), one may
expand a smooth function in the form f = Zn ez Jn (x)ene. Apply (55) to each f, with £ =a/ (n)?, sum
over n to obtain

2
a” Y ) OF < (v + 1>(a—1 Dl a0 + = D INVA LI M),

n

%0ne could be more explicit and use that j(f log2 tdr =£((1 —log 0%+ 1) and j(f logt dt = £(log £ — 1) but this may not be
useful.
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Observing that the right-hand side is equivalent to the squared H (D) norm of f and the left-hand side
is the squared H 7 (S")-norm of w — (0, w), this boundedness estimate extends by density to Hlr (D).

To prove surjectivity, let us construct an explicit right-inverse for ‘L’ . Fix g € C°([0, a), R) with
g(0) =1 and consider the map

R (Z anei”“’) = Z ane’"g(n*x).

It is easy to see that R(C®(S")) € C*°([0, al, x S! ») and that 1' =1id ¢ (s1). To show that R extend
to a bounded map H~7(S') — H ([0, a], x Sl) it is enough to show that for f,(x) := g(n’x),

2||fn||L2([0 a ~ VX f) (x)||L2 (10.a) < n~?” with uniform constants in n € Z. To see this, notice that
f1(x) =n?g'(n’x), then

a ) n2 a
o [ oo @ L [ g du=n [ gl du,
0 0 0
n2

¢ a
/ (/)2 e / g ()2’ du = n"% / ¢ ()2’ du,
0 B A
This completes the proof of Theorem 20 in the case y € (—1, 0).

Case y € (0, 1). The proof is based on combining the previous case with the convenient intertwining
property (8). Fix y € (0, 1), and let ¥ be a radial function equal to ¢, on [0, x,,/2),, of class C*
on D™ and bounded away from zero. The map Ay, 3 f = f/Y € A, extends by density into a
homeomorphism H 'Y (D) — H'"~7 (D). Indeed, a direct calculation gives

2 2

i S 2| f
el 4+ o 0p— + A=)
7. |l +a-r7lg
2 o 2 2
= H - Hp‘l—awf +(1— f
12 v 2

The function £ € C *° (D) is bounded above and below by positive constants. The upper bound gives

the boundedness of the map m,y and the extension by density. The bound from below gives coercivity

and by the open mapping theorem, the homeomorphism property. Combining this with the previous case,
D

and noticing that r)f) =12, omyy gives the result.

The case y = 0. While the singular case y € (0, 1) could make use of the space H'~7 associated with a
“regular” quadratic form, we need to construct the analogue of a “preregularized” quadratic form with
good trace estimates in the case y = 0. To this end, on a neighborhood of the boundary S} = [0, a], x SL,
let us define the norm on C Oo(Sa)

1% Aoy = IV log xdx f 117261 + 11108 x8 f 7261, + 1 l0g xf 17251 (58)
Writing f(x, ) = ZkeZ fn(x)e"® near x = 0, this norm looks like

1 150 gs, =27 D _(IWF 10820k full g 4 + (% + DI 0g a7 p,):
e keZ
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Upon defining H(g) as in (29), we now prove the following:

Lemma 24. The evaluation map C'(S}) 3 f — f(0, w) € C®(S") extends to a bounded, surjective
trace map HIL;(S;) — H).
Proof. To prove continuity, writing f(x, ) = Y ;o7 fa (x)e'" near x = 0, and use (57) on f, with

£, € (0, a] (assume a < 1 without loss of generality) chosen such that

fen log x dx = —2
—logxdx = —.
0 (n)?

By Lemma 23, ¢,, exists, is unique, and
) log ¢, . log ¢,
l=1lm ———— = lim ——.
w00 log(a/(n)?) oo —2log(n)

Further, using 1’Hopital’s rule to show that

¢ 2
log” x dx
im —fo ,g =1,
1—01og 1 [, logx dx
we have .
"log? x dx
fg#w—logﬁn'vﬂog(n), as n — oo.
Jo" —logx dx

On to the surjectivity, it remains to construct a rlght inverse. To this end, fix h € C2°([0, a), R) with
h(0) = 1, and define R : C*(S!) — C"O(S )+ 10 COO(S ) as

2logn
R: € e e p 1 59
Za |—>Za (n x)( + log.x ) (59)

nezZ nez

Su(x)
To show that R : H) — Hl (Sl) is bounded, it suffices to show that for |n| large enough, the quantity

logn (” \/; log x 0y fr ||iz[0’a] + n2 | log xf, ||iz[o’a]) (60)
is uniformly bounded by a constant independent of #. To that end, and upon noting that
log(n? h(n?
fu(x) = h(n®x)———= g( ) and f!(x) =n? <h/(n2x) og(n“x) 2logn (n xz) )
gx log x n’xlog” x

we now compute

/a(nzfn (X)% 4+ xf/(x)%) log® x dx
0

2

wmis [ ) , hw
= h*(w)logu+u{ h'(u)logu —2logn———- du
0

ulog(u/n?)
P a5 logn i (wh(u)logu . R )
_A ((h (u) +uh’(mu)“)logu—4 log(u/n?) +4log n—u og (u/n?) du

=i+ Lo+ 1 3.
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The term 1, | is asymptotic to a constant, thus o(logn). On to I, », we rewrite

h (u)h(u)logu _ 2h/(u)h(u) logu

log(u/n?) 1— g

—4logn

which is dominated by the integrable function 2|4’ (u) h(u) log u|, and converges pointwise to 24’ (u) h(u)log u.
By dominated convergence, I, » is also asymptotically constant, thus o(logn). On to [, 3, we write

n’a 2
h
In,3=410g2n/ # u
o ulog®(u/n?)

u=n-x h2
= 4log2n/ o x) dx
0

xlog?x

“d hz(n “ n2h' (n*x)h(n*x)
_410g n dx +2 dx
—logx log x

s 4R wyh(u)
= "8log’ n/o —log(u/nz) du

2
nah/ h
g [ W),
0

__ logu
2logn

Similarly to the analysis of I, », this is asymptotic to —4 logn fo W (u)h(u)du =2logn. As a conclus10n

(60) is uniformly bounded as claimed, and the map R defined in (59) is bounded from H ) to H1 (S ).

Lemma 24 is proved. 0

On to the proof of Theorem 20, let ¥y be a radial function equal to ¢y on [0, xy/2),, of class C*
on D™ and bounded away from zero. One may view t(f) as the composition of

1
ieCOO+—C°°

logxCZ(D)+CT D) > f i~ " logx

(which extends to an homeomorphism H L@y — FIIL‘;)(D)), with the restriction map from Lemma 24.
The proof of Theorem 20 is complete. U

4.3. Proof of Theorem 5. The following lemma gathers a few important preliminary facts.

Lemma 25. (1) With the extended Dirichlet trace rl); defined in Theorem 20, we have

ly(D) Hly(lD)ﬂkeer

(2) Forevery f € W2, and g€ ﬁl’y(lD), we have
0

(Ly f, g)Lg = (/. &) o) (61)

(3) The operator L, : ﬁl’)’(ID) — (ITI()I’V(I]])))/ is bounded.
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Proof of Lemma 25. Proof of (). We first show that H’ gy (D) = 1 (D). We use Lemma 2, namely that
the Dirichlet domain H > D ¥ coincides with the domain of the Frledrlchs extension.

By the construction of the Friedrichs extension, each element in the domain is the limit of functions in
C2°(D) with respect to the norm f +— ((£, f, f) Lz)l/ 2, which for functions i 1n C2°(D) coincides with
the H'¥ norm. It follows that the Dirichlet domain H . (ID) is contained in H (D). On the other hand,
since C°(D) C H, 72 " (D), taking closures yields that H V(D) is precisely the closure of H V(D) with
respect to the H™ H ! 7’ norm. However, since

sy — n 14 A k 1 = An k€n .k
£ 1 (+ 1+ 1yD P lansl if f
n,k n,k
where e, ; are the L)z/—normalized multiples of GZ’ ify >0and x™7 G;),; if y <0, and
IUM%W=4£%ﬁfh5=§:O%+L+Wbﬂ%kﬁ=ﬂfﬁ%w

it follows that the closure of H y([l])) with respect to the H'*¥ norm is precisely H . (ID) as desired.

Next, the inclusion H YD) C H Hly (D) Nker ‘L'D follows from the continuity of rD on H7 (D), as well
as the fact that each element of H V(D) isa hmlt of functions in C2°(D), all of which have trace zero.

Finally, to show that H"7 (D) Nkert}, C HO (D), pick f € H" (D) Nkert), and let f, € A, a
sequence approximating f in H'7. By continuity of ‘L'g, we must have that 7)) f, — ) f =0in H,).
With R a right-inverse for ‘L'D as in Theorem 20, then R‘[D fn — 0in H'7 and hence 8gn = fn— R‘L’D fais
a sequence of elements in A, p, converging to f in H " HY . Finally, by Corollary 19, C OQ(I]:D) is H'-Y -dense
in A, p, and hence for each n, there is h, € C2°(D) such that ||g, — h,ll g1, < n. The sequence h,,
converges in HY to f, which in turn belongs to H LY

Proof of (2). Itis enough to show (61) for f € W2 and g € C°, since (61) then extends to H r by
density. For f € W2 C H', let Jfn be a sequence in A, converging to f in H" H''Y | and fix geC ~ . We
have, for every n,

(fu, i1y = (Eyfn: g)L% = (Lyﬁyfn’ g) = (tﬁylyfn’ g)

Since f, — f in H'7, hence in LJZ,, ty fn = fin C~°°, and by sequential continuity, 'L, ¢, f, = "Lyt f
in C~%°. Hence we may send n — oo in the above equality to obtain

(f, gy =Ly, f,g) forall g e C®(D).

Finally, the assumption £,, f € L2 gives that the right-side equals (£, f, g) L2 and (61) follows for f € W2
and g € C*°.

Proof of (3). By (61), we have the identity
Ly £ 92 =1 D) < I flg gy, feA, geHy” D).
This implies that £, : A, — (HOl 7Y is bounded, and that
12y fll ey < I f Nl forall f e A,

Since A, is dense in H'7, the latter inequality allows to extend £,, to H'7 as a bounded (HO1 V'Y -valued
map. O
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Proof of Theorem 5. We first show that the Neumann trace extends into a bounded operator r W2 —H (/y)

Following ideas in [Helffer 2013, §4.4. 4] we combine Theorem 20 with the second Green S 1dent1ty By
virtue of Theorem 20, let R : H(,,) — H"7 be a bounded right-inverse for r arising from a continuous
operator R : C*(S!) — A, . For f e Wf, define the map

Vr(h) = (Ly f, RW) 2 — (f. RW)jjny, b€ C(SH). (62)
It is easily seen to satisfy an estimate of the form

[V = Ly fllz H WA )RR g1 < CULy fllz + 1A ) 1] g,

with C the operator norm of R. By Riesz representation, this defines a unique element 7, NfeH (y),
which further satisfies the estimate ||TNf||H’ <CUL, f||L2 + I £l 71.»). Moreover, for f € A, and
h e C®(S") such that Rh € A, , the first Green s identity (25) gives

V() = (@) f.1) R 261y = (5) fi M) 2y = (T fo M) by b,

hence the definition of ‘L' on W2 extends the original definition (20) on A,, .
On to extendlng Green S ﬁrst identity to (30), given g € H" HLY | we decornpose g= Rr g + go, with
8o € H ¥, and write, for f € W2,

Ly f. 812 = (f. ) firy = (Ly fL RT) )12 — (f. RT@) vy + (Ly £, 80012 — (f. 80) vy
(62)
= (1) .18 m;, iy + (Ly o 80) 12 — (s 80) i
and the last two terms cancel out by virtue of (61). Theorem 5 is proved. Il

Remark 26. Similarly to [Behrndt et al. 2020, Remark 8.2.5], the extension of ry could be made to the
larger space W)% ={ue H"7 (D), Lyue (H'7(D))'} into a bounded operator r W2 — H(’ )
would have a slightly more general first Green’s identity

<£Vf’ g)(ﬁlﬁ/)’,ﬁlv?/ :(f’ g)ﬁ],y-i_(l—}ivf, T)f)g>H('V),H(},)’ fGWZ’ geHl’y'

and one

Upon skew-symmetrizing, Green’s second identity generalizes to f, g € VAV)% in the obvious way.

4.4. DN map — Proof of Theorem 6. We end this section with the construction of the Dirichlet-to-
Neumann map, i.e., the proof of Theorem 6.

Proof of Theorem 6. The construction of the DN map is done as follows. Consider R : H,) — H'Y (D)
a continuous right inverse to ‘L']P as in Theorem 20. For f € H(,), the construction of a unique solution
uy € W>Nker(L, — 1) to

Ly =MDu=0 (D), ulsi=Ff (63)

is done as follows: Setting f= R}l,) fe H LY (D), write upr=w-+ f for some unknown w, which in turn
should solve

Ly —Nw=—(L,—1f D), wlg =0, (64)

where the rlght -hand side belongs to (H ()} by Lemma 25(3), a space which coincides with
(Hp, 7 V(D)) = _1 V(D) by Lemma 25(1). By setting up a weak formulation and invoking Riesz



570 FRANCOIS MONARD AND YUZHOU (JOEY) ZOU

representation theorem on H l’y, or simply using (£, p — A)~! which is well-understood, this gives a
unique solution to (64) in H Il)’y, given by

wi=—(Lyp -2 "L, — 1) f.

Thenuy=w+ f is a solution to (63) (which can also be proved to be unique since £, p — A is injective).
Originally, it belongs to H'7, s0in particular in L2, so (63) also implies that Lyuy e L)Z/, and hence
uy € W2Nker(L, — 1).

More succinctly, the DN map is then defined by

Ay f =1 up=1)(d—(Lyp—1""(L, =R f.

which boundedly lands into H(’y) by Theorem 5. The uniqueness of the solution to (63) makes it
independent of the choice of right-inverse for r)f) . U

5. Proof of Theorem 8

The idea is to follow the template of [Behrndt et al. 2020, Theorem 8.4.1, p. 601] to construct boundary
triples for £, nax when y € (=1, 1). In proving Theorem 8, we first prove in Section 5.1 how to extend
the Neumann trace on the Dirichlet Sobolev scale (17), this is formulated as Proposition 27 below, and
makes crucial use of facts about generalized Zernike polynomials. In Section 5.2, we then show how
to extend the Dirichlet trace, a result formulated in Proposition 30. Finally, we complete the proof of
Theorem 8 in Section 5.3, first proving Lemma 7 on the decompositions of the maximal domain, then
using these decompositions to extend Green’s second identity to (34).

5.1. Extension of the Neumann trace.

Proposition 27. Fory € (—1, 1) and any s > 1 + |y|, the map ‘L'}iv defined in (20) extends to a bounded,
surjective map

o HYY (D) - HTYI(Sh, (65)

with a right inverse arising as the extension to H*~'=VI(S1) of a continuous operator C®(S") —» C>® (D).
In particular, for s =2, where le)’y(lD) =dom(L, p),

7, :dom(L, p) — H'"I(Sh) (66)
is a bounded and surjective map, and we have the further characterization
dom(Ly min) = ﬁé’y N ker r;v. (67)

Proof. Case 0 <y < 1. With {GZ, «In.k defined in (16), the main two fundamental properties needed are

(G ) =¢,G) (ls1 =c, e " 2P, (68)
T (n—=K)!ykiy!
IGY 1%, = VUV ), (69)
KL T oy 1+ ) (n—k+p)! ’



BOUNDARY TRIPLES FOR A FAMILY OF DEGENERATE ELLIPTIC OPERATORS OF KELDYSH TYPE 571

where we write for short x! :=1I"(x + 1), and where ¢, =2y for y € (0, 1), and ¢o = —2. The first equality
uses [Wiinsche 2005, equation (2.10)]. Hence, for u € H;;", of the form

oo n Y
u E E u G"’k
= n,k
nY
n=0 k=0 n.k

with [lu]F, = 35020 2kmg (2 + 1 41)* lunk* < 00, we have

Unk 0 . Un k

N nk i(n—2k)B imBp.N N . n,

T, U=Cy E —ny e =cy E e [‘Cy Ulm, [‘L'y Uly = E >
n,k

n.k meZ n—2k=m Mk
Then
e wll oy =20 Y m) > 2 2 [ ul |
meZ
<2 22( y2s—2y -2 Z n+149)% w2 Z M (70)
<2nc, m n V) k RS
meZ n—2k=m n—2k=m n,k

and the proof is complete if we can show that

oy n+1+y)™
Cm;s,y = <m>2S 2y =2 Z

Y N2
n—2k=m (n”sk)

is uniformly bounded for all m € Z. Note that C,.5 , = C_,,.5,,, so it enough to check it for m > 0, for
which we have

—2s
o sayao (m+20+14y)
Comzs.y = (m) Z (n” )2
>0 m+2¢,¢
<m>2s—2y—2

(m+L+9) (+y)!
w(yh? '

(m+20)! A

D m+24+1+y) 7
>0

To this end, we state the following estimate, which is relegated to Section A.3:
Lemma 28. There exist C', C" > 0 such that C' < Cp,.5,,, < C" for allm > 0.
Using Lemma 28, we thus see that

)l <27 Y cm;s,y( > 41+ y)ZSlun,kF) < 265 (P Cos ) 1t s -

meZ n—2k=m meZ

thus establishing the forward trace estimate.
To establish surjectivity, it suffices to construct a bounded right inverse R : H*~7~1(S!) — H;" (D).
We construct the following map:

imw 1
R<Zamem ):az lj”{m Y (71)

meZ meZ n—2k=m,n<3|m|
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Note that the set {(n, k) : n — 2k =m, 0 <k < n} can be parametrized by

m| —

n=\m|+2¢, k= + ¢ =max(0, —m)+¢€, £€=>0,
so the inner sum is over 1 4 |m| elements. Specifically, R sends ¢/ to the average over the |m| + 1
weighted Zernike polynomials of lowest degree whose trace equals /™. In particular, that R is a
right-inverse directly follows from property (68).

Moreover we have

[#(Zee)

|am| s
C2 Z (1 +|m Z (n+1 +V)2 (n,}:,k)z

HyY (D) Y meZ n—2k=m,n<3|m|

2
) 25272 12 {m) C’
= 53 ] —(1+|m|)2 "

7 meZ

(i‘i‘%c (1+|m|>2>“2“’"

’

Hs—1-v

where we have defined

Cpi=(m) > 3" 4+ 1+y)¥ 0} )%

n—2k=m,n<3|m|

Thus, that R : HS~!=VI(S) — ﬁls)’y(l]])) is bounded will follow upon showing that C;, is uniformly
bounded in m. This is implied by the asymptotics

Y 1+ FEl )P =0(m)*),  as m| — oo, (72)

n—2k=m,n<3|m|

which we prove now. As before, C”, = C;,, so it suffices to assume m > 0, in which case we parametrize
n=m+2¢ and k = £, with 0 < £ < m. Similarly as before we assume m is sufficiently large, say m > y.
Then the sum then becomes

(m+20)! 1l
m+L+y) L+

m
TS 2 1)

(69)
Yo P E o
(D =0

n—2k=m,n<3|m|

Using the asymptotic
x!

lim =
x—o0 (x + ) (x+1)77

’

and using that m +204+1+y <4(m+1) and 2s — 1 > 142y > 1, the above sum is bounded above by
some multiple of

m m
D42+ 14+ L+ DT EHD T S+ DY @+ D7
£=0 =0
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Finally, the function x — (x 4 1) is decreasing, so we can estimate

Di=r —1
jpmtb -1

m m m
Z(£+1)7=1+Z(£+1)V§1+f x+1D)7Vdx = ;
£=0 =1 0 -V

It follows that

m
Y el )P S+ )P TIS @+ )Y < e+ 1)
n—2k=m,n<3|m| =0

i.e., (72) follows.

Case y < 0. Notice that the map m,» : x 7 VC®(D) > f — x? f € C*(D) extends into an isometry
ﬁ‘gy — ﬁ‘g_y, and that we have t)ﬂv = rﬁ’y omyy. The result for y € (—1, 0) follows.

Finally, we prove the characterization (67) of the minimal domain. The second Green’s identity (26)
extends, for f € IEI%’V(ID), to the equation

Ly [ 812 = ([, Ly = (1) [.1)8) 1251, 8 € Ay (73)

Since ﬁf)’y (D) is the domain of the Dirichlet realization £, p, it follows the minimal domain is contained
in le)’y(lD). As such, let f € dom (£, yin); then f € HD’y([D)). Moreover, since Ly min = (L£y max)”™, it
follows that for all g € £, nax wWe have

Ly fi 82 = (f, £y8)12 =0.
In particular this holds for all g € A,,, in which case this combined with (73) gives
(T;Vf, T)Pg)LZ(gl) =0forallge A,

i.e., 7 f is orthogonal (in L?>(S") to P (Ay) = C>®(S"). By density of the latter, this forces N f=0.
It follows that dom (L, min) C ﬁlz)’y(lD) Nkerz).

To show the other inclusion, we will use density arguments. First considering the case y € [0, 1), first
notice that by Theorem 14(ii), we have x C*°(D) C C2°(D)"r =dom(L, min), and upon taking n, -closures,
xC>®(D)"r C dom(Ly min). Then HZZ)’V (D) Nker t)ﬂv C dom(Ly min) Will hold provided that

Hy” (D) Nker 7l = xC=(D)". (74)

The inclusion D in (74) is clear since the space on the left is n, -closed and contains xC*(D). On to
the inclusion C, for any f € ﬁlz)‘y([[])), there is a sequence f; € C*°(D) with f, — f in ﬁé’y([[])). If f
also satisfies r}fvf = 0, then t}fv fo — 0in H'=IVI(S"). With R the right inverse for t)ﬂv defined in (71),
Rr)fvfn e C>(S!) and Rr)fvfn — 0in ITIIZ)’V(I]])). Considering

&n=Jfu— R‘L';an € COO(D)’

since t}fvg,, = r}ﬂvfn — r)ﬂer)fvfn =0, g, in fact belongs to xC*° (D) and converges to f in ﬁlz)’y(l]])).
This gives (74).

For y € (—1, 0), we follow a similar strategy to show that ﬁg’y(lD) Nker rf/v =x!=vCo(D)", and
noting that C2°(D) is n, -dense in x'7YC®(D) for all y € (—1, 0) (in fact for all y < 1). Il
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From this, we can also show:
Lemma 29. For y € (—1, 1), we have dom(L, max) = A_,,"V.

Proof. Consider the operator £, 4, whose domain is A, . It suffices to show that
dom ((£,,4,)") C dom (L, min),
since by taking adjoints we would have
dom (L, max) = dom ((Ly,min)*) C dom (£ 4,)") = A,"".

Note that
Hy” (D) c dom (£, 4)"

by taking closures on either C*°(D) or x ~¥ C*°(D), and hence taking adjoints gives
dom (£, 4,)") C Hy” (D).
As such, suppose f € dom ((£,, Ay)*); then f € ﬁlz)’y(l]])). For all g € A,, equation (73) gives that
Ly f. &)z = (f: Ly®)12 = (1) . 1) 8) 12s1)-
But we also have (f, £, g) = (f, (Ly.a,)8) = ((ﬁy,Ay)*f’ g) = (L, [, g),so we have
(t) f. 108121 =0 forall g € A,.

Similar reasoning as above yields r]f’ f =0, except now that the characterization (67) has been proven,
we can conclude that f € dom (£, 1in), as desired. U

5.2. Extension of the Dirichlet trace.

Proposition 30. For y € (—1, 1), the restriction to W)% of the Dirichlet trace ryD defined in Theorem 20
extends to a bounded, surjective map

) s dom(Ly max) > H~'T7I(Sh.
Moreover, we have, for any f € dom(L, max) and g € ﬁlz)’y(D),
Ly fo )z = (f £y 12 = —(&) £, 1)) &) -1 . (75)

Proof of Proposition 30. Let R : H'=I7/(S1) — ﬁlz)”’(lD) a right inverse for the map (66), in particular
‘L';V(Rh) =hforallh e H'=II(S"). For f € dom(L, max), define the functional ¢ ¢ on H'-YI(S1) by

¢r(h) = —(Ly f, Rz + (f, L, R 2, he HTISD. (76)
The map ¢y obviously satisfies

67U < ULy Iz IRAN 2 + £ 12 1Ly RAI
< (F g + 1Ly Fl2)RRN 2 + 1L, Rl 2) < CLF N2 + 1Ly Flliz) WAl o sy,
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by boundedness of R. By Riesz representation, this defines a unique element fD f in H1HIYI(S).
If f € W2, then (31) implies that ¢ ¢ (h) = (T N(Rh), TP f) ), ., Where, since 7. f € Hyy C H=1HI7I,
and since rN(Rh) h € H'7I”! the latter pairing also equals to f h) g1+ g1-v1. In particular, if
few?, then TP f =1P f as elements of H~ '],

On to proving (75), pick f € dom(Ly max) and g € H V. Write g = R‘E g + &oo, where 7, Ve =0
hence goo € dom(L, nin). Then, writing (-, -) for the L2 mner—product for con01seness

(Ly f. 8) — (f. L£y,8) = (Ly f2 RT) ) — (f. Ly RT) g) + (L, f. g00) — (f+ Ly 800)
T #P £ eV )yt g + (Ly £, 800) — (fs Ly goo)

and the last two terms cancel out since Ly max = (Ly,min)*.

To show surjectivity of T 1: , let us now construct a right inverse. As a combination of Proposition 27
and (18), the operator Y := .L.;v L 1 L2 H'I7I(S!) is continuous and onto (with R defined in this
proof, £, R is a right inverse for T) hence the transpose Y’ : H~'*I7I(S!) — L]z, is bounded.

We first claim that Y’ is valued in Ny(L, max), Whose topology is captured by L2 This makes Y’ a
continuous dom(£L, max)-valued map. To see this, for f € H™ I+lvl(S1) so that Y’ f € L2 let us check
that £, Y’ f = 0 (in the distributional sense that ' £, 1, (Y’ f) = 0): for ¢ € c,

(Lyty (X)) = (X' f, L) 12
= (0 L) Ly ) vt gy
= 0,

since ¥ € dom(£, p) and r]fv ¥ = 0. Hence Y is a continuous dom(L, max)-valued map.
We finally show that 72" = id | y-14vi(s1). For f € H- 481 and h € H'-I7I(S1), we have

(EDY fLh) g - n = — (L, P, Rh) 2+ (Y'f, Ly Rh) 2
= (f, TJivﬁy’DﬁyRh)H—Hly\,HlfM,

and since Rh € dom(L, p), T, Ly DL Rh = rNRh = h, and hence IDT f = f as elements of
HHi(sh.
The proof of Proposition 30 is complete. g

5.3. Extension (34) of Green’s second identity. We first prove Lemma 7.

Proof of Lemma 7. With ﬁ ! p defined in (18), given f € dom(L, max), since (£, —A) f € L2, we may
define fp:=(Ly p—A)" 1(£ —AM)f € H2 (D) dom(Ly max) such that (£, — 1) fp = (L, —A) f and
]f)fD =0,and set f, := f — fp. Clearly fr.edom(L, max) and (L, — 1) f5. =0, i.e., fr € Ni(Ly max)-
To show uniqueness, if f € dom(L, p) NN, (Ly max), then (£, — 1) f =0 with 7p f = 0 which, by
injectivity of £, p — A, implies f = 0. Lemma 7 is proved. O
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We finally prove how to extend Green’s second identity to (34). In this paragraph, inner products with
no subscripts are implicitly Lf,—inner products. Using Lemma 7 with A = 0, we compute

(Lyf. 8)—(f.Lyg)
Z(L, £, 80) + (L, £ 80) — (D, £,8) = (fo. Ly ©)
= (f, Lygp) = (E) £, 1) &) 1yl ity + Ly f 80) -
— (L, fp, &) +( ng’ TNfD Y1yl 1=y — (fo, £,8)
= (fp. £ Ly, 8p) + (fo-L£58D) — (T [+ Tp' &) 141yl 1yl + (Lyfrm80) + (LS5, 80) - - -
—(Ly fp, 8p) — (Lyfp780 +<Ty 8.7 D) =141yl 1-ly| — foL378D) — (fo. Ly£0)-

Finally, (fp, £,gp) = (£, fp, gp) because (L, ﬁé’y(lD)) is self-adjoint, and (34) follows.
The proof of Theorem 8 is complete. 0

[s)

Appendix: Proofs of auxiliary lemmas

A.1. Characterization of the Friedrichs extension — proof of Lemma 17.

Proof of Lemma 17. After adjusting Tp by a constant multiple of I (noting that this does not affect
any domains involved), we may assume that 7o > 1. The a-closure of D(Tp) is precisely the space V
described above, i.e., the Hilbert space closure of D(7Tp) with respect to the norm u — (o (u, u))'/2. Since
the domain of the Friedrichs extension is Dy as defined in (43), with Dr C V, it follows that if T is the
Friedrichs extension of Ty, then D(T) = Dr must be contained in V/, i.e., the a-closure of D(Ty).

Conversely, suppose that D(T') is contained in the a-closure of dom «, i.e., in V. We now claim that,
with & the extension of o to V,

a(u,v)=(Tu,v)y, ueD(T), velV.

We first do so when v € D(Tp). Since u € D(T') C V, it follows that there is a sequence u,, € D(Tp) such
that u,, — u. In that case, we also have & (1, v) =1lim,_, o, @ (1,,, v) =lim,,_, o @ (u,,, v). But we also have

lim a(u,, v) = hm (Toup, v)y = hm (Un, Tov) = (u, Tov)y = (u, Tv)y = (Tu, v)y.

n—oo

The second equality follows from the symmetry of Ty. The third equality follows since u,, —, u necessarily
implies u,, — u in H. The fourth equality follows from 7 being an extension of Ty. Finally, the last
equality follows from the symmetry of 7 on D(T), noting that both # and v belong to D(T'). Thus,
a(u,v) = (Tu,v)y foru € D(T) and v € dom «. To extend the result to v € V, we note that v € V
implies the existence of v, € D(Tp) such that v, —, v. Then

a(u,v) = lim a(u, v,) = hm (Tu,v)y = Tu,v)y.

n—oo

The second equality follows from the case previously considered, while the third follows since v, —4 v
necessarily implies v, — v in . Hence, we have & (u, v) = (Tu, v)y foru € D(T) and v € V. It follows,
for u € D(T), that

| (u, V)| < ITullwllvliz,
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i.e.,u € Dp. Thus, D(T) is contained in the domain of the Friedrichs extension. Since T is also self-adjoint,
it follows that T must be the Friedrichs extension itself, since the domain of a self-adjoint extensions cannot
be properly contained in the domain of another self-adjoint extension (this follows by taking adjoints). [

A.2. Proof of Lemma 18.
Proof of Lemma 18. Let s; = 21;21 1/ay; then s; — oo as j — oo by assumption. Let

1
Cl(cj) — ] sja
0 ifk>j.

if1<k<j,

Then

Zcm__z 1 _,

s a
J =1 %k
by construction, and

J

Zak|c(1) Z :__)0

k=

since s; — o0 by assumption. g

A.3. Proof of Lemma 28. Recall the expression
<m>2s—2y—2

i (m+L+9)! L+ p)!
m(y!)?

Cusy=
ey (m+€)! ¢!

S 20414
>0

(77)

We note, for y >0 and s > y + 1, that
1-2s<1—-2s42y=—1-2(s—y—1) <—1.

Noting the asymptotic
(x+p)!
x—oo x!(x +1)¥ o
it follows that the summand in (77) is bounded from above and from below by a multiple of
m+20+ 1+ " Em+L4+ DY L+ 1),

Thus, it suffices to establish upper and lower bounds on the sum

(m)* 2N A2+ 14 y) T+ 4+ 1Y (4 1Y
£>0

For the upper bound, note that
m+204+14+y>m+04+1 = @m+2+1+9)""F <m+e4+D>
since 1 —2s < 0, and

C+1<m+L+1 = @+ <m+L+1)
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since ¥ > 0. Hence, we can estimate

Cisy CImP 7723 (m+204+14+9) > m+L+1)7 (L + 1)
>0

< C<m>2S—2y—2 Z (m +E + 1)1—23‘4-2)/,
£>0

where C does not depend on m. Note that the sum does converge since 1 —2s + 2y < —1. Since

x> (m+x)1 721+ g decreasing, we have

m2—25+2y

o
Z(m+g+l)1—2s+2y </ (m+x)1—2S+2ydx:—.
=0 ~—Jo 2s =2y —2

It follows that
2—-2s+2y
Cm's‘ y < C<m>2S—2y—2 m < C ’
= 25 —2y —2 " 25 —2y —2

thus establishing the upper bound. For the lower bound, we assume without loss of generality that m is suf-
ficiently large, say m > y, and discard the (positive) terms for 0 < £ < m. For the remaining terms, we have

2U+2>m+L+1 = Z+1>%(m+£+1) = U+ >2Ym+L+1),
m+20+1+4y <2m+L+1) = m+2+1+)"">>2""Ym+e+1)'7%.

We conclude that

Conisy Z M) 223" (m+ 20+ 1+ ) > (m+ L+ 1)7 (L + 1)
>m
> 21723+)/C<m>2S72y72 Z (m 40+ 1)1725+2y’

£>m

) 1-2s42y

where ¢ does not depend on m. Again using that x — (m + x is decreasing, we have

3 2-2542
Z (m+€4 1172542 > /Oo (m +x) =242 dx = 2m 4 1)===7¥
t=m I 25 =2y =2

It follows that
222 (2m + 1)2—2s+2y

>c
25—2y—2

Cossy =272 e(m)
for all m > y, where

/
C

21-2s+y ( (m) )2‘v—2y—2 71-2s+y 5l=sty .
=

= in
2s =2y =2 \m>02m +1 2s =2y =2

This establishes the desired lower bound.
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