Journal of Computational Chemistry

| RESEARCH ARTICLE CEIEED

'.) Check for updates

WILEY

68’"&'\"'PUTAT|0NAL
HEMISTRY

Examining the Impact of Local Constraint Violations
on Energy Computations in DFT

Vaibhav Khanna!

| Bikash Kanungo? | Vikram Gavini*3 | Ambuj Tewari* | Paul M. Zimmerman!

!Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA | 2Department of Mechanical Engineering, University of Michigan,

Ann Arbor, Michigan, USA | 3Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan, USA | “Department of

Statistics, University of Michigan, Ann Arbor, Michigan, USA

Correspondence: Paul M. Zimmerman (paulzim@umich.edu)

Received: 29 August 2024 | Revised: 28 October 2024 | Accepted: 2 December 2024

Funding: This work was supported by U.S. Department of Energy.

Keywords: exact conditions | exchange-correlation (XC) functionals | extent of violation index (EVI) | local constraints density functional theory (DFT)

ABSTRACT

This work examines the impact of locally imposed constraints in Density Functional Theory (DFT). Using a metric referred to as
the extent of violation index (EVI), we quantify how well exchange-correlation functionals adhere to local constraints. Applying
EVIs to a diverse set of molecules for GGA functionals reveals constraint violations, particularly for semi-empirical functionals.

We leverage EVIs to explore potential connections between these violations and errors in chemical properties. While no correla-

tion is observed for atomization energies, a significant statistical correlation emerges between EVIs and total energies. Similarly,

the analysis of reaction energies suggests weak positive correlations for specific constraints. However, definitive conclusions

about error cancellation mechanisms cannot be made at this time. These observations revealed by EVIs may be useful for con-

sideration when designing future generations of semilocal functionals.

1 | Introduction

Density Functional Theory (DFT) has become an indispensable
tool used extensively by chemists, physicists and material scien-
tists [1]. Under the Kohn-Sham ansatz [2] a set of non-interacting
single-particle states are generated to represent the electron den-
sity. Most components of the DFT energy are known, except for
the exchange-correlation term E,...
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The term E, [n(r)] in Equation (1), referred to as the exchange-
correlation functional, encompasses the corrections to the ki-
netic energy that arise due to the interacting nature of electrons
and all non-classical components of the Coulomb energy. Even
though the exact form of this functional remains unknown,
several approximations have been developed over time that has
given rise to a range of exchange-correlation functionals [3].

While the exact exchange-correlation functional remains elu-
sive, its analytical properties have guided and continue to
guide functional development [4-7]. These analytical proper-
ties are referred to as exact conditions. Functionals that were
constructed to satisfy a number of these exact conditions are
generally referred to as non-empirical, for instance SCAN (8],
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PW091 [9, 10] and PBE [11]. These functionals are among the best
choices for solid state DFT calculations [12]. Recently, Pederson
and Burke [13] provided local expressions for six exact condi-
tions, then evaluated these across a range of densities. They
found that for some densities, semi-empirical functionals (to be
discussed below) violated local constraints, and showed non-
empirical functionals satisfied the constraints within a numer-
ical threshold.

Table 1 lists the six exact conditions along with their local
versions. Each condition is a mathematically precise state-
ment that must be satisfied by the exact functional. The cor-
responding local constraints listed in the table are excessive;
satisfying these constraints guarantees that the correspond-
ing exact condition is satisfied, but violating them does not
necessarily imply violations to exact conditions [14-19]. The
first condition of Table 1 states that the DFT correlation en-
ergy should be non-positive, a concept consistent with the
stabilizing effect of correlation. Since electron correlation
reduces Coulomb repulsion among electrons, nonpositivity
of E, is reasonable. While enforcing the local version of this
condition (e.[n](r) < 0) is not strictly necessary, it can be use-
ful in the context of semi-local functionals and guarantees
the global condition is met. Conditions 3 and 4 are derived by
stretching the electron density in space, where the exact den-
sity functional would display specific scaling inequalities in
the correlation energy E, and the kinetic contribution to the
correlation energy T, [16-18]. Additional conditions coming
from upper and lower bounds on the exchange-correlation
potential energy (U,,) can also be applied [14]. Lower bounds
have been derived from the uniform electron gas, which un-
derpin conditions 2 and 5. These conditions are typically re-
ferred to as Lieb-Oxford bounds, and involve the Lieb-Oxford
constant, C;,, whose value is taken as 2.27 [13]. Condition 6
is closely related to the adiabatic connection [20] where the
exchange-correlation energy is given as: E,, = jol Uicdi. In this
expression, 4 is the coupling constant, which goes from 0 to 1,
reflecting a transition from a system of non-interacting elec-
trons to a system of interacting electrons. Ufm is the change
in exchange-correlation energy with respect to the coupling
strength A. This formula effectively links the non-interacting

TABLE1 |

density ¢ [n](r), exchange (correlation) enhancement factor, defined as Fyo= sx(c)[n](r)/s,f"if[n](r) where ¢,

Kohn-Sham reference system with the fully interacting sys-
tem through a sequence of partially interacting systems, all of
which share the same density. Focusing only on the correla-
tion contribution, as A increases, it is imperative that the cor-
relation energy decreases. This gives rise to the monotonicity
condition for U,, which reduces the occurrence of unphysical
behaviors in the correlation energy [19].

An alternative category of functionals, commonly referred to as
semi-empirical, holds a significant position in molecular DFT
methods. As the name suggests, these functionals are inherently
parameterized by fitting to benchmark datasets. Functionals such
as BLYP [21-23], BP86 [21, 24], M06-L [25, 26], and B3LYP [27] fall
in this category. These semi-empirical functionals are designed to
capture the chemical properties of molecular systems by best fits
to benchmark results from accurate wavefunction computations
[3]. However, it is important to recognize that even with a sophisti-
cated functional form and access to extensive training data, these
functionals may face challenges when applied to systems that lie
outside their original training domain, such as solids [13, 28-30].
This highlights the ongoing need to create functionals that not only
excel within their training domains but also exhibit enhanced gen-
eralization capabilities to handle a wider array of chemical species
and materials. While modern semi-empirical functionals, such as
M11, include transition metal data in their training sets, accurate
modeling of transition metals, and more broadly, periodic systems
and materials, still remains challenging for both semi-empirical
and non-empirical functionals [31-42].

An exact exchange-correlation functional is anticipated to
satisfy all exact conditions, including but not limited to those
present in Table 1. However, it is important to recognize that
such a functional, while adhering to the global exact condi-
tions, could still violate local constraints in specific regions. In
light of this, and the continued success of semi-empirical func-
tionals [3, 35, 43-45], one might ask: is there any correlation
between satisfying local constraints and predicting chemical
properties?

The above question might be addressed, at least to a certain de-
gree, through metrics that measure the degree of violation of

Exact conditions in DFT and their local counterparts. Locally imposed constraints involve quantities such as the correlation energy

“if is the exchange energy density for an

unpolarized uniform electron gas (given as s,f"if =-(3/ 47:)(37:2n)1/ 3), the Wigner-Seitz radius computed as r, = (4zn/ 3)"'/3 and the Lieb-Oxford

constant Cp, taken to be equal to 2.27 [13].

# Condition name Exact condition Local constraint
1 E, non-positivity [13] E,[n]<0 e [nl(r) <0
2 E,.lower bound [13-15] E[nl > Cpo [ drn@)e; ™ nl(x) F.<Cpo
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local constraints. An exact functional would adhere precisely
to all known exact conditions, and it is possible that the degree
of violation of exact conditions would correlate with errors in
property evaluation. No present-day functional is anywhere
near exact, so it is unclear whether the same assumption applies
to contemporary functionals and locally imposed constraints.
This leads us to analyze contemporary approximate density
functionals and seek relationships between local constraints
and energetic properties. The methods section introduces an
index that measures the extent of violation, averaged over a
molecule's electron density, which may be useful in finding
statistical correlations between local constraints and electronic
energies.

This study examines a selection of non-empirical and semi-
empirical generalized gradient approximation (GGA)exchange-
correlation functionals. Our investigation assesses these
functionals for potential deviations from local constraints for a
diverse range of molecules (Figure 1). Furthermore, local con-
straints corresponding to conditions 1, 3, 4, and 6 apply specif-
ically to correlation functionals. Thus, hybrid functionals such
as B3LYP, B3P86, and PBEQ [22-24, 27, 46] are represented in
this study through their GGA correlation components. Errors
in total and relative energies predicted by these functionals
are related to the extent to which a functional adheres to these
constraints, demonstrating that the new violation index is a
useful means for examining approximate semi-local density
functionals.

2 | Methods

In order to investigate the chemical significance of local con-
straints, we studied the impact of violating these constraints on
predictions of two chemical properties, namely atomization and
reaction energies. Reliable values of these properties were ob-
tained from two databases, namely W4-11 and G2RC, which are
often used in DFT benchmark studies [47-49]. We restricted our
study to GGA density functionals, since they form the simplest
semi-local models and are used extensively. In order to compare
the extent to which different functionals violate a given condi-
tion, we quantified violations by computing the extent of viola-
tion index, which is defined later in this section.

Inspecting a functional
for violations

Identifying violations
to local constraint

In this study, we selected closed-shell neutral molecules from
the W4-11 and G2RC databases. This selection was prompted
by the fact that closed-shell neutral molecules exhibit simpli-
fied electronic structures, avoiding strong correlations where
DFT is generally less precise. Figure 2 delineates chemical
space that is represented in the two datasets. The W4-11 data-
base contains a diverse range of 140 molecules, from diatomics
to medium-sized organic compounds. These molecules pre-
dominantly consist of atoms from the second row of the peri-
odic table, although some also incorporate atoms from the third
row, and a few have a combination of both. On the other hand,
the G2RC database, while similar in elemental composition,
features a smaller number of molecules, providing reaction en-
ergies for 25 reactions.

To generate electron densities for the selected molecules, we em-
ployed very dense (PySCF level 9) Becke atomic grids (200 radial
and 1454 angular grid points) [50] using the PySCF program
[51, 52]. All computations used the augmented, polarized, triple-
zeta basis set, aug-cc-pVTZ [53].

The functionals employed in this work have been broadly cat-
egorized into two classes: non-empirical and semi-empirical
GGAs. Non-empirical functionals (PBE, PW91, AMO5 [54, 55])
prioritize rigorous adherence to exact conditions, with no fitting
to molecular properties. Conversely, semi-empirical functionals
(BLYP, BP86, OLYP [22, 23, 56], SOGGAL11 [57], GAM [58], N12
[59]) incorporate varying degrees of empirical parameter fitting
to target desired chemical accuracy. Not all functionals in the
empirical category are equally empirical, however. BLYP, with
only two parameters fitted to experiment (in the LYP part), re-
sembles non-empirical functionals like PBE, and is distinct from
functionals with extensive fitting like SOGGA11 (which also
satisfies the second-order density-gradient constraint within a
generalized gradient approximation). It should be kept in mind,
therefore, that the classifier “empirical” can refer to functionals
that were trained very differently from one another.

We employed PySCF to calculate errors in DFT total ener-
gies of molecules, using the CCSD(T) method as the ground
truth. Expressions for both semi-empirical and non-empirical
GGA functionals (listed above) and their derivatives with re-
spect to the density were obtained from the LibXC library [60].

Studying the correlation between
the error in DFT total energy and
constraint violations

Computing errors in relative
and total energies
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FIGURE1 | Local constraint analysis workflow: Close inspection of a functional reveals violation of a local constraint. Errors in atomization and

DFT total energies are calculated, and the relationship between the error in DFT total energy and constraint violations is explored.
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clipped to 11 and 25 in plots b and d.

Defining the exchange-correlation energy (E,,) solely via the
energy density is not well-posed in DFT, since one can always
add a gauge to the energy density that integrates to zero and
leaves the energy unchanged. Standard functionals in LibXC,
however, have a fixed form for the energy density. Therefore,
the extent of violation index was evaluated using the gauge pro-
vided by standard functionals in LibXC. All source code for the
calculations described in this work can be found on our group's
GitHub page at https://github.com/ZimmermanGroup/Local _
Conditions_DFT.

In order to evaluate local constraints, the correlation energy
density € [n](r) for each functional was obtained from the LibXC
library [60]. The exchange-correlation enhancement factor was
computed as F,, = ¢,[n]x) /" [n](r) where £ is the ex-
change energy density for an unpolarized uniform electron gas
and is given as "V = — (3/4n)(3zr2n)1/3. The Wigner-Seitz ra-
dius was computed as r, = (47n/3)""/%. The derivative oF, / or,
was calculated by substituting F, as ec[n](r)/e;mf[n](r) and mak-
ing use of the quotient rule.

2.1 | Extent of Violation Index

Each local constraint was evaluated across the entire grid for
each molecule, establishing a distribution of values, g(r), which
represents the deviation from that local constraint. This infor-
mation is condensed into a metric to quantify the overall degree
in which the local constraint is violated. This work therefore de-
fines the Extent of Violation Index (EVI) as

_ | g@n(r)dr

EVI [ n@)dr @

57

Em Minimum Atomic Number
= Maximum Atomic Number

Atomic Number

Plots summarizing the properties of molecules in the G2RC (a and b) and W4-11 (c and d) databases. The frequency values have been

|violation| if local constraint is violated
8= . )
otherwise

For example, while evaluating the second local constraint, ifat a
grid point, F,. > Cp, g(r) will be equal to F,, — C;,,. If, however,
F,. < Cp, g(r) will be set to zero. Numerical integration over
the grid gives the extent of violation. While violating local con-
straints does not strictly imply the global exact conditions are
violated, evaluation of the local constraints is nonetheless useful
for assessing functionals [13].

The EVI was calculated for every molecule in the two databases
and all nine GGA functionals considered in this study. We also
computed EVI for reactions in the G2RC dataset. The violation
index for a reaction was computed as follows. Consider the fol-
lowing reaction: A+B— C+D. For any local constraint C,,, we
computed the EVI for this reaction as:

EVIEr

reaction

= NCEVI(" + NpEVI;" — N,EVI" — NyEVI;"

©)
Multiplication of EVIs of molecules with their number of elec-
trons (N;) was required since EVIs for each individual molecule
were normalized.

Our violation indices differ from the metric computed by Pederson
and Burke for evaluating local constraints [13]. In their work,
Pederson and Burke constructed a range of electron densities and
their gradients over uniform spacing between realistic limits.
Relevant derivatives involved in local constraints were then com-
puted numerically. They reported the fraction of grid points where
local constraints were violated, where violations were computed
using predefined tolerance values (reported in Table SII in the
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Supporting Information). In comparison, our metric includes the
magnitude of violation as well as weighting (and averaging) by the
density. While similar in spirit to the metric of Reference [13] ad-
ditional concepts will be revealed by the EVI metric used herein.

3 | Results

Nine GGA exchange-correlation functionals were examined for
their adherence to the local constraints of Table 1. First to be ex-
amined are non-empirical functionals, which are built to satisfy
a number of exact conditions. For example, the non-empirical
functional PBE by construction satisfies several energetically
significant conditions, such as correlation energy non-positivity
(Condition 1 in Table 1), Lieb-Oxford bounds (Conditions 2
and 5), E, scaling inequality (Condition 3), T, upper bound
(Condition 4), uniform scaling to the high-density limit for the
correlation energy, uniform density scaling for exchange energy,
the exact exchange energy spin-scaling relationship, and the
linear response of the spin-unpolarized uniform electron gas
[11]. Next, the local constraints for semi-empirical functionals
will be examined. These functionals were primarily designed
to predict chemical properties by fitting to benchmark results
involving molecular systems. An example of this category is the
SOGGAT11 functional, that has a flexible functional form which
satisfies two physical constraints (the uniform electron gas limit
and the second order density-gradient expansion) and has 18
free parameters that are optimized by fitting to 15 chemical da-
tabases [57]. For each semi-empirical functional, the relation-
ship between local constraints and their impact on successful
predictions of chemical properties will be studied.

3.1 | Non-empirical Functionals

First, we investigate non-empirical GGA functionals for vio-
lations to local constraints. For the three non-empirical func-
tionals, namely PBE, PW91 and AMOS5, Figure 3 shows the
distribution of EVIs for all local constraints. EVIs are computed
over the set of neutral closed shell molecules in the W4-11 data-
base for each functional, then the distributions over these values
are in Figure 3. While these functionals were constructed [9-11,
54, 55] to satisfy exact conditions 1, 2, and 5, (E, non-positivity,
E,.lower bound, and U, lower bound local constraints) they also
satisfy the corresponding locally imposed constraints, as seen
by the zero EVI values.

However, the picture becomes more interesting when considering
local constraints 3 and 4. These constraints relate to the scaling
behavior of the correlation energy and upper bound on the kinetic
contribution to the correlation energy. While PBE and AMOS5 are
known to satisfy the corresponding exact conditions for any den-
sity [11, 13, 54, 55], we observe non-zero EVIs for local constraints
3 and 4. Violations to constraint 6 were also observed, and this con-
straint will be discussed further in the next section.

3.2 | Local Constraints and Chemical Properties

Investigation of semi-empirical functionals (BLYP, OLYP, BP86,
SOGGA11, N12, and GAM) revealed violations to all local

B0

PW91
PBE
AMO5

1N I
» 5

Average E.V.I.
o
w

0.2 ¢

0.1

0.0 —e-=-= oo S o T 1
c1 c2 c3 ca4 cs5 C6

Local Constraints

FIGURE 3 | Distribution of extent of violation indices for all local
constraints for non-empirical functionals PBE, PW91 and AMO05 (W4-
11 database). For each local constraint, the median value, average and
standard deviation of EVIs is displayed.

constraints, albeit to varying extents. The average violation in-
dices for 96 closed shell molecules in the W4-11 database are re-
ported in Table 2 for all local constraints.

In order to better understand magnitudes of extent of violation in-
dices, we look at the range of values of quantities that appear in
local constraints. These are reported in Table SI in the Supporting
Information (SI) for He and the BLYP functional. Constraint I
The correlation energy density values range from —0.05au close
to the nucleus, to 0.02 away from it. The average EVI values for
the E, non-positivity condition in Table 2 are two orders of mag-
nitude smaller than the most positive correlation energy density
value (0.0002 vs. 0.0217). Constraints 2 and 5: The exchange-
correlation enhancement factor, which is the dominant term in
local constraints 2 and 5, has values close to 1 in the vicinity of the
He atom. Large values of the enhancement factor, that exceed the
Lieb-Oxford constant (taken to be 2.27), are seen at large distances
from the nucleus, where there is little electron density. Much larger
values (around 490au) are also encountered at very large distances
due to diminishing values of the denominator of the enhancement
factor (6" = - (3/ 47z)(37r2n)1/ ’ n —0). Constraint 3: The val-
ues of 0F, / dr range from —0.57 to 0.08. Since EVI values for all
semi-empirical functionals studied here exceed 0.08 (which is the
maximum value of 0F, / dr, for He) for constraint 3, these function-
als exhibit significant violations to the E, scaling inequality local
constraint (C3). Constraint 6: Along similar lines, we conclude that
these functionals also show large violations to the U, monotonicity
local constraint (C6). Constraint 4: For the fourth constraint, dis-
cerning general trends proves to be challenging; the EVI values
range from 0.0010 to 9.1014. For any given functional, we usually
see at least two classes of molecules, one with EVIs close to zero
and the other with larger EVIs. (Figures S12—S17).

The EVI scores of Table 2 indicate statistically notable deviations
from local constraints, but do not indicate precisely how they
might affect chemical properties. To understand the relationship
between the extent of violation index values and chemical prop-
erty predictions, we studied the correlation between these scores
and the errors in atomization energies for all 96 closed-shell neu-
tral species in the W4-11 database. As an example of typical results
(see Figures S5, S6, S7 in SI for full results), Figure 4a shows the
variation of percent error in atomization energy with the extent
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of violation index for the U, monotonicity local constraint (C6) for
BP86. There appears to be no correlation between the two quan-
tities, as evident from an R? value close to zero. Repeating this ex-
ercise with all other constraints (Figure S7) yields the same result:
the error in atomization energy is found to be insensitive to EVI.

3.3 | Local Constraints and DFT Total Energies

Having examined the relationship between EVI and atomi-
zation energies, the total energy was considered next. For the
closed-shell molecules studied herein, CCSD(T) provides ex-
cellent total energies as benchmark values [61, 62]. Hence, we
computed the difference between total energies predicted by
semi-empirical functionals and CCSD(T) total energies. We con-
sider this difference as the error in DFT total energy, and study

TABLE 2
in the W4-11 database.

its correlation with the EVI for constraints with significant vi-
olations. Figure 4c shows the variation of percent error in total
energy with the extent of violation index for the U, monotonic-
ity local constraint (C6) and the BP86 functional for molecules
in the W4-11 database. Significant correlation between the two
quantities was indicated by the R* value of 0.58.

The other semi-empirical functionals considered in this study
also showed the same trend, the errors in their total energy pre-
dictions correlated with their violation indices for constraint 6.
However, the extent of this correlation varied across different
functionals. Figure 5 shows the percent error in total energy vs.
C6 violation index for BP86 and BLYP functionals. These plots
focus on the closed-shell neutral molecules that appear in the 25
reactions in the G2RC database. BP86 shows an R? value of 0.80,
and BLYP displaying a weaker trend with R? of 0.24. The figure

| Average extent of violation indices for all local constraints for semi-empirical functionals, reported for closed shell neutral molecules

C1 average C2 average C3 average C4 average C5 average C6 average

Functional EVI EVI EVI EVI EVI EVI
BLYP 0.0002 0.0025 0.0855 0.0295 0.0020 1.4852
OLYP 0.0002 0.0006 0.0855 0.0295 0.0003 1.4852
BP86 0.0000 0.0029 0.1729 0.0010 0.0070 0.8739
SOGGA11 0.0000 0.0192 0.0805 0.3768 0.2288 2.5847
N12 0.0000 0.0030 0.1010 0.0705 0.1279 1.4819
GAM 0.0008 0.0000 0.0924 9.1014 0.0003 2.7285
Range 0.0000-0.0008 0.0000-0.0192 0.0805-0.1729 0.0010-9.1014 0.0003-0.2288 0.8739-2.7285

All molecules
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FIGURE 5 | R?values from the variation of percent error in total energy with the extent of violation index plots for local constraint 6 for semi-

empirical functionals reported for the G2RC database (excluding outliers). Shown are the BP86 and BLYP functionals, which have the highest and

lowest R? values.

also presents the R? values for other functionals, which exhibit
substantial variation. This variation is expected, considering that
these GGA functionals were constructed in different ways, in-
volving varying levels of data fitting: ranging from 2 empirical
parameters in BLYP to 18 parameters fit to 15 chemical datasets
in SOGGAI1L.

In both the atomization energy and total energy plots, we saw
that molecules H, and Be, were outliers (the latter is shown in
Figure S3 in the SI). These outliers persisted in similar anal-
yses of constraints other than Constraint 6 (Figure S7 in SI).
Consequently, we recalculated the R? values without consid-
ering these outliers, as shown in Figure 4 (b) and (d). While
no correlation with atomization energy was found without the
outliers, the correlation between violation index and error in
total energy strengthened. H, was the only two-electron sys-
tem considered in our study, which could explain its distinct
behavior, and Be, is unique as a near-zero bond order system.
Hence, commonly used density functional approximations fail
to give accurate predictions for either of these two chemical
species [63].

So far, only violation indices for the U, monotonicity local con-
straint have been examined. Statistical correlations between
errors in total energies and EVI are also observed for other
local constraints. Figure 6 shows the average R* values for all
local constraints. Notably, not every constraint significantly
correlates with the total energy. The R? value for the T, upper
bound local constraint (C4) is nearly zero. The E, scaling in-
equality (C3) and the U, monotonicity local constraints (C6)
have the largest R? overall across the two benchmark sets. The
R?values for E,, and U, lower bound local constraints (C2 and
C5), however, are nearly as large as those of C3 and C6 for the
W4-11 database.

4 | Discussion

The analysis of EVI in Table 2 and Figures 3-5 confirmed that
local constraints can be violated in semi-empirical functionals,
and to a lesser extent, even in non-empirical functionals. This
observation highlights a potential shortcoming of metrics based
on these locally imposed constraints. They might be overly
stringent, leading to violations even for functionals that adhere
to the global exact condition. In this section, we discuss the EVI
metric and ask what does it tell us about the utility of the local
constraints of Table 1. Before doing so, we briefly discuss the
relationship of the present study to its motivating precedent.

The recent communication by Pederson and Burke [13] intro-
duced the C1-6 local constraints and looked for violations of
the same. Their analysis employed idealized Gedanken densi-
ties, contrasting with the molecular densities used in this study.
Reference [13] quantified violations by counting the number
of violations above certain preset thresholds (Table SII in the
Supporting Information). In contrast, EVIs account for the mag-
nitude of the violations, not just their presence. This approach
revealed correlations between local constraint violations and er-
rors in total energies. While both metrics offer valuable insights,
they serve complementary purposes. A more detailed compari-
son between these approaches is provided in the section titled
“Regarding Evaluation of Local Constraints” in the Supporting
Information.

Returning to the analysis of local constraints via the present
study, the lack of correlation between EVI and atomization en-
ergies contrasts with their noticeable relation to total energy for
GGA functionals (the latter up to R? = 0.80, depending on func-
tional and condition). For BP86, where C6 correlated at R = 0.80
with the error in total energy, it is natural to ask how this factor
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carries over into relative energies. Since the atomization ener-
gies of Figure 4 are uncorrelated to C6, and also uncorrelated
to C1-5 (Figure S5 in SI), the total energy relationship with EVI
appears to have no obvious effect on relative energies. A possible
explanation for this is found in Figure 7, which compares the C6
and C3 EVIs to the energy errors in the G2RC dataset. There,
the mean absolute errors MAEs (with respect to the linear fit) in
total energy are much higher than the MAEs in reaction energy.
Even when a substantial variation in total energy is described by
a correlation with EVI, there is still a large variation that does
not cancel out in a relative energy calculation. While cancella-
tion of errors is undoubtedly present in GGA relative energies

[64-66], it is not easy to pinpoint the source of error cancellation
when considering the EVI metrics.

The correlation between total energy and EVI can even be neg-
ative (Figure 7b), suggesting that increased violation of local
constraints can improve total energies. While this correlation is
weak for BP86 with C3 (R? = 0.18), a significant R? was found for
arelated functional. Figure 8 shows relationships between error
in total energy and the EVI for C3, particularly for the SOGGA11
and BLYP functionals. These two functionals were chosen be-
cause the errors in their total energy predictions showed the
strongest negative and positive correlations with the EVI for
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constraint 3 in the W4-11 dataset. For the SOGGA11 functional,
increased EVI leads to improved total energies, with R* =0.78.

5 | Conclusions

This study examined how local constraint violations impact
energy computations in DFT through the EVI metric, which
quantified these violations for GGA functionals in molecular
systems. The metric was applied to a number of GGA exchange-
correlation functionals, showing significant statistical rela-
tionships between EVI and total energies for semi-empirical
functionals. Surprisingly, the relationship could even be a nega-
tive trend, suggesting a counter-intuitive possibility: increasing
violations for certain local constraints (e.g., C3) might be associ-
ated with improved total energies. This result makes clear that
local constraints, which are by nature excessive compared to the
exact global constraints, can be imposed to the detriment of en-
ergetic properties coming from a functional.
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