INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS
XII. GRID THEOREM FOR PINCHED GRAPHS

BOGDAN ALECU**Y, MARIA CHUDNOVSKY*!!, SEPEHR HAJEBI!, AND SOPHIE SPIRKLS!

ABSTRACT. Given ¢ € N, we say a graph G is c-pinched if G does not contain an induced
subgraph consisting of ¢ cycles, all going through a single common vertex and otherwise
pairwise disjoint and with no edges between them. What can be said about the structure
of c-pinched graphs?

For instance, 1-pinched graphs are exactly graphs of treewidth 1. However, bounded
treewidth for ¢ > 1 is immediately seen to be a false hope because complete graphs, complete
bipartite graphs, subdivided walls and line graphs of subdivided walls are all examples of
2-pinched graphs with arbitrarily large treewidth. There is even a fifth obstruction for
larger values of ¢, discovered by Pohoata and later independently by Davies, consisting of
3-pinched graphs with unbounded treewidth and no large induced subgraph isomorphic to
any of the first four obstructions.

We fuse the above five examples into a grid-type theorem fully describing the unavoidable
induced subgraphs of pinched graphs with large treewidth. More precisely, we prove that
for every ¢ € N, a c-pinched graph G has large treewidth if and only if G contains one of the
following as an induced subgraph: a large complete graph, a large complete bipartite graph,
a subdivision of a large wall, the line graph of a subdivision of a large wall, or a large graph
from the Pohoata-Davies construction. Our main result also generalizes to an extension of
pinched graphs where the lengths of excluded cycles are lower-bounded.

1. INTRODUCTION

1.1. Background. The set of all positive integers is denoted by N. Graphs in this paper
have finite vertex sets, no loops and no parallel edges. Let G be a graph. For X C V(G), we
denote by G[X] the subgraph of G induced by X, and by G \ X the induced subgraph of G
obtained by removing X. We use induced subgraphs and their vertex sets interchangeably.
For graphs G and H, we say G contains H if G has an induced subgraph isomorphic to H,
and we say G is H-free if G does not contain H. A class of graphs is hereditary if it is closed
under isomorphism and taking induced subgraphs.
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FIGURE 1. The 6-by-6 square grid (left) and the 6-by-6 wall Wy (right).

The treewidth of a graph G (denoted by tw(G)) is the smallest w € N for which there
exists a tree T as well as an assignment (7, : v € V(G)) of non-empty subtrees of T to the
vertices of GG with the following specifications.

(T1) For every edge uv € V(G), T,, and T, share at least one vertex.
(T2) For every x € V(T), there are at most w + 1 vertices v € V(G) for which
z € V(T,).

As one of the most extensively studied graph invariants, the enduring interest in treewidth
is partly explained by its role in the development of Robertson and Seymour’s graph minors
project, as well as the vast range of nice structural [15] and algorithmic [5] properties of
graphs of small treewidth.

Graphs of large treewidth have also been a central topic of research for several decades.
Usually, it is most desirable to certify large treewidth in a graph G by means of a well-
understood “obstruction” which still has relatively large treewidth, and which lies in G
under a certain containment relation. The cornerstone result in this category is the so-called
Grid Theorem of Robertson and Seymour [15], Theorem 1.1 below, which says that under
two of the most studied graph containment relations, namely the graph minor relation and
the subgraph relation, the only obstructions to bounded treewidth are the “basic” ones: the
t-by-t square grid for minors, and subdivisions of the t-by-t hexagonal grid for subgraphs.
The t-by-t hexagonal grid is also known as the t-by-t wall, denoted by Wy, (see Figure 1,
and also [3] for full definitions).

Theorem 1.1 (Robertson and Seymour [15]). For every t € N, every graph of sufficiently
large treewidth contains the t-by-t square grid as a minor, or equivalently, a subdivision of
Wixe as a subgraph.

It is therefore tempting to inquire about an analogue of Theorem 1.1 for another standard
graph containment relation: induced subgraphs. The basic obstructions in this case already
suggest that a more involved grid-type theorem is to be expected: complete graphs, complete
bipartite graphs, subdivided walls, and line graphs of subdivided walls are all examples of
induced-subgraph-minimal graphs with large treewidth. It is convenient to group all these
graphs together. Given ¢t € N, we say a graph H is a t-basic obstruction if H is isomorphic to
one of the following: the complete graph K, the complete bipartite graph K;,, a subdivision
of Wiy, or the line graph of a subdivision of W;y;, where the line graph L(F') of a graph F
is the graph with vertex set E(F), such that two vertices of L(F') are adjacent if and only
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FiGURE 2. The 4-basic obstructions.

if the corresponding edges of F' share an end (see Figure 2). We say a graph G is t-clean
if G does not contain a t-basic obstruction (as an induced subgraph). A graph class G is
clean if for every t € N, there is a constant w(t) € N (depending on G) for which every
t-clean graph in G has treewidth at most w(t). Since the basic obstructions have unbounded
treewidth (K1, Kiy, subdivisions of Wiy, and line graphs of subdivisions of W;y; are all
known to have treewidth t), it follows that for every hereditary class of bounded treewidth,
there exists some ¢ € N such that every graph in the class is t-clean. The converse would be
a particularly nice grid-type theorem for induced subgraphs: every hereditary class is clean.
This, however, is now known to be far from true, thanks to the numerous constructions
6, 7, 13, 16] of graphs with arbitrarily large treewidth which are ¢-clean for small values of
t (and we will take a closer look at the one from [7, 13] in a moment).

On the other hand, there are several hereditary classes that are known to be clean for
highly non-trivial reasons. As a notable example, Korhonen [11] proved that every graph
class of bounded maximum degree is clean, settling a conjecture from [1]:

Theorem 1.2 (Korhonen [11]). For every d € N, the class of all graphs with mazimum
degree at most d is clean.

One possible attempt at generalizing Theorem 1.2 is to look for clean classes under weaker
assumptions than bounded maximum degree. For instance, bounded maximum degree is
equivalent to excluding a fixed star as a subgraph, and in a recent joint work with Abrishami,
we extended Theorem 1.2 to graphs that exclude a fixed subdivided star as an induced
subgraph. In fact, we proved:

Theorem 1.3 (Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl [2]). Let H be a graph. Then
the class of all H-free graphs is clean if and only if every component of H is a subdivided
star.

Another natural candidate for a configuration forcing large-degree vertices consists of
several cycles sharing a single vertex. For ¢ € N| let us say a graph G is c-pinched if G does
not contain ¢ induced cycles, all going through a common vertex and otherwise pairwise
disjoint and anticomplete (for disjoint subsets X, Y of vertices in a graph G, we say that X
is anticomplete to Y if no edges between X and Y are present in GG, and that X is complete
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FIGURE 3. The graph PDg (left) and an expansion of PDg (right).

to Y if all edges with an end in X and an end in Y are present in (). Note that 1-pinched
graphs are forests, which are the only graphs with treewidth 1. For ¢ = 2, it is easily seen that
all basic obstructions are 2-pinched, and we will show that they are the only representatives
of large treewidth in 2-pinched graphs:

Theorem 1.4. The class of all 2-pinched graphs is clean.

One may then ask if the class of c-pinched graphs is clean for all ¢ € N. But this is false,
as shown by a 10-year-old construction due to Pohoata [13], also re-discovered recently by
Davies [7], which we describe below.

Given an integer k, we write N; to denote the set of all positive integers less than or equal
to k (so we have Ny = @ if and only if £ < 0). For s € N, let PD; be the graph whose vertex
set can be partitioned into a stable set S = {z1,..., 2}, and s pairwise disjoint induced
paths Ly, ..., L, with no edges between them, such that the following hold.

(PD1) For every i € Ny, L; has length s — 1 (and so exactly s vertices).
(PD2) For every i € N;, the vertices in the interior of L; may be enumerated from
one end to the other as ut--- - u’ such that for every j € N, z; has exactly
one neighbor in V(L;), namely u}.
See Figure 3. It is straightforward to show that for every s € N, PD; is a 4-clean, 3-pinched
graph of treewidth at least s. More generally, as we will prove in Theorem 3.1, the same
holds for every graph obtained from P D, by subdividing the edges of L1, ..., L, arbitrarily.
We refer to these graphs as expansions of PDy (see Figure 3). It follows that expansions
of the Pohoata-Davies graphs are “non-basic” obstructions to bounded treewidth in pinched
graphs. Strikingly, the converse turns out to hold, too. We prove that:

Theorem 1.5. For all ¢,s,t € N, every c-pinched graph of sufficiently large treewidth con-
tains either a t-basic obstruction or an expansion of PD;.

Since the basic obstructions and the graphs PDg have arbitrarily large treewidth, The-
orem 1.5 provides a full grid-type theorem for the class of c-pinched graphs for all ¢ € N.
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More generally, our main result in this paper, Theorem 3.2, renders a complete description
of the induced subgraph obstructions to bounded treewidth in the class of (¢, h)-pinched
graphs for all ¢, h € N; that is, graphs containing no ¢ induced cycles each of length at least
h + 2, all going through a common vertex and otherwise pairwise disjoint and anticomplete
(so a graph is c-pinched if and only if it is (¢, 1)-pinched). Indeed, the strengthening is direct
enough that Theorem 1.5 is the special case of Theorem 3.2 where h = 1. Note also that no
expansion of the graph PD, is 2-pinched. Therefore, Theorem 1.5 implies Theorem 1.4.

Let us remark that grid-type theorems involving non-basic obstructions, such as Theo-
rem 1.5 (or Theorem 3.2, rather), are as of yet quite rare. Indeed, the only other examples
we are aware of are the analogous result for “c-perforated” graphs — which we proved recently
[4] — and an result from [10] concerning the class of “circle graphs.” In fact, the proof of
Theorem 3.2 bears a close resemblance to that of the main result of [4], and crucially builds
on some tools developed there.

To elaborate, let G be the non-clean class for which we wish to prove a grid-type theorem.
Roughly speaking, the idea is to break the proof into two steps: first, we show that every
t-clean graph in the class with sufficiently large treewidth must contain an “approximate
version” of the non-basic obstruction we are looking for, and second, we perform further
analysis on the approximate version in pursuit of the exact one. Luckily, in the case of
pinched graphs, the approximate and the exact non-basic obstructions are actually quite
close. Note that the (expansions of) Pohoata-Davies graphs consist of a stable set and a
number of pairwise disjoint and anticomplete paths such that every vertex in the stable set
has a neighbor in every path. We call such a configuration in a graph G' a “constellation”
(a notion which was also used in [4] as an approximate non-basic obstruction for perforated
graphs).

As for the present paper, our first goal is to show that for all ¢, ¢, h € N, every t-clean (¢, h)-
pinched graph of sufficiently large treewidth contains a huge constellation. This involves a
useful result from an earlier paper in this series [2] concerning the “local connectivity” in
clean classes, accompanied by a collection of Ramsey-type arguments to tidy up an induced
subgraph of G with high local connectivity. The second step then is to turn a constellation
into an expansion of a Pohoata-Davies-like graph. To that end, for every path L in the “path
side” of the constellation, we consider the intersection graph I of the minimal subpaths of L
containing all neighbors of each vertex in the “stable set side” S. Provided that S is large
enough, I contains either a big stable set or a big clique. In the former case, on L, the
neighbors of the vertices from the stable set do not interlace, and the resulting “alignment”
of vertices according to their neighbors on L signals the emergence of a Pohoata-Davies-like
structure. In the latter case, several vertices in S turn out to have neighbors in several
pairwise disjoint and anticomplete subpaths of L. This eventually yields ¢ induced cycles
with a vertex in common and otherwise pairwise disjoint and anticomplete, a contradiction.

We take the two steps above in the reverse order in Sections 4 and 5, respectively. In
the next section, we discuss the connectivity result from [2] (together with its bells and
whistles). Section 3 introduces a variety of notions from [4] which we use in this paper, and
also features the statement of our main result, Theorem 3.2, of which we give a complete
proof in Section 6.
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2. BLOCKS

We begin with a couple of definitions. Let G = (V(G), E(G)) be a graph. For an induced
subgraph H of G and a vertex x € V(G), we denote by Ny (x) the set of all neighbors of z
in H, and write Ny[x] = Ny (z) U {z}. A stable set in G is a set of pairwise non-adjacent
vertices. A path in G is an induced subgraph of G which is a path. If P is a path in G,
we write P = pj-----pp to mean that V(P) = {p1,...,pr} and p; is adjacent to p; if and
only if |s — j| = 1. We call the vertices p; and py the ends of P and write 0P = {p1, px}-
The interior of P, denoted P*, is the set P\ OP. For x,y € V(P), we denote by x-P-y the
subpath of P with ends x,y. The length of a path is its number of edges. Similarly, a cycle in
G is an induced subgraph of G that is a cycle. If C'is a cycle in G, we write C' = ¢4-- - - - Cr-C1
to mean that V(C) = {c1,...,c} and ¢; is adjacent to ¢; if and only if | — j| € {1,k — 1}.
The length of a cycle is also its number of edges. For a collection P of paths in GG, we adopt
the notations V(P) = Upep V(P), P* = Upep P* and OP = Upep OP.

Let £ € N and let G be a graph. A k-block in G is a pair (B,P) where B C V(G)
with |B| > k and P : (f) — 2V is map such that Pp,, = P({z,y}), for each 2-
subset {x,y} of B, is a set of at least k pairwise internally disjoint paths in G from z to
y. We say that (B, P) is strong if for all distinct 2-subsets {z,y},{2’,y'} of B, we have
V(Prag) NV (P ) = {z,y} N {a’,y'}; that is, each path P € Py, is disjoint from each
path P’ € Py, except P and P’ may share an end. In [2], with Abrishami we proved the
following:

Theorem 2.1 (Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl [2]). For all k,t € N, there
is a constant £ = &(k,t) € N such that for every t-clean graph G of treewidth more than &,
there is a strong k-block in G.

The following result, which guarantees that the graphs we work with exclude “short sub-
divisions” of large complete graphs, paves the way for our application of Theorem 2.1. Recall
that a subdivision of graph H is a graph H’ obtained from H by replacing the edges of H
with pairwise internally disjoint paths of non-zero length between the corresponding ends.
Let r € NU{0}. An (< r)-subdivision of H is a subdivision of H in which the path replacing
each edge has length at most r + 1.

Theorem 2.2 (Dvorak, see Theorem 6 in [8]; Lozin and Razgon, see Theorem 3 in [12]).
For every graph H and all d € NU {0} and t € N, there is a constant m = m(H,d,t) € N
with the following property. Let G be a graph with no induced subgraph isomorphic to a
subdivision of H. Assume that G contains a (< d)-subdivision of K,, as a subgraph. Then
G contains either K; or K.

3. BUNDLES AND CONSTELLATIONS

In this section we state our main result, Theorem 3.2. We start with a few definitions that
first appeared in [4].

Let G be a graph and let [ € N. By an [-polypath in G we mean a set L of [ pairwise
disjoint paths in G. We say L is plain if every two distinct paths L, L' € £ are anticomplete
in G. Also, two polypaths £ and £’ in G are said to be disentangled if V(L) NV (L) = @.
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FIGURE 4. Top: a (5, 1)-constellation ¢ with S, = {1, s, x3, 4, x5} and

L. = L. Note that ¢ is 3-meager (with u being the only vertex in L with

three neighbors in S;) and 6-hollow (with the z3-gap v-L-w of length five
being the longest). Bottom: a 5-alignment.

For s € N, an (s,[)-bundle in G is a pair b = (S, Ly) where S, C V(G) with |Sy| = s and
Ly is an [-polypath in G (note that S, and V(L) are not necessarily disjoint). If [ = 1, say
Ly, = {Ly}, we also denote the (s, 1)-bundle b by the pair (Sy, Ly). Given an (s,)-bundle b
in G, we write V(b) = S, UV/(Ly), and for every L € Ly, we denote by by, the (s, 1)-bundle
(Se, L). Also, we say that b is plain if the [-polypath Ly is plain. For two bundles b and b’
in a graph G, we say b and b’ are disentangled if V(b) NV (b') = @.

An (s,1)-constellation in G is an (s,l)-bundle ¢ = (S, L,) in G such that S, is a stable set
(of cardinality s) in G\ V(L,), and every s € S, has a neighbor in every path L € L,.

Let ¢ be an (s, 1)-constellation in a graph G. For a vertex x € S, by an x-gap in ¢ we
mean a path P in L. (possibly of length zero) where z is adjacent to the ends of P and
anticomplete to P*. For d € N, we say ¢ is d-hollow if for every z € S, every z-gap in ¢ has
length less than d. Also, we say ¢ is d-meager if every vertex in L. is adjacent to at most
d vertices in S, (see Figure 4). In general, for an (s,[)-constellation ¢, we say ¢ is d-hollow
(d-meager) if for every L € L., ¢, is d-hollow (d-meager).

For s € N, an s-alignment in G is a triple (S, L, 7) where (S, L) is an (s, 1)-constellation
in G and 7 : Ny — S is a bijection such that for some end u of L, the following holds.

(AL) For all 4, j € Ny with i < j, every neighbor v; € L of 7(i) and every neighbor
v; € L of 7(j), the path in L from w to v; contains v; in its interior. In
other words, traversing L starting at u, all neighbors of 7(7) appear before all
neighbors of 7(j).

See Figure 4. In particular, (S, L) is 1-meager.
For h,s € N, an (s, h)-array in a graph G is a plain, h-hollow (s, s)-constellation a in G
which satisfies the following.

(AR) There exists a bijection 7 : Ny — S, such that for every L € Ly, (Sq, L, 7) is
an s-alignment in G.
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FiGURE 5. An induced subgraph of W, isomorphic to a subdivision of Ky
with exactly one unsubdivided edge.

See Figure 6. It is readily observed that for X C V(G), if there is an (s, 1)-array a in G with
V(a) = X, then G[X] contains an expansion of the graph PDjy, and if G[X] is isomorphic to
an expansion of PD for some X C V(G), then there is an (s, 1)-array a in G with V(a) = X.
Moreover, we have:

Theorem 3.1. Let h,s € N and let G be a graph. Let a be an (s,h)-array in G. Then
G[V(a)] is a 4-clean, (3, h)-pinched graph of treewidth at least s.

Proof. Let J = G[V(a)]. Note that J contains K, s as a minor (by contracting each path
L € L, into a vertex), which implies that tw(.J) > s. For the rest of the proof, let 7 : Ny — S,
be the bijection satisfying (AR).

Assume that J has an induced subgraph isomorphic to a subdivision of Wj,4 or the line
graph of a subdivision of Wy,4. Note that Wy.4 has an induced subgraph isomorphic to
a subdivision of K, with exactly one unsubdivided edge (see Figure 5). Thus, J has an
induced subgraph W that is isomorphic to either a subdivision of K, with at most one
unsubdivided edge or the line graph of a subdivision of K, with at most one unsubdivided
edge. In either case, it is straightforward to observe that for every vertex w € V(W), the
graph W \ Ny [w] is connected. On the other hand, W is an induced subgraph of J with
tw(W) > 3 (because W contains Ky as a minor). Consequently, we have |S, N V()| > 3;
say wy,wa, w3 € Sy N V(W) such that m(wy) < w(we) < m(ws). But now W \ Ny [ws] is
disconnected, a contradiction. We deduce that J has no induced subgraph isomorphic to a
subdivision of Wy, or the line graph of a subdivision of Wj.4. Moreover, it is easy to check
that J is Ky-free and K, 3-free. Hence, J is 4-clean.

It remains to show that J is (3, h)-pinched. Suppose for a contradiction that there are
three cycles Cy, Cy, C5 in J of length at least h+2 with C;NCyNCs = {2} and C; \ {z}, Cy\
{z},C3\ {x} are pairwise disjoint and anticomplete. Since x has degree at least six in J, it
follows that z € S,. Also, since a is h-hollow, it follows that there is no cycle of length at least
h+2in J[V(L,U{x})]. Thus, for every [ € {1,2,3}, we may pick x; € C; N (S, \ {z}) # 2.
By symmetry, we may assume that there are distinct I1,1, € {1,2,3} for which 7=1(z) is
smaller than 7~1(z;,) and 7=!(zy,). In particular, we may assume without loss of generality
that 7~ 1(z) < 7 '(21) < 7 '(x3). But then z,z, € Cy are in different components of
J\ Ny[x1] (see Figure 6), which violates the fact that C; \ {z} and C5 \ {z} are disjoint and
anticomplete. This completes the proof of Theorem 3.1. [ |
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FIGURE 6. A (3,4)-array (vertex labels x, x; and x5 are relevant in the proof
of Theorem 3.1).

Now we can state the main result of this paper:

Theorem 3.2. For all ¢,h,s,t € N, there is a constant T = 7(c, h,s,t) € N such that for
every t-clean (c, h)-pinched graph G of treewidth more than T, there is an (s, h)-array in G.

In view of Theorem 3.1, Theorem 3.2 yields, for all ¢,h € N, a complete description of
unavoidable induced subgraphs of (¢, h)-pinched graphs with large treewidth. Moreover, as
mentioned above, there is an (s, 1)-array in a graph G if and only if G' contains an expansion
of PD,. So Theorem 1.5 is the special case of Theorem 3.2 for h = 1. We also point out
that for s > 4 and h € N, if a graph G is (2, h)-pinched, then there is no (s, h)-array in G.
Hence, Theorem 1.5 implies a strengthening of Theorem 1.4, that for every h € N, the class
of all (2, h)-pinched graphs is clean.

4. DEALING WITH PLAIN CONSTELLATIONS
In this section, we prove the following:

Theorem 4.1. For all ¢,h,s,t € N, there are constants o = o(c,h,s,t) € N and \ =
A, h, s, t) € N with the following properties. Let G be a (c, h)-pinched graph which does not
K, and K. Assume that there exists a plain (o, \)-constellation ¢ in G. Then there is an
(s, h)-array in G.

We need a couple of lemmas, beginning with the following. Although we have proved a
similar result in [4], we include the proof here as it is short.

Lemma 4.2. Let a,d,s,l € N and let G be a graph. Assume that there exists a d-meager
(a'1(s +d(l — 1)), 1)-constellation (Sy, Lo) in G. Then one of the following holds.
(a) There exists an a-alignment (S, L,7) in G with S C Sy and L C Ly.
(b) There exists a plain (s,l)-constellation ¢ in G such that Sc C Sy and L C Ly for
every L € L.. In particular, ¢ is also d-meager.

Proof. For fixed a,d and s, we proceed by induction on . Note that if [ = 1, then (S, Lo)
is an (s, 1)-constellation in G satisfying Lemma 4.2(b). Thus, we may assume that [ > 2.
Let u,v be the ends of L. For every vertex x € Sy, traversing L, from u to v, let u, and
v, be the first and the last neighbor of x in Ly (possibly u, = v,), and let L, = uz-Lo-v,.
Let Y be a subset of Sy for which the paths {L, : y € Y} are pairwise disjoint, such
that |Y[ is as large as possible, and subject to this, > ¢y |u-Lo-u,| is as large as possible.
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Clearly, if |[Y| > a, then Lemma 4.2(a) holds. Therefore, we may assume that |Y| < a. Let
W = {u, : y € Y}; then we have |W| < a. We claim that:

(1) For every x € Sy, we have L, "W # &.

Suppose for a contradiction that for some = € Sy, we have L, "W = &. Then = ¢ Y. By
the maximality of Y, there exists y € Y such that L,NL, # @. Since L,NW = &, it follows
that u, ¢ L, (and so u, € Ly), and L, N L, = @ for all y' € Y \ {y}. In particular, we have
|u-Lo-uy| > |u-Lo-u,|, and the paths {L, : v/ € (Y \ {y}) U{z}} are pairwise disjoint. But
now (Y \ {y}) U{z} is a better choice than Y, a contradiction. This proves (1).

Since |Sp| = a'"'(s + (I — 1)d) and |W| < a, it follows from (1) that there exists A C S
with |A| = a'~2(s+d(l—1)) and a vertex w € W, such that for every z € A, we have w € L,.
On the other hand, since (S, Lg) is d-meager, there are at most d vertices in A which are
adjacent to w, and so

A\ Na(w)| > a'2(s +d(I — 1)) — d > a'2(s + d(l — 2)) > 0.

It follows that Lo \ {w} has two components, say L, and Lo, and there exists B C A with
|B| = a'%(s + d(l — 2)) such that every vertex in B has a neighbor in L; and a neighbor in
Ly. Tt follows that (B, L;) and (B, Ly) are both d-meager (a'~2(s+d(l —2)), 1)-constellations
in G. From the induction hypothesis applied to (B, L;), we deduce that either there exists
an a-alignment (S, L) in G with S C B C Sy and L C L; C Ly, or there exists a plain
(s,{ — 1)-constellation ¢; in G such that S, € B C Sy and L C L; C L for every L € L.
In the former case, Lemma 4.2(a) holds, as required. In the latter case, ¢ = (S, L, U{L2})
is a plain (s,1)-constellation in G such that S; = S;; € Sy and L C Ly U Ly C Ly for every
L € L., and so Lemma 4.2(b) holds. This completes the proof of Lemma 4.2. |

Indeed, for pinched graphs, it turns out that Lemma 4.2(a) is the only possible outcome:

Lemma 4.3. Let a,c,d,h € N and let G be a (¢, h)-pinched graph. Assume that there exists
a d-meager (a*¥=1d(h + 2cdh — 1),1)-constellation (So, Ly) in G. Then there exists an
a-alignment (S, L,m) in G with S C Sy and L C L.

Proof. Suppose not. Then applying Lemma 4.2 to (S, Lo), it follows that there exists a plain
(dh, 2cdh)-constellation ¢ in G such that S, C Sy and L C L for every L € L,. In particular,
¢ is d-meager. Let u be an end of Lg. Let £, = {L; : i € No.g,} and let u;, v; be the ends of
L; for each i € Ny.4p, such that traversing Ly starting at u, the vertices uy, vy, ..., Uscdn, V2cdn
appear on Lyg in this order. For each i € Ny.gp—1, let v] be the neighbor of v; in Lo\ L;. Since
¢ is plain, it follows that v;-Lg-u;41 is a path of length at least two in Ly whose interior is
disjoint from {u; : i € Noegp } U {v; : i € Noggp } and contains v

For every i € Ny, since ¢ is a constellation, every vertex in S, has a neighbor in L;. Let
R; be the shortest path in L; containing v; such that every vertex in S, has a neighbor in
R;. Since ¢ is d-meager and |S,| = dh, it follows that |R;| > h for all i € Na.g,. Let w; be
the end of R; distinct from v;. Then the minimality of R; implies that there exists a vertex
x; € S, that is adjacent to w; and anticomplete to R; \ {w;}. Since |S.| = dh, it follows that
there exist x € Sy as well as two disjoint c-subsets {iy, : k € N.} and {jx : £ € N.} of Nocgp,
such that 7; < j; <--- <. < j. and we have x;, =z, =« for all k € N..
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xT

FIGURE 7. Proof of Lemma 4.3 (dashed lines depict paths of arbitrary
length, and highlighted paths have length at least h).

For each k € N, traversing v; -Lo-wj, starting at vj , let w; be the first neighbor of
x in vj -Lo-wj,. Since x is adjacent to wy,, it follows that wj, exists (See Figure 7). Let
Cr = z-w;,-Lo-wj-x. Then Cj is a cycle of length at least h+2 in G, as Ry U{v; } € Cy and
|Ry| > h. Now C1,...,C, are c cycles of length at least h+2 in G with C;N---NC, = {z}.
Also, since Cy \ {z},...,C. \ {z} C L are contained in pairwise distinct component of
Lo\ {v}, : k € N.}, it follows that Cy \ {x},...,C. \ {#} C L are pairwise disjoint and
anticomplete in GG. This violates the assumption that G is (c, h)-pinched, hence completing
the proof of Lemma 4.3. [ |

We also need the following quantified version of Ramsey’s Theorem. This has appeared
in several references; see, for instance, [9].

Theorem 4.4 (Ramsey [14], see also [9]). For all ¢,s € N, every graph G on at least ¢*
vertices contains either a clique of cardinality ¢ or a stable set of cardinality s.

From Theorem 4.4, we deduce that:

Lemma 4.5. Let l,s,t € N, let G be a graph and let ¢ be a (s,1+ (st)')-constellation in G.
Then one of the following holds.
(a) G contains Ky or K.
(b) There exists L C L. with |L]| =1 such that (S, L) is a t-meager (s,l)-constellation
inG.

Proof. Suppose that Lemma 4.5(a) does not hold. For every L € L, let t; be the largest
number in Ny for which some vertex u; € L has at least ¢ neighbors in S.. It follows that:

(2) We have |{L € L. :ty, > t}| < (st)*.

Suppose not. Let S C {L € L, : t; >t} with |S| = (st)!. Then for every L € S, we may
choose uy, € L and T, C S, such that |T| =t and uy, is complete to Tp, in G. Since |S,| = s,
it follows that there exist T C S, and 7 C S with |T'| =t and |T| = t*, such that for every
LeT,wehave Ty =T. Let U ={ur : L € T}. Then T and U are disjoint and complete in
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G. Also, since G is K;-free and |U| = t', it follows from Theorem 4.4 that there is a stable
set U' C U in G with |U’| = ¢. But then G[T U U] is isomorphic to K;;, a contradiction.
This proves (2).

Now the result is immediate from (2) and the fact that |£.| = [ +t's’. This completes the
proof of Lemma 4.5. [ |

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We claim that:
o =o(c,h,s,t) = s> (h 4 2cht — 1);

A=\, h,s,t) = cs(s!)o® + (ot)

satisfy Theorem 4.1. Let G be a t-clean (c, h)-pinched graph which does not contain K; and
K. Let ¢ be a plain (o, \)-constellation in G. By the choice of o and A\, we may apply
Lemma 4.5 to ¢, and deduce that Lemma 4.5(b) holds, that is, there exists Ly C L, with
|Lo| = cs(s!)o® such that for every L € Ly, (S,, L) is a t-meager, plain (o, 1)-constellation in
G. In particular, since o = s*M=(h + 2cht — 1), we may apply Lemma 4.3 to (S, L) to
show that:

(3) For every L € Ly, there exists an s-alignment (Sp,Qp,7r) in G with Sp C S, and
Qr C L.

Note that |Sp| = s for all L € L£y. Recall also that |S;| = o and |Ly| = es(s!)o®. This,
along with a pigeon-hole argument, implies immediately that:

(4) There exists S C S, with |S| ='s, and L C Ly with |L| = ¢s and m : Ny — S such that
for every L € L, (S,Qr,m) is an s-alignment in G.

We further deduce that:

(5) There exists S C L with |S| = s such that for every L € S, the (s,1)-constellation
(S,Qr) is h-hollow.

To see this, since |S| = s and |L| = ¢s, it suffices to show that for every x € S, there are
fewer than ¢ paths L € £ for which there is an z-gap in (S, Q) of length at least h. Suppose
for a contradiction that for some x € S, there are ¢ distinct paths Lq,..., L. € £ such that
for every i € N, there is an x-gap P; in (S5, Qy,) of length at least h; let y;, z; be the ends of
P;. Tt follows that C; = z-y;-P;-2z;-x is a cycle of length at least h + 2 in G. Now C',...,C,
are c¢ cycles of length at least h+ 2 in G with C;N---NC, = {z}. Moreover, since ¢ is plain,
Ci\{z},...,C.\{z} C V(L) are pairwise disjoint and anticomplete in G. This violates the
assumption that G is (¢, h)-pinched, and so proves (5).

Let a = (S5,S) where S comes from (4) and S comes from (5). Also, let © be as in (4).
It follows from (4) and (5) that a, 7 satisfies (AR). Hence, a is an (s, h)-array in G. This
completes the proof of Theorem 4.1. [ |
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5. OBTAINING A PLAIN CONSTELLATION
This section contains the main ingredient of the proof of Theorem 3.2:

Theorem 5.1. For all ¢, h,l,s,t € N, there is a constant Q = Q(c, h,l,s,t) € N with the
following property. Let G be a (c, h)-pinched graph. Assume that there exists a strong Q2-block
in G. Then one of the following holds.

(a) G contains either Ky or K.
(b) There exists a plain (s,l)-constellation in G.

Our road to the proof of Theorem 5.1 passes through a number of definitions and lemmas
from [4], beginning with two useful Ramsey-type results for polypaths:

Lemma 5.2 (Alecu, Chudnovsky, Hajebi, Spirkl; see Lemma 5.2 in [4]). For all
b, f,g,m,n,t € N and s € NU {0}, there is a constant 5 = B(b, f,g,m,n,s,t) € N with

the following property. Let G be a graph and let B be a collection of 5 pairwise disentangled
(b,2b(g — 1) + f)-bundles in G. Then one of the following holds.
(a) G contains either Ky or K.
(b) There exists M C B with |N| = n as well as S C Upem\m So with |S| = s, such
that for every b € N, there exists Gy, C Ly with |Gy| = g for which (S,Gy) is an
(s, g)-constellation in G.
(c) There exists M C B with |M| = m as well as Fo C Ly with |Fy| = f for each b € M,
such that for all distinct b,b" € M, Sy is anticomplete to Sy UV (Fy) in G.

Lemma 5.3 (Alecu, Chudnovsky, Hajebi, Spirkl; see Lemma 5.3 in [4]). For all a,g € N,
there is a constant ¢ = p(a,g) € N with the following property. Let G be a graph and
let Fi,...,F, be a collection of a pairwise disentangled p-polypaths in G. Then for every
i € N,, there ezists a g-polypath G; C F;, such that for all distinct i,i" € N,, either V(G;) is
anticomplete to V(Gy) in G, or for every L € G; and every L' € Gy, there is an edge in G
with an end in L and an end in L'

We continue with a few definitions from [4]. Let G be a graph, let d € NU {0} and let
r € N. For X C V(G), by a (d,r)-patch for X in G we mean a (1,r)-bundle p in G where:
(P1) Sp C V(G)\ V(Ly);
(P2) every path L € L, has length at least d; and
(P3) for every L € L,, one may write 0L = {x,y;} such that L N X = {z.} and
Np(Sy) = {w}-
Also, by a (d,r)-match for X in G we mean an r-polypath M in G such that
(M1) every path L € M has length at least d; and
(M2) VIM)N X = oM.
See Figure 8. We also need:

Lemma 5.4 (Alecu, Chudnovsky, Hajebi, Spirkl; see Lemma 7.2 in [4]). For all
d,lym,r,r',s € N, there is a constant n = n(d,l,m,r,7v’,s) € N with the following prop-
erty. Let G be a graph, let X C V(G) and let p be a (d,n)-patch for X in G. Then one of
the following holds.
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xr L YL,

FIGURE 8. A (3,6)-patch for X (left) and a (7, 3)-match for X (right).

(a) There exists a plain (s,l)-constellation in G.

(b) G contains a (< d + 1)-subdivision of K., as a subgraph.

(c) There exists a plain (2(d + 1),r)-match M for X in G such that V(M) C V(p).
(d) There exists a plain (d,r")-patch q for X in G such that V(q) C V(p).

We can now prove the main result of this section:

Proof of Theorem 5.1. Let H be the unique graph (up to isomorphism) consisting of ¢ in-
duced cycles of length h + 2, all sharing a common vertex and otherwise pairwise disjoint
and anticomplete. Let m = m(H,h — 1,t) be as in Theorem 2.2 (note that m only depends
on ¢, h,t).

Let v = (c(h + 2))2M=1(h 4 2chl — 1); then v > 1 (in fact, it holds that v > 6). Let
© = (e, s(y+ 21 —2)!) be as in Lemma 5.3. Let

B=081,0,1c1,s,t)
be as in Lemma 5.2, and let
n=mnlh—1,1,m,c,2(l — 1) + ¢, s)
be as in Lemma 5.4. We prove that
Q= Q(c, h,l,s,t) = max{m’™ n}

satisfies Theorem 5.1.

Let G be a (¢, h)-pinched graph such that there is a strong Q-block in G. Then G does
not contain a subdivision of H. Suppose for a contradiction that G contains neither K; nor
K, and there is no plain (s, [)-constellation in G. By Theorem 2.2 and the choice of m, G
contains no subgraph isomorphic to a (< h — 1)-subdivision of K,,. It is convenient to sum
up all this in one statement:
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(6) The following hold.

o (G does not contain K; or K.
o There is no plain (s,l)-constellation in G.
e (G does not contain a subgraph isomorphic to a (< h — 1)-subdivision of K,,.

Let B be a strong (2-block in G and for every 2-subset {z,y} of B, let Py, be the
corresponding set of € paths in G from x to y. Let J be a graph with vertex set B such that
two distinct vertices z,y € B are adjacent in J if and only if there exists Py, 1 € Pypyy of
length at most h. Since |V (J)| = |B| > m?*, it follows from Theorem 4.4 that J contains
either clique C' on m vertices, or a stable set on 5 + 1 vertices. In the former case, the
union of the paths Py, for all distinct x,y € C forms a subgraph of G isomorphic to a
(< h — 1)-subdivision of K,,, which violates the third bullet in (6). Therefore, J contains a
stable set on § + 1 vertices. This, along with the choice of €2, implies that one may choose
B + 1 distinct vertices z,y1,...,ys € V(G) as well as, for each i € Ng, a collection P; of n
pairwise internally disjoint paths in G from x to y;, such that:

o for every ¢ € Ng, every path P € P; has length at least h + 1 > 2; and
o V(P)\{z},...,V(Ps) \ {z} are pairwise disjoint in G.

For each i € Ng, let £; = P}, and for every L € L;, let x1, and yy, be the (unique) neighbors
of z and y; in L, respectively. Thus, we have OL = {x,y.} (note that x,y; might be the
same, but they are distinct from both x and ;). Let X; = {x : L € L;}. It follows that L;
is an n-polypath in G, and

o y; € V(G)\ V(Li);

e every path L € £; has length at least h — 1; and

o LNX,={zy}and Np(y;) = {yr} for every L € L,.
Therefore, by (P1), (P2) and (P3), for every i € Ng, the (1,7n)-bundle p; = ({y:}, £;) is an
(h — 1,n)-patch for X; in G. In addition, we show that:

(7) For every i € Ng, there is a plain (h — 1,2(1 — 1) + ¢)-patch q; for X; in G with
Vi(a;) € V(pi) € V(G)\ {z}.

By the choice of 1, we can apply Lemma 5.4 to X; and p;. Note that Lemma 5.4(a) and
Lemma 5.4(b) violate the second and the third bullets of (6), respectively. Assume that
Lemma 5.4(c) holds. Then there is a plain (2h, c¢)-match M; for X; in G with V(M;) C
V(p;) € V(G)\ {y:}. In particular, for every M € M;, Cpy = M U {x} is a cycle of length
at least 2h + 2 in G. But now {Cy, : M € M,} is a collection of ¢ cycles of length at least
2h+2 in G where Nyrepm, Cu = {2} and the sets {Cy \ {2} : M € M} are pairwise disjoint
and anticomplete in G, violating the assumption that G is (c, h)-pinched. So Lemma 5.4(d)
holds. This proves (7).

For each i € Ng, let g, be as in (7) and let Sy, = {2;} (note that z; may or may not belong
to X; € Ng(z)). Now, B = {q1,...,q5} is a collection of § pairwise disentangled plain
(1,2(l — 1) + p)-bundles in G. Given the choice of 3, we can apply Lemma 5.2 to 8. Note
that Lemma 5.2(a) directly violates the first bullet of (6). Also, if Lemma 5.2(b) holds, then
there is an (s, [)-constellation ¢ in G with L. C L, for some ¢ € Ng; in particular, ¢ is plain.
But this violates the second bullet of (6). It follows that Lemma 5.2(c) holds, that is, there



16 INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS XII.

exists I C Ng with |I| = ¢ as well as F; C L,, with |F;| = ¢ for each i € I, such that for all
distinct 4,4" € I, z; is anticomplete to V' (Fy) U {2z} in G. We further deduce that:

(8) There are distinct i,i' € I for which there exist s(vy + 21 — 2)'-polypaths G; C F; and
Gy C Fir such that for every L € G; and every L' € Gy, there is an edge in G with an end in
L and an end in L'.

Suppose not. Then by the choice of ¢, we may apply Lemma 5.3 to the y-polypaths
{F; i € I} and deduce that for every i € I, there exists a s(y + 2/ — 2)-polypath G; C F;,
such that for all distinct i,i" € N, the sets V(G;) and V(Gy) are anticomplete in G. Since
s(y+20—2)! >~ > 1, it follows that for each i € I, there is a cycle C; in G[V (G;) U{z, 2;}] of
length at least h+ 2 where x € C;. Also, the sets {V(G;) U{z;} : i € I} are pairwise disjoint
and anticomplete in GG, which in turn implies that the sets {C; \ {z} : ¢ € I} are pairwise
disjoint and anticomplete in G. This yields a contradiction with the assumption that G is
(¢, h)-pinched, and so proves (8).

Henceforth, let 4,7’ € I and G;, Gy be as in (8). Since |G;| = |Gy| = s(y+21—2)! > y+21—2,
we may choose G’ C Gy with |G| = v+ 2] — 2. Write G = G;. It follows that both G and
G’ are plain and disentangled polypaths in GG. For every path L € G, let us say L is rigid if
there exists a vertex x, € L as well as G; C G’ with |G} | = [ such that x; has a neighbor in
every path in G;. We claim that:

(9) Not all paths in G are rigid, that is, there is a path Ly € G such thatl every vertex in Lo
has neighbors in more than | — 1 paths in G'.

Suppose not. For every L € G, let z1, € L and G; C G’ with |G} | = [ be as in the definition
of a rigid path. Since |G| = s(y + 21 — 2)! and |G'| = v + 2] — 2, it follows that there exists
S C G with |S] = s and £ C G with |£| = [ such that for every L € S, we have G = L.
Let S ={xy : L € §}. Then every vertex in S has a neighbor in every path in £. But now
since G and G’ are plain and disentangled, it follows that (.S, £) is a plain (s, [)-constellation
in G, a contradiction with the second bullet of (6). This proves (9).

By (9), there exists a path Ly € G that is not rigid. Let T be the set of all paths L' € G’
for which some vertex in 0Ly has a neighbor in L' in G. Then by (9), we have |T| < 21 — 2.
Consequently, there are v distinct paths Lj,..., L] € G’ such that for every i € N,, the
ends of Ly are anticomplete to L in G. For each i € N,, let z; be the end of L, which is
adjacent to x. By (8), traversing L) starting at z;, we may choose z; € L} to be the first
vertex in L] with a neighbor in L§. Let Sy = {z} : i € N,}. It follows that every vertex
in Sy has a neighbor in Ly while Sy is anticomplete to the ends of Ly, and so (S, L) is a
(v, 1)-constellation in G. Also, by (9), (So, Lo) is ({ —1)-meager. This calls for an application
of Lemma 4.3 to (Sy, Lo), which implies that there exists a c¢(h + 2)-alignment (S, L, 7) in
G with S C Sy and L C Ly. In fact, since Sy is anticomplete to 0Lg, we may assume that
LCL:

Let u be the end of L for which (S, L, 7) satisfies (AL). For every i € N, choose &;,;,6; €
N, such that

a. =nw(i(h+2) —h—1);
g, = m(i(h+2) — 1);
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zp = w(i(h+2));
Traversing L starting at u, let u; be the last neighbor of 2 in L, let v; be the first neighbor of

rg in L, and let w; be the first neighbor of xy in L. It follows that u, uy, v, wy ..., ue, ve, we
are pairwise distinct, appearing on L in this order. Also, for every i € N., P, = wu;-L-v;
is a path of length at least h in G, and Py, ..., P, are contained in distinct components of

L\ {w; :i € N.}. Thus, Py,..., P. are pairwise disjoint and anticomplete in G. Now, for
every ¢ € N, consider the cycle

_ / / . . / _ / _ _
Ci = v-w.,-L -7 ~u;-Pr-vi-5 - Ls -5,

Then C,...,C, are c cycles in GG each of length at least h 4 4, all going through x and
otherwise pairwise disjoint and anticomplete. This contradicts the assumption that G is
(¢, h)-pinched, hence completing the proof of Theorem 5.1. [ |

6. THE END
We conclude the paper with the proof of our main result, which we restate:

Theorem 3.2. For all ¢,h,s,t € N, there is a constant 7 = 7(c, h,s,t) € N such that for
every t-clean (c, h)-pinched graph G of treewidth more than T, there is an (s, h)-array in G.

Proof. Let 0 = o(c, h,s,t) and A = X(c, h, s,t) be as in Theorem 4.1. Let Q = Q(c, h, A, 0,t)
be as in Theorem 5.1. We define 7(c, h, s,t) = £(£2,t), where £(-, -) comes from Theorem 2.1.
Let G be a t-clean (c, h)-pinched graph of treewidth more than 7. By Theorem 2.1, G
contains a strong €)-block. Therefore, since G' does not contain K; and K4, it follows from
Theorem 5.1 that there exists a plain (o, A)-constellation in G. But now by Theorem 4.1,
there is an (s, h)-array in G, as desired. [ |
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