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ABSTRACT

This review explores the intersection of bio-plausible artificial intelligence in the form of spiking neural networks (SNNs) with the analog in-
memory computing (IMC) domain, highlighting their collective potential for low-power edge computing environments. Through detailed
investigation at the device, circuit, and system levels, we highlight the pivotal synergies between SNNs and IMC architectures. Additionally,
we emphasize the critical need for comprehensive system-level analyses, considering the inter-dependencies among algorithms, devices, cir-
cuit, and system parameters, crucial for optimal performance. An in-depth analysis leads to the identification of key system-level bottlenecks
arising from device limitations, which can be addressed using SNN-specific algorithm–hardware co-design techniques. This review under-
scores the imperative for holistic device to system design-space co-exploration, highlighting the critical aspects of hardware and algorithm
research endeavors for low-power neuromorphic solutions.
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I. INTRODUCTION

Artificial intelligence (AI) has been at the forefront of technologi-
cal innovation over the past decade. From the development of deep
convolutional neural networks1,2 that have revolutionized computer
vision to the emergence of transformers3 and large language models4

that have transformed natural language processing, each generation of
AI algorithm represents a significant leap in our ability to harness the
power of data. The growth of AI is mainly attributed to the scale-up of
high-power, server-class computing machines such as graphics proc-
essing units (GPUs).5 However, GPUs draw a substantial amount of
power, leading to increased operational costs and a larger carbon foot-
print.5,6 As AI aims to become more ubiquitous and user-centric, there
is a growing need for low-power AI algorithms and hardware accelera-
tors. This shift is essential to move away from the current trend of
expecting increased intelligence merely by scaling up compute/mem-
ory resources, which is neither sustainable nor practical for widespread
deployment. However, this vision stands in contrast to the current
algorithm and hardware progress trajectory, where the computational
needs of AI algorithms are doubling every two months, far surpassing
Moore’s law of silicon scaling by a considerable margin.7

To this end, neuromorphic computing algorithms such as spiking
neural networks (SNNs) leveraging brain-like computations have
emerged as a suitable candidate toward low-power AI implementa-
tion.8–10 An SNN contains numerous leaky-integrate-and-fire (LIF)
neurons that store the spatiotemporal information in the form of
membrane potential values over multiple timesteps. The information
from one neuron is relayed to another neuron in the form of binary
spikes. Overall, due to the sparse event-driven binary processing
capabilities, SNNs show promise for low-power edge computing appli-
cations, such as in-sensor processing11–14 and embedded intelli-
gence,15–20 among others. In fact, SNNs are increasingly being
embraced by different industries for commercial products in image
classification,21 optimization,22 agriculture,23 and autonomous driv-
ing,24 signaling widespread adoption and innovation potential. In
recent years, SNNs have achieved comparable accuracy with standard
artificial neural networks (ANNs) in large-scale tasks such as image
classification on the Imagenet-1K dataset.25,26 This has necessitated
SNNs to scale up in terms of parameter count requiring significant
compute and memory resources. Thus, their implementation on the
emerging low-power hardware acceleration paradigm, in-memory
computing (IMC), shows great promise as IMC facilitates highly paral-
lel computation with high-memory bandwidth.

Traditional von-Neumann style accelerators such as graphics
processing units (GPUs) and tensor processing units (TPUs) suffer
from “memory wall bottleneck” owing to the heavy data movement
(specifically, weights) between memory and compute units corre-
sponding to the dot-product operations in neural networks.27,28 IMC
with nonvolatile memories facilitates analog dot-product operations
while keeping the weights stationary on crossbars, thereby reducing
the weight movement bottleneck significantly.29,30 Furthermore, the
costly digital multiplier–accumulator circuits of von-Neumann accel-
erators are reduced to analog crossbar operation on IMC leading to
energy and area efficiency. Importantly, SNNs exhibit tight synergies
with IMC hardware. Due to the high spike sparsity (90% across differ-
ent layers31) and binary spike computations, SNNs implemented on
IMC require low peripheral and data communication overhead that
yield low-power and high-throughput benefits.7,32

Figure 1 illustrates the prevailing landscape of research endeavors
spanning device, circuit, and algorithm within the realm of SNN
research. On the algorithmic front, scholars have directed their effort
toward harnessing spatiotemporal computation, exploiting biological
LIF neuron functionality, and optimizing spike sparsity to enhance the
efficiency of SNN algorithms.9,33,34 Meanwhile, within the domain of
devices and circuits, the community has prioritized objectives such as
achieving multi-level conductance, mitigating device vulnerabilities, and
optimizing crossbar connections, among other pursuits.35–38 However,
to date, these research endeavors have largely been independent of one
another. There exists a critical need to integrate various device, circuit,
and algorithmic parameters with system-level considerations to realize
truly optimal solutions. A comprehensive system-level inquiry holds the
potential to bridge the gap between device-circuit and algorithmic-level
innovations. In pursuit of this objective, the present review delineates
the key bottlenecks and opportunities associated with implementing
SNNs on emerging IMC architectures. With this, the review furnishes
strategic guidance to diverse research communities on innovations for
optimal implementation of SNNs on IMC architectures.

In this review, we first discuss the algorithmic efficiencies and cur-
rent state-of-the-art training algorithms for SNNs. Additionally, we high-
light the widespread application space of SNNs. Thereafter, we highlight
the existent synergies between SNNs and IMC architectures that make
them a suitable candidate for low-power edge computing. Following this,
we motivate the need for end-to-end device, circuit, and system-level
analyses to understand the challenges of implementing SNNs on IMC
platforms. We will also highlight the recent SNN-aware co-design strate-
gies that can overcome the pressing bottlenecks. Finally, we highlight the
key questions that lie ahead in the SNN–IMC research. We discuss the
device and system-level parameters that are crucial toward SNN infer-
ence with future emphasis on sustainable online learning.

II. SNN ALGORITHM AND APPLICATION SPACE
A. Inherent efficiencies in SNNs

SNNs inherently possess several key efficiencies that are critical
toward low-power edge implementation.

1. Binary spike processing

Taking cues from the brain, SNNs perform binary spike-driven
data processing over multiple timesteps. As a result, multiply-and-
accumulate (MAC) operations are merely reduced to efficient accumu-
lation operations.31,39
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2. Spatiotemporal complexity

At each timestep, the input spikes and SNN weights undergo
spatial convolution yielding dot-product outputs. SNNs use a special
non-linearity function called leaky-integrate and fire (LIF).9,33 The
dynamics of an LIF neuron is shown in Eq. (1). For neuron i, the
membrane potentialU is charged by the weighted summation of spikes
from the previous layer’s neuron j at every timestep t. Also, the
leak factor k 2 ð0; 1Þ facilitates temporal leakage of the membrane
potential

Ut
i ¼ kUt�1

i þ
X
j

wijo
t
j : (1)

If at any timestep, the value U exceeds a particular threshold h, the
neuron generates a spike output and vice versa as shown in the follow-
ing equation:

oti ¼
1; if Ut

i > h;
0; otherwise:

�
(2)

This has been described in Fig. 2. It is worth noting that the num-
ber of timesteps for processing the neuronal dynamics will eventually
determine the overall performance of an SNN.40,41 Generally, SNNs
with high timesteps yield better accuracy than that of SNNs with less
timesteps. However, larger timesteps also translate to higher latency
and energy consumption on hardware. As we will see later (in Fig. 8),
timesteps become a critical control knob to determine the overall
energy-vs-accuracy trade-off while designing SNNs.

3. Data sparsity

The LIF neuron activation yields high spike sparsity. This means
that SNNs can represent data with very few spikes. At any given time-
step, around 90% of the neurons in an SNN are not spiking.

Compared to ANNs with the ReLU activation, SNNs exhibit at least
30%–40% higher neuronal sparsity.9,33

4. Event-driven computation

Due to the high spike sparsity, leveraging event-driven computa-
tion and communication can significantly improve the energy effi-
ciency of hardware accelerators.31,42,43

B. State-of-the-art SNN training algorithms

In this section, we cover SNN training algorithms, including con-
ventional learning algorithms like unsupervised Hebbian learning or
spike timing-dependent plasticity (STDP), ANN–SNN conversion,
and modern learning algorithms like backpropagation through time
(BPTT). We will discuss the scalability and practicality of each
algorithm.

FIG. 1. Landscape of the spiking neural network (SNN) algorithm, in-memory computing (IMC) device, circuit, and system parameters. In order to reach fully optimal SNN–IMC
implementations, there is a critical need to consider the existing co-dependencies between IMC device, circuit, system, and SNN algorithm parameters. LIF denotes leaky-
integrate and fire neuron, a fundamental non-linear activation unit in SNNs. Relevant parameters for each domain that underlie hardware metrics such as performance, latency,
energy efficiency, area, and power are mentioned.

FIG. 2. Figure showing the functioning of an SNN. Input spikes are sent to the SNN
across multiple timesteps. These binary spikes get multiplied with SNN weights (w)
to generate multiply-and-accumulate (MAC) values which charge the membrane
potential value U over multiple timesteps. At any time step, if the membrane poten-
tial exceeds a pre-defined threshold (h), a spike output is generated.
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1. Conventional learning algorithms

a. STDP learning. The spike timing-dependent plasticity44 can be
viewed as a spike-based formulation of a Hebbian learning rule,45

where the synaptic weight is updated based on the tight temporal cor-
relation of the firing time of the input and the output spikes. With
STDP, if the presynaptic neuron fires briefly before the postsynaptic
neuron (i.e., if the output spike timing is shortly after the input spike
timing), the weight connecting them is strengthened. Otherwise, if the
timing is reversed, the weight connection is weakened. This strength-
ening and weakening is called long-term potentiation (LTP) and long-
term depression (LTD), respectively. STDP is a fully unsupervised
learning algorithm that does not need a loss objective to update the
weight neurons. Therefore, the SNNs trained with STDP are usually
limited to thousands of neurons, which limits the scalability of this
method.46,47 Recent advances48 propose to incorporate STDP with
supervised learning to increase their scalability to complex tasks.

b. ANN–SNN conversion. Given that ANN training is easier than
SNN training, a straightforward way to obtain the SNN is to first train
an ANNwith the same architecture and convert the neurons into spik-
ing neurons. The conversion process typically involves finding the
optimal threshold values [h in Eq. (2)] for the membrane potential of
the spiking neurons and scaling of the weights such that the spike rate
in SNNs match the floating-point outputs of ANNs.49–51 In a different
ANN–SNN conversion method, Han et al.52 achieved improved con-
vergence and higher accuracy for converted SNNs by performing
ANN–SNN conversion without resetting the LIF neuron. The ANN–
SNN conversion shares several advantages compared to direct training
of SNNs. For example, ANN training is easy to implement since the
computing hardware (e.g., GPUs) and the deep-learning library (e.g.,
PyTorch) are well-established. In addition, the conversion process is
also simple as it only involves changing the neuron type of the model.
However, this method also incurs several disadvantages: (1) The con-
verted SNN requires significantly larger timesteps to realize the origi-
nal ANN performance.9 Large timesteps will translate to high latency
or energy consumption on hardware implementation. (2) The con-
verted SNN shares the same architecture with the ANNs, which is not
tailored for the spike-based mechanism and does not fully utilize the
temporal dynamics of SNNs.34

2. Backpropagation through time

Previous methods like conversion or unsupervised learning suffer
from either large timesteps or low scalability. The BPTT algorithm can
address these two challenges. BPTT usually trains an SNN from
scratch where the gradients are computed in a time step-unrolled com-
putation graph [see Fig. 3(a)]. Formally, the gradient of the weight wij,
denoted by Dwij, is accumulated over T timesteps as follows:

Dwij ¼
XT
t¼1

@L

@oti

@oti
@Ut

i

@Ut
i

@wij
; (3)

where L is the loss function being optimized. In the case of image
classification, categorical cross-entropy loss is widely used. The chal-
lenge of applying gradient descent in SNNs is that the spike function
returns zero gradient almost everywhere because of the thresholding
function. Surrogate gradient descent54–58 overcomes this problem by

approximating the spike function into piece-wise linear, fast sigmoid,
or exponential function.59 For instance, the surrogate gradient descent
method using a piece-wise linear approximation is defined as follows:

@oti
@Ut

i
¼ nmax 0; 1�

����Ut
i � h
h

����
( )

; (4)

where n is a decay factor for back-propagated gradients and h is the
threshold value. The hyperparameter n should be set based on the total
number of timesteps T. BPTT-based SNN reaches state-of-the-art
accuracy on various tasks such as image recognition and event data
processing at fewer timesteps. Hybrid training60 combines BPTT and
ANN–SNN conversion in order to achieve higher accuracy. In
Fig. 3(b), we illustrate the accuracy of various SNN training methods
over the last decade. Evidently, BPTT-based training exhibits high
accuracy while scaling to large-scale datasets such as ImageNet at low
time step overhead.

C. Application space for SNNs

This section reviews the recent academic studies and commercial
application space of SNNs (summarized in Table I).

1. In-sensor processing and low-power healthcare

Due to their inherently sparse and binary spike representation,
SNNs effectively reduce the bandwidth requirements for inter-chip
interfacing. Works by Shaaban et al.11 and MacLean et al.12 employed
efficient time-domain processing to replace computationally intensive
preprocessing steps, while Zhou et al.13 and Barchi et al.14 directly
interfaced sensors with SNNs for in-sensor processing.

The low-power nature of SNNs has also been leveraged in wear-
able healthcare devices. NeuroCARE74 and Mosaic73 offered tailored
neuromorphic healthcare frameworks. Bian and Magno16 and Li
et al.15 utilized SNNs for human activity recognition in wearables, and
Tanzarella et al.17 detected spinal motor neuron activity. Additionally,
SNNs in brain–computer interface (BCI) applications, explored by
Gong et al.18 and Feng et al.,78 leverage their energy efficiency for elec-
troencephalography (EEG) analysis.

2. Emergence of event-driven and spike cameras

Recent research in emerging vision cameras has broadened the
applicability of SNNs, including object detection tasks. Initiatives like
spiking YOLO10 pioneered ANN–SNN conversion, enhancing object
detection efficiency across various datasets. Subsequent works, like Su
et al.,61 achieved state-of-the-art object detection via full-scale SNN
training. In automotive applications, Lopez et al.62 effectively utilized
SNNs’ sparse data representations for artifact detection. Salvatore
et al.63 demonstrated SNN robustness against noise and their effective-
ness in satellite detection using event cameras. Amir et al.,66 Maro
et al.,67 and Vasudevan et al.68 have performed gesture recognition
using event cameras, while Amir et al.66 implemented their algorithm
on the event-driven TrueNorth21 neuromorphic processor, Maro
et al.67 implement their algorithm on an android smartphone. The
DvsGesture, NavGesture, and SL-Animals-DVS datasets proposed by
Amir et al.,66 Maro et al.,67 and Vasudevan et al.,68 respectively, can
serve as temporal datasets for benchmarking SNNs. Moreover, studies
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such as Yang et al.64 and Zheng et al.65 leveraged event cameras’ spike-
driven nature for optical flow estimation.

Recent studies explore advanced spike cameras due to limitations
of conventional RGB and event cameras. Works by Zhai et al.69 and
Chen et al.70 utilize SNNs for optical flow estimation and image recon-
struction, showcasing spike cameras as the new standard in vision
sensing technology. Additionally, Xia et al.,71 Zhai et al.,69 and Chen

et al.70 demonstrated unsupervised SNN training for spike camera
applications, while Zhao et al.72 emphasized spike cameras’ potential
for high-speed object tracking, indicating ongoing advancements in
spike camera technology.

3. Industry adoption of SNNs

Industry leaders are increasingly embracing SNN-based solutions
for product design across diverse sectors. IBM utilizes SNNs for image
classification and detection through their TrueNorth21 platform. Intel
leverages its Loihi chip22 for optimization tasks, harnessing the power
of SNNs. GrayScale-AI76 employs SNNs for simultaneous localization
and mapping (SLAM) and visual odometry applications, while
Andante23 focuses on edge computing solutions for agriculture. In the
healthcare sector, Andante23 is employing SNNs for glucose monitor-
ing and ultrasound image processing. TSST24 integrates SNNs with
ferroelectric field-effect transistors (FeFETs) for autonomous driving
applications, enhancing safety and efficiency. ORBAI77 capitalizes on
SNNs to emulate human brain characteristics, such as associativity
and problem-solving, in the development of artificial general intelli-
gence (AGI). Notably, companies like Apple and Mercedes are also
exploring the potential of SNNs in various product design initiatives,
signaling a widespread adoption of this innovative technology across
industries.

III. IMC ACCELERATORS FOR SNNS
A. von-Neumann and IMC accelerators

In this section, we discuss the differences between von-Neumann
and IMC architectures for inference applications. Note the discussion
in Secs. III and IV will focus on inference, and Sec. V will highlight
some opportunities and challenges for training with IMC–SNNs.

1. von-Neumann accelerators

Traditional von-Neumann AI accelerators [shown in Fig. 4(a)],
such as GPUs and TPUs, contain an array of processing elements

FIG. 3. (a) Training computation graph for the BPTT algorithm. The gradients pass through different layers and timesteps. (b) SNN accuracy on image classification tasks over
the years. We show accuracy on two widely used benchmarks: CIFAR10 (Ref. 53) and ImageNet,25 that comprise of 50 000, 1.2� 106 images with ten classes and 1000 clas-
ses, respectively. SNNs trained on BPTT can achieve high accuracy while scaling to large-scale datasets at low timesteps.

TABLE I. Table showing the academic and industry application space of SNNs.

Academic
studies

Efficient sensing Radar data inference11

Depth estimation12

In-sensor processing13,14

RGB cameras Object detection10,61

Automotive artifact
detection62

Event cameras Satellite detection63

Optical flow estimation64,65

Gesture recognition66–68

High-speed spike
cameras

Optical flow estimation69–71

Object tracking65,72

Wearable healthcare Human activity
recognition15–17

Anomaly detection73,74

Flexible electronics75

Brain–computer
interface18–20

Commercial
applications

Image classification IBM TrueNorth21

Optimization Intel Loihi22

SLAM and odometry GrayScale-AI76

Agriculture and healthcare Andante23

Autonomous driving TSST24

General intelligence ORBAI77
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(PE).27,28,79 Each PE contains multipliers and accumulators that facili-
tate multi-bit MAC operations. For MAC operations, first, the
weights/activation values are fetched from the off-chip DRAM mem-
ory to the input cache. Next, these values are transferred to the scratch
pads of the PEs and the output is stored in the output cache and then
sent back to the off-chip DRAM. During the inference of most modern
deep-learning networks such as ANNs and SNNs, there is a significant
data exchange (in form of weights, activations, and MAC outputs)
between the DRAM and on-chip memories. The continual data move-
ments and the constrained memory bandwidth contribute to the
memory wall bottleneck in von-Neumann architectures.29,30

Additionally, the MAC computation occurs in a cycle-to-cycle fashion.
These factors degrade the throughput and energy efficiency of von-
Neumann accelerators in edge computing scenarios.

2. IMC dot-product accelerators

To overcome the memory wall bottleneck in von-Neumann com-
puting, IMC [shown in Fig. 4(b)] architectures co-locate the computa-
tion and memory units.29,30 IMC architectures feature 2D memristive
crossbars, with nonvolatile memory (NVM) devices situated at the
cross-points. The NVM devices are interfaced in series with access
transistors in a 1T–1R configuration to prevent sneak path currents in
the crossbars.80,81 Some NVM devices predominantly used are phase
change memory (PCM),82 resistive random-access memory
(RRAM),83 spin-torque-transfer magnetic RAM (STT–MRAM),84 and
ferroelectric field-effect transistor (FeFET).85 All the weights of a neu-
ral network are stored on the crossbar encoded as synaptic conductan-
ces in the NVM devices. This eliminates the weight specific data
movement between memories as observed in von-Neumann
architectures.

For MAC computations, the digital inputs are converted to ana-
log voltages by the digital-to-analog converter (DAC) and sent along
the crossbar rows (or select lines). These voltages get multiplied with
the device conductance using Ohm’s law yielding currents, which get
accumulated over the crossbar column (or bit line) according to
Kirchoff’s current law. The column currents represent the MAC opera-
tion result between inputs and weights. The analog-to-digital converter
(ADC) converts column currents into digital outputs. Due to the

analog nature of computing, IMC architectures can facilitate highly
parallel MAC computations per cycle in an energy- and area-efficient
manner.

B. Standard hardware evaluation metrics

In evaluating the efficacy of AI hardware accelerators, several key
metrics are paramount. These metrics provide a quantitative basis for
comparing accelerator designs and are crucial for identifying areas of
improvement.

1. Power consumption and latency

Power consumption in an accelerator comprises both dynamic
and static components. Dynamic power refers to the power consumed
by the accelerator during active computation, whereas static power is
the power consumed at idle state. The inclusion of more hardware
resources directly escalates both dynamic and static power
consumption.

Latency measures the time required for an AI workload to com-
plete its execution on the accelerator for a given input. It is a critical
factor in determining the speed at which the accelerator can process
data, affecting its real-time performance and user experience.

2. Throughput (TOPS)

As shown in Eq. (5), throughput reflects the rate at which opera-
tions are executed per second in the accelerator. This metric is particu-
larly relevant for AI accelerators, where an “operation” implies a
multiply-and-accumulate computation

TOPS ¼ Total number of operations in Terað Þ
Latency

: (5)

3. Energy efficiency (TOPS/W)

Energy efficiency, expressed as TOPS-per-watt (TOPS/W),
gauges the number of operations an accelerator can perform per watt
of power consumed. This metric is instrumental in assessing the

FIG. 4. Figure showing (a) von-Neumann accelerators containing on-chip cache, scratch pad memories, multipliers, and accumulators for performing MAC operations. (b) IMC
architectures containing 2D arrays of 1 transistor–1 memristor (1T–1R) devices. They perform fast analog dot-products minimizing data transfer to mitigate the memory wall bot-
tleneck typical in von-Neumann architectures. Over the years, different nonvolatile memory (NVM) devices like phase change memory (PCM), ferroelectric field-effect transistor
(FeFET), resistive random-access memory (RRAM), and spin torque transfer-based magnetic RAM (STT–MRAM) have been used as memristors.
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sustainability and cost-effectiveness of an accelerator. It is computed as
follows:

TOPS=W ¼ Total number of operations in Terað Þ
Latency�Power

: (6)

It underscores the importance of optimizing both the computa-
tional throughput and power efficiency to enhance the overall perfor-
mance of hardware accelerators.

4. Area efficiency (TOPS/mm2)

Area efficiency, measured in TOPS-per-square-millimeter
(TOPS/mm2), evaluates the computational density of an accelerator,
showcasing how effectively it utilizes its physical space to perform
operations. It is computed as follows:

TOPS=mm2 ¼ Total number of operations in Terað Þ
Latency�Accelerator Area

: (7)

It underscores the accelerator’s ability to maximize its computa-
tional output relative to its size, indicating the efficiency of hardware
design in terms of area utilization.

C. Synergies between IMC Accelerators and SNNs

1. Energy efficiency of IMC accelerators

Figure 5(a) exhaustively compares the different AI acceleration
platforms used today. While GPUs and CPUs offer extensive backend
support (such as CUDA92 for Nvidia GPUs) for AI acceleration, their
hardware architecture is fixed and not suitable for extremely low-
power applications (<1W). To this end, systolic accelerators such as
Eyeriss79,90 [denoted as Eyeriss ANN in Fig. 5(a)] have used ANN-
centric dataflow and architecture modifications in order to achieve
low-power and energy-efficient acceleration. With IMC architecture
(denoted as Neurosim ANN), the energy efficiency is further
improved. This is mainly attributed to the reduced weight data move-
ment across memories and the analog dot-product operations.

2. SNNs on IMC can further energy efficiency

Evidently, due to the sparse and binary spike computations,
SNNs can further improve the energy efficiency and reduce power
consumption in both systolic (SATA SNN31) and IMC accelerators
(SpikeSim SNN40) compared to ANNs. To properly benchmark the
improvements of SNNs, over ANNs, in this section, we have used
SATA31 and SpikeSim40 for SNN implementation as they closely rep-
resent the ANN-implementation architectures of Eyeriss79,90 and
Neurosim,91 respectively. However, in the case of SNNs implemented
on systolic accelerators like SATA,31 the SNN is still memory bottle-
necked. This leads to a 13� TOPS/W improvement at 6.5� lower
power compared to Eyeriss79,90 ANN. In contrast, the SNNs imple-
mented on IMC architectures are not memory bound. Instead, IMC
architectures typically suffer from the peripheral overhead of ADCs
and communication circuits. Interestingly, as seen in Fig. 5(b), SNNs
possess high activation sparsity compared to ANNs. To this end, the
highly sparse binary computation in SNNs can be heavily leveraged to
attain extremely low ADC precision, which in turn reduces the com-
munication overhead. Thus, SpikeSim SNN40 (with algorithmic

optimizations like MINT39 and DT–SNN41 explained in Sec. IVC)
yields 26� higher energy efficiency at 4� lower power compared to
Neurosim ANN. The peripheral overhead reduction in SNN yields
several synergistic benefits including 4� lower area [Fig. 5(c)], 1.6
� higher TOPS [Fig. 5(d)], and 6.67� higher TOPS/mm2 [Fig. 5(e)]
compared to Neurosim ANN.91

IV. SYSTEM-LEVEL ANALYSES OF IMC–SNN
A. IMC hardware evaluation platform

Often, large-scale deep SNNs mandate the need for multiple
crossbars integrated with numerous digital peripheral modules. For
accurate system-level analyses, IMC-realistic evaluation platforms are
necessary. To this end, this section highlights the extensive research
performed toward large-scale ANN implementations on IMC architec-
tures. Thereafter, it highlights the key modifications that some of the
recent SNN–IMC evaluation platforms40 entail to incorporate SNNs.

1. ANN–IMC evaluation platforms

In an early instance of ANN-based IMC deployment, ISAAC93

introduced a pipelined accelerator featuring on-chip embedded
DRAM (eDRAM) for inter-stage data storage. The researchers con-
ducted extensive design-space exploration to determine an optimal
configuration of memristor, ADCs, and eDRAM resources. In another
study, MNSIM94 proposed a unified framework integrating analog and
digital IMC platforms for ANN implementations. Additionally,
Neurosim-v191 presented an end-to-end evaluation framework span-
ning device, circuit, and system levels for ANNs. The study validated
simulation-based findings through post-tapeout testing, demonstrating
minimal discrepancies between real and simulated outcomes.95 More
recent endeavors, like SIAM,96 introduced IMC-based chiplet architec-
tures tailored for ANN execution. Despite the proliferation of IMC
platforms for ANNs, they lack the key SNN-specific modules such as
the LIF neuron module and temporal dataflow, which are crucial for
accommodating SNNs.

2. SNN–IMC evaluation platforms

Over the previous years, there have been several IMC-based SNN
platforms. Liu et al.97 proposed an analog crossbar approach for imple-
menting feedforward and Hopfield networks, devoid of convolutional
network-based dataflow. Narayanan et al.98 and Zhao et al.99 have con-
structed small feedforward SNNs trained using STDP algorithms.
Bohnsting et al.100 and ReSPARC,43 along with Kulkarni et al.,101 have
undertaken large-scale SNN deployments employing analog synapses
and neurons, though these implementations lack open-source avail-
ability. To this end, SpikeSim40 proposes the first open-source end-
to-end IMC hardware evaluation platform for benchmarking large-
scale SNNs. This review will extensively utilize SpikeSim to per-
form end-to-end system-level analyses of IMC-implemented
SNNs. It should be noted that, although the results are based on
SpikeSim, the analyses are applicable to implementing an SNN on
any IMC architecture.

a. SpikeSim—An SNN–IMC evaluation platform. Similar to prior
ANN works, SpikeSim40 contains a tiled hierarchical architecture con-
taining tiles, processing elements (PEs) and crossbars as shown in
Fig. 6(a). The tiles are connected by a network-on-chip (NoC)
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interconnect, while the PEs and crossbars are connected by H-Tree
interconnects. The crossbars, PE, and Tiles work in tandem to
compute the MAC output at a particular time step. Accumulators
at each hierarchy add the partial sums to deliver the final MAC
output.

SpikeSim entails several architectural modifications for imple-
menting SNNs. First, the authors implement a digital neuron module
that facilitates the LIF activation function. The LIF module [see
Fig. 6(b)] is implemented at the global hierarchy and contains a Umem

cache memory to store the membrane potential values over multiple
timesteps. At each time step, the membrane potential value is read
from the Umem cache, added to the MAC output of the current time
step and written back. Second, the authors leverage the binary spike
nature of SNNs to replace the dual-crossbar approach with a cost-
efficient digital DIFF module to carry out signed-MAC operations.
Finally, the authors employ an SNN-specific layer-scheduled dataflow
that improves the throughput and hardware utilization of IMC-
implemented SNNs compared to the tick-batched dataflow42 used in
SNN-specific systolic array accelerators.

During inference, the SNN model weights are partitioned onto
multiple crossbars and the layer-scheduled dataflow is applied.
Simultaneously, SpikeSim further optimizes the floor-planning, NoC,
and the neuron module overhead. Following this, SpikeSim employs

two engines [shown in Fig. 6(c)]- the non-ideality computation engine
(NICE) and the energy-latency-area (ELA) engine, to compute
hardware-realistic accuracy and energy-latency-area metrics,
respectively.

B. Need for system-level analyses of IMC–SNN

1. Device innovations have been system agnostic

Over the years, comprehensive research efforts have introduced
numerous synaptic NVM devices showcasing plasticity akin to neu-
rons in the brain.102–105 These devices aim to enable low-power unsu-
pervised learning methods such as STDP on memristive crossbars.
However, given the current scale of learning tasks, BPTT-based SNN
training algorithms have become increasingly pervasive as shown in
Sec. II B. Interestingly, BPTT-trained SNNs do not require plasticity-
aware synaptic devices. In fact, today’s device research is geared toward
achieving multi-level synaptic devices with a greater number of stable
conductance states,85 higher On/Off ratios,106 and lower read voltages
to avoid write disturbances and lower read energy during infer-
ence.106–108 Concurrent studies are focused on investigating neuro-
mimetic properties in emerging NVM devices for emulating analog
spiking neurons.19,109–113 New neuron models have also been proposed
for improving SNN convergence and hardware implementations.11,52

FIG. 5. (a) Plot of energy efficiency (measured in TOPS/W) vs power for different low-power edge AI accelerators. ANN workloads are deployed on CPU (Intel Movidius,86

Kalray87), GPU (Nvidia Jetson Orin Nano,88 Nvidia Xavier89), systolic accelerators [Eyeriss-V1,79 Eyeriss-V2 (Ref. 90)], and IMC (Neurosim91) accelerators. SNNs are deployed
on SATA31 systolic array and SpikeSim40 IMC accelerator platforms. SATA31 and SpikeSim40 are SNN-specific accelerators that closely resemble the Eyeriss79 and
Neurosim91 platforms, respectively, and thus facilitate a fair comparison. “þ” denotes the conjunction of two approaches. Arrows are used to show the reduction and improve-
ments in power efficiency and energy efficiency, respectively. Higher energy efficiency at lower power signifies a good AI accelerator platform. (b) Plot comparing the activation
sparsity averaged across different layers of the ANN and SNN. Plots comparing (c) IMC chip area (d) TOPS, and (e) TOPS/mm2 of ANN and SNN implemented on the
Neurosim91 and SpikeSim40 platforms, respectively. For all implementations, we use 8-bit VGG16 ANN and SNN (with four timesteps) trained on the CIFAR10 dataset. The
SpikeSim40 and Neurosim91-based hardware parameters are shown in Tables III and IV in Appendix, respectively.
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This research aims to enable seamless integration with analog
crossbar-based dot-product engines, contributing to the development
of low-power neuromorphic systems. FeFET devices having tunable
hysteretic behavior and low-power switching capabilities, have shown
promise in emulating the firing patterns observed in biological neu-
rons.19,114 Device researchers are also exploring the use of NVM devi-
ces like FeFETs as NVM memcapacitors for neuromorphic
computing.115–117 Memcapacitive crossbars, unlike the memristive
ones, perform analog dot-products in the charge-domain with low
dynamic power at negligible static power dissipation. Also, the immu-
nity of memcapacitive crossbars to sneak path currents eliminates the
need for access transistors, thereby reducing design complexity and
crossbar area.118 Thus far, research at the device level has proceeded in
isolation, devoid of consideration for broader system-level impact,
resulting in a discernible gap in the efficient deployment of SNNs on
IMCs.

2. Co-dependence among device and system
parameters

Table II shows the system-level parameters that are codependent
on the different NVM device parameters. Increasing the device preci-
sion (number of stable conductance states) reduces the crossbar count
required for IMC mapping. However, it also increases the ADC preci-
sion to process larger crossbar currents and, in turn, the bandwidth
requirements of the buffers and the communication circuits are high
(refer Fig. 11 for details). Similarly, increasing the device On resistances

and the On/Off ratios increases read parallelism (the number of cross-
bar rows read in parallel). However, it slows down the system’s fre-
quency of operation [refer Fig. 10(d) for details]. Lower operation
frequency will also lower the demand for communication and buffer
bandwidths. Finally, increasing parameters such as the read voltage
(considering no write disturbances) of the NVM devices increases the
system’s frequency of operation, and hence the requirement for higher
interconnect and buffer bandwidths. Therefore, it is imperative to
grasp the co-dependencies among device, circuit, and system-level
parameters to fully analyze the energy-latency-area-accuracy landscape
of SNNs implemented on IMC architectures.

C. SNN system-level bottlenecks andmitigation
strategies

The intrinsic energy efficiency of SNNs may be compromised
without a thorough understanding of hardware bottlenecks. This sec-
tion delineates the primary obstacles hindering the efficient integration
of SNNs on IMC architectures.

1. The LIF neuron module

Figures 7(a)–7(c) show the area distribution across different mod-
ules of the SpikeSim platform for an 8-bit VGG16 SNN trained on
CIFAR1053 (image dimensions of 32� 32), Caltech-101119 (image
dimensions of 48� 48) and TinyImagenet120 (image dimensions of
64� 64) datasets, respectively. Evidently, due to the large Umem [refer
Fig. 6(b)] cache memory, the LIF neuronal module contributes 11.7%–

FIG. 6. (a) Figure showing the hierarchical architecture of SpikeSim40 containing tiles, processing elements (PEs), and crossbars. The tiles and crossbars/PEs are connected
by the network-on-chip (NoC) and H-Tree interconnect, respectively. The DIFF module replaces the dual-crossbar approach to perform signed-MAC operations using a single
crossbar. (b) The LIF neuron module stores the temporal membrane potentials in the Umem cache and facilitates the leaky-integrate-and-fire activation. (c) The energy-latency-
area (ELA) engine and non-ideality computation engine (NICE) perform hardware-realistic energy, latency, area, and accuracy evaluation during SNN inference, respectively.
For SNN–IMC hardware evaluation, the SpikeSim parameters are shown in Table III in Appendix.
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25% toward the overall chip area. The LIF module, thus, poses a bottle-
neck when implementing SNNs trained on large datasets like
ImageNet25 with image dimensions (224� 224 and 384� 384) on
IMC architectures. Interestingly, the LIF module requires >1000�
higher on-chip area compared to ReLU module in ANNs that merely
requires a comparator.

a. Co-design-based mitigation strategies. In SpikeSim,40 the
authors propose a simple approach of channel scaling, wherein the
number of output channels in the first layer of the network are scaled
down yielding 2� reduction in LIF module area. In MINT,39 the
authors apply sophisticated weight and membrane potential
quantization-aware SNN training to reduce the LIF overhead. MINT is
able to reduce the weight and membrane potential precision as low as
2 bits while maintaining iso-accuracy with SNN trained on FP32 preci-
sion. Additionally, another recent work121 performed sharing of LIF
membrane potentials over multiple SNN layers to reduce the LIF
memory overhead. The authors perform inter-layer and intra-layer
membrane potential sharing to achieve over 4� reduction in the LIF
memory area at iso-accuracy.

b. Device research for LIF area mitigation. Device researchers are
exploring novel neuromimetic devices emulating biological neuronal
functionalities. Recent works have leveraged the fast and low-power
switching dynamics of a FeFET-based relaxation oscillator configura-
tion to generate biological spiking patterns at area-efficient form fac-
tors.19,114 In another work, Mohanan et al.122 used nanoporous
graphene-based memristive devices to compactly emulate LIF neurons
in current SNN workloads showing threshold control, leaky integra-
tion, and reset behaviors. The spiking activity of the LIF neuron is tun-
able by varying various circuit and device parameters, allowing it to
cover a broad frequency spectrum.122 Likewise, Zhou et al.123 have
proposed a compact RRAM-based LIF neuron circuit closely inte-
grated with analog RRAM crossbars. This provided a unified path to
carry out dot-products and LIF activation functionalities in the analog
domain. However, given the large number of spatial channels required
by large-scale BPTT-trained SNN models, directly integrating the ana-
log LIF neurons with the crossbars remains an unsolved problem.

2. Temporal computation in SNNs

As SNNs process data over multiple timesteps, an increase in
timesteps linearly escalates the energy-delay product (EDP) across
MAC, communication, and LIF activation operations [Fig. 8(a)].
Interestingly, the crossbar compute arrays, digital peripherals, and the
communication circuits get activated multiple times in a particular

time step in order to compute the weighted summation output. In con-
trast, the LIF activation is performed once every time step. Therefore,
the MAC and communication operations significantly contribute to
the EDP (80% of the overall EDP). Consequently, reducing the num-
ber of timesteps can significantly enhance efficiency. However,
Fig. 8(b) illustrates a trade-off between timesteps, energy efficiency,
and accuracy. While reducing timesteps improves energy efficiency, it
also leads to lower SNN accuracy. Therefore, the development of effec-
tive algorithms exploiting spatiotemporal complexity is imperative.
Note that while Fig. 8 uses SpikeSim for evaluation, the time step is an
intrinsic parameter of the SNN algorithm. Consequently, the linear
increase in EDP with timesteps will remain consistent regardless of the
IMC platform.

a. Co-design-based timestep minimization strategies. Over the
years, training algorithms such as BNTT,9 along with neuromorphic
data augmentation techniques124 and encoding methods such as direct
encoding,125 have effectively exploited the spatiotemporal complexity
of SNNs resulting in a drastic reduction (of the order 10�) in the
number of timesteps. A more recent approach by Li et al.41 called DT–
SNN leverages the difficulty of the input images to scale the number of
timesteps in the SNN. During training, the authors use a joint training
loss to train an SNN on different count of timesteps. During inference,
the authors use an entropy metric to determine the confidence of pre-
diction per time step. An image with lower entropy is deemed easy
and inferred at an early time step and difficult images with higher
entropy are inferred at latter timesteps. The authors of DT–SNN
achieve an overall 81% EDP reduction, with iso or higher accuracy
than a standard SNN using fixed number of timesteps for inference
across all inputs.

3. Vulnerability toward IMC non-idealities

The practical implementation of NVM devices is constrained by
finite conductance levels, limited On/Off resistances, and inherent
non-idealities that can adversely affect the inference accuracy of AI
workloads.40,91,126,127 Depending upon the origin, these non-idealities
can be classified into device and circuit non-idealities as shown in
Fig. 9.

a. Device non-idealities. Stochastic read noise predominantly
originates from random telegraphic noise, flicker noise (1=f noise),
and thermal noise in the NVM synapses.126–131 Read noise is modeled
as a Gaussian distribution around the programmed conductance dur-
ing each read cycle, with a standard deviation (r) increasing with the
NVM conductance.128,130,131 Structural relaxation within NVM devices

TABLE II. Table showing the codependency between different device and system parameters. Non-codependent device and system parameters are denoted by �. Dev., Xbar,
Acc., Comm. BW refer to device, crossbar, accumulator, communication bandwidth, respectively.

Device
System

ADC precision Acc precision Comm. BW Xbar Count Buffer BW

Dev. precision " " " " # "
On resistance " � � # � #
On/Off ratio " � � # � #
Read voltage " � � " � "
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over time leads to another non-ideality called temporal drift, influenc-
ing the retention of programmed conductance in crossbars.130,132 A
popular model describing the temporal conductance drift is given as
GðtÞ ¼ G0 � ðt=t0Þ�� , where G0 represents the initially programmed
conductance at time t0, and � denotes the drift coefficient. Stuck-at-
fault is another non-ideality arising from fabrication defects or exten-
sive crossbar utilization. Stuck-at-faults manifest into fixated NVM
synapses in crossbars (to set or reset states), rendering them non-pro-
grammable.133,134 Despite the inherent robustness of NVM crossbars

to variations, stuck-at-faults can significantly degrade the performance
of ANN/SNN workloads.

b. Circuit-level non-idealities. It includes the parasitic resistances
in the crossbar metal lines denoted as rpar . During analog dot-product
operations, the interconnect parasitics lead to stray IR drops, causing
the output currents to deviate from their ideal values and resulting in
substantial accuracy losses.135–137 Balancing crossbar size to improve
parallelism during inference, while restraining the impact of resistive
non-idealities, becomes a delicate trade-off. Furthermore, the presence
of access transistors in series with NVM devices in 1T–1R synapses is
crucial for eliminating sneak paths and incorrect programming of the
NVM devices.80,81 Nonetheless, it introduces 1T–1R non-linearities
arising from the non-linear I–V characteristics of the access
transistors.36

c. Effect of IMC non-ideality on SNN. For an 8-bit VGG16 SNN
model trained with the CIFAR10 dataset, the impact of parasitic resis-
tances and stochastic read noise on the hardware inference accuracy is
shown in Fig. 10(a). At higher timesteps (timesteps� 4), we find the
non-ideal inference accuracy declines dramatically, owing to signifi-
cant non-ideality error accumulation over multiple timesteps of
computations.137

d. Non-ideality-aware training of SNNs. Ensuring robustness to
crossbar non-idealities involves iterative offline training of SNN mod-
els with noise injection using hardware-realistic noise models.138–142

Recently, the AIHWKit toolkit from IBM offers statistical empirical
models for emulating device-level and parasitic resistive non-idealities
for PCM crossbars in PyTorch.143,144 AIHWKit-based noise-aware
training has demonstrated state-of-the-art hardware accuracies across
diverse tasks, spanning computer vision to natural language process-
ing. However, non-ideality-aware training is not scalable to today’s
large-scale SNN models. This is due to the bottleneck of noise injec-
tion, especially for the input voltage-dependent resistive parasitic non-
idealities, which escalates training latency. Additionally, SNNs incur
high training costs due to computations across multiple time steps.
This has been depicted in Fig. 10(b), where an iteration of non-ideal-
ity-aware training increases the training latency by greater than an
order of magnitude compared to standard training. This underscores
the need for training-less methods for non-ideality mitigation.

e. Training-less non-ideality mitigation strategies. Recent methods
have proposed transformations on NVM conductances during map-
ping onto crossbars, increasing the proportion of low conductance
synapses to mitigate crossbar non-idealities.36,37,145 Based on this prin-
ciple, the NICE engine in the SpikeSim framework shows significantly
improved SNN inference accuracies on non-ideal crossbars with no
additional hardware costs.40 In addition, a recent work has shown that
simple noise-aware adaptation of the batch-normalization (BN)
parameters of a BPTT-trained SNN can fully recover the inference
accuracy lost due to the non-idealities.137 This is corroborated in
Fig. 10(c) across crossbar sizes of 32� 32 and 64� 64. Noise-aware
BN adaptation is a fully weight-static approach, implying that NVM
synapses need not be re-programmed or reconfigured during inference
to mitigate non-idealities.146 Noise-aware BN adaptation incurs nearly

FIG. 7. Area distribution of 8-bit VGG16 SNN on SpikeSim (with hardware parame-
ters shown in Table III in Appendix) with (a) CIFAR10 (b) Caltech-101, and (c)
TinyImagenet datasets. Peripheral circuits include ADCs, accumulators, buffers,
read circuit, shift-and-add circuit, and DIFF module. Communication involves NoC
and H-Tree circuits. Compute array consists of all the 2D 1T–1R crossbar arrays
excluding the peripheral circuits. These trends will remain consistent irrespective of
the SNN–IMC platform used, as they are determined by the memory cell area and
the dataset feature size.

FIG. 8. Figure showing the (a) trends in energy-delay product (EDP) across the
MAC operations, LIF activations, and communication circuits. (b) Trends of TOPS/
W and accuracy with increasing timesteps. Results correspond to 8-bit VGG16
SNN implemented with SpikeSim trained on the CIFAR10 dataset. SpikeSim param-
eters for SNN implementation are shown in Table III in Appendix.
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an order of magnitude lower latency than one epoch of standard SNN
training [see Fig. 10(b)].

f. Choice of NVM device for non-ideality mitigation. While
RRAMs and PCMs are extensively studied for multi-level crossbar syn-
apses, their susceptibility to read noise is a concern. In contrast,
FeFET-based synapses, with increased CMOS-compatibility and high
On/Off ratios (>100), show promise in reducing read noise.106 PCMs
have exhibited high retention capabilities (>10 years) for temporal
drift,130,147,148 while FeFETs show poorer retention (�103 to 104 s) due
to polarization degradation from charge traps, defects, and oxide
breakdown.149 To minimize stray IR drops, synapses with high On
resistance (typically> 100 kX) are favored.139

However, excessively high On resistances diminish the cross-
bar currents, impacting the readout by sense amplifiers or
ADCs.107 This is corroborated in Fig. 10(d), where increasing On
resistance of the synaptic devices leads to higher accuracy for the
VGG16 SNN on 64� 64 crossbars, while reducing the TOPS at the
system level. The reduction in TOPS manifests from the reduced
crossbar currents driving the ADCs. Furthermore, with research
on memcapacitive NVM devices gaining momentum,115–117 it is
noteworthy that the crossbars operating in the charge-domain
eliminate the impact of circuit-level non-idealities such as stray IR
drops and 1T–1R non-linearities.115

V. DISCUSSION AND FUTURE DIRECTIONS
A. Does IMC need very high device precisions?

The device community has always focused on targeting higher
number of stable conductance values in NVM devices without consider-
ing broader system-level implications. One might naturally assume that
enhancing the precision of NVM devices will reduce the number of
crossbars (and their associated peripherals) needed to implement SNN
layers. However, at higher device precisions, the ADC precision needs
to increase (and hence, the ADC area and energy) to avoid quantization
errors in the accumulated column currents, resulting in an expanded
area and energy at the system level. The co-dependence of device preci-
sion with ADC precision is illustrated in Fig. 11(a). For the 8-bit
VGG16 SNN model, the optimal NVM device and ADC precisions are
found to be 4 and 5bits, respectively. This yields the best energy and
area expenditures at the system level as shown in Fig. 11(b). Therefore,
to attain considerable energy and area efficiency, large device precision
is not paramount. It must be noted that these trends are IMC platform
agnostic as they are solely governed by the device precision.

B. FeFETs as a promising device for Umem cache

In light of the LIF area overhead discussed in Sec. IVC1, utilizing
an NVM device like FeFET for constructing Umem cache could drasti-
cally reduce the LIF area by upto 7� compared to the traditional
SRAM cache [see Fig. 12(a)]. However, as illustrated in Fig. 12(b), cur-
rent FeFET technology necessitates multiple write cycles for program-
ming (refer Sec. VC for details on writing into NVM devices), leading
to 3� greater write energy than that of SRAM caches. This increased
write energy stems from the need to perform Umem write operations
over multiple timesteps during SNN inference. Despite FeFETs show-
ing superior noise resilience compared to RRAMs and PCMs, FeFETs
continue to display read and write variabilities, potentially decreasing
the SNN accuracy by 3%–4% [Fig. 12(c)] across a range of datasets.
Note, the relatively short retention time of FeFETs (�103 to 104 s) is
unlikely to pose concerns given that the LIF cache is updated at a sig-
nificantly higher frequency, ranging from tens to hundreds of MHz.

C. Opportunities for IMC–SNNs in online learning

In the recent years, there has been a growing interest in online
learning on edge devices.150 Data privacy concerns make learning on

FIG. 9. Non-idealities impacting inference on NVM crossbars. The memristive
device-level non-idealities are read noise,128–131 temporal conductance drift,130,132

and stuck-at-faults.133,134 The parasitic resistances135,136 of the metal lines in the
crossbars (rpar ) and the transistor non-linearities in the 1T–1R synapses36 comprise
the circuit-level non-idealities.

FIG. 10. (a) Plot showing the impact of crossbar non-idealities on SNN inference accuracy. We consider the effect of stray IR drops due to resistive non-idealities (rpar ¼ 5X)
as well as stochastic Gaussian read noise (r ¼ 0:1) in the RRAM devices. (b) Plot showing the GPU training latency per iteration for non-ideality-aware training (with NI) com-
pared against standard GPU training (without non-ideality or w/o NI) and training-less noise-aware BN adaptation (BN ad.). Evaluations are performed on the Nvidia
RTX2080Ti GPU. (c) Plot showing the effectiveness of noise-aware BN adaptation in mitigating crossbar non-idealities. (d) Plot showing the trend of system-level TOPS and
non-ideal accuracy by varying On resistance of the synaptic RRAM devices. For (a), (c), and (d), evaluations are performed on an 8-bit VGG16 SNN implemented on SpikeSim
using parameters shown in Table III in Appendix. The accuracy is affected by the device-level parameters and therefore will show similar trends irrespective of the SNN–IMC
evaluation platform used. Cross32 and Cross64 denote crossbars of sizes 32� 32 and 64� 64, respectively. All evaluations are performed on the CIFAR10 dataset.
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edge devices imperative because it allows sensitive or personal infor-
mation to be processed directly on-device, without sending it across
the internet or to centralized servers. Furthermore, for applications
requiring real-time or near-real-time responses, such as autonomous
vehicles or emergency response systems, online learning can save huge
communication latency and bandwidth as data do not need to be com-
municated back and forth across the internet.150,151 The contemporary
SNNs demonstrate ability to make accurate predictions with minimal
temporal samples. They are particularly suited for edge devices due to
their ability to operate at low power and their efficiency in handling
highly sparse time-series data, which is common in real-world sensory
inputs.123,152 As discussed in Sec. IIIC, the strong synergies between
SNNs and IMC crossbars, particularly the reduced communication
and ADC overheads to process binary and sparse spike data, show
potential for employing SNNs on IMC crossbars for online learning.

1. Device challenges toward SNN online learning

In online training, writing into NVM devices involves selecting
specific synapses by applying pulses across rows (select lines or SLs)
and columns (bit lines or BLs) [see Fig. 13(a)], followed by modulating
voltage or current to adjust the synaptic conductance.91 Each write
cycle can degrade the NVM device’s material, affecting its lifespan,
making high-endurance devices preferable. Additionally, as program-
ming each device requires multiple pulses, write operations are delay
and energy-intensive.153 This is demonstrated in Figs. 13(a) and 13(b).
Write challenges also stem from the stochastic write noise and asym-
metric conductance updates in the NVM devices [see Fig. 13(c)],
which, although negligible during inference, significantly impact
weight re-programming during online learning.91,139,153 These non-
idealities necessitate repeated write operations to achieve the desired
conductance level, affecting the energy, speed, and device endurance.

2. Hardware requisites for online learning

Write noise mitigation strategies, in general, include error correc-
tion codes,154 write verification-and-retry mechanisms,155 and struc-
tural advancements in the NVM devices.107,108 FeFETs are less
susceptible to write noise compared to RRAMs and PCMs, owing to
deterministic polarization-switching at low voltages. However,
FeFETs, in general, show limited endurance (�104–1010 cycles) owing
to mobility degradation and charge trapping phenomena.156–160 The
low endurance of FeFETs can become problematic during online
learning as the weights of the SNN need to be updated frequently.
Furthermore, RRAMs and PCMs rely on filament formation mecha-
nism and high thermal energy for state change, respectively, leading to
high write energy and latency. In contrast, FeFETs offer substantial
write energy and latency reductions due to the rapid and low-voltage
switching of ferroelectric layers.

3. Hardware-friendly online learning paradigms

Current BPTT-based algorithms entail huge memory and com-
putational costs for facilitating backpropagation on hardware over
multiple timesteps.31 The ability to update model parameters locally
and independently at each layer is important for online and continual
learning paradigms. This is crucial for applications that require the
model to adapt continuously to new data without the need for re-

FIG. 12. Figure comparing the (a) LIF module area, (b) Write Energy, (c) Accuracy of SpikeSim-implemented SNNs implemented with SRAM and FeFET-based Umem cache
inside the LIF module. Results are shown across the CIFAR10, TinyImagenet, and Imagenet100 datasets for an 8-bit VGG16 SpikeSim-implemented SNN with parameters
shown in Table III in Appendix. These trends will remain consistent irrespective of the SNN–IMC platform used, as they are determined by the memory cell area and the dataset
feature size.

FIG. 11. Figure showing the (a) trend of required ADC precision and crossbar count
with increasing device precision. (b) The trend in area and energy upon increasing
device precision. All evaluations are performed on SpikeSim with 8-bit VGG16 SNN
implemented using hardware parameters shown in Table III in Appendix.
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training from scratch. To this end, local gradient-based learning meth-
ods, such as direct feedback alignment (DFA),161 show great promise
in reducing training latency and improving TOPS/W at the system
level over traditional backpropagation.162–164 Additionally, emerging
learning algorithms exploiting the eligibility traces in SNNs can
achieve bioplausible165 and memory-efficient online learning at the
edge.166

D. Need for layer-specific peripheral circuit
co-optimization

So far, all optimizations that have taken place have been imple-
mented homogeneously across different SNN layers, regardless of the
layer-specific computational complexity. However, it is important to
note that different layers have different compute complexity and there-
fore will require specific device-circuit-system and algorithmic parame-
ter optimization. Recent works have proposed layer-specific device167

and peripheral circuit parameters168 to obtain optimal energy and area
efficiencies. To optimize the communication overhead, work by
Krishnan et al.169 has proposed layer-specific tile sizes to minimize
inter-tile communications. Here, it is important to highlight that despite
the two-dimensional integration using NoCs in a typical silicon fabrica-
tion process, the on-chip connectivity still falls short of the three-
dimensional connectivity observed in the brain.170 Consequently, more
recently, 3D crossbar-based IMC architectures171,172 have emerged as a
viable solution to address this communication bottleneck. Nevertheless,
all these studies have primarily focused on optimizations within the
ANN domain, underscoring the importance of conducting layer-
specific optimizations tailored for SNNs.

VI. CONCLUSION

The review delineates the pivotal synergies between SNNs and
IMC architectures, showcasing their efficacy in ultra-low-power edge
computing scenarios. SNNs are being actively used for various com-
mercial applications requiring extensive academic studies across multi-
ple application spaces. To achieve optimal low-power edge
implementations, the review motivates system-level analyses by con-
sidering the co-dependencies between algorithm, device, circuit, and
system parameters. Furthermore, we point out the bottlenecks at the
system level that arise from implementing SNNs on IMC architectures
due to NVM device limitations. To this end, our review delves into sev-
eral device, circuit, and system-aware co-design-based strategies that
have been developed to overcome the inherent bottlenecks. Finally, we
emphasize on future device research landscape to facilitate energy-
efficient IMC–SNN deployment with key focus on online learning,
emerging neuronal devices, and effective design-space co-exploration.
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APPENDIX: HARDWARE EVALUATION PARAMETERS

We have added Tables III & IV with values of circuit and
device parameters used for SpikeSim & NeuroSim based evaluation,
respectively, in this work.
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