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The noise produced in demolition sites can mask safety-critical sounds that inform operators about task condi-
tions and hazards. These problems are exacerbated in teleoperated demolition, where the separation between
operator and site compromises operators’ situation awareness and cognitive loads. This paper assessed the effects
of environmental sounds with and without attenuation on the operators’ performance and response (e.g., stress,
attention, task engagement) during teleoperated demolition. Eighty participants completed three virtual de-

Ee;;z:mance molition tasks under different environmental sound conditions, i.e., no sound (NS), unfiltered sound (US), and
Safety filtered sound (FS) with 20-dB attenuation of background noise and robot’s sounds to allow focus on safety and
Stress task conditions. The results show that US induced more stress than NS and FS. Also, FS resulted in fewer col-
Teleoperation lisions, faster reaction times, and greater attention and task engagement than US. These results can support the

design of sound feedback interfaces for teleoperation in construction.

1. Introduction

Sound is crucial for communications, operations, and safety in con-
struction, providing workers with information about site conditions, the
operational status of tools and equipment, the proximity of obstacles,
and the presence of hazards [1,2]. However, the excessive noise condi-
tions typical of most construction sites can mask safety-critical sounds
(e.g., reverse alarms, workers’ spoken warnings), diminishing their
effectiveness in alerting workers to hazards on site and issues with the
machines, which has led to numerous accidents [3,4]. Beyond
compromising auditory perception, construction noise can adversely
affect construction workers’ psychological and physiological responses,
such as inducing changes in heart rates (HR) and stress [5] and creating
distractions [6], which have further implications on performance,
safety, and well-being. These noise-related challenges are especially
critical in teleoperation applications. The separation between operators
and the site can compromise operators’ perception of sensory informa-
tion, such as sound, reducing situation awareness (SA) and increasing

cognitive load [7,8]. As a result, operators may be less aware of the
presence, location, and relative distance of hazards and obstacles in
teleoperation, increasing the risk of accidents involving teleoperated
machines.

While noise is a challenge in traditional on-site operations and tel-
eoperation, the nature of these challenges differs in these applications.
On-site operators have access to direct sensory feedback (e.g., visual,
sound, haptics), which helps them to assimilate and respond to site
conditions more naturally [9]. Alternatively, operators in teleoperation
applications are physically separated from the site and must rely on
mediated sensory feedback from teleoperation interfaces. This separa-
tion can distort or diminish critical sound cues. As a result, even mod-
erate noise levels can have a more pronounced effect on teleoperators, as
they lack the rich sensory context available to on-site operators.

Teleoperated machines are becoming increasingly common on con-
struction sites, particularly in hazardous environments where operator
safety is a significant concern [10]. Despite their growing use, the sound
feedback systems of these teleoperated machines are often simplistic,
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typically comprising microphones and basic audio interfaces (e.g.,
[9,11]). These limited sound systems may fail to capture the complete
auditory environment of the construction site, making it difficult for
operators to perceive safety-critical sounds and further exacerbating the
challenges posed by excessive noise.

Teleoperated demolition is particularly susceptible to these issues
due to the high noise levels generated during demolition tasks. Demo-
lition sites experience some of the highest noise levels in construction,
reaching up to 120 A-weighted decibels (dBA) [12], far exceeding the
National Institute for Occupational Safety and Health (NIOSH) recom-
mended exposure limit of 85 dBA averaged over an eight-hour workday
[13]. While teleoperation interfaces allow demolition operators to
adjust the sound volumes they experience, the high noise levels on-site
can still mask safety-critical sounds that alert operators to the risks of
collapses and approaching equipment and workers. One potential so-
lution is to use sound filters to attenuate excessive sounds and back-
ground noise, thereby improving the perception of safety-critical sounds
generated on site [14].

In this paper, we investigate the effects of selective environmental
sound attenuation on operators’ task performance and safety in tele-
operated demolition. We attenuated background noise and excessive
noises from the demolition robot’s engine, motion, and end-effector
(breaker) while leaving safety-critical sounds, such as voices of
approaching workers, equipment, and collapses, unattenuated. Consid-
ering that construction noise can also affect operators’ psychological
and physiological responses (e.g., heart rate, electrodermal activity,
workload, SA, stress, attention, task engagement) [1,5], we also exam-
ined the impact of selective sound attenuation on operators’ workload,
SA, stress, attention, and task engagement. In an experimental study
using a virtual environment, we compared operators’ demolition per-
formance and responses under three sound conditions: No Sound (NS)
(baseline), Filtered Sound (FS) with 20 dB attenuation of background
noise and robot sounds, and Unfiltered Sound (US). The study was
designed to answer the following research questions:

1. How do the operators’ task and safety performance in teleoperated
demolition change with the inclusion of a selective sound attenua-
tion filter to the interface compared to the interface providing
unfiltered sound?

2. How do the operators’ response: stress, attention, and task engage-
ment in teleoperated demolition change with the inclusion of a se-
lective sound attenuation filter to the interface compared to the
interface providing unfiltered sound?

The remainder of this paper is organized as follows. Section 2 re-
views related studies, and Section 3 reviews current gaps and opportu-
nities for sound feedback in teleoperation interfaces. Section 4 presents a
description of the research methodology. Section 5 presents the results
of the experiment. Section 6 presents a discussion of the main findings,
the limitations of the study, and future research opportunities. Finally,
section 7 presents the conclusions of this study.

2. Literature review

2.1. Effects of sound feedback on the operators’ performance and
psychological and physiological responses in teleoperation

Sound feedback is crucial in teleoperation applications because it can
improve operators’ task performance, safety performance, and psycho-
logical and physiological responses. These effects are commonly asso-
ciated with the increased SA and reduced mental workload that sound
feedback provides in some cases [15]. Regarding task performance,
sound feedback can increase position and orientation accuracy in
manipulation tasks [16] and reduce reaction times compared to no
sound feedback [17]. Additionally, sound feedback informs operators
about the robot’s operational status, movements, and potential
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malfunctions [18,19]. Regarding safety, sound feedback can provide
proximity alerts that reduce the risk of collisions [20,21] and inform
operators about the presence and levels of toxic and radioactive sub-
stances on site [15], even when the hazards are not in the cameras’ fields
of view.

Moreover, sound feedback positively affects operators’ mental states
and physiology in teleoperation applications. Many studies have shown
positive psychological effects of sound feedback, including increased
feelings of presence [22] and agency [19], enhanced SA [21], and
reduced cognitive load [15] and distractions [23]. By improving oper-
ators’ attention, alertness, and reaction times, sound feedback can serve
as a redundant sensory stimulus to alert operators when they are
fatigued and less attentive to visual information [24]. Many of these
positive effects result from the reduced cognitive load achieved by
distributing information across multiple sensory channels (e.g., vision,
sound, haptics) [25].

However, improperly designed sound feedback interfaces and
exposure to high noise levels can negatively affect operators’ perfor-
mance and psychological and physiological responses in teleoperation.
Noisy environments affect completion times and distance traveled by
the robots’ end-effectors, effects that are worsened in more complex
tasks [26]. Additionally, noise can compromise communications [1] and
decision-making [27] and create distractions that result in safety per-
formance degradation [6]. Noise levels and types also influence opera-
tors’ cognitive loads and overall comfort. Various studies reported that
operators felt uncomfortable [17,28] or experienced increased heart
rates and stress [5,15] for higher noise levels and exposure durations,
which indicates the need to control the sound levels operators experi-
ence during teleoperation.

3. Knowledge gaps

Although the studies in Section 2.1 show many benefits of sound
feedback in teleoperation interfaces on operators’ performance and
psychological and physiological responses, most of these studies focused
on the effects of synthetic sounds produced using data sonification
instead of environmental sounds (e.g., [15,20]). While data sonification
can be a powerful tool in informing operators about the presence, levels,
and distances of hazards on site, it still faces many challenges compared
to environmental sounds. Understanding synthetic sounds from data
sonification can be more cognitively taxing for operators, as it requires
inferential processes and mapping the synthetic sounds to their intended
meanings, whereas understanding environmental sounds occurs more
naturally [29]. Additionally, creating the data representations for
sonification is a challenging task that requires domain knowledge since
improper auditory representations can lead to increased workload [15].

Alternatively, while some studies considered environmental sounds
in construction applications, most did not focus on robot teleoperation.
Instead, they examined how construction sounds and noise affect op-
erators’ performance, safety, and well-being during traditional con-
struction tasks simulated in virtual reality (VR) environments (e.g.,
[28,30]) or shown in images (e.g., [6]). These studies show that, in
traditional construction applications, environmental sounds and con-
struction noise affect operators’ task and safety performance [31] and
psychological and physiological responses [5]. However, although re-
sults from traditional construction applications can help inform the
design of teleoperation interfaces, key differences exist between tradi-
tional and teleoperated construction tasks, particularly in how operators
control the robots and assimilate sensory information from the site [8].
Thus, further characterization of the effects of environmental sound on
operators’ task and safety performance and psychological and physio-
logical responses is needed in construction teleoperation applications.

In commercial teleoperated machines used in construction applica-
tions, environmental sound is captured by microphones installed in the
cabins of the machines and transmitted to the operators via the tele-
operation interface (e.g., [9,11]). However, these setups lack spatial
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audio capabilities, which may hinder operators’ ability to perceive the
direction and distance of safety-critical sounds (e.g., approaching ma-
chines, collapses), potentially impacting operators’ situation awareness.
Research efforts have explored the feasibility and usefulness of spatial
audio and advanced audio processing techniques to support sound
source localization (SSL) and increase operators’ situation awareness in
teleoperation [32]. Despite these potential benefits, spatial audio tech-
nology has not been used in commercial construction teleoperation
systems.

As many studies show, construction sites are characterized by many
sound sources (i.e., polyphonic settings) and high noise levels, which
complicate understanding audio signals even when computational
models are used [33]. The inability to perceive environmental sounds at
appropriate levels due to hearing loss and noisy site conditions is a cause
of concern among workers due to its potential impacts on job safety,
stress, fatigue, communications, and the ability to hear warnings and
equipment [34]. Similarly, noisy conditions on construction sites
compromise communications [1] and can lead to accidents [3,4].
Despite that, insufficient research exists on augmenting construction
workers’ perception of safety-critical sounds generated on site [14].

Detecting anomalous sound events and enhancing speech commu-
nication in noisy environments have become areas of increased research
interest in many fields. Machine learning (ML) models based on audio
data have been used to detect screams and gunshots in surveillance
applications, road crashes in traffic monitoring, and fault equipment in
industrial settings [35]. In construction applications, ML models based
on audio data from construction sites have been used for construction
task monitoring [33], equipment activity recognition [36], infrastruc-
ture damage detection [37], hazard detection [2], and improved speech
communication [38], among others. In all these cases, ML models
effectively detected and alerted workers about potential hazards or
problems on site. Opportunities exist to use advanced sound filtering
that reduces the influence of unwanted background noise in traditional
construction applications, which can support workers in detecting
safety-critical sounds on site [14]. However, understanding the effects of
these ML models and filters to enhance workers’ perceptions of haz-
ardous sounds from the site remains largely unexplored in construction
teleoperation applications.

4. Methods
4.1. Use case

This study focused on a simulated teleoperated demolition task in a
virtual environment using a Brokk 110 demolition robot (Figs. 1 (a) and
(b)). During training and subsequent demolition task scenarios, the
participants were asked to drive and position the body of the robot, its
outriggers, and its arms to demolish walls and slabs using Brokk’s
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hydraulic breaker. Although the proposed intervention is intended for
real demolition robots, the use of a virtual environment in this study was
justified based on the significantly lower costs, complexity, and risks and
the relatively greater ability to control the experimental conditions (i.e.,
sound levels) that can be achieved in a virtual environment compared to
a real construction site.

Demolition is one of the most dangerous construction activities in
which workers are exposed to various safety and health hazards, such as
high noise levels, dust, and collapses. Even when operators remotely
control these robots using a control box while standing a few meters
away from the robot, operations can be dangerous. In many cases, the
safety and health risks associated with hazardous materials, explosions,
noise, falling debris, or structural failures have resulted in many injuries
and deaths among demolition workers [39,40]. Regarding exposure to
construction noise, previous investigations have shown that demolition
workers can experience high noise levels in construction sites, which can
be over 120 dBA [12].

4.2. Workstation

The workstation configuration (Fig. 2) included a laptop powered by
an Intel® Core™ i7-11800H, with 32 GB of RAM and 16 GB GPU
(NVIDIA GeForce RTX 3080). The setup also included a 27-in. computer
monitor, two ambidextrous joysticks (Thrustmaster T.16000 M Space
Sim Duo Stick), and an immersive cinematic 3D audio headset (Audeze
Mobius Spatial Audio Gaming Headset). To ensure comfort and func-
tionality, the laptop and monitor were mounted on an adjustable desk,
and the joysticks were attached to the arms of an ergonomic office chair.

4.3. Virtual environment design

The virtual environment was developed using the Unity game engine
and aimed to create a highly realistic and interactive simulation for
teleoperated demolition. We used realistic asset packages, such as the
Destroyed Building Kit (Loknar Studio), to model the architectural and
structural components of the building. These modular elements,
including intact and destroyed versions, were assembled to represent
different building regions where demolition tasks occurred (See Figs. 1
(a) and (b)). This modular design allowed us to control levels of
destruction for each element by replacing their meshes and materials,
enhancing the model’s realism. To simulate the destruction of the
building components during demolition, we used the RayFire for Unity
plugin (RayFire Studios), a tool commonly employed in visual effects
and game development for dynamic simulations of objects’ destruction.
RayFire enabled the realistic fragmentation, shattering, and collapse of
building components, closely mimicking how materials would behave
during demolition. In addition to RayFire, the physical interactions be-
tween the robot and the building elements—such as gravitational forces

(b)

Fig. 1. (a) Transportation mode and (b) operation mode visual interfaces of the teleoperated robot.
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Fig. 2. Teleoperation workstation used in the experiment.

acting on the robot and built elements, collisions, end-effector forces
applied during demolition, and interactions between concrete and
rebar—were simulated using Unity’s built-in physics engine and custom
scripts.

The control system for the virtual robot replicated the control
mechanisms of the real demolition robot, with joystick inputs mapped
directly onto the virtual robot’s arm joints, slew system, outriggers, and
breaker. The system was designed to handle two operational modes:
transportation and operation. As with the real robot, the transportation
mode was used to control the robot tracks and outriggers. Alternatively,
the operation mode was used to control the robot’s arm, slew system,
and end-effectors. The system dynamically adjusted camera perspectives
based on the mode, providing operators with different views for trans-
portation and operation (See Figs. 1(a) and (b)). To enhance the tele-
operation interface, we carefully replicated the sensor placement on the
robot body, including cameras and microphones, to mirror real-world
constraints in teleoperation setups used in construction (e.g., [9,11]).

To further enhance the immersiveness and realism of the virtual
environment, we used the Steam Audio Spatializer plugin combined
with a spatial audio headset to simulate spatial audio. It allowed oper-
ators to accurately locate sound sources based on their position in the
virtual environment. It also dynamically adjusted sound levels as the
relative distances between sound sources (e.g., robot, equipment,
workers) and the robot’s microphone changed. Audio clips for the scene
elements (e.g., robot sounds, worker voices, equipment) were extracted
from actual construction and demolition operations recordings to in-
crease sound realism. The system also maintained the relative loudness
of these sounds, with louder noises (e.g., robot engine, breaker opera-
tion) masking quieter ones (e.g., footsteps, worker voices), replicating
real-world conditions. For more details on the sound design for the
experimental conditions, see Section 4.4.3. Experimental Conditions.
Further information on the development of the virtual environment and
its sound conditions is available in [41].

4.4. Study procedures

The study included three stages: (1) baseline measurements and
training in the virtual environment, (2) completing a demolition task in
a virtual environment with no sound as a baseline condition, and (3)
completing a new demolition task in two experimental conditions using
unfiltered and filtered sound. The order of the two experimental con-
ditions was randomized to control for order effect on the outcome
measures. Each demolition scenario lasted at most 10 min, and, for most
participants, the experimental procedure lasted about 1 h and 15 min.
USC’s Institutional Review Board (IRB) approved the study protocol and
its associated methods and procedures for surveys, questionnaires,
psychometric tests, and psychological and physiological tests (Study ID

UP-22-00914).

4.4.1. Baseline measures and training

After signing a consent form, the participants completed a de-
mographic survey that included questions about gender, age, language,
race/ethnicity, level of education, previous experiences at construction
sites, in operating construction machines/robots, with video games, and
virtual reality. Participants completed a short version of the Spielberger
State-Trait Anxiety Inventory (STAI) consisting of 6 items [42] (See
Section 4.6.2. Participants’ Response). Then, participants were trained
on the control mechanisms of the virtual demolition robot, including
basic operations of the robot’s tracks, arms, outriggers, and end-
effectors, as well as on identifying and reacting to safety hazards. The
training session was conducted on-screen using the simulation to pro-
vide instructions on operating the robot and behaving in unsafe situa-
tions without the researchers’ intervention. Following the training,
baseline physiological response data (i.e., electrodermal activity (EDA)
and heart rate (HR)) was collected while the participants were asked to
relax and remain still for five minutes. Then, participants completed the
6-item STAI assessment again.

4.4.2. Baseline condition

To complete all demolition tasks, the participants used joysticks to
drive the robot and position its arms, outriggers, and end-effectors to
perform the demolition task. The first demolition task for all participants
was performed with no sound (NS). This condition was selected as the
baseline condition. In the NS condition, participants demolished one
wall and one suspended slab. Physiological response data (i.e., EDA and
HR) was collected throughout the task, and, at the end of it, participants
completed the 6-item STAI and the NASA Task Load Index (TLX) [43]
assessments (See Section 4.6.2. Participants’ Response).

4.4.3. Experimental conditions

Two experimental conditions were tested: unfiltered sound (US) and
filtered sound (FS). In the US condition, the participants could hear
various sounds from the simulated construction site, including the en-
gine and movements of the robot, the breaker, traffic, construction
equipment, workers, collapses, and background noise. These sounds
were extracted from videos and audio clips recorded at real demolition
sites. Each sound was associated with specific robot motions (e.g., arm,
tracks, outriggers movements), operational conditions (e.g., engine on,
breaker activated), or elements of the site (e.g., workers, equipment,
traffic). In the FS condition, the sound sources associated with the en-
gine and movements of the robot, the breaker, traffic, and background
noise were attenuated, whereas the specific sounds from construction
equipment, workers, and collapses remained unattenuated. This design
of the FS condition differed from simple sound attenuation because not
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all sounds were attenuated. Instead, some sounds were attenuated while
the sounds of interest stood out (i.e., selective environmental sound
attenuation).

The selected sound conditions were designed to replicate real-world
auditory challenges in teleoperated demolition and to evaluate potential
solutions. Although teleoperation allows operators to control the sound
volumes they experience, demolition sounds’ complex and polyphonic
nature makes it difficult to identify critical auditory cues. Moreover,
recent studies have highlighted the need for mechanisms to enhance the
perception of critical sounds in noisy construction settings [14].
Therefore, the US condition replicated traditional teleoperated demoli-
tion sound interfaces, while the FS condition served as an alternative
sound interface that enhances sound perception by selectively attenu-
ating non-critical and excessive sounds.

To control the sound levels the participants experienced during the
simulations, audio mixers in Unity and the 3D headset were used. In
Unity, the threshold volume of the audio mixers for both the US and FS
conditions was set to 80 dB. Additionally, the volume of the 3D headset
was set so that the average dBA levels experienced by the participants
was around 60 dBA throughout most of the experiment but no more than
80 dBA for any combination of sounds. The average 60 dBA level was
selected because it is the usual sound level one experiences during
normal conversations [44]. Alternatively, the chosen limit of 80 dBA
level is lower than the recommended exposure limit of 85 dBA (averaged
over an eight-hour workday) set by NIOSH [13]. The dBA levels were
measured using a BAFX3370 decibel meter [45]. The only difference
between the FS and US conditions was that, in the FS condition, a 20 dB
attenuation filter was included in the audio mixer associated with the
attenuated sound sources (i.e., the engine and movements of the robot,
the breaker, traffic, and background noise). The 20 dB attenuation level
for the FS condition was defined during pilot studies when the partici-
pants reported it provided comfortable and informative levels of sound
feedback during the simulations compared to the US condition.

The selection of the attenuated sound sources in the FS condition was
made during the development of the virtual environment and subse-
quent pilot studies. For the sound sources associated with the robot’s
operational status (i.e., engine and breaker) and motions (i.e., tracks,
arm, and outriggers movements), because the audio listener was posi-
tioned on the robot, these sounds were much louder than all other
sounds during the simulations and, thus, were attenuated. The remain-
ing attenuated sound sources (i.e., traffic and background noise) were
attenuated because they were considered not to contribute to operations
or inform about hazards and task conditions. The unattenuated sound
sources (i.e., collapses, workers’ voices, and equipment) remained un-
attenuated because they were relatively lower than the operational
sounds of the robot and were regarded as informative of hazards and
task conditions on-site. It is important to note that the categorization for
attenuated and unattenuated sounds and the appropriate levels of sound
attenuation may change for different applications, sites, or task condi-
tions, and interface designers must identify proper combinations of
attenuated/unattenuated sounds and attenuation levels for other
applications.

In both experimental conditions, participants demolished two walls
and two suspended slabs in another room of the same virtual building
used in the baseline condition. Physiological measures (EDA and HR)
were obtained throughout each condition, and SA, anxiety, and work-
load were measured after each experimental condition. Although the
participants repeated the same demolition scenario in each condition,
some differences existed between the two conditions to minimize
learning effects in the assessment of SA. For that, the colors and mate-
rials of some built elements (e.g., walls, ceilings, slabs) were changed,
the number of equipment and tools located outside the demolition area
was altered, and the hazards related to collapse and agents entering the
environment were modified. During the first experimental trial,
regardless of the sound condition, the collapsing element was a wall, and
the entering agent was another Brokk robot. During the second
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experimental trial, the collapsing element was a slab, and the entering
agent was a worker.

4.5. Participants

The experiment was powered for small effect sizes (Cohen’s d =
0.15). For two groups (order of applying the two conditions with sound
included, i.e., US then FS or FS then US) and three measurements (i.e.,
NS (baseline), US, and FS), GPower suggested a sample size of 74 par-
ticipants to achieve a power of 80 % with a p < 0.05 significance level. A
convenience sample of eighty participants, all 18 years or older and
fluent in English, was recruited through e-mail and the USC psychology
subject pool. Participation was voluntary, and no compensation was
provided to the participants. However, academic credits were granted to
the participants recruited from the USC psychology subject pool. Five
participants were dropped during the analysis of the results because
three participants asked the researcher to reduce the sound levels of the
headphones, and two participants skipped the baseline condition (NS).
Table 1 presents the demographic information of the participants of the
experiment by randomized experimental order sequence. Group A par-
ticipants experienced the US condition followed by the FS condition,
whereas Group B participants experienced the FS condition followed by
the US condition.

4.6. Measurements and feature extraction

In this study, a variety of subjective and objective measures were
used to assess the effects of environmental sound attenuation on the

Table 1
Demographic information of the participants (n = 80) by experimental condition
order.

Group A Group B
(US-FS) (FS-US)
Gender Female 19 (24 %) 20 (25 %)
Male 21 (26 %) 20 (25 %)
Age (years) 18-23 24 (30 %) 23 (29 %)
24-29 12 (15 %) 13 (16 %)
30 or older 3(4 %) 4 (5 %)
Race/Ethnicity African American 11 %) 101 %)
Asian 18 (22 %) 22 (27 %)
Caucasian 13 (16 %) 10 (12 %)
Hispanic/Latino 4 (5%) 5(6 %)
Middle Eastern 4 (5 %) 4 (5 %)
Completed Education High School Degree / 23 (29 %) 20 (25 %)
Some College 2 (3 %) 7 (9 %)
Bachelor’s Degree 15 (19 %) 13 (16 %)
Master’s degree
Video Game Habits Don’t Play 14 (18 %) 22 (28 %)
Play at Least Once a 6 (8 %) 6 (8 %)
Year 5(6 %) 4 (5 %)
Play at Least Once a 8 (10 %) 5 (6 %)
Month 7 (9 %) 3 (4 %)
Play at Least Once a
Week
Play at Least Once a
Day
Virtual Reality Experience None 17 (21 %) 22 (28 %)
Less than 5 Times 16 (20 %) 12 (15 %)
5-15 Times 4 (5 %) 1(1 %)
More than 15 Times 3(4%) 5(6 %)
Construction Experience None 36 (45 %) 33 (41 %)
Less than 5 Years 3 (4 %) 6 (8 %)
5-10 Years 101 %) 11 %)
Construction Machine None 38 (48 %) 39 (49 %)
Operation Experience Less than 5 Times 2 (3 %) 11 %)
Construction Machine None 40 (50 %) 40 (50 %)

Teleoperation Experience

Note: Participants were allowed to choose not to reply to any question and could
select multiple options for some questions; therefore, not all variables total n =
80.
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participants’ task performance, safety performance, and response (i.e.,
experienced levels of workload, SA, anxiety, stress, attention, and task
engagement) during teleoperated demolition.

4.6.1. Participants’ task and safety performance

4.6.1.1. Average percent demolition. The average percent demolition (by
volume) was computed for all elements to be demolished in each task
scenario. In the NS condition, it considered one wall and one suspended
slab. In the US and FS conditions, it considered two walls and two sus-
pended slabs. Given the time constraints of the tasks and to prevent the
participants from getting stuck on minor pieces of the target elements, a
70 % demolition threshold was used for each element (defined in a pilot
study) to inform the participants to proceed to the next target.

4.6.1.2. Number of collisions. The number of collisions was computed as
the count of collisions between the robot’s body and other elements in
the scenes (e.g., walls, columns, clutter). It did not include the collisions
between the breaker and these elements during demolition. Also, to
reduce the computational complexity of indicating different types and
levels of collisions, no sound was included in the virtual environment to
indicate the occurrence of collisions between the robot’s body parts and
objects in the environment.

4.6.1.3. Reaction time - collapse. The reaction time associated with
collapsing elements was measured as the time the participant took to
turn off the engine after an element collapsed. During the training ses-
sion, participants were instructed to stop the engine to assess the situ-
ation if they perceived a collapse. No element in the demolition area
collapsed during the NS condition to reduce the learning effects of the
participants expecting an element to collapse in subsequent tasks.
Alternatively, a wall collapsed during the second task, and a suspended
slab collapsed during the third task. The maximum time a participant
could react to these collapsing elements was 120 s, with the cracking and
collapsing sounds provided during the first 20 s of this window.

4.6.1.4. Reaction time — agent. The reaction time associated with
entering agents was measured as the time the participant took to turn off
the robot’s engine after the agents entered the demolition area. In the
safety training, participants learned about the maximum reach of the
Brokk’s arm and were instructed to turn off the robot’s engine if they
perceived other equipment or workers approaching the robot. Two
entering agents were used: a Brokk robot in the second task and a worker
in the third task. Again, these agents were not used in the NS task to
reduce learning effects. If the participants perceived the entering agents
and reacted to them, the agents would leave the demolition area
immediately. If the participants did not perceive the agents, the agents
would leave the demolition area after 120 s. During the entire stay of
these agents, the participant could hear the sounds from the entering
Brokk or worker. For the Brokk, the sounds were from the engine and
motions of the robot, and for the worker, the sounds were from the
worker shouting instructions to another worker.

4.6.2. Participants’ response

4.6.2.1. Workload. The subjective assessment NASA-TLX [43] was used
to measure workload. This instrument is considered the gold standard
for subjective workload assessments and has been shown to be reliable
and valid [46]. In this experiment, the NASA-TLX was applied at the end
of each of the three demolition tasks (NS, US, and FS). Each time, the
average of the six subscales of the NASA-TLX instrument (i.e., mental
demand, physical demand, temporal demand, performance, effort, and
frustration) was calculated to determine the participant’s workload.

4.6.2.2. Situation Awareness (SA). The Situation Awareness Global
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Assessment Technique (SAGAT) [47,48] was used to measure the par-
ticipants’ SA. We created a pool of 23 questions related to the site and
operating conditions of the robot to assess the overall awareness of the
participants about the environment, task, and existence of hazards on
site. After each experimental condition, the participants responded to six
randomly selected questions, two from each of the three levels of SA:
level 1 - perception of the environment, level 2 — comprehension of its
meaning, and level 3 - projection of the near future. Although no
questions were repeated following one condition, the same questions
could be repeated following both conditions, which is why the envi-
ronment’s components between the two conditions were altered. Then,
the number of correct answers was used to determine the SA scores of
each participant at each task condition.

4.6.2.3. Anxiety. The 6-item version of the Spielberger State-Trait
Anxiety Inventory (STAI) [42] was used to measure anxiety. This in-
strument is highly correlated with the longer 20-item STAI version, and
all internal consistency reliabilities are greater than 0.90 [49]. Trait
anxiety refers to an individual’s predisposition to experience anxiety in
stressful situations, while state anxiety refers to a temporary emotional
response to a specific event [50]. The 6-item STAI instrument was used
five times during the experiment: before the training session, after the
participants’ physiological baseline assessments, and once after each of
the three demolition tasks.

Integers were assigned to the Likert scale options for each instrument
item to compute the STAI scores of the participants. For the “anxiety-
present” items (i.e., tense, upset, and worried), the assignments were:
Not at all = 1, Somewhat = 2, Moderately so = 3, Very much so = 4.
Alternatively, for the “anxiety-absent” items (i.e., calm, relaxed, and
content), the assignments were: Not at all = 4, Somewhat = 3, Moder-
ately so = 2, Very much so = 1. The values of the six items were summed,
resulting in a number between 6 and 24, which was multiplied by the
ratio 80/24 to scale the total score to the same range as the 20-item STAIL
instrument.

4.6.2.4. Stress. To predict the development of stress in the participants,
change scores relative to baseline measurements and absolute scores of a
variety of HR and heart rate variability (HRV) metrics were used. Prior
research shows that stress affects HRV and that HRV can be used in
objective assessments of stress [51]. A Polar H10 sensor [52] was used,
and over 40 HRV parameters were extracted using the Kubios HRV
Scientific software [53]. Kubios HRV was used for data pre-processing,
feature extraction, and segmentation. During data pre-processing, a vi-
sual inspection of the quality of the ECG data for each participant was
performed. Additionally, the software triggered low-quality warnings
when more than 5 % of the data needed beat correction, which sup-
ported quality inspection. After quality inspection, a medium-level
automatic noise detection filter was applied to the data, which
excluded noise segments from subsequent analysis. Alternatively, for
individual intermittent abnormal beat intervals, Kubios HRV corrected
them automatically using a beat correction algorithm. For data seg-
mentation and feature extraction, the events marked on the Empatica E4
wristband were used to find the beginning and end of each demolition
task. For the analysis, we focused on the mean RR interval, mean HR,
and some of the most reported HRV metrics: the standard deviation of
RR intervals (SDNN), the root mean square of successive differences
(RMSSD), and the ratio between low-frequency and high-frequency
band powers (LF/HF) [54].

The mean RR intervals refer to the mean values of the intervals be-
tween successive R-waves in the electrocardiogram (ECG) signal. Using
the values of the RR intervals from the Polar H10, many time-domain
features were extracted, including HR (i.e., the number of heartbeats
per minute), SDNN, and RMSSD. We also extracted the LF/HF ratio,
which is part of the frequency-domain features from the signal, and it is
commonly used to estimate the ratio between the sympathetic nervous
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system (SNS) activity and the parasympathetic nervous system (PNS)
activity [55]. SNS and PNS are the two divisions of the autonomic ner-
vous system (ANS), with the PNS being predominant in “rest and digest”
situations and the SNS in more stress-inducing “fight or flight” situations
[56]. For all HRV indices, except the LF/HF ratio, changes in the HRV
features relative to baseline measurements were calculated. Using
change scores for each participant reduces the effects of personal dif-
ferences, allowing for a more reliable between-subject evaluation of the
effect of each task condition on physiological responses. The reason
actual LF/HF ratios were used instead of changes in LF/HF ratios from
the baseline measurements was that slow respiration rates during resting
periods significantly influence the LF band power, which affects the
interpretation of baseline LF/HF ratios [55].

4.6.2.5. Attention and task engagement. To predict the participants’
attention and task engagement levels during the demolition tasks,
change scores relative to baseline measurements and absolute scores of
various EDA features were used. Prior research has shown a relationship
between Skin Conductance Responses (SCR) and participants’ levels of
attention and task engagement [57,58]. The study of EDA focuses on the
autonomic changes in the electrical properties of the skin, such as skin
conductance [59]. EDA has two components: (1) tonic-level EDA,
measured in terms of Skin Conductance Level (SCL), refers to back-
ground or slow-change skin conductance signals, and (2) phasic-level
EDA, measured in terms of SCR, refers to fast-change skin conduc-
tance signals that can be attributable to specific stimuli in some cases
[591.

The Empatica E4 wristband [60] was used to measure the partici-
pants’ EDA. EDA data was processed in the biosignal-specific processing
toolbox (Bio-SP tool, version 2.2) [61] to mitigate the effects of noise on
the data and extract various features related to the SCRs. First, the data
was segmented based on the events marked on Empatica E4, i.e., the
beginning and end of each demolition task. Then, a Gaussian low-pass
filter with a window of 40 points and a sigma of 400 ms was used to
reduce the effects of noise in the EDA data, as presented in [62]. Finally,
the SCR features were extracted from the filtered data. These features
included the SCR duration mean, SCR amplitude mean, SCR rise-time
mean, and the number of detected SCRs. For the subsequent analysis
of the results, except for the number of SCRs, the change scores in the
EDA features relative to baseline measurements were considered.

4.7. Data analysis

For each variable in the study, the descriptive statistics were
computed, and the normality of residuals and the existence of outliers
were assessed for each group and condition. For normality assessments,
the Kolmogorov-Smirnov test was used. For outlier detection, the data’s
interquartile range (IQR), defined as the difference between the third
and first quartiles, was computed for each group and condition. Then,
the upper and lower limits of the data were determined by adding three
times the IQR to the third quartile and subtracting three times the IQR
from the first quartile, respectively. Any values outside this interval (i.e.,
outliers) were removed from subsequent analyses. Then, the
Kolmogorov-Smirnov test was applied again for the data with outliers
removed. In a few cases, some groups and conditions still did not meet
the normality of residuals assumption required by mixed ANOVAs.
However, even in these cases, mixed ANOVAs were used because they
have been shown to be robust to violations of normality assumptions for
sufficiently large sample sizes [63,64]. During data analysis, deviations
from the sphericity assumption were assessed using Mauchly’s test of
sphericity. When violations of the sphericity assumption were observed,
the degrees of freedom were corrected using the Greenhouse-Geisser
correction for situations where € < 0.75 or the Huynh-Feldt correction
for situations where € > 0.75.

Mixed ANOVAs were used to examine differences by condition (i.e.,
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NS (baseline), FS, and US) and experimental order (i.e., Group A (US-FS)
and Group B (FS-US)). The mixed ANOVA analysis varied by the avail-
able data for each outcome. For example, reaction times and SA were not
evaluated in the NS condition and, thus, were only examined between
the FS and US conditions. For each variable, we first analyzed whether a
significant order interaction existed; if that was the case, simple main
effects were reported. If no significant interaction was observed, the
main effects were analyzed.

For pairwise comparisons for simple main effects and main effects,
Fisher’s least significant difference (LSD) was used. The decision to use
Fisher’s LSD test instead of a more conservative test such as Bonferroni’s
followed the study’s objectives of minimizing the chance of missing any
effects during pairwise comparisons (type II error), as Bonferroni’s test
can be unnecessarily conservative in these cases [65]. All statistical
analyses were conducted using IBM’s Statistical Package for the Social
Sciences (SPSS) (version 28).

5. Results

Table 2 presents the descriptive statistics (means, standard de-
viations, and sample sizes) for each variable of interest in each sound
condition and group. Comparative analysis of measures among the
conditions are grouped and presented in two sections related to (1) task
and safety performance (i.e., percent demolition, collisions, and reaction
times to collapses and agents) and (2) participants’ psychological and
physiological responses (i.e., SA, workload, and anxiety as measured
subjectively, stress as predicted by HRV features, and attention and task
engagement as predicted by the SCR from the EDA signal).

5.1. Participants’ task and safety performance

Fig. 3 displays the estimated marginal means, standard errors, and
significant differences between sound conditions for the four perfor-
mance measures of average percent demolition (Figs. 3 (a) and 3 (b)),
number of collisions (Fig. 3 (c)), reaction time to collapses (Fig. 3 (d)),
and reaction time to entering agents (Fig. 3 (e)).

5.1.1. Average percent demolition

No interaction effect between group and sound condition was
observed for average percent demolition (p = 0.203) using a 2 x 3 mixed
ANOVA with a Huynh-Feldt correction of the degrees of freedom (¢ =
0.835). However, a significant effect of sound condition was found (F
(1.669, 105.164) = 17.936, p < 0.001, ng = 0.222) due to significant
differences between the NS condition and each of the two experimental
conditions (p < 0.001 in both cases) (Fig. 3 (a)). These differences may
demonstrate improved performance in FS and US conditions compared
to NS, or they may result from a learning effect since the NS condition
was the first task in groups A and B. Alternatively, no significant dif-
ference in percent demolition was found between the FS and US con-
ditions (p = 0.198). Finally, a significant effect of group for the percent
demolition was observed (F(1, 63) = 9.282, p = 0.003, ng = 0.128)
(Fig. 3 (b)) with the percent demolition being higher for group A than for
group B. However, we could not find an explanation for this observation.

We used 2 x 2 mixed ANOVAs to compare the two experimental
sound conditions for the other three performance measures, i.e., number
of collisions, reaction time to an agent, and reaction time to a collapse.

5.1.2. Number of collisions

The number of collisions (Fig. 3 (c)) had no interaction effect (p =
0.056) and no main effect by group (p = 0.480); however, a main effect
of sound condition was detected (F(1, 63) = 9.648, p = 0.003, ng =
0.133) as significantly more collisions occurred in the US condition than
in the FS condition.

5.1.3. Reaction time — collapse
For the reaction times to collapsing elements (Fig. 3 (d)), a main
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Table 2
Descriptive statistics (means, standard deviations, and sample sizes) for the measures of interest.
Measure' Sound Condition Group
No Sound Condition Filtered Sound Condition Unfiltered Sound Condition
Group A* Group B Total Group A Group B Total Group A Group B Total A B
Participants’ Task and Safety Performance
M 62.2 58.1 60.0 78.0 65.2 71.3 77.3 70.5 73.7 72.5 64.6
Average Demolition (%) SD 18.3 21.8 20.2 5.1 17.4 14.5 7.2 14.8 12.2 1.9 1.8
N 31 34 65 31 34 65 31 34 65 31 34
M - - - 10.5 12.0 11.3 18.2 13.8 15.9 14.4 12.9
Number of Collisions SD - - - 5.5 5.3 5.4 17.3 8.8 13.7 1.5 1.5
N - - - 32 33 65 32 33 65 32 33
M - - - 53.1 57.9 55.6 87.4 65.9 76.4 70.3 61.9
Reaction Time — Collapse (s) SD - - - 54.8 53.7 53.8 48.4 56.7 53.5 7.9 7.6
N - - - 33 35 68 33 35 68 33 35
M - - - 16.1 85.0 58.4 113.8 50.2 74.7 64.9 67.6
Reaction Time — Agent (s) SD - - - 17.2 44.6 49.6 18.9 42.9 47.2 5.9 4.7
N - - - 22 35 57 22 35 57 22 35
Participants’ Response
M 37.1 41.4 39.3 35.0 41.1 38.1 38.5 37.9 38.2 36.9 40.1
Workload SD 15.0 18.7 17.0 15.8 18.6 17.4 17.1 18.5 17.7 2.5 2.5
N 37 38 75 37 38 75 37 38 75 37 38
M - - - 4.2 3.8 4.0 3.8 4.1 4.0 4.0 4.0
Situation Awareness (SA) SD - - - 1.1 1.2 1.2 1.3 1.1 1.2 0.2 0.1
N - - - 33 35 68 33 35 68 33 35
M 37.1 37.2 37.2 37.3 36.7 37.0 38.7 36.2 37.5 37.7 36.7
State-Trait Anxiety Inventory (STAI) SD 13.0 12.0 12.4 11.8 10.9 11.3 12.5 11.7 12.1 1.8 1.8
N 37 38 75 37 38 75 37 38 75 37 38
M -11.2 -10.1 -10.7 -3.0 -8.7 -5.9 -8.8 -13.4 -11.2 -7.7 -10.8
A Mean RR (ms) SD 46.2 39.1 42.4 51.6 35.5 43.9 56.5 38.9 47.9 7.0 6.8
N 36 38 74 36 38 74 36 38 74 36 38
M 1.4 0.7 1.1 0.9 0.7 0.8 1.0 1.3 1.1 1.1 0.9
A Mean Heart Rate (HR) (beats/min) SD 4.9 3.1 4.1 5.1 3.3 4.2 5.8 4.0 4.9 0.7 0.7
N 35 38 73 35 38 73 35 38 73 35 38
M -9.6 —-9.2 —9.4 -7.0 —6.8 —6.9 -7.9 —6.5 —7.2 —-8.2 -7.5
A SDNN (ms)' SD 8.0 10.6 9.4 6.9 10.9 9.2 8.5 10.6 9.6 1.5 1.5
N 34 36 70 34 36 70 34 36 70 34 36
M —-5.4 —-1.4 -3.4 —4.2 -0.4 —-2.3 —4.8 -1.8 -3.3 —-4.8 -1.2
A RMSSD (ms)' SD 8.2 8.6 8.6 8.6 7.9 8.4 9.2 9.2 9.2 1.4 1.4
N 35 35 70 35 35 70 35 35 70 35 35
M 2.0 2.0 2.0 1.8 2.4 2.1 2.3 2.9 2.6 2.1 2.4
LF/HF Power Ratio SD 1.3 1.5 1.4 1.0 1.8 1.5 1.6 2.3 2.0 0.3 0.3
N 33 36 69 33 36 69 33 36 69 33 36
M -7.4 —4.3 —-5.8 -8.1 —-4.7 —6.3 -10.3 —-3.4 —6.8 —-8.6 —4.1
A SCR Duration Mean (ms)' SD 17.8 12.8 15.4 21 12.7 17.2 19.5 13.7 17 2.7 2.6
N 34 36 70 34 36 70 34 36 70 34 36
M 0.08 0.06 0.07 0.20 0.11 0.15 0.05 —0.01 0.02 0.11 0.05
A SCR Amplitude Mean (pS)' SD 0.21 0.19 0.20 0.53 0.26 0.41 0.30 0.13 0.23 0.04 0.04
N 25 27 52 25 27 52 25 27 52 25 27
M -5.2 0.5 -2.3 —4.4 -0.2 -2.3 —6.1 -0.2 -3.1 —5.2 0.0
A SCR Rise-Time Mean (ms)’ SD 10.7 6.0 9.0 12.8 5.5 10.0 10.3 7.1 9.2 1.5 1.4
N 35 36 71 35 36 71 35 36 71 35 36
M 24.1 24.2 24.1 22.8 22.7 22.8 24.2 25.8 25.0 23.7 24.2
Number of SCRs' SD 13.6 15.9 14.7 13.4 16.3 14.8 14.0 15.0 14.4 1.8 1.8
N 37 38 75 37 38 75 37 38 75 37 38

Note: Highlighted results (in bold) indicate significant differences (p < 0.05). See Sections 5.1 and 5.2.
Abbreviations for the units: seconds (s), milliseconds (ms), minutes (min), micro siemens (uS).

" Group A order of tasks: NS — US — FS.

Group B order of tasks: NS — FS — US.

HR and HRV metrics used as predictors of stress.

Y EDA metrics used as predictors of attention and task engagement.

effect of sound condition was observed (F(1, 66) = 9.273, p = 0.003, ng
= 0.123), with the reaction times being faster in the FS condition than in
the US condition. No interaction effect between sound condition and
group (p = 0.062) or main effect of group were observed (p = 0.449).

5.1.4. Reaction time — agent

Alternatively, for the reaction times to entering agents, an interac-
tion effect between group and sound condition was found (F(1, 55) =
111.345, p < 0.001, nf, = 0.669). Reaction times to the entering agent
(Fig. 3 (e)) decreased significantly between the first and second

* Mean (M), standard deviation (SD), and sample size (N). Differences in sample sizes by group and condition result from missing data and removed outliers.

experimental conditions in each group (p < 0.001 in both cases), which
may suggest that participants improved their ability to perceive entering
agents as the experiment progressed. However, the observed decreases
were larger for group A than for group B. In group A, reaction times
decreased from 113.8 s (US) to 16.1 s (FS), while for group B, reaction
times decreased from 85.0 s (FS) to 50.2 s (US). For the reaction times to
an entering agent, we also observed a significant main effect of sound
condition (F(1, 55) = 25.081, p < 0.001, ng = 0.313), but no main effect
of group (p = 0.726).
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Fig. 3. Comparison of estimated marginal means between (a) sound conditions for average demolition showing higher demolition performance in FS and US
compared to NS, (b) groups for average demolition showing higher demolition performance in group A than in group B, (c) number of collisions showing fewer
collisions in FS than US, and (d) reaction time to collapses showing faster reaction times in FS than US, and (e) between conditions by participant group for reaction
time to agents showing faster reactions times in the second experimental conditions than in the first experimental conditions in each group. Error bars indicate

standard errors of the mean.

5.2. Participants’ response

5.2.1. Workload

Workload was examined using a 2 x 3 mixed ANOVA with a Huynh-
Feldt correction of the degrees of freedom (¢ = 0.899). No significant
interaction effect between sound condition and group (p = 0.137) or
significant main effect by sound condition (p = 0.708) or group (p =
0.358) were observed for workload.

5.2.2. Situation awareness (SA)

Similarly, in the analysis of SA using a 2 x 2 mixed ANOVA, no
interaction effect between sound condition and group (p = 0.063) or
main effects of sound condition (p = 0.832) or group (p = 0.785) were
observed.

5.2.3. Anxiety
Anxiety differences were examined using a 2 x 3 mixed ANOVA. No
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interaction effect between sound condition and group (p = 0.305), and
no main effects of sound condition (p = 0.841) or group (p = 0.694) were
observed. The STAI scores for all three sound conditions stayed below
the threshold of at least 40, which is used to detect clinical levels of
anxiety [66].

5.2.4. Stress

We used 2 x 3 mixed ANOVAs to examine the HR and HRV measures
used as predictors of stress. No interaction effects between sound con-
dition and group, and no main effects of group were found for any of the
HRV measures reported in this study (all p > 0.05). There were no main
effects of sound condition for changes in RR intervals, HR, and RMSSD
(all p > 0.05). Significant differences in the main effects of sound con-
dition were noted in changes in SDNN relative to baseline measurements
and LF/HF ratio.

In the analysis of changes in SDNN, no interaction between sound
condition and group (p = 0.577) and no main effect of group (p = 0.749)
were observed, but a significant main effect of sound condition was
found (F(2, 136) = 9.553, p < 0.001, ng = 0.123). Pairwise comparisons
of SDNN showed significant differences between the NS and FS condi-
tions (p < 0.001) and the NS and US conditions (p = 0.001) but no
difference between the FS and US conditions (p = 0.628) (Fig. 4 (a)).
SDNN decreased from baseline measurements in all three conditions,
with the NS condition showing the biggest decrease. The reduction in
the magnitude of the decrease from the first demolition task (NS) to
subsequent tasks (US and FS), however, may suggest habituation to the
demolition tasks or decrements in basal emotion levels as the experi-
ment progressed [67]. SDNN can generally be considered an indicator of
physiological resilience to stress [51]. Existing results in the literature
show that SDNN increases during relaxation periods due to the recovery
of parasympathetic activity [68] and decreases during stress periods
[69]. Thus, the results may suggest increased stress levels during the
three demolition tasks relative to the baseline measurements, regardless
of sound condition.

For the LF/HF power ratio in the Fast Fourier Transform (FFT)
spectrum, no interaction effect between sound condition and group (p =
0.060) or main effect of group (p = 0.311) was observed. However, a
significant main effect of sound condition (F(2, 134) = 9.733, p < 0.001,
ng = 0.127) was found. Pairwise comparisons showed significant dif-
ferences between the US and NS conditions and the US and FS conditions
(p < 0.001 in both cases) but no significant difference between the NS
and FS conditions (p = 0.541) (Fig. 4 (b)). The US condition had the
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highest LF/HF ratio among the three sound conditions. As presented,
higher LF/HF ratios can be associated with higher levels of sympathetic
dominance [55], which is more common in stress-inducing “fight or
flight” situations. Thus, the results may indicate that participants
experienced higher stress levels in the US condition than in the NS and
FS conditions. Fig. 4 presents the estimated marginal means and stan-
dard errors of the (a) change in SDNN relative to the baseline mea-
surements and (b) LF/HF power ratio for all sound conditions.

5.2.5. Attention and task engagement

2 x 3 mixed ANOVAs were used to examine the EDA measures
selected as predictors of attention and task engagement. No interaction
effects between sound condition and group were found for any EDA
measures reported in this study (all p > 0.05). There were no main ef-
fects of sound condition for changes in SCR duration means, SCR rise-
time means, and number of SCRs, and no main effects of group for
changes in SCR duration means, SCR amplitude means, and number of
SCRs (all p > 0.05). Significant differences were observed in the main
effect of sound condition in SCR amplitude means and in the main effect
of group in SCR rise-time means.

In our analysis of the SCR amplitude means with a Huynh-Feldt
correction of the degrees of freedom (¢ = 0.814), no significant inter-
action between sound condition and group (p = 0.741) and no main
effect of group (p = 0.351) were observed, but a significant main effect
of sound condition was found (F(1.628, 81.410) = 4.121, p = 0.027, nf,
= 0.076). Pairwise comparisons showed significant differences between
FS and US (p = 0.011) but no significant differences between NS and US
(p =0.153) or NS and FS (p = 0.126) (Fig. 5 (a)). SCR amplitude means
increased for all sound conditions relative to baseline measurements,
with the FS condition having a higher increase than the US and NS
conditions. Existing results in the literature show that SCR amplitudes
relate to participants’ attention and task engagement levels [57,58],
suggesting that the FS condition induced the highest levels of attention
and task engagement among the three sound conditions.

Finally, for the SCR rise-time means with a Huynh-Feldt correction of
the degrees of freedom (¢ = 0.925), no significant interaction between
sound condition and group (p = 0.313) and no main effect of sound
condition (p = 0.303) were found. However, a significant main effect of
group was observed (F(1, 69) = 6.704, p = 0.012, ng = 0.089) (Fig. 5
(b)). The SCR rise-time mean is the mean time between the start of the
SCR events and their respective peak values. Group A had a mean
decrease of 5.24 ms in SCR rise-time means from baseline
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Fig. 4. Comparison of estimated marginal means between sound conditions for the Heart Rate Variability (HRV) parameters (a) changes in SDNN relative to baseline
measurements likely showing increased levels of stress associated with the demolition tasks with habituation to the task over time and (b) LF/HF power ratio (FFT
spectrum) likely showing higher levels of stress in US than in NS and FS conditions. Error bars indicate standard errors of the mean.
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Fig. 5. Comparison of estimated marginal means for changes in Electrodermal Activity (EDA) features (a) between sound conditions for changes in SCR amplitude
means likely showing higher levels of attention and task engagement in FS than US and (b) between groups for changes in SCR rise-time means relative to baseline
measurements of unclear significance. Error bars indicate standard errors of the mean.

measurements, while group B had a mean increase of 0.04 ms. Decreases
in SCR rise-time have also been associated with increased attention
levels [70]. Thus, the results may indicate higher attention levels in
group A than in group B; however, we could not find an explanation for
this observation. Fig. 5 presents the estimated marginal means and
standard errors of the change in (a) SCR amplitude means for all sound
conditions and (b) SCR rise-time means for all groups relative to baseline
measurements.

6. Interpretation of results and discussion
6.1. Effects on operators’ task and safety performance

In answering research question 1, the study’s results show that,
compared to unfiltered sound (US condition), selective environmental
sound attenuation (FS condition) improved operators’ safety perfor-
mance but did not significantly affect their task performance. Specif-
ically, the FS condition resulted in fewer collisions and faster reaction
times to hazards compared to the US condition (Figs. 3 (c) — (e)). For the
number of collisions, the higher sound levels in the US condition likely
impacted the participants’ driving and positioning performance, thus
resulting in more collisions than in the FS condition. Prior research has
shown that the levels of acoustic support (i.e., type and amount of
auditory information) affect positioning accuracy in teleoperation [20].
Therefore, the focused sound conditions in FS may have contributed to
improved driving and positioning performance, potentially explaining
fewer collisions in FS than in US. For the differences in reaction times to
hazards, the attenuated sounds for the robot and background noise in FS
might have facilitated the perception of the entering agents and
collapsing elements, potentially resulting in faster reaction times in FS
than in US. Specifically, the results showed faster reaction times in the
US condition compared to the FS condition for the reaction times to
collapsing elements. Alternatively, the results showed a potential
learning effect for the reaction times to entering agents, as participants
reacted faster to entering agents during the second experimental con-
dition than in the first experimental condition in each group. However,
the results also showed that the reduction in reaction times was more
pronounced when participants experienced the FS condition after the US
condition (Group A) than when they experienced the US condition after
the FS condition (Group B). Previous research has shown that including
environmental sounds in virtual environments can help users perceive
certain hazards more easily [28]. Thus, in the FS condition, the fact that
it was easier to perceive certain sounds associated with hazards (e.g.,
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collapsing elements, entering agents) due to the attenuation of the
sounds associated with the robot’s operational status and background
noise may have made it easier to identify these hazards and react to
them. Alternatively, no significant differences between the FS and US
conditions were detected for task performance as measured by percent
demolition and SA.

6.2. Effects on operators’ response: stress, attention, and task engagement

Regarding research question 2, which focused on the effects of se-
lective environmental sound attenuation (FS condition) on operators’
response (e.g., stress, attention, task engagement) compared to unfil-
tered sound (US condition), the physiological indicators of stress,
attention, and task engagement suggested improved operator responses
in FS compared to US. From the results in Table 2, the increases in mean
HR and the decreases in mean RR intervals, SDNN, and RMSSD relative
to baseline physiological measurements may indicate increased levels of
stress for the three tasks, regardless of sound condition, as increases in
HR and decreases in heart rate variability have been commonly used as
indicators of increased levels of stress [51]. For the case of SDNN (Fig. 4
(a)), specifically, the decrease was significantly greater in the NS con-
dition than in the US and FS conditions, suggesting less stress resilience
in NS than in US and FS, but since the NS condition was always the first
condition the participants experienced, this observation may be related
to habituation to the demolition task [67]. The fact that increased stress
levels were observed for all three tasks relative to baseline measure-
ments indicates that the simulated demolition tasks triggered a physi-
ological response in the participants. However, these measures alone did
not let us completely characterize the contributions of the different
sound conditions on the observed increases in stress levels. To that end,
the LF/HF results provided additional information on the effects of the
sound conditions on the potential stress levels the participants experi-
enced during the demolition tasks. As Fig. 4 (b) shows, the LF/HF ratio
was significantly higher in the US condition than in the NS and FS
conditions. Higher LF/HF ratios are commonly associated with higher
levels of sympathetic dominance in stress-inducing “fight or flight” sit-
uations [55]. Thus, the results may indicate higher stress levels in the US
condition than in the NS and FS conditions, which can be associated with
the relatively higher levels of sound and the unfocused nature of the
sound feedback the participants experienced in the US condition.

Significant differences between the FS and US conditions were also
observed for the EDA signals (Fig. 5 (a)). As presented, SCR amplitudes
have been associated with the participants’ levels of attention and task
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engagement [57,58]. Significant sound stimuli can orient attention and
increase task engagement, while abrupt sounds elicit startling responses
that can lead to task disengagement [58]. In the FS condition, the
attenuated sound levels for the robot’s engine, robot’s motions, and
background noise may have improved the participant’s ability to iden-
tify specific events on-site compared to the unattenuated sounds in the
US condition. For example, the faster reaction times in the FS condition
suggest that the participants had a better capacity to discern these
sounds during the demolition task in the FS condition than in the US
condition. Thus, the focused sound conditions in the FS condition likely
resulted in higher attention and task engagement levels, which may
explain the higher SCR amplitude means in the FS condition compared
to the US condition. Alternatively, subjective measures of workload and
anxiety and some physiological variables did not indicate any significant
differences in their effects among sound conditions, groups, or interac-
tion effects between sound conditions and groups.

Finally, the failure to observe significant differences in demolition
performance (Fig. 3 (a)) and SA between the FS and US conditions, if any
exist, can be explained by existing stress-response models. These models
state that task output is affected only when the adaptive capacities of the
physiological and psychological responses to stress are exceeded [71]
and that, for most tasks, it is possible to maintain similar levels of per-
formance in the presence of a stressor by increasing the effort put into
the task [72]. As the results show, no differences in demolition perfor-
mance and SA between the FS and US conditions were observed, but the
selected indicators of stress, attention, and task engagement suggested
relatively worse physiological responses in US than in FS. Since higher
sound levels are considered more uncomfortable than lower sound levels
[17], and the sound feedback was less focused in the US condition, these
results may suggest higher levels of physiological adaptation in US than
in FS to achieve the observed levels of demolition performance in both
sound conditions.

6.3. Further considerations

The results of this study make several contributions to the fields of
teleoperated construction and human-factors engineering. As presented,
there is an increasing interest in mechanisms that facilitate the
perception of safety-critical sounds in construction sites [14], where
noisy conditions still lead to accidents and occupational injuries [4,34].
While previous studies have focused on the importance of environ-
mental and synthetic sounds for hazard perception in teleoperation
scenarios, this study investigated the role of selective sound attenuation
on operators’ performance and response (e.g., stress, attention, task
engagement). The study’s findings show that selective environmental
sound attenuation in teleoperation can help operators react faster to
hazards and avoid collisions while experiencing higher levels of atten-
tion and task engagement and lower levels of stress. Thus, this paper
highlights potential avenues to optimize sound feedback in tele-
operation to improve operators’ performance and response. It also
bridges an important gap in understanding how noise affects cognitive
and sensory processes in teleoperation, paving the way to developing
enhanced teleoperation interfaces that prioritize safety-critical sounds.

Although the attenuated sound sources in the experiment were
customized for demolition applications, the study’s findings can still
benefit other teleoperation applications in construction. By identifying
the benefits of attenuating non-critical environmental sounds, the study
highlights how technology can mitigate the inherent challenges posed
by high-noise environments, leading to better safety outcomes and op-
erators’ responses. These insights can be applied to other areas of tele-
operated work, such as disaster response, mining, and manufacturing,
where clear and precise sound feedback is critical to safety and perfor-
mance. However, to realize these benefits in other teleoperation appli-
cations, it is essential to identify the critical sounds relevant to their
specific tasks and safety requirements.

Existing research gives indications on how to achieve the FS
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condition in practice. For example, ML models can be trained to detect
anomalous sounds associated with hazards, accidents, and equipment
malfunctions [35] or to enhance spoken communication among workers
[38]. In spatial audio applications, existing algorithms can locate and
separate audio sources, amplify desired sounds, and attenuate ambient
noise [73]. Beyond the variables measured in this study, these attenu-
ation mechanisms can potentially contribute to other performance in-
dicators. Examples include increasing operators’ comfort and improving
their perception of the system’s usability, helping them better recognize
the robot’s operational conditions and detect issues with it, and making
it easier to understand spoken communications from on-site workers.
However, these effects remain unexplored and present valuable oppor-
tunities for future research.

6.4. Limitations

Our findings offer valuable insights into the effects of selective
environmental sound in teleoperated demolition and could inform the
design of more effective teleoperation interfaces for demolition robots.
However, some limitations also exist and could be addressed by future
research efforts. First, all participants were students and not demolition
robot operators; the participants’ lack of professional demolition expe-
rience may affect the generalizability of the results. Nevertheless, the
findings provide valuable insights into key factors that enhance operator
performance and offer broader benefits for other teleoperated con-
struction applications. Secondly, while virtual environments have been
successful training tools [74], they are not real working environments.
This study used a computer simulation instead of a real teleoperated
demolition robot at a construction site, which was justified from a cost
and safety perspective. Additionally, given the nature of the proposed
intervention, using a simulation in a controlled environment allowed us
to maintain the desired sound levels at each environmental sound con-
dition, which would be far more complex to achieve in a real con-
struction site. Therefore, differences in the observed effects of
environmental sound attenuation might be found in validation studies
conducted in real teleoperated demolition settings.

Limitations of the experiment included how chosen procedure
characteristics (time intervals for tasks, sound levels chosen) and data
collection practices may have affected outcomes. First, the overall
duration of the experiment, about 1 h and 15 min in total, may have
induced some level of fatigue in the participants, potentially affecting
their performance and psychological and physiological responses as the
experiment progressed. However, the participants’ responses that could
indicate increased levels of fatigue over time during the experiment (e.
g., workload, HRV metrics) did not show this effect. Additionally, the
experiment task durations, limited to 10 min per sound condition, may
not have been sufficient to trigger stronger psychological and physio-
logical responses in the participants. This duration is significantly
shorter than the construction workers’ typical 8 h/day work shifts.

Additionally, the fixed sound volumes for the US and FS conditions
may have affected the participants’ performance, stress, attention, and
task engagement to some extent. While necessary for experimental
control, this approach overlooked individual preferences for sound
volumes. As presented, some participants asked the researcher to reduce
the volume of their headsets due to discomfort, while others reported the
sound levels to be comfortable. Finally, the movements of the partici-
pants’ arms to control the joysticks may have introduced additional
noise in the EDA data. For many studies involving the Empatica E4
sensor, participants are asked to wear the wristband in their nondomi-
nant arms to minimize motion noise; however, the control mechanisms
of the simulated robot in this study did not allow for limiting the par-
ticipants’ arms movements.

7. Conclusion

This paper assessed the effects of selective environmental sound
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attenuation on operators’ task and safety performance, stress, attention,
and task engagement. The attenuation filter in the FS condition posi-
tively affected operators’ performance, stress, attention, and task
engagement during teleoperated demolition compared to the US con-
dition. Although the study failed to identify significant differences for
some task performance metrics (i.e., demolition performance and SA), it
identified positive effects of sound attenuation (FS) on safety metrics
(fewer collisions and faster reaction times) compared to US. The FS
condition also resulted in lower stress levels, as measured by the LF/HF
ratio, and higher levels of attention and task engagement, as measured
by the SCR amplitude means, compared to the US condition. These
findings suggest that selective sound attenuation can enhance safety and
working conditions in construction teleoperation applications.
Furthermore, this approach could benefit other applications beyond
demolition, provided that the appropriate sound sources are identified
for attenuation.

The study’s outcomes and limitations open possibilities for future
research. First, validating the study’s findings with real teleoperated
demolition robots and actual operators is the next key step. Additionally,
more research is needed to assess if FS improves task and safety per-
formance over NS. Other possibilities include assessing the implications
of adjusting the sound levels of the interface to account for personal
preferences. Furthermore, understanding how the requirements for
sound levels and types change for different applications and task com-
plexities is another direction that begs exploring. Finally, there is a need
to investigate the effectiveness of including other sound signals (e.g.,
sonification for collision warnings) in addition to environmental sound
on the operators’ performance and psychological and physiological
responses.
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