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A B S T R A C T

The noise produced in demolition sites can mask safety-critical sounds that inform operators about task condi
tions and hazards. These problems are exacerbated in teleoperated demolition, where the separation between 
operator and site compromises operators’ situation awareness and cognitive loads. This paper assessed the effects 
of environmental sounds with and without attenuation on the operators’ performance and response (e.g., stress, 
attention, task engagement) during teleoperated demolition. Eighty participants completed three virtual de
molition tasks under different environmental sound conditions, i.e., no sound (NS), unfiltered sound (US), and 
filtered sound (FS) with 20-dB attenuation of background noise and robot’s sounds to allow focus on safety and 
task conditions. The results show that US induced more stress than NS and FS. Also, FS resulted in fewer col
lisions, faster reaction times, and greater attention and task engagement than US. These results can support the 
design of sound feedback interfaces for teleoperation in construction.

1. Introduction

Sound is crucial for communications, operations, and safety in con
struction, providing workers with information about site conditions, the 
operational status of tools and equipment, the proximity of obstacles, 
and the presence of hazards [1,2]. However, the excessive noise condi
tions typical of most construction sites can mask safety-critical sounds 
(e.g., reverse alarms, workers’ spoken warnings), diminishing their 
effectiveness in alerting workers to hazards on site and issues with the 
machines, which has led to numerous accidents [3,4]. Beyond 
compromising auditory perception, construction noise can adversely 
affect construction workers’ psychological and physiological responses, 
such as inducing changes in heart rates (HR) and stress [5] and creating 
distractions [6], which have further implications on performance, 
safety, and well-being. These noise-related challenges are especially 
critical in teleoperation applications. The separation between operators 
and the site can compromise operators’ perception of sensory informa
tion, such as sound, reducing situation awareness (SA) and increasing 

cognitive load [7,8]. As a result, operators may be less aware of the 
presence, location, and relative distance of hazards and obstacles in 
teleoperation, increasing the risk of accidents involving teleoperated 
machines.

While noise is a challenge in traditional on-site operations and tel
eoperation, the nature of these challenges differs in these applications. 
On-site operators have access to direct sensory feedback (e.g., visual, 
sound, haptics), which helps them to assimilate and respond to site 
conditions more naturally [9]. Alternatively, operators in teleoperation 
applications are physically separated from the site and must rely on 
mediated sensory feedback from teleoperation interfaces. This separa
tion can distort or diminish critical sound cues. As a result, even mod
erate noise levels can have a more pronounced effect on teleoperators, as 
they lack the rich sensory context available to on-site operators.

Teleoperated machines are becoming increasingly common on con
struction sites, particularly in hazardous environments where operator 
safety is a significant concern [10]. Despite their growing use, the sound 
feedback systems of these teleoperated machines are often simplistic, 
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typically comprising microphones and basic audio interfaces (e.g., 
[9,11]). These limited sound systems may fail to capture the complete 
auditory environment of the construction site, making it difficult for 
operators to perceive safety-critical sounds and further exacerbating the 
challenges posed by excessive noise.

Teleoperated demolition is particularly susceptible to these issues 
due to the high noise levels generated during demolition tasks. Demo
lition sites experience some of the highest noise levels in construction, 
reaching up to 120 A-weighted decibels (dBA) [12], far exceeding the 
National Institute for Occupational Safety and Health (NIOSH) recom
mended exposure limit of 85 dBA averaged over an eight-hour workday 
[13]. While teleoperation interfaces allow demolition operators to 
adjust the sound volumes they experience, the high noise levels on-site 
can still mask safety-critical sounds that alert operators to the risks of 
collapses and approaching equipment and workers. One potential so
lution is to use sound filters to attenuate excessive sounds and back
ground noise, thereby improving the perception of safety-critical sounds 
generated on site [14].

In this paper, we investigate the effects of selective environmental 
sound attenuation on operators’ task performance and safety in tele
operated demolition. We attenuated background noise and excessive 
noises from the demolition robot’s engine, motion, and end-effector 
(breaker) while leaving safety-critical sounds, such as voices of 
approaching workers, equipment, and collapses, unattenuated. Consid
ering that construction noise can also affect operators’ psychological 
and physiological responses (e.g., heart rate, electrodermal activity, 
workload, SA, stress, attention, task engagement) [1,5], we also exam
ined the impact of selective sound attenuation on operators’ workload, 
SA, stress, attention, and task engagement. In an experimental study 
using a virtual environment, we compared operators’ demolition per
formance and responses under three sound conditions: No Sound (NS) 
(baseline), Filtered Sound (FS) with 20 dB attenuation of background 
noise and robot sounds, and Unfiltered Sound (US). The study was 
designed to answer the following research questions: 

1. How do the operators’ task and safety performance in teleoperated 
demolition change with the inclusion of a selective sound attenua
tion filter to the interface compared to the interface providing 
unfiltered sound?

2. How do the operators’ response: stress, attention, and task engage
ment in teleoperated demolition change with the inclusion of a se
lective sound attenuation filter to the interface compared to the 
interface providing unfiltered sound?

The remainder of this paper is organized as follows. Section 2 re
views related studies, and Section 3 reviews current gaps and opportu
nities for sound feedback in teleoperation interfaces. Section 4 presents a 
description of the research methodology. Section 5 presents the results 
of the experiment. Section 6 presents a discussion of the main findings, 
the limitations of the study, and future research opportunities. Finally, 
section 7 presents the conclusions of this study.

2. Literature review

2.1. Effects of sound feedback on the operators’ performance and 
psychological and physiological responses in teleoperation

Sound feedback is crucial in teleoperation applications because it can 
improve operators’ task performance, safety performance, and psycho
logical and physiological responses. These effects are commonly asso
ciated with the increased SA and reduced mental workload that sound 
feedback provides in some cases [15]. Regarding task performance, 
sound feedback can increase position and orientation accuracy in 
manipulation tasks [16] and reduce reaction times compared to no 
sound feedback [17]. Additionally, sound feedback informs operators 
about the robot’s operational status, movements, and potential 

malfunctions [18,19]. Regarding safety, sound feedback can provide 
proximity alerts that reduce the risk of collisions [20,21] and inform 
operators about the presence and levels of toxic and radioactive sub
stances on site [15], even when the hazards are not in the cameras’ fields 
of view.

Moreover, sound feedback positively affects operators’ mental states 
and physiology in teleoperation applications. Many studies have shown 
positive psychological effects of sound feedback, including increased 
feelings of presence [22] and agency [19], enhanced SA [21], and 
reduced cognitive load [15] and distractions [23]. By improving oper
ators’ attention, alertness, and reaction times, sound feedback can serve 
as a redundant sensory stimulus to alert operators when they are 
fatigued and less attentive to visual information [24]. Many of these 
positive effects result from the reduced cognitive load achieved by 
distributing information across multiple sensory channels (e.g., vision, 
sound, haptics) [25].

However, improperly designed sound feedback interfaces and 
exposure to high noise levels can negatively affect operators’ perfor
mance and psychological and physiological responses in teleoperation. 
Noisy environments affect completion times and distance traveled by 
the robots’ end-effectors, effects that are worsened in more complex 
tasks [26]. Additionally, noise can compromise communications [1] and 
decision-making [27] and create distractions that result in safety per
formance degradation [6]. Noise levels and types also influence opera
tors’ cognitive loads and overall comfort. Various studies reported that 
operators felt uncomfortable [17,28] or experienced increased heart 
rates and stress [5,15] for higher noise levels and exposure durations, 
which indicates the need to control the sound levels operators experi
ence during teleoperation.

3. Knowledge gaps

Although the studies in Section 2.1 show many benefits of sound 
feedback in teleoperation interfaces on operators’ performance and 
psychological and physiological responses, most of these studies focused 
on the effects of synthetic sounds produced using data sonification 
instead of environmental sounds (e.g., [15,20]). While data sonification 
can be a powerful tool in informing operators about the presence, levels, 
and distances of hazards on site, it still faces many challenges compared 
to environmental sounds. Understanding synthetic sounds from data 
sonification can be more cognitively taxing for operators, as it requires 
inferential processes and mapping the synthetic sounds to their intended 
meanings, whereas understanding environmental sounds occurs more 
naturally [29]. Additionally, creating the data representations for 
sonification is a challenging task that requires domain knowledge since 
improper auditory representations can lead to increased workload [15].

Alternatively, while some studies considered environmental sounds 
in construction applications, most did not focus on robot teleoperation. 
Instead, they examined how construction sounds and noise affect op
erators’ performance, safety, and well-being during traditional con
struction tasks simulated in virtual reality (VR) environments (e.g., 
[28,30]) or shown in images (e.g., [6]). These studies show that, in 
traditional construction applications, environmental sounds and con
struction noise affect operators’ task and safety performance [31] and 
psychological and physiological responses [5]. However, although re
sults from traditional construction applications can help inform the 
design of teleoperation interfaces, key differences exist between tradi
tional and teleoperated construction tasks, particularly in how operators 
control the robots and assimilate sensory information from the site [8]. 
Thus, further characterization of the effects of environmental sound on 
operators’ task and safety performance and psychological and physio
logical responses is needed in construction teleoperation applications.

In commercial teleoperated machines used in construction applica
tions, environmental sound is captured by microphones installed in the 
cabins of the machines and transmitted to the operators via the tele
operation interface (e.g., [9,11]). However, these setups lack spatial 
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audio capabilities, which may hinder operators’ ability to perceive the 
direction and distance of safety-critical sounds (e.g., approaching ma
chines, collapses), potentially impacting operators’ situation awareness. 
Research efforts have explored the feasibility and usefulness of spatial 
audio and advanced audio processing techniques to support sound 
source localization (SSL) and increase operators’ situation awareness in 
teleoperation [32]. Despite these potential benefits, spatial audio tech
nology has not been used in commercial construction teleoperation 
systems.

As many studies show, construction sites are characterized by many 
sound sources (i.e., polyphonic settings) and high noise levels, which 
complicate understanding audio signals even when computational 
models are used [33]. The inability to perceive environmental sounds at 
appropriate levels due to hearing loss and noisy site conditions is a cause 
of concern among workers due to its potential impacts on job safety, 
stress, fatigue, communications, and the ability to hear warnings and 
equipment [34]. Similarly, noisy conditions on construction sites 
compromise communications [1] and can lead to accidents [3,4]. 
Despite that, insufficient research exists on augmenting construction 
workers’ perception of safety-critical sounds generated on site [14].

Detecting anomalous sound events and enhancing speech commu
nication in noisy environments have become areas of increased research 
interest in many fields. Machine learning (ML) models based on audio 
data have been used to detect screams and gunshots in surveillance 
applications, road crashes in traffic monitoring, and fault equipment in 
industrial settings [35]. In construction applications, ML models based 
on audio data from construction sites have been used for construction 
task monitoring [33], equipment activity recognition [36], infrastruc
ture damage detection [37], hazard detection [2], and improved speech 
communication [38], among others. In all these cases, ML models 
effectively detected and alerted workers about potential hazards or 
problems on site. Opportunities exist to use advanced sound filtering 
that reduces the influence of unwanted background noise in traditional 
construction applications, which can support workers in detecting 
safety-critical sounds on site [14]. However, understanding the effects of 
these ML models and filters to enhance workers’ perceptions of haz
ardous sounds from the site remains largely unexplored in construction 
teleoperation applications.

4. Methods

4.1. Use case

This study focused on a simulated teleoperated demolition task in a 
virtual environment using a Brokk 110 demolition robot (Figs. 1 (a) and 
(b)). During training and subsequent demolition task scenarios, the 
participants were asked to drive and position the body of the robot, its 
outriggers, and its arms to demolish walls and slabs using Brokk’s 

hydraulic breaker. Although the proposed intervention is intended for 
real demolition robots, the use of a virtual environment in this study was 
justified based on the significantly lower costs, complexity, and risks and 
the relatively greater ability to control the experimental conditions (i.e., 
sound levels) that can be achieved in a virtual environment compared to 
a real construction site.

Demolition is one of the most dangerous construction activities in 
which workers are exposed to various safety and health hazards, such as 
high noise levels, dust, and collapses. Even when operators remotely 
control these robots using a control box while standing a few meters 
away from the robot, operations can be dangerous. In many cases, the 
safety and health risks associated with hazardous materials, explosions, 
noise, falling debris, or structural failures have resulted in many injuries 
and deaths among demolition workers [39,40]. Regarding exposure to 
construction noise, previous investigations have shown that demolition 
workers can experience high noise levels in construction sites, which can 
be over 120 dBA [12].

4.2. Workstation

The workstation configuration (Fig. 2) included a laptop powered by 
an Intel® Core™ i7-11800H, with 32 GB of RAM and 16 GB GPU 
(NVIDIA GeForce RTX 3080). The setup also included a 27-in. computer 
monitor, two ambidextrous joysticks (Thrustmaster T.16000 M Space 
Sim Duo Stick), and an immersive cinematic 3D audio headset (Audeze 
Mobius Spatial Audio Gaming Headset). To ensure comfort and func
tionality, the laptop and monitor were mounted on an adjustable desk, 
and the joysticks were attached to the arms of an ergonomic office chair.

4.3. Virtual environment design

The virtual environment was developed using the Unity game engine 
and aimed to create a highly realistic and interactive simulation for 
teleoperated demolition. We used realistic asset packages, such as the 
Destroyed Building Kit (Loknar Studio), to model the architectural and 
structural components of the building. These modular elements, 
including intact and destroyed versions, were assembled to represent 
different building regions where demolition tasks occurred (See Figs. 1
(a) and (b)). This modular design allowed us to control levels of 
destruction for each element by replacing their meshes and materials, 
enhancing the model’s realism. To simulate the destruction of the 
building components during demolition, we used the RayFire for Unity 
plugin (RayFire Studios), a tool commonly employed in visual effects 
and game development for dynamic simulations of objects’ destruction. 
RayFire enabled the realistic fragmentation, shattering, and collapse of 
building components, closely mimicking how materials would behave 
during demolition. In addition to RayFire, the physical interactions be
tween the robot and the building elements—such as gravitational forces 

Fig. 1. (a) Transportation mode and (b) operation mode visual interfaces of the teleoperated robot.
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acting on the robot and built elements, collisions, end-effector forces 
applied during demolition, and interactions between concrete and 
rebar—were simulated using Unity’s built-in physics engine and custom 
scripts.

The control system for the virtual robot replicated the control 
mechanisms of the real demolition robot, with joystick inputs mapped 
directly onto the virtual robot’s arm joints, slew system, outriggers, and 
breaker. The system was designed to handle two operational modes: 
transportation and operation. As with the real robot, the transportation 
mode was used to control the robot tracks and outriggers. Alternatively, 
the operation mode was used to control the robot’s arm, slew system, 
and end-effectors. The system dynamically adjusted camera perspectives 
based on the mode, providing operators with different views for trans
portation and operation (See Figs. 1(a) and (b)). To enhance the tele
operation interface, we carefully replicated the sensor placement on the 
robot body, including cameras and microphones, to mirror real-world 
constraints in teleoperation setups used in construction (e.g., [9,11]).

To further enhance the immersiveness and realism of the virtual 
environment, we used the Steam Audio Spatializer plugin combined 
with a spatial audio headset to simulate spatial audio. It allowed oper
ators to accurately locate sound sources based on their position in the 
virtual environment. It also dynamically adjusted sound levels as the 
relative distances between sound sources (e.g., robot, equipment, 
workers) and the robot’s microphone changed. Audio clips for the scene 
elements (e.g., robot sounds, worker voices, equipment) were extracted 
from actual construction and demolition operations recordings to in
crease sound realism. The system also maintained the relative loudness 
of these sounds, with louder noises (e.g., robot engine, breaker opera
tion) masking quieter ones (e.g., footsteps, worker voices), replicating 
real-world conditions. For more details on the sound design for the 
experimental conditions, see Section 4.4.3. Experimental Conditions. 
Further information on the development of the virtual environment and 
its sound conditions is available in [41].

4.4. Study procedures

The study included three stages: (1) baseline measurements and 
training in the virtual environment, (2) completing a demolition task in 
a virtual environment with no sound as a baseline condition, and (3) 
completing a new demolition task in two experimental conditions using 
unfiltered and filtered sound. The order of the two experimental con
ditions was randomized to control for order effect on the outcome 
measures. Each demolition scenario lasted at most 10 min, and, for most 
participants, the experimental procedure lasted about 1 h and 15 min. 
USC’s Institutional Review Board (IRB) approved the study protocol and 
its associated methods and procedures for surveys, questionnaires, 
psychometric tests, and psychological and physiological tests (Study ID 

UP-22-00914).

4.4.1. Baseline measures and training
After signing a consent form, the participants completed a de

mographic survey that included questions about gender, age, language, 
race/ethnicity, level of education, previous experiences at construction 
sites, in operating construction machines/robots, with video games, and 
virtual reality. Participants completed a short version of the Spielberger 
State-Trait Anxiety Inventory (STAI) consisting of 6 items [42] (See 
Section 4.6.2. Participants’ Response). Then, participants were trained 
on the control mechanisms of the virtual demolition robot, including 
basic operations of the robot’s tracks, arms, outriggers, and end- 
effectors, as well as on identifying and reacting to safety hazards. The 
training session was conducted on-screen using the simulation to pro
vide instructions on operating the robot and behaving in unsafe situa
tions without the researchers’ intervention. Following the training, 
baseline physiological response data (i.e., electrodermal activity (EDA) 
and heart rate (HR)) was collected while the participants were asked to 
relax and remain still for five minutes. Then, participants completed the 
6-item STAI assessment again.

4.4.2. Baseline condition
To complete all demolition tasks, the participants used joysticks to 

drive the robot and position its arms, outriggers, and end-effectors to 
perform the demolition task. The first demolition task for all participants 
was performed with no sound (NS). This condition was selected as the 
baseline condition. In the NS condition, participants demolished one 
wall and one suspended slab. Physiological response data (i.e., EDA and 
HR) was collected throughout the task, and, at the end of it, participants 
completed the 6-item STAI and the NASA Task Load Index (TLX) [43] 
assessments (See Section 4.6.2. Participants’ Response).

4.4.3. Experimental conditions
Two experimental conditions were tested: unfiltered sound (US) and 

filtered sound (FS). In the US condition, the participants could hear 
various sounds from the simulated construction site, including the en
gine and movements of the robot, the breaker, traffic, construction 
equipment, workers, collapses, and background noise. These sounds 
were extracted from videos and audio clips recorded at real demolition 
sites. Each sound was associated with specific robot motions (e.g., arm, 
tracks, outriggers movements), operational conditions (e.g., engine on, 
breaker activated), or elements of the site (e.g., workers, equipment, 
traffic). In the FS condition, the sound sources associated with the en
gine and movements of the robot, the breaker, traffic, and background 
noise were attenuated, whereas the specific sounds from construction 
equipment, workers, and collapses remained unattenuated. This design 
of the FS condition differed from simple sound attenuation because not 

Fig. 2. Teleoperation workstation used in the experiment.
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all sounds were attenuated. Instead, some sounds were attenuated while 
the sounds of interest stood out (i.e., selective environmental sound 
attenuation).

The selected sound conditions were designed to replicate real-world 
auditory challenges in teleoperated demolition and to evaluate potential 
solutions. Although teleoperation allows operators to control the sound 
volumes they experience, demolition sounds’ complex and polyphonic 
nature makes it difficult to identify critical auditory cues. Moreover, 
recent studies have highlighted the need for mechanisms to enhance the 
perception of critical sounds in noisy construction settings [14]. 
Therefore, the US condition replicated traditional teleoperated demoli
tion sound interfaces, while the FS condition served as an alternative 
sound interface that enhances sound perception by selectively attenu
ating non-critical and excessive sounds.

To control the sound levels the participants experienced during the 
simulations, audio mixers in Unity and the 3D headset were used. In 
Unity, the threshold volume of the audio mixers for both the US and FS 
conditions was set to 80 dB. Additionally, the volume of the 3D headset 
was set so that the average dBA levels experienced by the participants 
was around 60 dBA throughout most of the experiment but no more than 
80 dBA for any combination of sounds. The average 60 dBA level was 
selected because it is the usual sound level one experiences during 
normal conversations [44]. Alternatively, the chosen limit of 80 dBA 
level is lower than the recommended exposure limit of 85 dBA (averaged 
over an eight-hour workday) set by NIOSH [13]. The dBA levels were 
measured using a BAFX3370 decibel meter [45]. The only difference 
between the FS and US conditions was that, in the FS condition, a 20 dB 
attenuation filter was included in the audio mixer associated with the 
attenuated sound sources (i.e., the engine and movements of the robot, 
the breaker, traffic, and background noise). The 20 dB attenuation level 
for the FS condition was defined during pilot studies when the partici
pants reported it provided comfortable and informative levels of sound 
feedback during the simulations compared to the US condition.

The selection of the attenuated sound sources in the FS condition was 
made during the development of the virtual environment and subse
quent pilot studies. For the sound sources associated with the robot’s 
operational status (i.e., engine and breaker) and motions (i.e., tracks, 
arm, and outriggers movements), because the audio listener was posi
tioned on the robot, these sounds were much louder than all other 
sounds during the simulations and, thus, were attenuated. The remain
ing attenuated sound sources (i.e., traffic and background noise) were 
attenuated because they were considered not to contribute to operations 
or inform about hazards and task conditions. The unattenuated sound 
sources (i.e., collapses, workers’ voices, and equipment) remained un
attenuated because they were relatively lower than the operational 
sounds of the robot and were regarded as informative of hazards and 
task conditions on-site. It is important to note that the categorization for 
attenuated and unattenuated sounds and the appropriate levels of sound 
attenuation may change for different applications, sites, or task condi
tions, and interface designers must identify proper combinations of 
attenuated/unattenuated sounds and attenuation levels for other 
applications.

In both experimental conditions, participants demolished two walls 
and two suspended slabs in another room of the same virtual building 
used in the baseline condition. Physiological measures (EDA and HR) 
were obtained throughout each condition, and SA, anxiety, and work
load were measured after each experimental condition. Although the 
participants repeated the same demolition scenario in each condition, 
some differences existed between the two conditions to minimize 
learning effects in the assessment of SA. For that, the colors and mate
rials of some built elements (e.g., walls, ceilings, slabs) were changed, 
the number of equipment and tools located outside the demolition area 
was altered, and the hazards related to collapse and agents entering the 
environment were modified. During the first experimental trial, 
regardless of the sound condition, the collapsing element was a wall, and 
the entering agent was another Brokk robot. During the second 

experimental trial, the collapsing element was a slab, and the entering 
agent was a worker.

4.5. Participants

The experiment was powered for small effect sizes (Cohen’s d =

0.15). For two groups (order of applying the two conditions with sound 
included, i.e., US then FS or FS then US) and three measurements (i.e., 
NS (baseline), US, and FS), GPower suggested a sample size of 74 par
ticipants to achieve a power of 80 % with a p < 0.05 significance level. A 
convenience sample of eighty participants, all 18 years or older and 
fluent in English, was recruited through e-mail and the USC psychology 
subject pool. Participation was voluntary, and no compensation was 
provided to the participants. However, academic credits were granted to 
the participants recruited from the USC psychology subject pool. Five 
participants were dropped during the analysis of the results because 
three participants asked the researcher to reduce the sound levels of the 
headphones, and two participants skipped the baseline condition (NS). 
Table 1 presents the demographic information of the participants of the 
experiment by randomized experimental order sequence. Group A par
ticipants experienced the US condition followed by the FS condition, 
whereas Group B participants experienced the FS condition followed by 
the US condition.

4.6. Measurements and feature extraction

In this study, a variety of subjective and objective measures were 
used to assess the effects of environmental sound attenuation on the 

Table 1 
Demographic information of the participants (n = 80) by experimental condition 
order.

Group A 
(US-FS)

Group B 
(FS-US)

Gender Female 
Male

19 (24 %) 
21 (26 %)

20 (25 %) 
20 (25 %)

Age (years) 18–23 
24–29 
30 or older

24 (30 %) 
12 (15 %) 
3 (4 %)

23 (29 %) 
13 (16 %) 
4 (5 %)

Race/Ethnicity African American 
Asian 
Caucasian 
Hispanic/Latino 
Middle Eastern

1 (1 %) 
18 (22 %) 
13 (16 %) 
4 (5 %) 
4 (5 %)

1 (1 %) 
22 (27 %) 
10 (12 %) 
5 (6 %) 
4 (5 %)

Completed Education High School Degree / 
Some College 
Bachelor’s Degree 
Master’s degree

23 (29 %) 
2 (3 %) 
15 (19 %)

20 (25 %) 
7 (9 %) 
13 (16 %)

Video Game Habits Don’t Play 
Play at Least Once a 
Year 
Play at Least Once a 
Month 
Play at Least Once a 
Week 
Play at Least Once a 
Day

14 (18 %) 
6 (8 %) 
5 (6 %) 
8 (10 %) 
7 (9 %)

22 (28 %) 
6 (8 %) 
4 (5 %) 
5 (6 %) 
3 (4 %)

Virtual Reality Experience None 
Less than 5 Times 
5–15 Times 
More than 15 Times

17 (21 %) 
16 (20 %) 
4 (5 %) 
3 (4 %)

22 (28 %) 
12 (15 %) 
1 (1 %) 
5 (6 %)

Construction Experience None 
Less than 5 Years 
5–10 Years

36 (45 %) 
3 (4 %) 
1 (1 %)

33 (41 %) 
6 (8 %) 
1 (1 %)

Construction Machine 
Operation Experience

None 
Less than 5 Times

38 (48 %) 
2 (3 %)

39 (49 %) 
1 (1 %)

Construction Machine 
Teleoperation Experience

None 40 (50 %) 40 (50 %)

Note: Participants were allowed to choose not to reply to any question and could 
select multiple options for some questions; therefore, not all variables total n =
80.
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participants’ task performance, safety performance, and response (i.e., 
experienced levels of workload, SA, anxiety, stress, attention, and task 
engagement) during teleoperated demolition.

4.6.1. Participants’ task and safety performance

4.6.1.1. Average percent demolition. The average percent demolition (by 
volume) was computed for all elements to be demolished in each task 
scenario. In the NS condition, it considered one wall and one suspended 
slab. In the US and FS conditions, it considered two walls and two sus
pended slabs. Given the time constraints of the tasks and to prevent the 
participants from getting stuck on minor pieces of the target elements, a 
70 % demolition threshold was used for each element (defined in a pilot 
study) to inform the participants to proceed to the next target.

4.6.1.2. Number of collisions. The number of collisions was computed as 
the count of collisions between the robot’s body and other elements in 
the scenes (e.g., walls, columns, clutter). It did not include the collisions 
between the breaker and these elements during demolition. Also, to 
reduce the computational complexity of indicating different types and 
levels of collisions, no sound was included in the virtual environment to 
indicate the occurrence of collisions between the robot’s body parts and 
objects in the environment.

4.6.1.3. Reaction time - collapse. The reaction time associated with 
collapsing elements was measured as the time the participant took to 
turn off the engine after an element collapsed. During the training ses
sion, participants were instructed to stop the engine to assess the situ
ation if they perceived a collapse. No element in the demolition area 
collapsed during the NS condition to reduce the learning effects of the 
participants expecting an element to collapse in subsequent tasks. 
Alternatively, a wall collapsed during the second task, and a suspended 
slab collapsed during the third task. The maximum time a participant 
could react to these collapsing elements was 120 s, with the cracking and 
collapsing sounds provided during the first 20 s of this window.

4.6.1.4. Reaction time – agent. The reaction time associated with 
entering agents was measured as the time the participant took to turn off 
the robot’s engine after the agents entered the demolition area. In the 
safety training, participants learned about the maximum reach of the 
Brokk’s arm and were instructed to turn off the robot’s engine if they 
perceived other equipment or workers approaching the robot. Two 
entering agents were used: a Brokk robot in the second task and a worker 
in the third task. Again, these agents were not used in the NS task to 
reduce learning effects. If the participants perceived the entering agents 
and reacted to them, the agents would leave the demolition area 
immediately. If the participants did not perceive the agents, the agents 
would leave the demolition area after 120 s. During the entire stay of 
these agents, the participant could hear the sounds from the entering 
Brokk or worker. For the Brokk, the sounds were from the engine and 
motions of the robot, and for the worker, the sounds were from the 
worker shouting instructions to another worker.

4.6.2. Participants’ response

4.6.2.1. Workload. The subjective assessment NASA-TLX [43] was used 
to measure workload. This instrument is considered the gold standard 
for subjective workload assessments and has been shown to be reliable 
and valid [46]. In this experiment, the NASA-TLX was applied at the end 
of each of the three demolition tasks (NS, US, and FS). Each time, the 
average of the six subscales of the NASA-TLX instrument (i.e., mental 
demand, physical demand, temporal demand, performance, effort, and 
frustration) was calculated to determine the participant’s workload.

4.6.2.2. Situation Awareness (SA). The Situation Awareness Global 

Assessment Technique (SAGAT) [47,48] was used to measure the par
ticipants’ SA. We created a pool of 23 questions related to the site and 
operating conditions of the robot to assess the overall awareness of the 
participants about the environment, task, and existence of hazards on 
site. After each experimental condition, the participants responded to six 
randomly selected questions, two from each of the three levels of SA: 
level 1 - perception of the environment, level 2 – comprehension of its 
meaning, and level 3 – projection of the near future. Although no 
questions were repeated following one condition, the same questions 
could be repeated following both conditions, which is why the envi
ronment’s components between the two conditions were altered. Then, 
the number of correct answers was used to determine the SA scores of 
each participant at each task condition.

4.6.2.3. Anxiety. The 6-item version of the Spielberger State-Trait 
Anxiety Inventory (STAI) [42] was used to measure anxiety. This in
strument is highly correlated with the longer 20-item STAI version, and 
all internal consistency reliabilities are greater than 0.90 [49]. Trait 
anxiety refers to an individual’s predisposition to experience anxiety in 
stressful situations, while state anxiety refers to a temporary emotional 
response to a specific event [50]. The 6-item STAI instrument was used 
five times during the experiment: before the training session, after the 
participants’ physiological baseline assessments, and once after each of 
the three demolition tasks.

Integers were assigned to the Likert scale options for each instrument 
item to compute the STAI scores of the participants. For the “anxiety- 
present” items (i.e., tense, upset, and worried), the assignments were: 
Not at all = 1, Somewhat = 2, Moderately so = 3, Very much so = 4. 
Alternatively, for the “anxiety-absent” items (i.e., calm, relaxed, and 
content), the assignments were: Not at all = 4, Somewhat = 3, Moder
ately so = 2, Very much so = 1. The values of the six items were summed, 
resulting in a number between 6 and 24, which was multiplied by the 
ratio 80/24 to scale the total score to the same range as the 20-item STAI 
instrument.

4.6.2.4. Stress. To predict the development of stress in the participants, 
change scores relative to baseline measurements and absolute scores of a 
variety of HR and heart rate variability (HRV) metrics were used. Prior 
research shows that stress affects HRV and that HRV can be used in 
objective assessments of stress [51]. A Polar H10 sensor [52] was used, 
and over 40 HRV parameters were extracted using the Kubios HRV 
Scientific software [53]. Kubios HRV was used for data pre-processing, 
feature extraction, and segmentation. During data pre-processing, a vi
sual inspection of the quality of the ECG data for each participant was 
performed. Additionally, the software triggered low-quality warnings 
when more than 5 % of the data needed beat correction, which sup
ported quality inspection. After quality inspection, a medium-level 
automatic noise detection filter was applied to the data, which 
excluded noise segments from subsequent analysis. Alternatively, for 
individual intermittent abnormal beat intervals, Kubios HRV corrected 
them automatically using a beat correction algorithm. For data seg
mentation and feature extraction, the events marked on the Empatica E4 
wristband were used to find the beginning and end of each demolition 
task. For the analysis, we focused on the mean RR interval, mean HR, 
and some of the most reported HRV metrics: the standard deviation of 
RR intervals (SDNN), the root mean square of successive differences 
(RMSSD), and the ratio between low-frequency and high-frequency 
band powers (LF/HF) [54].

The mean RR intervals refer to the mean values of the intervals be
tween successive R-waves in the electrocardiogram (ECG) signal. Using 
the values of the RR intervals from the Polar H10, many time-domain 
features were extracted, including HR (i.e., the number of heartbeats 
per minute), SDNN, and RMSSD. We also extracted the LF/HF ratio, 
which is part of the frequency-domain features from the signal, and it is 
commonly used to estimate the ratio between the sympathetic nervous 
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system (SNS) activity and the parasympathetic nervous system (PNS) 
activity [55]. SNS and PNS are the two divisions of the autonomic ner
vous system (ANS), with the PNS being predominant in “rest and digest” 
situations and the SNS in more stress-inducing “fight or flight” situations 
[56]. For all HRV indices, except the LF/HF ratio, changes in the HRV 
features relative to baseline measurements were calculated. Using 
change scores for each participant reduces the effects of personal dif
ferences, allowing for a more reliable between-subject evaluation of the 
effect of each task condition on physiological responses. The reason 
actual LF/HF ratios were used instead of changes in LF/HF ratios from 
the baseline measurements was that slow respiration rates during resting 
periods significantly influence the LF band power, which affects the 
interpretation of baseline LF/HF ratios [55].

4.6.2.5. Attention and task engagement. To predict the participants’ 
attention and task engagement levels during the demolition tasks, 
change scores relative to baseline measurements and absolute scores of 
various EDA features were used. Prior research has shown a relationship 
between Skin Conductance Responses (SCR) and participants’ levels of 
attention and task engagement [57,58]. The study of EDA focuses on the 
autonomic changes in the electrical properties of the skin, such as skin 
conductance [59]. EDA has two components: (1) tonic-level EDA, 
measured in terms of Skin Conductance Level (SCL), refers to back
ground or slow-change skin conductance signals, and (2) phasic-level 
EDA, measured in terms of SCR, refers to fast-change skin conduc
tance signals that can be attributable to specific stimuli in some cases 
[59].

The Empatica E4 wristband [60] was used to measure the partici
pants’ EDA. EDA data was processed in the biosignal-specific processing 
toolbox (Bio-SP tool, version 2.2) [61] to mitigate the effects of noise on 
the data and extract various features related to the SCRs. First, the data 
was segmented based on the events marked on Empatica E4, i.e., the 
beginning and end of each demolition task. Then, a Gaussian low-pass 
filter with a window of 40 points and a sigma of 400 ms was used to 
reduce the effects of noise in the EDA data, as presented in [62]. Finally, 
the SCR features were extracted from the filtered data. These features 
included the SCR duration mean, SCR amplitude mean, SCR rise-time 
mean, and the number of detected SCRs. For the subsequent analysis 
of the results, except for the number of SCRs, the change scores in the 
EDA features relative to baseline measurements were considered.

4.7. Data analysis

For each variable in the study, the descriptive statistics were 
computed, and the normality of residuals and the existence of outliers 
were assessed for each group and condition. For normality assessments, 
the Kolmogorov-Smirnov test was used. For outlier detection, the data’s 
interquartile range (IQR), defined as the difference between the third 
and first quartiles, was computed for each group and condition. Then, 
the upper and lower limits of the data were determined by adding three 
times the IQR to the third quartile and subtracting three times the IQR 
from the first quartile, respectively. Any values outside this interval (i.e., 
outliers) were removed from subsequent analyses. Then, the 
Kolmogorov-Smirnov test was applied again for the data with outliers 
removed. In a few cases, some groups and conditions still did not meet 
the normality of residuals assumption required by mixed ANOVAs. 
However, even in these cases, mixed ANOVAs were used because they 
have been shown to be robust to violations of normality assumptions for 
sufficiently large sample sizes [63,64]. During data analysis, deviations 
from the sphericity assumption were assessed using Mauchly’s test of 
sphericity. When violations of the sphericity assumption were observed, 
the degrees of freedom were corrected using the Greenhouse–Geisser 
correction for situations where ε < 0.75 or the Huynh–Feldt correction 
for situations where ε > 0.75.

Mixed ANOVAs were used to examine differences by condition (i.e., 

NS (baseline), FS, and US) and experimental order (i.e., Group A (US-FS) 
and Group B (FS-US)). The mixed ANOVA analysis varied by the avail
able data for each outcome. For example, reaction times and SA were not 
evaluated in the NS condition and, thus, were only examined between 
the FS and US conditions. For each variable, we first analyzed whether a 
significant order interaction existed; if that was the case, simple main 
effects were reported. If no significant interaction was observed, the 
main effects were analyzed.

For pairwise comparisons for simple main effects and main effects, 
Fisher’s least significant difference (LSD) was used. The decision to use 
Fisher’s LSD test instead of a more conservative test such as Bonferroni’s 
followed the study’s objectives of minimizing the chance of missing any 
effects during pairwise comparisons (type II error), as Bonferroni’s test 
can be unnecessarily conservative in these cases [65]. All statistical 
analyses were conducted using IBM’s Statistical Package for the Social 
Sciences (SPSS) (version 28).

5. Results

Table 2 presents the descriptive statistics (means, standard de
viations, and sample sizes) for each variable of interest in each sound 
condition and group. Comparative analysis of measures among the 
conditions are grouped and presented in two sections related to (1) task 
and safety performance (i.e., percent demolition, collisions, and reaction 
times to collapses and agents) and (2) participants’ psychological and 
physiological responses (i.e., SA, workload, and anxiety as measured 
subjectively, stress as predicted by HRV features, and attention and task 
engagement as predicted by the SCR from the EDA signal).

5.1. Participants’ task and safety performance

Fig. 3 displays the estimated marginal means, standard errors, and 
significant differences between sound conditions for the four perfor
mance measures of average percent demolition (Figs. 3 (a) and 3 (b)), 
number of collisions (Fig. 3 (c)), reaction time to collapses (Fig. 3 (d)), 
and reaction time to entering agents (Fig. 3 (e)).

5.1.1. Average percent demolition
No interaction effect between group and sound condition was 

observed for average percent demolition (p = 0.203) using a 2 × 3 mixed 
ANOVA with a Huynh-Feldt correction of the degrees of freedom (ε =
0.835). However, a significant effect of sound condition was found (F 
(1.669, 105.164) = 17.936, p < 0.001, ηp

2 = 0.222) due to significant 
differences between the NS condition and each of the two experimental 
conditions (p < 0.001 in both cases) (Fig. 3 (a)). These differences may 
demonstrate improved performance in FS and US conditions compared 
to NS, or they may result from a learning effect since the NS condition 
was the first task in groups A and B. Alternatively, no significant dif
ference in percent demolition was found between the FS and US con
ditions (p = 0.198). Finally, a significant effect of group for the percent 
demolition was observed (F(1, 63) = 9.282, p = 0.003, ηp

2 = 0.128) 
(Fig. 3 (b)) with the percent demolition being higher for group A than for 
group B. However, we could not find an explanation for this observation.

We used 2 × 2 mixed ANOVAs to compare the two experimental 
sound conditions for the other three performance measures, i.e., number 
of collisions, reaction time to an agent, and reaction time to a collapse.

5.1.2. Number of collisions
The number of collisions (Fig. 3 (c)) had no interaction effect (p =

0.056) and no main effect by group (p = 0.480); however, a main effect 
of sound condition was detected (F(1, 63) = 9.648, p = 0.003, ηp

2 =

0.133) as significantly more collisions occurred in the US condition than 
in the FS condition.

5.1.3. Reaction time – collapse
For the reaction times to collapsing elements (Fig. 3 (d)), a main 
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effect of sound condition was observed (F(1, 66) = 9.273, p = 0.003, ηp
2 

= 0.123), with the reaction times being faster in the FS condition than in 
the US condition. No interaction effect between sound condition and 
group (p = 0.062) or main effect of group were observed (p = 0.449).

5.1.4. Reaction time – agent
Alternatively, for the reaction times to entering agents, an interac

tion effect between group and sound condition was found (F(1, 55) =
111.345, p < 0.001, ηp

2 = 0.669). Reaction times to the entering agent 
(Fig. 3 (e)) decreased significantly between the first and second 

experimental conditions in each group (p < 0.001 in both cases), which 
may suggest that participants improved their ability to perceive entering 
agents as the experiment progressed. However, the observed decreases 
were larger for group A than for group B. In group A, reaction times 
decreased from 113.8 s (US) to 16.1 s (FS), while for group B, reaction 
times decreased from 85.0 s (FS) to 50.2 s (US). For the reaction times to 
an entering agent, we also observed a significant main effect of sound 
condition (F(1, 55) = 25.081, p < 0.001, ηp

2 = 0.313), but no main effect 
of group (p = 0.726).

Table 2 
Descriptive statistics (means, standard deviations, and sample sizes) for the measures of interest.

Measure‡ Sound Condition Group

No Sound Condition Filtered Sound Condition Unfiltered Sound Condition

Group A* Group B† Total Group A Group B Total Group A Group B Total A B

Participants’ Task and Safety Performance

Average Demolition (%)
M 62.2 58.1 60.0 78.0 65.2 71.3 77.3 70.5 73.7 72.5 64.6
SD 18.3 21.8 20.2 5.1 17.4 14.5 7.2 14.8 12.2 1.9 1.8
N 31 34 65 31 34 65 31 34 65 31 34

Number of Collisions
M – – – 10.5 12.0 11.3 18.2 13.8 15.9 14.4 12.9
SD – – – 5.5 5.3 5.4 17.3 8.8 13.7 1.5 1.5
N – – – 32 33 65 32 33 65 32 33

Reaction Time – Collapse (s)
M – – – 53.1 57.9 55.6 87.4 65.9 76.4 70.3 61.9
SD – – – 54.8 53.7 53.8 48.4 56.7 53.5 7.9 7.6
N – – – 33 35 68 33 35 68 33 35

Reaction Time – Agent (s)
M – – – 16.1 85.0 58.4 113.8 50.2 74.7 64.9 67.6
SD – – – 17.2 44.6 49.6 18.9 42.9 47.2 5.9 4.7
N – – – 22 35 57 22 35 57 22 35

Participants’ Response

Workload
M 37.1 41.4 39.3 35.0 41.1 38.1 38.5 37.9 38.2 36.9 40.1
SD 15.0 18.7 17.0 15.8 18.6 17.4 17.1 18.5 17.7 2.5 2.5
N 37 38 75 37 38 75 37 38 75 37 38

Situation Awareness (SA)
M – – – 4.2 3.8 4.0 3.8 4.1 4.0 4.0 4.0
SD – – – 1.1 1.2 1.2 1.3 1.1 1.2 0.2 0.1
N – – – 33 35 68 33 35 68 33 35

State-Trait Anxiety Inventory (STAI)
M 37.1 37.2 37.2 37.3 36.7 37.0 38.7 36.2 37.5 37.7 36.7
SD 13.0 12.0 12.4 11.8 10.9 11.3 12.5 11.7 12.1 1.8 1.8
N 37 38 75 37 38 75 37 38 75 37 38

Δ Mean RR (ms)§

M −11.2 −10.1 −10.7 −3.0 −8.7 −5.9 −8.8 −13.4 −11.2 −7.7 −10.8
SD 46.2 39.1 42.4 51.6 35.5 43.9 56.5 38.9 47.9 7.0 6.8
N 36 38 74 36 38 74 36 38 74 36 38

Δ Mean Heart Rate (HR) (beats/min)§

M 1.4 0.7 1.1 0.9 0.7 0.8 1.0 1.3 1.1 1.1 0.9
SD 4.9 3.1 4.1 5.1 3.3 4.2 5.8 4.0 4.9 0.7 0.7
N 35 38 73 35 38 73 35 38 73 35 38

Δ SDNN (ms)§

M −9.6 −9.2 ¡9.4 −7.0 −6.8 ¡6.9 −7.9 −6.5 ¡7.2 −8.2 −7.5
SD 8.0 10.6 9.4 6.9 10.9 9.2 8.5 10.6 9.6 1.5 1.5
N 34 36 70 34 36 70 34 36 70 34 36

Δ RMSSD (ms)§

M −5.4 −1.4 −3.4 −4.2 −0.4 −2.3 −4.8 −1.8 −3.3 −4.8 −1.2
SD 8.2 8.6 8.6 8.6 7.9 8.4 9.2 9.2 9.2 1.4 1.4
N 35 35 70 35 35 70 35 35 70 35 35

LF/HF Power Ratio§

M 2.0 2.0 2.0 1.8 2.4 2.1 2.3 2.9 2.6 2.1 2.4
SD 1.3 1.5 1.4 1.0 1.8 1.5 1.6 2.3 2.0 0.3 0.3
N 33 36 69 33 36 69 33 36 69 33 36

Δ SCR Duration Mean (ms)¶
M −7.4 −4.3 −5.8 −8.1 −4.7 −6.3 −10.3 −3.4 −6.8 −8.6 −4.1
SD 17.8 12.8 15.4 21 12.7 17.2 19.5 13.7 17 2.7 2.6
N 34 36 70 34 36 70 34 36 70 34 36

Δ SCR Amplitude Mean (μS)¶
M 0.08 0.06 0.07 0.20 0.11 0.15 0.05 −0.01 0.02 0.11 0.05
SD 0.21 0.19 0.20 0.53 0.26 0.41 0.30 0.13 0.23 0.04 0.04
N 25 27 52 25 27 52 25 27 52 25 27

Δ SCR Rise-Time Mean (ms)¶
M −5.2 0.5 −2.3 −4.4 −0.2 −2.3 −6.1 −0.2 −3.1 ¡5.2 0.0
SD 10.7 6.0 9.0 12.8 5.5 10.0 10.3 7.1 9.2 1.5 1.4
N 35 36 71 35 36 71 35 36 71 35 36

Number of SCRs¶
M 24.1 24.2 24.1 22.8 22.7 22.8 24.2 25.8 25.0 23.7 24.2
SD 13.6 15.9 14.7 13.4 16.3 14.8 14.0 15.0 14.4 1.8 1.8
N 37 38 75 37 38 75 37 38 75 37 38

Note: Highlighted results (in bold) indicate significant differences (p < 0.05). See Sections 5.1 and 5.2.
Abbreviations for the units: seconds (s), milliseconds (ms), minutes (min), micro siemens (μS).

‡ Mean (M), standard deviation (SD), and sample size (N). Differences in sample sizes by group and condition result from missing data and removed outliers.
* Group A order of tasks: NS – US – FS.
† Group B order of tasks: NS – FS – US.
§ HR and HRV metrics used as predictors of stress.
¶ EDA metrics used as predictors of attention and task engagement.
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5.2. Participants’ response

5.2.1. Workload
Workload was examined using a 2 × 3 mixed ANOVA with a Huynh- 

Feldt correction of the degrees of freedom (ε = 0.899). No significant 
interaction effect between sound condition and group (p = 0.137) or 
significant main effect by sound condition (p = 0.708) or group (p =
0.358) were observed for workload.

5.2.2. Situation awareness (SA)
Similarly, in the analysis of SA using a 2 × 2 mixed ANOVA, no 

interaction effect between sound condition and group (p = 0.063) or 
main effects of sound condition (p = 0.832) or group (p = 0.785) were 
observed.

5.2.3. Anxiety
Anxiety differences were examined using a 2 × 3 mixed ANOVA. No 

Fig. 3. Comparison of estimated marginal means between (a) sound conditions for average demolition showing higher demolition performance in FS and US 
compared to NS, (b) groups for average demolition showing higher demolition performance in group A than in group B, (c) number of collisions showing fewer 
collisions in FS than US, and (d) reaction time to collapses showing faster reaction times in FS than US, and (e) between conditions by participant group for reaction 
time to agents showing faster reactions times in the second experimental conditions than in the first experimental conditions in each group. Error bars indicate 
standard errors of the mean.
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interaction effect between sound condition and group (p = 0.305), and 
no main effects of sound condition (p = 0.841) or group (p = 0.694) were 
observed. The STAI scores for all three sound conditions stayed below 
the threshold of at least 40, which is used to detect clinical levels of 
anxiety [66].

5.2.4. Stress
We used 2 × 3 mixed ANOVAs to examine the HR and HRV measures 

used as predictors of stress. No interaction effects between sound con
dition and group, and no main effects of group were found for any of the 
HRV measures reported in this study (all p > 0.05). There were no main 
effects of sound condition for changes in RR intervals, HR, and RMSSD 
(all p > 0.05). Significant differences in the main effects of sound con
dition were noted in changes in SDNN relative to baseline measurements 
and LF/HF ratio.

In the analysis of changes in SDNN, no interaction between sound 
condition and group (p = 0.577) and no main effect of group (p = 0.749) 
were observed, but a significant main effect of sound condition was 
found (F(2, 136) = 9.553, p < 0.001, ηp

2 = 0.123). Pairwise comparisons 
of SDNN showed significant differences between the NS and FS condi
tions (p < 0.001) and the NS and US conditions (p = 0.001) but no 
difference between the FS and US conditions (p = 0.628) (Fig. 4 (a)). 
SDNN decreased from baseline measurements in all three conditions, 
with the NS condition showing the biggest decrease. The reduction in 
the magnitude of the decrease from the first demolition task (NS) to 
subsequent tasks (US and FS), however, may suggest habituation to the 
demolition tasks or decrements in basal emotion levels as the experi
ment progressed [67]. SDNN can generally be considered an indicator of 
physiological resilience to stress [51]. Existing results in the literature 
show that SDNN increases during relaxation periods due to the recovery 
of parasympathetic activity [68] and decreases during stress periods 
[69]. Thus, the results may suggest increased stress levels during the 
three demolition tasks relative to the baseline measurements, regardless 
of sound condition.

For the LF/HF power ratio in the Fast Fourier Transform (FFT) 
spectrum, no interaction effect between sound condition and group (p =
0.060) or main effect of group (p = 0.311) was observed. However, a 
significant main effect of sound condition (F(2, 134) = 9.733, p < 0.001, 
ηp

2 = 0.127) was found. Pairwise comparisons showed significant dif
ferences between the US and NS conditions and the US and FS conditions 
(p < 0.001 in both cases) but no significant difference between the NS 
and FS conditions (p = 0.541) (Fig. 4 (b)). The US condition had the 

highest LF/HF ratio among the three sound conditions. As presented, 
higher LF/HF ratios can be associated with higher levels of sympathetic 
dominance [55], which is more common in stress-inducing “fight or 
flight” situations. Thus, the results may indicate that participants 
experienced higher stress levels in the US condition than in the NS and 
FS conditions. Fig. 4 presents the estimated marginal means and stan
dard errors of the (a) change in SDNN relative to the baseline mea
surements and (b) LF/HF power ratio for all sound conditions.

5.2.5. Attention and task engagement
2 × 3 mixed ANOVAs were used to examine the EDA measures 

selected as predictors of attention and task engagement. No interaction 
effects between sound condition and group were found for any EDA 
measures reported in this study (all p > 0.05). There were no main ef
fects of sound condition for changes in SCR duration means, SCR rise- 
time means, and number of SCRs, and no main effects of group for 
changes in SCR duration means, SCR amplitude means, and number of 
SCRs (all p > 0.05). Significant differences were observed in the main 
effect of sound condition in SCR amplitude means and in the main effect 
of group in SCR rise-time means.

In our analysis of the SCR amplitude means with a Huynh-Feldt 
correction of the degrees of freedom (ε = 0.814), no significant inter
action between sound condition and group (p = 0.741) and no main 
effect of group (p = 0.351) were observed, but a significant main effect 
of sound condition was found (F(1.628, 81.410) = 4.121, p = 0.027, ηp

2 

= 0.076). Pairwise comparisons showed significant differences between 
FS and US (p = 0.011) but no significant differences between NS and US 
(p = 0.153) or NS and FS (p = 0.126) (Fig. 5 (a)). SCR amplitude means 
increased for all sound conditions relative to baseline measurements, 
with the FS condition having a higher increase than the US and NS 
conditions. Existing results in the literature show that SCR amplitudes 
relate to participants’ attention and task engagement levels [57,58], 
suggesting that the FS condition induced the highest levels of attention 
and task engagement among the three sound conditions.

Finally, for the SCR rise-time means with a Huynh-Feldt correction of 
the degrees of freedom (ε = 0.925), no significant interaction between 
sound condition and group (p = 0.313) and no main effect of sound 
condition (p = 0.303) were found. However, a significant main effect of 
group was observed (F(1, 69) = 6.704, p = 0.012, ηp

2 = 0.089) (Fig. 5
(b)). The SCR rise-time mean is the mean time between the start of the 
SCR events and their respective peak values. Group A had a mean 
decrease of 5.24 ms in SCR rise-time means from baseline 

Fig. 4. Comparison of estimated marginal means between sound conditions for the Heart Rate Variability (HRV) parameters (a) changes in SDNN relative to baseline 
measurements likely showing increased levels of stress associated with the demolition tasks with habituation to the task over time and (b) LF/HF power ratio (FFT 
spectrum) likely showing higher levels of stress in US than in NS and FS conditions. Error bars indicate standard errors of the mean.
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measurements, while group B had a mean increase of 0.04 ms. Decreases 
in SCR rise-time have also been associated with increased attention 
levels [70]. Thus, the results may indicate higher attention levels in 
group A than in group B; however, we could not find an explanation for 
this observation. Fig. 5 presents the estimated marginal means and 
standard errors of the change in (a) SCR amplitude means for all sound 
conditions and (b) SCR rise-time means for all groups relative to baseline 
measurements.

6. Interpretation of results and discussion

6.1. Effects on operators’ task and safety performance

In answering research question 1, the study’s results show that, 
compared to unfiltered sound (US condition), selective environmental 
sound attenuation (FS condition) improved operators’ safety perfor
mance but did not significantly affect their task performance. Specif
ically, the FS condition resulted in fewer collisions and faster reaction 
times to hazards compared to the US condition (Figs. 3 (c) – (e)). For the 
number of collisions, the higher sound levels in the US condition likely 
impacted the participants’ driving and positioning performance, thus 
resulting in more collisions than in the FS condition. Prior research has 
shown that the levels of acoustic support (i.e., type and amount of 
auditory information) affect positioning accuracy in teleoperation [20]. 
Therefore, the focused sound conditions in FS may have contributed to 
improved driving and positioning performance, potentially explaining 
fewer collisions in FS than in US. For the differences in reaction times to 
hazards, the attenuated sounds for the robot and background noise in FS 
might have facilitated the perception of the entering agents and 
collapsing elements, potentially resulting in faster reaction times in FS 
than in US. Specifically, the results showed faster reaction times in the 
US condition compared to the FS condition for the reaction times to 
collapsing elements. Alternatively, the results showed a potential 
learning effect for the reaction times to entering agents, as participants 
reacted faster to entering agents during the second experimental con
dition than in the first experimental condition in each group. However, 
the results also showed that the reduction in reaction times was more 
pronounced when participants experienced the FS condition after the US 
condition (Group A) than when they experienced the US condition after 
the FS condition (Group B). Previous research has shown that including 
environmental sounds in virtual environments can help users perceive 
certain hazards more easily [28]. Thus, in the FS condition, the fact that 
it was easier to perceive certain sounds associated with hazards (e.g., 

collapsing elements, entering agents) due to the attenuation of the 
sounds associated with the robot’s operational status and background 
noise may have made it easier to identify these hazards and react to 
them. Alternatively, no significant differences between the FS and US 
conditions were detected for task performance as measured by percent 
demolition and SA.

6.2. Effects on operators’ response: stress, attention, and task engagement

Regarding research question 2, which focused on the effects of se
lective environmental sound attenuation (FS condition) on operators’ 
response (e.g., stress, attention, task engagement) compared to unfil
tered sound (US condition), the physiological indicators of stress, 
attention, and task engagement suggested improved operator responses 
in FS compared to US. From the results in Table 2, the increases in mean 
HR and the decreases in mean RR intervals, SDNN, and RMSSD relative 
to baseline physiological measurements may indicate increased levels of 
stress for the three tasks, regardless of sound condition, as increases in 
HR and decreases in heart rate variability have been commonly used as 
indicators of increased levels of stress [51]. For the case of SDNN (Fig. 4
(a)), specifically, the decrease was significantly greater in the NS con
dition than in the US and FS conditions, suggesting less stress resilience 
in NS than in US and FS, but since the NS condition was always the first 
condition the participants experienced, this observation may be related 
to habituation to the demolition task [67]. The fact that increased stress 
levels were observed for all three tasks relative to baseline measure
ments indicates that the simulated demolition tasks triggered a physi
ological response in the participants. However, these measures alone did 
not let us completely characterize the contributions of the different 
sound conditions on the observed increases in stress levels. To that end, 
the LF/HF results provided additional information on the effects of the 
sound conditions on the potential stress levels the participants experi
enced during the demolition tasks. As Fig. 4 (b) shows, the LF/HF ratio 
was significantly higher in the US condition than in the NS and FS 
conditions. Higher LF/HF ratios are commonly associated with higher 
levels of sympathetic dominance in stress-inducing “fight or flight” sit
uations [55]. Thus, the results may indicate higher stress levels in the US 
condition than in the NS and FS conditions, which can be associated with 
the relatively higher levels of sound and the unfocused nature of the 
sound feedback the participants experienced in the US condition.

Significant differences between the FS and US conditions were also 
observed for the EDA signals (Fig. 5 (a)). As presented, SCR amplitudes 
have been associated with the participants’ levels of attention and task 

Fig. 5. Comparison of estimated marginal means for changes in Electrodermal Activity (EDA) features (a) between sound conditions for changes in SCR amplitude 
means likely showing higher levels of attention and task engagement in FS than US and (b) between groups for changes in SCR rise-time means relative to baseline 
measurements of unclear significance. Error bars indicate standard errors of the mean.
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engagement [57,58]. Significant sound stimuli can orient attention and 
increase task engagement, while abrupt sounds elicit startling responses 
that can lead to task disengagement [58]. In the FS condition, the 
attenuated sound levels for the robot’s engine, robot’s motions, and 
background noise may have improved the participant’s ability to iden
tify specific events on-site compared to the unattenuated sounds in the 
US condition. For example, the faster reaction times in the FS condition 
suggest that the participants had a better capacity to discern these 
sounds during the demolition task in the FS condition than in the US 
condition. Thus, the focused sound conditions in the FS condition likely 
resulted in higher attention and task engagement levels, which may 
explain the higher SCR amplitude means in the FS condition compared 
to the US condition. Alternatively, subjective measures of workload and 
anxiety and some physiological variables did not indicate any significant 
differences in their effects among sound conditions, groups, or interac
tion effects between sound conditions and groups.

Finally, the failure to observe significant differences in demolition 
performance (Fig. 3 (a)) and SA between the FS and US conditions, if any 
exist, can be explained by existing stress-response models. These models 
state that task output is affected only when the adaptive capacities of the 
physiological and psychological responses to stress are exceeded [71] 
and that, for most tasks, it is possible to maintain similar levels of per
formance in the presence of a stressor by increasing the effort put into 
the task [72]. As the results show, no differences in demolition perfor
mance and SA between the FS and US conditions were observed, but the 
selected indicators of stress, attention, and task engagement suggested 
relatively worse physiological responses in US than in FS. Since higher 
sound levels are considered more uncomfortable than lower sound levels 
[17], and the sound feedback was less focused in the US condition, these 
results may suggest higher levels of physiological adaptation in US than 
in FS to achieve the observed levels of demolition performance in both 
sound conditions.

6.3. Further considerations

The results of this study make several contributions to the fields of 
teleoperated construction and human-factors engineering. As presented, 
there is an increasing interest in mechanisms that facilitate the 
perception of safety-critical sounds in construction sites [14], where 
noisy conditions still lead to accidents and occupational injuries [4,34]. 
While previous studies have focused on the importance of environ
mental and synthetic sounds for hazard perception in teleoperation 
scenarios, this study investigated the role of selective sound attenuation 
on operators’ performance and response (e.g., stress, attention, task 
engagement). The study’s findings show that selective environmental 
sound attenuation in teleoperation can help operators react faster to 
hazards and avoid collisions while experiencing higher levels of atten
tion and task engagement and lower levels of stress. Thus, this paper 
highlights potential avenues to optimize sound feedback in tele
operation to improve operators’ performance and response. It also 
bridges an important gap in understanding how noise affects cognitive 
and sensory processes in teleoperation, paving the way to developing 
enhanced teleoperation interfaces that prioritize safety-critical sounds.

Although the attenuated sound sources in the experiment were 
customized for demolition applications, the study’s findings can still 
benefit other teleoperation applications in construction. By identifying 
the benefits of attenuating non-critical environmental sounds, the study 
highlights how technology can mitigate the inherent challenges posed 
by high-noise environments, leading to better safety outcomes and op
erators’ responses. These insights can be applied to other areas of tele
operated work, such as disaster response, mining, and manufacturing, 
where clear and precise sound feedback is critical to safety and perfor
mance. However, to realize these benefits in other teleoperation appli
cations, it is essential to identify the critical sounds relevant to their 
specific tasks and safety requirements.

Existing research gives indications on how to achieve the FS 

condition in practice. For example, ML models can be trained to detect 
anomalous sounds associated with hazards, accidents, and equipment 
malfunctions [35] or to enhance spoken communication among workers 
[38]. In spatial audio applications, existing algorithms can locate and 
separate audio sources, amplify desired sounds, and attenuate ambient 
noise [73]. Beyond the variables measured in this study, these attenu
ation mechanisms can potentially contribute to other performance in
dicators. Examples include increasing operators’ comfort and improving 
their perception of the system’s usability, helping them better recognize 
the robot’s operational conditions and detect issues with it, and making 
it easier to understand spoken communications from on-site workers. 
However, these effects remain unexplored and present valuable oppor
tunities for future research.

6.4. Limitations

Our findings offer valuable insights into the effects of selective 
environmental sound in teleoperated demolition and could inform the 
design of more effective teleoperation interfaces for demolition robots. 
However, some limitations also exist and could be addressed by future 
research efforts. First, all participants were students and not demolition 
robot operators; the participants’ lack of professional demolition expe
rience may affect the generalizability of the results. Nevertheless, the 
findings provide valuable insights into key factors that enhance operator 
performance and offer broader benefits for other teleoperated con
struction applications. Secondly, while virtual environments have been 
successful training tools [74], they are not real working environments. 
This study used a computer simulation instead of a real teleoperated 
demolition robot at a construction site, which was justified from a cost 
and safety perspective. Additionally, given the nature of the proposed 
intervention, using a simulation in a controlled environment allowed us 
to maintain the desired sound levels at each environmental sound con
dition, which would be far more complex to achieve in a real con
struction site. Therefore, differences in the observed effects of 
environmental sound attenuation might be found in validation studies 
conducted in real teleoperated demolition settings.

Limitations of the experiment included how chosen procedure 
characteristics (time intervals for tasks, sound levels chosen) and data 
collection practices may have affected outcomes. First, the overall 
duration of the experiment, about 1 h and 15 min in total, may have 
induced some level of fatigue in the participants, potentially affecting 
their performance and psychological and physiological responses as the 
experiment progressed. However, the participants’ responses that could 
indicate increased levels of fatigue over time during the experiment (e. 
g., workload, HRV metrics) did not show this effect. Additionally, the 
experiment task durations, limited to 10 min per sound condition, may 
not have been sufficient to trigger stronger psychological and physio
logical responses in the participants. This duration is significantly 
shorter than the construction workers’ typical 8 h/day work shifts.

Additionally, the fixed sound volumes for the US and FS conditions 
may have affected the participants’ performance, stress, attention, and 
task engagement to some extent. While necessary for experimental 
control, this approach overlooked individual preferences for sound 
volumes. As presented, some participants asked the researcher to reduce 
the volume of their headsets due to discomfort, while others reported the 
sound levels to be comfortable. Finally, the movements of the partici
pants’ arms to control the joysticks may have introduced additional 
noise in the EDA data. For many studies involving the Empatica E4 
sensor, participants are asked to wear the wristband in their nondomi
nant arms to minimize motion noise; however, the control mechanisms 
of the simulated robot in this study did not allow for limiting the par
ticipants’ arms movements.

7. Conclusion

This paper assessed the effects of selective environmental sound 
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attenuation on operators’ task and safety performance, stress, attention, 
and task engagement. The attenuation filter in the FS condition posi
tively affected operators’ performance, stress, attention, and task 
engagement during teleoperated demolition compared to the US con
dition. Although the study failed to identify significant differences for 
some task performance metrics (i.e., demolition performance and SA), it 
identified positive effects of sound attenuation (FS) on safety metrics 
(fewer collisions and faster reaction times) compared to US. The FS 
condition also resulted in lower stress levels, as measured by the LF/HF 
ratio, and higher levels of attention and task engagement, as measured 
by the SCR amplitude means, compared to the US condition. These 
findings suggest that selective sound attenuation can enhance safety and 
working conditions in construction teleoperation applications. 
Furthermore, this approach could benefit other applications beyond 
demolition, provided that the appropriate sound sources are identified 
for attenuation.

The study’s outcomes and limitations open possibilities for future 
research. First, validating the study’s findings with real teleoperated 
demolition robots and actual operators is the next key step. Additionally, 
more research is needed to assess if FS improves task and safety per
formance over NS. Other possibilities include assessing the implications 
of adjusting the sound levels of the interface to account for personal 
preferences. Furthermore, understanding how the requirements for 
sound levels and types change for different applications and task com
plexities is another direction that begs exploring. Finally, there is a need 
to investigate the effectiveness of including other sound signals (e.g., 
sonification for collision warnings) in addition to environmental sound 
on the operators’ performance and psychological and physiological 
responses.
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