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Abstract—Spiking Neural Networks (SNNs) have gained sig-
nificant research attention over the past decade due to their
potential for enabling resource-constrained edge devices. While
existing SNN accelerators efficiently process sparse spikes with
dense weights, the opportunities for accelerating SNNs with
sparse weights, referred to as dual-sparsity, remain underex-
plored. In this work, we focus on accelerating dual-sparse SNNs,
particularly on their core operation: sparse-matrix-sparse-matrix
multiplication (spMspM). Our observations reveal that executing
a dual-sparse SNN on existing spMspM accelerators designed for
dual-sparse Artificial Neural Networks (ANNs) results in sub-
optimal efficiency. The main challenge is that SNNs, which natu-
rally processes multiple timesteps, introducing an additional loop
in ANN spMspM, leading to longer latency and more memory
traffic. To address this issue, we propose a fully temporal-parallel
(FTP) dataflow that minimizes data movement across timesteps
and reduces the end-to-end latency of dual-sparse SNNs. To
enhance the efficiency of the FTP dataflow, we introduce an
FTP-friendly spike compression mechanism that efficiently com-
presses single-bit spikes and ensures contiguous memory access.
Additionally, we propose an FTP-friendly inner-join circuit that
reduces the cost of expensive prefix-sum circuits with negligible
throughput penalties. These innovations are encapsulated in
LoAS, a Low-latency inference Accelerator for dual-sparse SNNs.
Running dual-sparse SNN workloads on LoAS demonstrates
significant speedup (up to 8.51×) and energy reduction (up to
3.68×) compared to prior dual-sparse accelerators.

Index Terms—SNNs, dual-sparsity, dataflow, accelerator

I. INTRODUCTION

Spiking Neural Networks (SNNs) have attracted consid-
erable interest as potential energy-efficient alternatives to
Artificial Neural Networks (ANNs) [5], [11], [41]. Inspired
by biological neurons, SNNs utilize highly sparse unary-
coded [52] ({0,1}) spikes to compute and communicate in-
formation. Consequently, running SNNs on hardware signifi-
cantly reduces computation and data movement, making them
well-suited for edge computing. As a result, SNNs have been
widely employed in computer vision tasks such as image
classification [44], [54], optical flow estimation [27], semantic
segmentation [21], and object detection [20].

Opportunity. With the growing demand for edge devices
with limited memory capacity, recent research on SNNs has
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(Award #DE-SC0023198), and the University of Central Florida.
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Fig. 1. An illustrative example of the FTP dataflow and LoAS architecture.
The FTP dataflow is compared with prior dataflow designs for SNNs. The
temporal-sequential tick-batch approach is adapted from SpinalFlow [35],
while the partially temporal-parallel approach is adapted from PTB [28]. Each
arrow loop represents the processing of one timestep, and the vertical line
indicates parallel processing.

underscored the importance of dual-sparsity, where both spikes
and weights are sparse, which can be achieved through pruning
techniques [5], [22]. Pruning weight connections in SNNs has
been explored both during training [4], [47] and inference [37].
Some studies have achieved approximately 98% weight spar-
sity and 90% spike sparsity for SNNs at iso-accuracy [22],
[57] by leveraging the lottery ticket hypothesis [13]. These
works highlight the potential of dual-sparse SNNs to achieve
unprecedented energy efficiency and memory footprint savings
with minimal to no loss in accuracy.

Challenge. Despite the algorithmic advancements in dual-
sparse SNNs, hardware development has not yet caught up
to fully exploit such dual-sparsity. Generally, existing SNN
accelerators can be classified into two main categories. First,
multi-core neuromorphic systems1 employ a plethora of cores,
and even chips, leverage the inherent parallelism in spiking
neuron dynamics [1], [7], [14], [46]. While these systems
are capable of capturing the extensive parallelism and sparse
activity among neurons, they require all neurons (including
all weight connections) to be mapped on-chip. This approach
inevitably leads to a significant waste of hardware resources
on neurons that are not involved in any computations due to
dual-sparsity [39]. Second, dataflow-based SNN accelerators
are inspired by dataflow-oriented ANN accelerators, taking
advantage from the extensive data reuse across an array of

1We do not compare with these systems due to our focus on single-core
dataflow SNN accelerator designs in this work.
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TABLE I
COMPARISON OF LOAS WITH PRIOR SNN ACCELERATORS. S AND T
DENOTE THE SPATIAL AND TEMPORAL DIMENSIONS, RESPECTIVELY.

SPATIAL PARALLELISM REFERS TO PE-LEVEL PARALLELISM.

Accelerator Spike Weight Parallel Neuron
Sparsity Sparsity support support

SpinalFlow [35] ✔ ✘ S LIF [8]
PTB [28] ✔ ✘ S+partial-T LIF
Stellar [32] ✔ ✘ S+fully-T FS [50]
LoAS (ours) ✔ ✔ S+fully-T LIF

processing elements [28], [32], [35]. However, these designs
have primarily focused on processing dense SNN workloads.
Currently, there is a lack of dataflow architectures specifically
designed to target dual-sparsity in SNNs. Table I summarizes
existing dataflow SNN accelerators.

Insight. Although operands in dual-sparse SNNs have varying
bitwidths, their interactions follow the pattern of sparse-
matrix-sparse-matrix multiplication (spMspM), a concept ex-
tensively studied in ANNs [9], [15], [18], [19], [38]–[40],
[49], [60], [62]. However, running dual-sparse SNNs on ex-
isting spMspM accelerators is inefficient for several reasons.
First, the presence of timesteps in SNNs complicates the
dataflow design for existing spMspM accelerators. In ANNs,
spMspM operations are typically implemented as triple-nested
for-loops [39], [53], with different spMspM dataflows being
derived by permuting the order of these loops. However, in
SNNs, the inclusion of timesteps adds an additional level of
looping, resulting in increased latency and memory traffic.
Furthermore, this extra loop introduces dataflow dependencies
and effectively doubles the dataflow design space, thereby
delaying time-to-solution. Second, the asymmetric bitwidths
of spikes and weights in SNNs make it inefficient to employ
conventional compression formats used in ANN spMspM
accelerators. Existing ANN spMspM accelerators typically
store sparse matrices using popular compression formats like
compressed sparse row (CSR), which require multiple bits
to encode the coordinates of non-zero values. Consequently,
using multiple bits to compress single-bit spikes (which can
only be 0 or 1) is highly inefficient in the context of dual-
sparse SNNs.

Proposal. To address these challenges and unleash the po-
tential of dual-sparse SNNs in the context of spMspM, we
propose a fully temporal-parallel (FTP) dataflow, as illustrated
in Figure 1. FTP dataflow parallelizes all timesteps, thereby
avoiding complex dataflow dependencies and minimizing both
latency and memory traffic. To further enhance the efficiency
of FTP dataflow in terms of memory and computation, we
introduce an FTP-friendly spike compression mechanism and
an inner-join mechanism. The proposed compression method
packs spikes across timesteps, allowing for contiguous mem-
ory access. Additionally, the proposed inner-join mechanism
nearly halves the cost of the cumbersome prefix-sum circuits
while maintaining throughput comparable to prior inner-join
designs. To validate the effectiveness of FTP dataflow, we
developed LoAS, a Low-latency Inference Accelerator for

Dual-Sparse Spiking Neural Networks. Our contributions are
outlined below:

1) We observe that SNNs with rich dual-sparsity from
both input spikes and weight connections perform sub-
optimally on existing hardware. Current SNN hardware
does not support dual-sparsity, while ANN spMspM
hardware struggles to efficiently process timesteps in
SNNs, leading to high latency and memory traffic.

2) To enhance the efficiency of processing timesteps,
we propose a fully temporal-parallel (FTP) dataflow.
FTP eliminates extra memory traffic across timesteps
and minimizes the latency associated with processing
timesteps sequentially.

3) To fully leverage FTP, we introduce FTP-friendly spike
compression for efficient, contiguous memory access,
and an FTP-friendly inner-join mechanism that offers
low-cost computation with negligible latency penalties.

4) We developed LoAS, a novel architecture that embodies
the FTP dataflow. With FTP dataflow and both FTP-
friendly compression and inner-join, LoAS achieves
significant speedup and energy efficiency compared to
other sequential spMspM baselines.

The remainder of this paper is organized as follows: Sec-
tion II reviews the background and justifies the motivation.
Sections III and IV articulate our proposed FTP dataflow
and LoAS architecture. Sections V and VI then evaluate our
design. Finally, Sections VII and VIII present our discussion
and conclusions.

II. BACKGROUND AND MOTIVATION

A. Preliminary of SNNs
1) Leaky-Integrate-and-Fire Neuron: The Leaky-Integrate-

and-Fire (LIF) neuron is a classical neuron model [8], widely
adopted in prior SNN research [22], [23], [61], [63] due to
its biological plausibility and high accuracy. In this work,
we focus on accelerating the workloads of dual-sparse SNNs
that utilize LIF neurons. During inference, each layer has a
sparse input spike tensor A ∈ UM×K×T , where U ∈ 0, 1,
and a sparse weight matrix defined as B ∈ ZK×N . Here, T
represents the number of total timesteps, while M , N , and K
correspond to the spatial dimensions of the input and weight
matrix, respectively. The behavior of an SNN layer can be
described as follows:

Step 1: Sparse Matrix Multiplication Sparse matrix multi-
plication (spMspM) is performed across all timesteps to obtain
the full output matrix O ∈ ZM×N×T :

Om,n[ti] =
K∑

k=0

Am,k[ti]Bk,n, (1)

where ti represents the current timestep.

Step 2: LIF Firing LIF neurons take a snapshot of O at
timestep ti and generate a snapshot of the output spike tensor
C ∈ UM×N×T for the current timestep ti:

Cm,n[ti] =

{
1 Xm,n[ti] > vth
0 else, (2)
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Fig. 2. Comparison between LIF-based SNN neurons and ReLU-based ANN
neurons, highlighting their behavior and hardware implementations.

where Xm,n[ti] = Om,n[ti] + Um,n[ti−1]. Here, U [ti−1] is
the membrane potential that carries over temporal information
from the previous timestep ti−1, and vth is the firing threshold,
a predefined scalar value.

Step 3: Membrane Potential Update After the output spikes
are generated, the membrane potential is updated to carry
residual information to the next timestep, according to the
following equation:2

Um,n[ti] = τXm,n[ti](1− Cm,n[ti]), (3)

where τ ∈ (0, 1) is the leaky factor. From the above equations,
we observe that generating the output spike matrix C for
timestep ti requires information from the previous timestep
U [ti−1]. This introduces temporal dependency between output
spike matrices across timesteps. The behavior of a LIF neuron
is illustrated in Figure 2.

2) Spike Encoding and SNN Training: A critical step in
utilizing SNNs for conventional machine learning tasks is
encoding the input source data (e.g., image pixels) into spike
trains across multiple timesteps. These input spike trains are
then sequentially fed into the SNN for processing. Recent
SNN research has adopted direct encoding (a special form
of rate encoding) to achieve high accuracy on conventional
computer vision tasks with very few timesteps (≤4) [22],
[24], [55], [57], [63]. In this work, we focus on accelerating
dual-sparse SNNs that use direct encoding. These SNNs are
trained using backpropagation-through-time (BPTT) [51] with
surrogate gradients [36], achieving performance very close to
that of ANNs on many complex tasks [55], [63].

B. Distinctive Features and Challenges of SNNs

Several distinctive features make SNNs well-suited for low-
power edge deployment with a potential challenge.

Feature 1: Unary Activation One of the most distinctive
features of SNNs is their unary spike activation. Specifically,
SNNs utilize single-bit, non-weighted activations to propagate
information through layers. The primary advantage of unary
activation is the simplified, low-power arithmetic units it

2In this work, we focus on the hard reset scheme, where the membrane
potential is reset to zero if an output spike of one is generated. Although
other reset schemes exist, using one of them does not affect the generality of
the hardware design.

enables. As illustrated in Figure 2, compared to the multiply-
accumulate (MAC) operations in ANNs, SNNs only require
simple bitwise-AND and accumulate (AC) operations.3 With-
out the need for expensive multipliers [16], the computations
in SNNs demand extremely low power and area.

Feature 2: Sparse Spike Activity Another key feature of
SNNs is their highly sparse spike-firing activity. In ANNs, af-
ter the MAC operations are completed, a ReLU unit filters out
non-positive outputs. In contrast, SNNs use an AC operation,
followed by the Leaky-Integrate-and-Fire (LIF) unit, which
only fires (producing an output of 1) when the input exceeds
a preset threshold. Consequently, the output sparsity in SNNs
is typically much higher (around 90%) [57], [58], [61], [63]
compared to that in ReLU-based ANNs (around 50%) [39],
[43]. This higher sparsity translates into greater computation
and memory savings in the context of spMspM acceleration.

Challenge: Repeated Timesteps Despite the aforementioned
hardware-friendly features, a significant challenge in deploy-
ing SNNs on hardware is their intrinsic reliance on repeated
timesteps. A timestep is the smallest discrete unit of time in
SNNs.4 Within each timestep, every neuron must complete the
AC operations for all non-zero inputs, fire a spike if necessary,
and update its membrane potential. To capture the temporal
dynamics of the input data, SNNs must operate across multiple
timesteps, as illustrated in Figure 2. However, running across
multiple timesteps increases latency and reduces energy effi-
ciency, diminishing the benefits of low-power circuits unless
a specialized architecture is employed [35].

C. spMspM Dataflows in SNNs

There are various ways to map spMspM onto hardware,
each with distinct efficiency [30], [33]. Three different spM-
spM dataflows have been proposed in existing dual-sparse
ANN accelerators: Inner-product (IP) [15], [18], [19], [40],
Outer-product (OP) [9], [38], [39], [62], and Gustavson’s
(Gust) [49], [60]. Figure 3 illustrates these three dataflows
in SNNs for two input matrices, A and B, and an output
matrix, C. Their abstract loop nests are shown on the right-
hand side. As discussed in Section II-B, it is essential to
account for timesteps when performing spMspM operations
in SNNs. Inside the black box in Figure 3, the dataflow corre-
sponds to one timestep and is thus identical to ANN dataflow.
Outside the black box, the multiple input matrices A (blurred)
represent the input spike matrices across different timesteps.
Simultaneously, multiple output spike matrices C, which have
temporal dependencies, are generated. To accommodate the
timesteps in SNNs, an additional loop dimension (t dimension)
must be considered in the original triple-nested for-loop. The
t dimension (highlighted in the blue box) introduces temporal
dependency to each output pixel in SNNs. For example,
when processing an SNN using the IP dataflow, as shown
in Figure 3, we first calculate the output cell at position

3Other implementations using multiplexers exist [28], [35].
4Timestep is also referred to as a tick [35] or time-point [28] in other works.

We follow the naming convention used in the latest SNN algorithm research.
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Fig. 3. Comparison of different spMspM dataflows for SNNs. For illustration, C[ti] represents the spMspM result between A[ti] and B, similar to spMspM
in ANNs. In reality, an additional LIF step (Equation (2)) is required to obtain C[ti]. Circled numbers indicate the computation order for each spMspM
dataflow. The t dimension is fixed here for illustration; in practice, 16 possible permutations of spMspM dataflow in SNNs exist, discussed in Section III.

(0,0) for timestep 0 (C[0,0,0]). Then, instead of moving to
position (0,1), we proceed to calculate the output cell at
(0,0) for timestep 1 (C[0,0,1]). Since the output cell C[0,0,1]
is temporally dependent on the result of C[0,0,0], we must
process C[0,0,0] before C[0,0,1].

D. ANN spMspM Hardware for Dual-Sparse SNNs

We review existing ANN spMspM accelerators to under-
stand why naively running dual-sparse SNNs on these accel-
erators is sub-optimal.

Inner-join Design: For the IP dataflow, prior accelerators
typically employ an inner-join-based design [9], [15]. In these
designs, non-zero values in the rows of matrix A and the
columns of matrix B are compressed using bitmask repre-
sentation, where a bit string has 1’s for positions with non-
zero values and 0’s otherwise. An inner-join unit scans two
bitmasks on the fly to determine if there is a matching position
(where both multiplicands are non-zero) and then sends the
matched pairs to the compute units. Running dual-sparse SNNs
on an inner-join-based design does not require additional
bitmasks for the input spike matrix A, as the unary spike
train itself can be viewed as a bitmask. However, as shown
in Figure 4, the timesteps introduce multiple extra rounds
of running the expensive inner-join units (which can occupy
roughly 46% of the system-level power [15]), leading to high
energy costs. Furthermore, since the spike trains are used as
bitmasks, all spikes—whether 1 or 0—must be fetched from
off-chip DRAM, resulting in no memory traffic savings for the
sparse spike matrix A.

Merger-based Design: Unlike IP dataflow designs that ex-
hibit full output matrix (C) reuse, OP and Gust dataflow
designs focus on reusing input matrices A and B. In OP,
each column of A and each row of B are traversed only
once, leading to efficient input data reuse. However, only
one partial sum is generated at a time and is merged later.
While these two dataflows achieve better data reuse for the
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behavior of ANN and SNN is shown. *Data from SparTen [15].
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Fig. 5. Off-chip traffic of partial sum matrices across different SNN layers,
with SNNs running on GoSPA [9], an OP dataflow spMspM accelerator, using
1 and 4 timesteps.

input matrices, the partial sum matrices (rows) potentially
cause increased off-chip data traffic. To mitigate the high
memory traffic associated with partial sums, some designs
implement large and costly mergers (e.g., 38× more area than
multipliers [62]) to merge as many partial sum matrices (rows)
as possible before sending them back to off-chip DRAM. Due
to the additional t dimension, running dual-sparse SNNs on a
merger-based design either requires a more complex merger
capable of handling the extra partial sum traffic or results in
increased off-chip memory traffic. As shown in Figure 5, for
a timestep of four, on average, 4× more partial sum traffic is
induced compared to a single timestep.

E. Dataflow Architecture for SNNs

SpinalFlow: Temporal-Sequential Design. SpinalFlow [35]
is the first SNN-specific accelerator designed to exploit the
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efficiency of single-bit activation and extremely sparse spike
activity. The authors identified the challenge of sequentially
processing the entire SNN network through timesteps. To
address this challenge, SpinalFlow processes all timesteps for
one layer before moving on to the next layer, as illustrated in
Figure 1. SpinalFlow dispatches LIF neurons across different
processing elements (PEs) and parallelizes the computation.
However, within each layer, the timesteps are still processed
sequentially, as shown in Figure 1. SpinalFlow is optimized
specifically for temporally-coded SNNs, which may lag in
accuracy performance compared to rate-coded SNNs [28]. In
this work, we focus on accelerating spMspM for general rate-
coded SNNs, which achieve accuracy competitive with ANNs
across various tasks.

PTB: Partially Temporal-Parallel. While SpinalFlow’s de-
sign is tailored to temporally-coded SNNs, PTB [28] proposes
a general architecture design for rate-coded SNNs. By lever-
aging the high data-reuse pattern across different PEs in a
systolic array architecture [26], PTB breaks the processing of
all timesteps into multiple time-windows, each consisting of
several contiguous timesteps, and runs these time-windows in
parallel, as shown in Figure 1. PTB parallelizes the mapping
of multiple time-windows across different columns of the
systolic array, while the computation of different LIF neurons
is parallelized across the rows of the array. This hardware
mapping strategy is illustrated in detail in Figure 6. Although
PTB attempts to parallelize the processing of timesteps, the
parallelization occurs at the granularity of the time-window.
Within each time-window (column of PEs), timesteps are still
processed sequentially. Consequently, we categorize PTB as
a partially temporal-parallel design. One unique aspect of
LoAS compared to PTB is that LoAS leverages a different
loop ordering (Section III and VII), enabling comprehensive
optimizations.

Prior SNN accelerators with LIF neurons process timesteps
in a sequential or partially parallel manner. As discussed in
Sections II-C and II-D, it is challenging for these existing SNN
designs to achieve high performance in spMspM SNN accel-
eration. Therefore, a spMspM-friendly strategy for processing
timesteps is needed.

Stellar: Temporal-Parallel with non-LIF Neurons. Stel-
lar [32] is another systolic array SNN accelerator that attempts
to process timesteps in a fully parallel manner. However, Stel-

Algorithm 1 Fully Temporal-Parallel Dataflow (FTP)
Input:
Input spike matrix A ∈ UM×K×T (U ∈ {0, 1})
Weight matrix B ∈ ZK×N

Output:
Output spike matrix C ∈ UM×N×T

1: for m ∈ M do
2: for n ∈ N do
3: for k ∈ K do
4: parallel-for t ∈ T do ▷ Spatially unrolled
5: O[m,n, t] += A[m, k, t]×B[k, n]
6: end for

parallel-for t ∈ T do ▷ Spatially unrolled
7: C[m,n, t] = LIF(O[m,n, t])
8: end for
9: end for

lar focuses on optimizing for the Few Spikes (FS) neuron [50],
as shown in Table I. FS neurons differ from LIF neurons
by decoupling the spike accumulation and firing stages. As a
result, FS neurons naturally lack temporal dependency during
the spike accumulation stage, making fully parallel temporal
processing straightforward in Stellar. In contrast, as discussed
in Section II-A, temporal dependency is inherent in the input
data for LIF neurons, which makes their design space different
from that of Stellar for fully temporal-parallel processing.
Unlike the widely adopted LIF neurons, supporting FS neurons
requires non-trivial algorithm-hardware co-design, which is
beyond the scope of this work.

III. FULLY TEMPORAL-PARALLEL DATAFLOW

We propose a fully temporal-parallel dataflow (FTP) de-
signed to mitigate the negative effects of repeatedly processing
timesteps on spMspM accelerators (Section II-D). The pro-
posed FTP is outlined in Algorithm 1.

An SNN-friendly spMspM dataflow should satisfy three
key objectives: (1) minimize data refetching across timesteps;
(2) generate as few partial sums as possible in the temporal
dimension (timesteps); and (3) reduce latency in the temporal
dimension to minimize the additional cost of sparsity-handling
units.

Our first observation is that for all three spMspM dataflows
(Section II-C), unless the temporal dimension (t-dim) is placed
at the innermost loop, it will result in at least T times more
data refetching in the dimensions below, compared to the
original dataflow. For example, in OP, if the t-dim is placed
between m and n, T times more access to B’s rows is required.
If the t-dim is placed between k and m, T times more access
to A’s columns and B’s rows is required. Depending on the
on-chip buffer capacity, repeated memory access may lead to
more expensive off-chip memory access, which contradicts
objective (1).

Our second observation is that both OP and Gust dataflows
are unsuitable for dual-sparse SNNs because they conflict
with objective (2). In the OP dataflow, we find that regardless

1111

Authorized licensed use limited to: Yale University Library. Downloaded on July 07,2025 at 19:37:26 UTC from IEEE Xplore.  Restrictions apply. 



Global Cache

Memory

TP
PE

…

TP
PE

TP
PE

P-
LI
F

P-
LI
F

P-
LI
F

…

Scheduler

Compressor Streaming data broadcast bus

+

+

U

Data B

Bitmask 
AB

𝑿𝒕𝑻"𝟏

𝑿

…

Fetcher
A

+
𝑿𝒕𝟎

0

+

𝒗𝒕𝒉𝑿𝒕𝟎
<<

0 <<

𝑿𝒕𝟏

+𝑿𝒕𝑻"𝟏

…
…

𝑶𝒕𝑻"𝟏

𝑶𝒕𝟏

𝑶𝒕𝟎

v

ch
ec
ke
r

Fig. 7. Architecture of LoAS and the microarchitecture of the TPPE. Red
arrows indicate enable signals that skip computation on 0 spikes [59].

of where the t-dim is inserted into the original triple-nested
loop, it always produces T times more partial sum matrices
compared to the original OP dataflow. These partial sums
need to be stored in an on-chip cache until all partial sums
along both the spatial (k) and temporal dimensions (t-dim)
are accumulated, which adds extra memory overhead in OP.
The same issue arises in the Gust dataflow. The t-dim will
either generate T times more partial sum rows or require T
times more access to both the k and n dimensions. Our final
observation is that, regardless of the position of the t-dim,
processing it sequentially will always result in T times more
processing latency, which conflicts with objective (3).

Our solution is straightforward yet effective. We position the
t-dim at the innermost level of the IP dataflow and fully paral-
lelize it, as detailed in Algorithm 1. This design choice offers
several advantages. Firstly, placing the t-dim at the innermost
loop ensures that no additional data movement is incurred,
satisfying objective (1). Secondly, since the IP dataflow
efficiently reuses outputs, no extra partial sums are generated
along the t-dim, addressing objective (2). Lastly, by fully
parallelizing the t-dim, we eliminate the latency associated
with sequentially processing timesteps, achieving objective
(3). This is equivalent to transforming the for-loop of t-dim
into a parallel-for loop [53]. The parallel-for loop parallelizes
operations across different spatial instances, requiring minimal
hardware overhead due to the duplication of only inexpensive
accumulators, and the number of timesteps in direct-coded
SNNs is small (Section II-A). We later demonstrate in the
ablation studies that FTP scales well with increasing timesteps.

IV. LOAS

An overview of LoAS is shown in Figure 7. LoAS consists
of multiple temporal-parallel processing elements (TPPEs) and
parallel Leaky-Integrate-Fire units (P-LIFs) that are specifi-
cally designed to execute the FTP dataflow. It also includes
a scheduler that distributes workloads across the TPPEs and
a compressor that compresses the output spikes from the P-
LIFs and writes them back to the on-chip memory. An on-chip
SRAM is integrated to facilitate data reuse.
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Fig. 8. Example of input spike compression in LoAS. ‘bm’ stands for bitmask,
and ‘ptr’ stands for pointer.

A. Spikes Compression

We first discuss how sparse input spikes (matrix A) across
timesteps are compressed in LoAS. Efficiently compressing
matrix A in SNNs involves addressing two key challenges:

How to maximize compression efficiency of 1-bit spikes?
Assume that the input spike matrix A has a size of 128×128
for each timestep. In either CSR or CSC format, two 7-bit
coordinates are needed to compress each 1-bit non-zero spike.5

Furthermore, since SNNs naturally operate across multiple
timesteps, different spike values may occur at the same coor-
dinate across different timesteps (e.g., 0 for T=1&3, and 1 for
T=2&4). To accurately capture all non-zero spikes, separate
coordinate values would be required for each timestep.

How to maintain contiguous memory access of non-zero
spikes across timesteps? The FTP dataflow proposed in
Section III requires spatial unrolling of the input spike matrix
A across all timesteps beneath the k dimension. Consequently,
a non-contiguous memory layout of A along the t dimension
would lead to fragmented memory access at all levels of the
memory hierarchy, resulting in higher data movement costs.

To illustrate these two challenges, consider the example in
Figure 8. Suppose that the input spikes sent to the system
have the pre-synaptic neuron a0,0 (the first element of row-0
in matrix A) firing a spike at t0 and t2. As shown in step 1 ,
to represent this pre-synaptic neuron behavior, a single-bit 1
needs to be stored at row-0, column-0 of matrix A for both
timesteps 0 and 2, as depicted in the “unpacked real data” box.
For each non-zero spike in row-0 of matrix A at each timestep,
if a coordinate value (e.g., 4-bit for CSR) is used to record
its position, then 2 × 4 = 8 bits are needed to compress 2
bits (2 spikes). The compression efficiency in this case is only
25%. Furthermore, memory access to spikes across different
timesteps is discontinuous (sequentially accessing different t
rows of the spatial row-0 of A).

We propose the following spike compression format for
LoAS to address these two challenges. As shown in step 2 ,
we pack all the spikes (both 0 and 1) across all timesteps into

5For 128 columns, log2(128) = 7 bits are required for the coordinates.
We neglect the offsets in this discussion, which would further increase the
number of bits used for coordinates.

1112

Authorized licensed use limited to: Yale University Library. Downloaded on July 07,2025 at 19:37:26 UTC from IEEE Xplore.  Restrictions apply. 



a single continuous data block for each pre-synaptic neuron.
In the example in Figure 8, we store a 4-bit value 1010 at
the first position of row-0 in matrix A for a0,0 and 0111 at
the fourth position for a0,3. Since neurons a0,1 and a0,2 do
not spike at any timestep, their packed value would be 0000
(as shown in the “packed real data” box). We define these
neurons as silent neurons.6 With this strategy, only the non-
silent neurons are treated as non-zero values and stored in
memory for matrix A, as shown in step 3 . To accommodate
our FTP dataflow, we compress the input spike matrix A in a
row-wise manner and use the bitmask format [9], [15], [40] to
represent the coordinates of the non-zero values. The bitmask
format uses a 1-bit coordinate value for each position in the
row. In our example, the bitmask is 1001, indicating that the
first and fourth elements in the row are non-zero, while the
second and third elements are silent neurons (represented by
0 in the bitmask). Following the bitmask, a pointer is stored
to indicate the starting location of the non-zero values in the
row. We refer to this compressed row as a fiber [33], [60].
In our example, we use 4 bits to compress 5 bits (5 non-zero
spikes), resulting in a compression efficiency of 125%.

The key to our compression method is the ratio of silent
neurons in the SNN. Fortunately, empirical studies have
shown that SNNs have a significant fraction of silent neurons
(60%–70%, as shown in Table II). We also apply a similar
bitmask-based technique to compress weights in a column-
wise manner, with each compressed weight column also
referred to as a fiber.

B. Temporal-Parallel Processing Elements

The fundamental building blocks of LoAS’s compute en-
gine are the Temporal-Parallel Processing Elements (TPPEs)
and Parallel Leaky-Integrate-Fire units (P-LIFs), which we
describe next. Figure 7 details the design of the TPPE. Each
TPPE computes the full sum for one output neuron across
all timesteps (Line 5 in Algorithm 1). Before computation
begins, the bitmask (bm-B) of a fiber from weight matrix
B (fiber-B) and its non-zero data are read from SRAM and
broadcast into the small bitmask buffers (128 bits in our
design) within each TPPE. The bitmask (bm-A) of the fiber
from the input spike matrix A (fiber-A) is also fetched and
sent to the TPPEs. Each TPPE holds the bitmask for a distinct
fiber along the row of A. Once the data are loaded, an inner-
join operation [9], [15], [18] is performed between the two
bitmasks. Depending on the inner-join result, the matched
non-zero data of fiber-A are fetched from the global cache
and sent to the pseudo-accumulator (to be discussed shortly)
to perform the accumulation (AC) operation. After the TPPE
completes the full computation for one output neuron, it sends
the result to the P-LIF unit, which generates output spikes for
all timesteps in one operation.

C. Inner-join Unit

The inner-join operation has been extensively studied in
prior works [9], [15], [18] for spMspM acceleration in ANNs.

6We follow the same terminology used in [28].
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The inner-join mechanism, coupled with a prefix-sum circuit,
has been efficiently implemented using bitmask representa-
tion [15]. In [15], a logical AND operation is first applied to
two bitmasks to obtain the AND-result, which represents the
locations where both data are non-zero. This AND-result is
then sent to a priority encoder to convert the matched positions
into integer values. The matched positions are subsequently
sent to two separate prefix-sum circuits to determine the num-
ber of 1s preceding each matched position in each bitmask,
which provides the offsets for each non-zero data in memory.

During this process, the use of two fast prefix-sum circuits7

is a costly operation, consuming more than 45% of the power
and area in [15]. To reduce the overhead associated with the
prefix-sum circuits, we propose an FTP-friendly inner-join
unit, which is detailed in Figure 9.

We first observe that in ANNs, the MAC operation requires
both inputs to be explicitly known at computation time.
Therefore, two fast prefix-sum circuits are necessary to match
the processing speed of both inputs. However, this is not the
case with SNNs. In SNNs, the input has only two possible
states (1 or 0), meaning we either accumulate or discard the
weight. This distinction allows for an imbalanced processing
speed between the two inputs at the prefix-sum stage.

In our design, instead of using two fast prefix-sum circuits
as in ANNs, we employ one fast and one laggy prefix-sum
circuit (soon be explained), as shown in Figure 9. Recall that
our compression method only fetches the non-silent neurons
(those that fire at least once across timesteps) from DRAM for
A. Thus, as soon as we find a matched position in the AND-
result, we can confidently accumulate the corresponding non-
zero value in fiber-B at least once, without immediately know-
ing the exact spike information from fiber-A. This approach
ensures that the throughput of processing fiber-B remains high,
regardless of the processing speed of fiber-A.

In our efficient inner-join unit, each time the fast prefix-
sum circuit generates an offset, the corresponding non-zero
value of fiber-B is directly sent to a pseudo-accumulator for
accumulation. This mechanism opportunistically assumes that
the matched non-zero value in fiber-A is all 1s (i.e., the pre-
synaptic neuron fires at all timesteps) to fully leverage the
throughput of the fast prefix-sum circuit. Since the non-zero

7In [15], the design of the prefix-sum circuit is not described in detail. We
assume it to be a tree-like prefix-sum circuit with O(log(n)) complexity that
can run in one clock cycle. We define this design as the fast prefix-sum circuit.
The size of the input and output for the prefix-sum circuit is set to 128 in
both [15] and our work.

1113

Authorized licensed use limited to: Yale University Library. Downloaded on July 07,2025 at 19:37:26 UTC from IEEE Xplore.  Restrictions apply. 



value in fiber-A is not always all 1s, we need a mechanism
to ensure that the accumulation results are accurate. Instead
of using the expensive fast prefix-sum circuit to access and
verify the matched non-zero value in fiber-A, we use a much
simpler circuit to generate the offset for fiber-A. We refer to
this simpler prefix-sum circuit as the laggy prefix-sum circuit,
illustrated on the left side of Figure 9. We use a group of
adders to sequentially add up the prefix-sum results and store
them in a small buffer. These adders operate in parallel, so the
latency of generating all the offsets is equal to len(bm-A)

#of adders .
We provide a simple walk-through example in Figure 10.

First, we run the fast prefix-sum circuit; in every cycle, we
accumulate the matched non-zero value of fiber-B and buffer
it together with the matched position in small FIFOs. When the
laggy prefix-sum circuit finishes running, a ready signal is sent
out. Next, we check the non-zero value in fiber-A according to
the buffered position from FIFO-mp. If the matched value is all
1s, we simply discard the current value in FIFO-B. Otherwise,
we send the buffered non-zero values of fiber-B from FIFO-B
to the correction accumulators. As illustrated in Figure 10, at
cycle 4, we check a2 and find its value is 1111, so we discard
b2. At cycle 5, we check a4 and find its value is 1010, so we
send b4 to the correction accumulator for t1 and t3.

This example highlights the motivation and benefits of using
a combination of fast and laggy prefix-sums. By utilizing a
fast prefix-sum, we can consume fiber-B as early as possible
by first accumulating it into the pseudo-accumulator. While
waiting for the laggy prefix-sum to correct the accumulation
results, we can proceed to fetch the next fiber-B’s data into
the buffer. This approach allows the latency of fetching fiber-
B to be overlapped with the laggy prefix-sum and correction,
thereby improving overall throughput. Additionally, replacing
one fast prefix-sum with a laggy one reduces the overall power
and area of our TPPE.

D. Other Units

After the pseudo-accumulator completes its computation,
the accumulation results are duplicated and sent to each
correction accumulator. The correction value inside each ac-
cumulator is then subtracted from the pseudo accumulation
results for each timestep. Finally, the corrected results are
sent to the P-LIF units to generate the output spikes. As
shown in the purple box in Figure 7, we spatially unroll the
LIF operations so that the output spikes for all timesteps are
generated simultaneously.

LoAS utilizes a unified global buffer to hold the compressed
fiber-A and fiber-B along with their bitmask representations.
We adopt a FiberCache design [60], as a unified shared cache
offers better utilization compared to separate ones. Each line
in the global cache consists of two parts: the first part contains
the bitmask representation of a fiber followed by a pointer, and
the second part holds the non-zero values of that fiber. If the
line manages to hold all the non-zero values, the pointer will be
a NULL pointer; otherwise, it points to the location of the line
where the remaining data are stored. Each PE is responsible
for generating one output neuron, so we use a highly banked
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Fig. 10. Walk-through example of the proposed FTP-friendly inner-join unit.
This example assumes the laggy prefix-sum circuit is ready after 2 cycles.
FIFO-mp buffers the matched position, FIFO-B buffers the matched non-zero
value of B, and ‘Acc’ stands for accumulator.

global cache to ensure multiple PEs can access their data
concurrently. Within each bank, we fetch as many chunks
as possible for one fiber in matrix A and hold them as long
as possible to maximize data reuse. This can be achieved by
adopting a replacement policy for the global cache, as in [30],
[60]. Only one compressed row fiber of matrix B is fetched
into the global cache and broadcasted to all TPPEs. We employ
a compression unit similar to the one in [15], where an inverted
prefix-sum circuit is used to compress the output spikes and
generate their bitmask representations. As observed in [15],
this compression step does not need to be performed quickly,
so we equip an inverted laggy prefix-sum circuit to handle
the compression. The scheduler is responsible for distributing
the data to each TPPE through a simple swizzle-switch-based
crossbar [45].

V. EXPERIMENTAL METHODOLOGY

Software Configuration8 : For the dual-sparse SNNs, we train
and compress AlexNet [25], VGG16 [48], and ResNet19 [17].
We use open-source toolchains for lottery-ticket-hypothesis
(LTH)-based SNN pruning [13], [22]. The default number of
timesteps T is set to 4 across all experiments. We perform
15 rounds of LTH searching, and all SNNs are trained to
convergence, achieving accuracy comparable to state-of-the-
art dense baselines [22]. Additionally, we select representative
layers from each network to provide single-layer insights. A
summary of the workloads is provided in Table II.

We also employ a simple yet effective preprocessing tech-
nique: zeroing out all presynaptic neurons that exhibit low
firing activity to further increase the number of silent neurons.
Specifically, we take the trained SNN and mask the neurons
that produce only one output spike across all timesteps. We
find that with minimal fine-tuning (≤5 epochs), the original
accuracy can be fully recovered, as shown in Figure 11. It is
important to note that this preprocessing technique is designed
to maintain the accuracy of the original workload, not to
improve it. During hardware execution, the compressor will
discard output neurons that have 0 or only 1 output spike. As

8Source codes: https://github.com/Intelligent-Computing-Lab-Yale/LoAS
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TABLE II
SNN WORKLOADS. NL = NUMBER OF LAYERS. T = TIMESTEPS. AVSP{A,
B} = AVERAGE SPARSITY OF MATRICES {A, B} IN (%). AVSPA-ORIGIN =

ORIGINAL SPIKE SPARSITY ACROSS TIMESTEPS. AVSPA-PACKED =
DENSITY OF SILENT NEURONS. AVSPA-PACKED+FT = DENSITY AFTER
FINE-TUNED PREPROCESSING. M/N/K DENOTES MATRIX DIMENSIONS.

SNN NL T AvSpA AvSpA AvSpB
origin packed(+FT)

AlexNet(A) 7 4 81.2 71.3(76.7) 98.2
VGG16(V) 14 4 82.3 74.1(79.6) 98.2
ResNet19(R) 19 4 68.6 59.6(66.1) 96.8

Layer T,M,N,K

A-L4 4,64,256,3456 75.8 63.2(69.7) 98.9
V-L8 4,16,512,2304 88.1 76.5(86.8) 96.8
R-L19 4,16,512,2304 57.9 51.4(55.7) 99.1
T-HFF 4,784,3072,3072 - - (86.8) 96.8

shown in Table II, this preprocessing effectively increases the
number of silent neurons by up to 1.1×.

Origin Mask FT-e1 FT-e5 FT-e10

ResNet19
VGG16

Fig. 11. Accuracy trends with fine-tuned preprocessing. ‘Mask’ refers to
masking out all presynaptic neurons that fire only once during inference. FT-
e{x} denotes fine-tuning for x epochs.

Hardware Configuration: We evaluate LoAS using the con-
figuration detailed in Table III. In our experiments, LoAS is
configured to support SNNs running with 4 timesteps. We
use 16 TPPEs, each equipped with 5 accumulators (1 12-bit
pseudo-accumulator and 4 10-bit correction accumulators) and
1 inner-join unit. Each inner-join unit contains 1 fast prefix-
sum circuit and 1 laggy prefix-sum circuit. The fast prefix-
sum circuit can generate offsets in a single cycle, while the
laggy prefix-sum circuit, which contains 16 adders and a 128-
bit buffer, generates offset results in 8 cycles. The TPPE also
includes 2 depth-8 FIFOs (for correction purposes) and 2 128-
bit buffers (for holding bitmasks). Additionally, a 128-byte
buffer is integrated into the TPPE to hold the non-zero weights
from fiber-B. We allocate 256 KB (double-buffered) for the
global cache. For our workloads, this memory size is sufficient
to capture good on-chip data reuse and keep all TPPEs busy.

Baseline: As discussed earlier, there are currently very few
spMspM accelerators available for dual-sparse SNNs. To con-
struct our baselines, we take the following approach: We first
select three popular ANN spMspM accelerators that use the
IP, OP, and Gust dataflows: SparTen [15], GoSPA [9], and
Gamma [60]. We then envision a scenario where a dual-
sparse SNN (with 4 timesteps and 8-bit weights) is naively run
(sequentially processing its timesteps) on these accelerators.
To be conservative, we place the t dimension at the innermost
loop of the original IP, OP, and Gust dataflows.9 We then

9Adding the t dimension anywhere else would increase data traffic, thus
worsening performance.

TABLE III
CONFIGURATION OF THE LOAS SYSTEM.

TPPEs 16 TPPEs, 8-bit weight
Inner-join unit 16 Inner-join units
Global cache 256 KB, 16 banks, 16-way associative
Crossbars 16× 16 and 16× 16, swizzle-switch based
Main memory 128 GB/s over 16 64-bit HBM channels

make essential modifications to the three accelerators, such
as removing the multipliers in these designs. To ensure a fair
comparison, we configure all designs to have 16 PEs and the
same global SRAM size. We refer to these three baselines as
SparTen-SNN, GoSPA-SNN, and Gamma-SNN.

We implemented the key components of LoAS and our
hardware baselines in RTL and synthesized them using the
Synopsys Design Compiler at 800MHz with 32 nm technol-
ogy. A 128 GB/s High-Bandwidth Memory (HBM) module is
connected to LoAS as the off-chip memory. We used CACTI
7.0 [34] to model the memory components. Additionally, we
built a simulator in Python to model the cycle-level behavior
of LoAS and the baselines by tiling and ordering the spMspM
loop and mapping it to hardware.

VI. EXPERIMENTAL RESULTS

A. Hardware Evaluation

Overall Performances: Figure 12 compares the performance
of the three dual-sparse SNN accelerator baselines (SparTen-
SNN, GoSPA-SNN, and Gamma-SNN) and LoAS (with and
without fine-tuned preprocessing). The speedup is measured
with respect to the cycle numbers of SparTen-SNN.

The first observation is that LoAS significantly outperforms
the other three accelerator baselines in all cases, achieving
average speedups of 6.79× (vs. SparTen-SNN), 5.99× (vs.
GoSPA-SNN), and 3.25× (vs. Gamma-SNN). This is due to
LoAS ’s use of the FTP dataflow, which eliminates the intra-
PE latency penalty associated with sequentially processing
timesteps. Additionally, LoAS reduces both on-chip and off-
chip data communications across timesteps.

The second observation is that LoAS’s performance gain is
highly correlated with the sparsity of matrix A. This relation-
ship is expected since our workloads are extremely sparse in
matrix B, making the overall computation matrix-A-bounded.
As a result, the performance of the three baselines suffers
more when sequentially processing timesteps through matrix
A with lower sparsity. However, LoAS does not experience
this penalty, resulting in speedups ranging from 4.08× (vs.
SparTen-SNN) on VGG16 (highest A sparsity) to 8.51× (vs.
SparTen-SNN) on ResNet19 (lowest A sparsity).

Finally, we observe that with the help of preprocessing (re-
moving neurons that spike only once), LoAS further improves
performance by an average of 20%. This improvement occurs
because the preprocessing technique increases the density of
silent neurons (Section IV-A), allowing LoAS to completely
avoid data communications and computations associated with
those neurons. Figure 12 also compares the energy efficiency
of LoAS and the three baselines on different SNN workloads.
It is observed that LoAS (with preprocessing) achieves (3.68×,
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Fig. 12. Performance and efficiency comparison between SparTen-SNN,
GoSPA-SNN, Gamma-SNN, and LoAS (with and without fine-tuned (FT)
preprocessing) across three SNN workloads. All values are normalized to the
SparTen-SNN baseline.

198.7 407

Fig. 13. Off-chip traffic (KB) and on-chip memory traffic (MB) for SparTen-
SNN, GoSPA-SNN, Gamma-SNN, and LoAS (with and without preprocess-
ing) across three SNN workloads.

3.09×, 2.40×), (3.17×, 1.50×, 2.33×), and (3.54×, 1.34×,
2.47×) higher energy efficiency over SparTen-SNN, GoSPA-
SNN, and Gamma-SNN on AlexNet, VGG16, and ResNet19,
respectively.

Detailed Analysis: We now explain the performance gains of
LoAS. Thanks to the FTP dataflow, LoAS experiences sig-
nificantly less on-chip and off-chip memory traffic compared
to the three baselines. As shown in Figure 13, compared to
SparTen-SNN (IP), LoAS achieves 3.93× (3.70×), 3.57×
(2.22×), and 4.07× (2.24×) less on-chip SRAM (off-chip
DRAM) access on AlexNet, VGG16, and ResNet19, respec-
tively. This outcome is expected since IP dataflow designs
like SparTen are known for poor input data reuse, a problem
exacerbated by the extra temporal dimension (t-dim) in SNN
workloads. While the FTP dataflow is a variant of the inner-
product dataflow, it does not incur additional executions on the

Weight Input Psum Other
Normalized

SRAM miss rate

16x 4x

Fig. 14. Normalized off-chip traffic with breakdown for SparTen-SNN,
GoSPA-SNN, Gamma-SNN, and LoAS (with preprocessing) across three SNN
layer workloads. The normalized SRAM cache miss rate is also provided for
the ResNet19 layer workload. All values are normalized to LoAS.

t-dim because it parallelizes the t-dim at the innermost loop.
Not surprisingly, compared to GoSPA-SNN (OP), LoAS still

achieves 2.87× (4.49×), 2.19× (2.78×), and 2.98× (3.03×)
less on-chip SRAM (off-chip DRAM) access on AlexNet,
VGG16, and ResNet19, respectively. Although OP dataflow
designs like GoSPA-SNN are known for excellent input data
reuse (on average, GoSPA-SNN has 1.45× less SRAM traffic
than SparTen-SNN), their inefficiency arises from the partial
sum (psum) matrices. Due to the extra t-dim in SNNs, the
size of psum matrices expands with the number of timesteps.
GoSPA’s design allocates limited on-chip memory for psum,
so the psum matrices that cannot fit on-chip must be written
to off-chip DRAM and later read back for reduction, leading
to significant off-chip memory traffic.

Finally, compared to Gamma-SNN (Gust), LoAS achieves
2.16×, 1.76×, and 1.91× less DRAM access on AlexNet,
VGG16, and ResNet19, respectively. This result aligns with
Gust dataflow’s ability to reduce off-chip partial row access
through on-chip SRAM and mergers. However, while reducing
DRAM access, Gamma-SNN’s SRAM traffic is exacerbated
by the t-dim in SNNs, resulting in an average of 13.4× more
SRAM traffic than LoAS.

To better visualize the analysis above, we provide a memory
traffic breakdown in Figure 14 for the three SNN layers
in Table II. As shown in the figure, SparTen-SNN has the
largest input off-chip traffic, while GoSPA-SNN has the largest
psum off-chip traffic across all workloads. Among the three
baselines, Gamma-SNN has the smallest off-chip traffic foot-
print due to the Gust dataflow’s on-chip reuse of partial
rows. GoSPA-SNN also has the largest off-chip traffic for the
compressed format due to its use of the CSR format for each
spike. We note that LoAS has slightly larger (2.1×) off-chip
traffic for the compressed format compared to SparTen-SNN,
as we need extra bitmasks to mark the positions of non-silent
neurons, whereas SparTen-SNN can directly leverage the input
spike trains. However, this overhead is negligible compared to
LoAS’s savings on off-chip traffic for other quantities.

Figure 14 also provides the normalized SRAM cache miss
rate for the layer workload in ResNet19. SparTen-SNN has a
16× higher miss rate (1.47%) compared to LoAS. GoSPA-
SNN has the lowest miss rate due to its Output-stationary
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TABLE IV
AREA AND POWER BREAKDOWN OF LOAS (LEFT) AND ONE TPPE

(RIGHT).
Components Area (mm2) Power (mW) TPPE units Area Power

16 TPPEs 0.96 45.1 Accumulators 2e-3 0.16
16 PLIFs 0.02 1.2 Fast Prefix 0.04 1.46
Global cache 0.80 124.5 Laggy Prefix 5e-3 0.32
Others 0.30 18.1 Others 0.01 0.88

Total 2.08 188.9 TPPE total 0.06 2.82

Global Cache 
65.9% TPPEs

23.9%

Others
10.2%

Fast Prefix-Sum
51.8%

Laggy Prefix-Sum
11.4%

Others
31.2%

Accs
5.6%

Fig. 15. On-chip power breakdown for LoAS. ‘Accs’ refers to the accumu-
lators, including 1 pseudo-accumulator and 4 correction accumulators.

dataflow, though this comes at the cost of higher off-chip traffic
for psums. Gamma-SNN has a higher SRAM miss rate than
GoSPA-SNN and LoAS due to the extra t-dim enlarging the
partial row traffic by t times, causing some of the extra traffic
to be evicted from the on-chip SRAM. Overall, the cache miss
rate results align with the off-chip traffic trends. Since all
baselines have the same global cache size, the reduction in
memory traffic reflects LoAS’s improvements in both speedup
and energy efficiency.

Area and Power: Table IV shows the area and power
breakdown of LoAS with the configuration detailed in Ta-
ble III. Inside each TPPE, a single fast prefix-sum circuit
dominates both area (66.7%) and power (51.8%). The original
SparTen [15] requires two fast prefix-sum circuits for both
inputs and weights.10 Thanks to the laggy prefix-sum circuits
we proposed (which account for 8.3% of area and 11.4%
of power), LoAS requires only one fast prefix-sum circuit
inside each TPPE. At the system level, the global SRAM
cache dominates both power and area, consistent with previous
works [30], [33], [60]. Figure 15 provides a visualization of
the power distribution.

B. Ablation Studies

Temporal Scalability Studies: In our experimental settings,
we configured the TPPE inside LoAS to run SNNs with 4
timesteps. Most state-of-the-art SNN algorithms [10], [12] typ-
ically use a decently small timestep (≤8). Therefore, we aim
to understand how TPPE scales with the number of timesteps.
Figure 16(a) demonstrates that TPPE scales well with the
timesteps. This scalability is because all TPPE components,
aside from the accumulators and the input data buffer, are
agnostic to the number of timesteps. Even at 16 timesteps,
the TPPE only increases its area (power) by 1.37× (1.25×)
compared to 4 timesteps. We also examine how the ratio of

10This is not the case in SparTen-SNN. Since the input spikes function
as both bitmasks and data, SparTen-SNN only requires one fast prefix-sum
circuit.

T=4 T=8 T=16 T=4 T=8 T=16

12.5%
22.2% 36.3%

8.4%15.5%
26.8%

(a) (b)

origin FT

Fig. 16. (a) Scalability of TPPE with increasing timesteps. The yellow region
indicates the portion that grows with the timesteps. (b) Scalability of the ratio
of silent neurons (sparsity of matrix A) with increasing timesteps. All values
are normalized to the original silent neuron ratio at 4 timesteps.

silent neurons in VGG16 scales with the number of timesteps.
Figure 16(b) shows that with the aid of the preprocessing
technique, even at 8 timesteps, we can maintain a similar ratio
of silent neurons as with 4 timesteps. However, it is likely
that the number of silent neurons will decrease when using
even larger timestep counts (>8). This presents a challenge
for LoAS when scaling up to srelatively large number of
timesteps.

Scalability Study: Figure 17 further illustrates how the overall
performance of LoAS scales with different factors. We first test
LoAS running on VGG16 with average sparsity levels of B
(weight) at 98.2% (High), 68.4% (Medium), and 25% (Low).
The results show that LoAS’s performance is highly sensitive
to the sparsity level of B. When the sparsity scales from 98.2%
to 25%, LoAS’s performance decreases by approximately
88%. We also observe that LoAS’s performance scales well
with the number of timesteps, with only a 14% reduction in
performance when the number of timesteps is doubled. Finally,
we assess LoAS’s scalability with layer size by comparing one
layer from VGG16 to the hidden feed-forward (HFF) layer
from SpikeTransformer [56] (V-L8 and T-HFF in Table II).
The results demonstrate that LoAS scales effectively, even with
layers of larger parameter sizes.

Fig. 17. Scalability of LoAS across different sparsity patterns of matrix B,
number of timesteps, and layer size.

Dual-sparse SNN vs. Dual-sparse ANN:
In this work, we aim to provide insights for the com-

munity on how to accelerate spMspM for SNNs. However,
it’s also important to discuss the performance comparison
between SNNs and ANNs. Figure 18 shows the comparison
of normalized energy efficiency and memory traffic between
SNNs (LoAS) and ANNs (SparTen [15] and Gamma [60])
running the VGG16 workload. We use the VGG16 workload
in Table II for LoAS. The ANN version of VGG16 has 8-
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Fig. 18. Normalized energy efficiency and memory traffic comparison
between SNNs (LoAS, T=4) and ANN baselines (SparTen, Gamma).

bit weights (98.2% sparsity) and activations (43.9% sparsity).
Overall, the SNN running on LoAS achieves roughly 2.5× and
1.2× greater energy efficiency compared to the ANNs running
on SparTen and Gamma, respectively. We observe that around
60% of energy consumption is due to data movement in both
networks. Therefore, we also include a comparison of DRAM
and SRAM traffic in Figure 18. The figure shows that SNNs,
on average, have approximately 60% less memory traffic
compared to SparTen-ANN. This reduction in memory traffic
is due to the lower input bitwidth (4-bit vs. 8-bit) and higher
input sparsity (79.6% vs. 43.9%), thanks to SNN’s features
of unary activation and sparse spike activity (Section II-B).
Not surprisingly, Gamma-ANN has lower overall DRAM
access compared to LoAS due to its Gust dataflow [60]. The
tradeoff, however, is 3.5× more SRAM traffic, which explains
why LoAS has slightly higher overall energy efficiency.

Dual-sparse SNN vs. Dense SNN: To demonstrate the
benefits of dual-sparsity in SNNs, we compare LoAS with
prior dense SNN systolic-array accelerators, PTB [28] and
Stellar [32], running dense VGG16 with 4 timesteps. For a fair
comparison, we set the array size for PTB to 16 × 4, which
generates 16 full-sum outputs for 4 timesteps in parallel, the
same as LoAS. We also configure Stellar with the same array
size. We leverage ScaleSim [42] to estimate both baselines’
memory traffic and cycle counts. The comparison is shown in
Figure 19.

We first observe that LoAS has roughly 6× higher energy
efficiency compared to PTB, primarily due to 3× (12.5×)
less DRAM (SRAM) traffic. Compared to Stellar, LoAS
achieves approximately 2.5× higher energy efficiency, along
with 2.7× (6.6×) less DRAM (SRAM) traffic. Additionally,
LoAS shows a 46.9× speedup over PTB, mainly due to
the data sparsity and the difference between PTB’s partially
temporal-parallel mechanism (Section II-E) and LoAS’s fully
temporal-parallel mechanism. We also observe that Stellar
outperforms PTB across all matrices, primarily due to Stellar’s
optimized spatiotemporal row-stationary dataflow and spike-
skipping technique. However, compared to Stellar, LoAS still
achieves approximately 7.1× speedup due to its ability to
leverage dual-sparsity. It is important to note that we do not
compare with SpinalFlow [35] due to its temporal encoding
achieving limited accuracy on challenging tasks [6], [28].

46.9x

Fig. 19. Normalized performance comparison between the dual-sparse SNN
accelerator (LoAS) and dense SNN accelerator baselines (PTB, Stellar).

VII. RELATED WORK

In addition to the prior dense SNN accelerator works
discussed in Section II-E, there are also prior works that
attempt to leverage sparsity in SNNs. In [3], a neuron filter
unit is used to fetch weights only when there is a 1-spike.
However, dual-sparsity (both spike and weight sparsity) is
not considered. In [2], dual-sparsity in SNNs is considered
to skip unmatched computations, but the weights and spikes
are fetched in dense format without any compression from off-
chip memory, thereby failing to reduce data movement costs.
In contrast, LoAS leverages dual-sparsity in SNNs for both
computation and data movement.

As discussed earlier, PTB processes timesteps in a partially
parallel manner. Even if PTB is reconfigured to run all
timesteps in parallel (time-window=1), it still differs from
LoAS in loop ordering. In PTB’s loop ordering, the t-dim
is placed between the m-dim and n-dim, while LoAS places
the t-dim in the innermost loop. As discussed in Section III,
LoAS’s loop ordering brings greater efficiency in spMspM
operations. Moreover, PTB is designed to accelerate work-
loads with time-series data from DVS sensors [29], where
the number of timesteps is typically large (>100). For our
workloads, where the number of timesteps is small (≤8),
PTB experiences low hardware utilization. In [31], processing
timesteps in parallel is also explored. However, the focus is
on temporal-coded SNN workloads, and loop ordering is not
discussed. Finally, as mentioned in Section II-E, Stellar [32]
is another work that attempts to process timesteps in parallel.
However, it targets non-LIF, FS-coded SNNs and does not
support dual-sparsity.

VIII. CONCLUSION

In this work, we observed that naively running dual-sparse
SNNs on existing spMspM accelerators results in suboptimal
efficiency due to the latency and memory traffic penalties
associated with processing timesteps. To address this issue, we
proposed a fully temporal-parallel dataflow (FTP) that elim-
inates these problems. To maximize the benefits of FTP, we
introduced FTP-friendly spike compression and an inner-join
mechanism. Additionally, we developed LoAS, a novel archi-
tecture that exemplifies the FTP dataflow. With the support of
both FTP-friendly compression and inner-join, LoAS achieves
significant speedup (up to 8.51×) and energy reduction (up to
3.68×) compared to prior dual-sparse accelerator baselines.
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APPENDIX

A. Abstract

This artifact evaluation focuses on the key results related
to silent neurons and the fine-tuning algorithm discussed
in Section VI, specifically in Table II and Figure 11. The
code required to reproduce the results presented in the paper
can be found at https://github.com/RuokaiYin/LoAS/tree/main/
artifact.

B. Artifact check-list (meta-information)
• Algorithm: Profiling and fine-tuning SNN models
• Dataset: CIFAR-10 (downloadable from PyTorch)
• Model: VGG16, ResNet19, and AlexNet (all provided within

the source code)
• Hardware: x86 64 machine. GPU: NVIDIA RTX 2080 Ti or

NVIDIA V100
• Output: Table II and Figure 11.
• Experiments: Ratio of silent neurons in SNNs, classification

accuracy recovery after fine-tuning
• How much disk space required (approximately)?: 1GB

(excluding software dependencies)
• How much time is needed to prepare workflow (approxi-

mately)?: 20 minutes
• How much time is needed to complete experiments (approx-

imately)?: 40 minutes (2080Ti)
• Publicly available?: Yes
• Archived (provide DOI)?:

https://doi.org/10.6084/m9.figshare.27012058.v1
• Code licenses (if publicly available)?: MIT License

C. Description

1) How to Access: First, clone the source code from https:
//github.com/RuokaiYin/LoAS.git. Then, install the dependen-
cies listed in the requirements.txt file. Finally, navigate
to the artifact sub-directory. Detailed instructions can be
found in the README.md files within this sub-directory.

2) Hardware Dependencies: The code has been tested on
an x86 64 machine. Reproducing Table II does not require
a GPU, but reproducing Figure 11 does. The code has been
tested using NVIDIA RTX 2080 Ti and V100 GPUs.

3) Software Dependencies: The required packages are
listed in the requirements.txt file. Python 3.9.7 and
CUDA 11.1+ are also required.

4) Datasets: The dataset used for fine-tuning is CIFAR-10,
which is available from PyTorch. Automatic downloading is
enabled in the source code, so CIFAR-10 will be automatically
downloaded and stored in the ./dataset directory.

5) Models: We use deep SNN models based on the VGG16,
ResNet19, and AlexNet architectures. Users do not need to
download the models separately, as we have provided the
model definitions, checkpoints, and post-processed models.

D. Installation

After cloning the GitHub repository, navigate to the repos-
itory and install all the package dependencies listed in
requirements.txt. Below is an example of how to install
the dependencies using pip on a Linux command line:

1 pip install -r requirements.txt

To reproduce the results for Table II, navigate to the
following sub-directory and follow the instructions in the
README.md file:

2 cd artifact/Table-II

Similarly, to reproduce Figure 11, navigate to the following
sub-directory and follow the instructions in the README.md
file:

3 cd artifact/Fig-11

E. Experiment Workflow

We use bash scripts to automate the workflow for generating
results for artifact evaluation. Within each sub-directory (e.g.,
artifact/Table-II and artifact/Fig-11), there is
a run.sh script. To run the script, simply execute:

4 /bin/bash run.sh

After the script completes, the results will be available in the
corresponding sub-directory. Additional details can be found
in the README.md file within each sub-directory.

F. Evaluation and Expected Results

After running the scripts as described in Section E, the
generated figures and text files will be available locally within
each sub-directory. For Table II, the generated result is saved
as tableII_artifact.txt. The layer-wise and global
sparsity information is recorded in this text file for all three
networks. Each network will output two sections of results,
corresponding to conditions with and without fine-tuning.
Additional details are provided in the README.md file under
the section How to Interpret the Generated Results, which
explains how to interpret the results and match them with
Table II in the original paper. For Figure 11, the generated
figure is named ft_accuracy.pdf. More information can
also be found in the README.md file.

G. Notes

There may be minor rounding deviations (approximately
0.1%) in the reproduced results for TableII. Additionally,
some variations in the fine-tuned accuracy may occur when
reproducing Figure11. However, the overall trends will remain
consistent with those presented in the original paper. For more
details, please refer to the README.md files.

The codes submitted for evaluation are CUDA GPU-
agnostic. The specific GPU type is provided only to minimize
fluctuations between fine-tuning runs.

H. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-and-badging-current

• https://cTuning.org/ae
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