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Abstract. Real-world aerial scene understanding is limited by a lack of
datasets that contain densely annotated images curated under a diverse
set of conditions. Due to inherent challenges in obtaining such images
in controlled real-world settings, we present SkyScenes, a synthetic
dataset of densely annotated aerial images captured from Unmanned
Aerial Vehicle (UAV) perspectives. We carefully curate SkyScenes
images from Carla to comprehensively capture diversity across layouts
(urban and rural maps), weather conditions, times of day, pitch angles
and altitudes with corresponding semantic, instance and depth anno-
tations. Through our experiments using SkyScenes, we show that (1)
models trained on SkyScenes generalize well to different real-world sce-
narios, (2) augmenting training on real images with SkyScenes data can
improve real-world performance, (3) controlled variations in SkyScenes
can offer insights into how models respond to changes in viewpoint con-
ditions (height and pitch), weather and time of day, and (4) incorporat-
ing additional sensor modalities (depth) can improve aerial scene under-
standing. Our dataset and associated generation code are publicly avail-
able at: https://hoffman-group.github.io/SkyScenes/

Keywords: Aerial scene understanding · Synthetic-to-Real
generalization · Segmentation · Domain Generalization · Synthetic
Data

1 Introduction

Aerial imagery provides a unique perspective that is invaluable for a wide range of
applications, including surveillance [27,32], mapping [2,30], urban planning [12,
20], environmental monitoring [6,24], and disaster response [18,25]. These appli-
cations rely on accurate and detailed analysis of aerial images to make informed
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Fig. 1. SkyScenes comprises of 33.6k aerial images curated from aerial oblique view-
points with controlled variations facilitating reproducibility of viewpoints across
different weather and daytime conditions (col 1), different flying altitudes (col 2) and
different viewpoint pitch angles (col 3), across different map layouts (rural and urban,
col 4) with dense pixel-level semantic, instance and depth annotations (col 5).

decisions and effectively address various challenges. Naturally, training effective
aerial scene-understanding models requires access to large-scale annotated exem-
plar data that have been carefully curated under diverse conditions. Capturing
such images not only allows training models that can be robust to anticipated test-
time variations but also allows assessing model susceptibility to changing condi-
tions. However, carefully curating and annotating such images in the real-world
can be prohibitively expensive due to various reasons. First, densely annotating
every pixel of high-resolution real-world aerial images is expensive – for instance,
densely annotating a single 4K image in UAVid [22] can take up to 2 hours! Second,
although diversity in training data is vital for developing robust generalization
algorithms and for model sensitivity assessment, expanding the real set to include
widespread variations (weather, time of day, pitch, altitude) would be uncontrolled
(i.e., we can’t guarantee the same viewpoint under different conditions as the real
world is not static), and hence would require re-annotating newly captured frames.
Synthetic data curated from simulators can help counter both these issues as (1)
labels are automatic and cheap to obtain and (2) it is possible to recreate same
viewpoint (with same scene layout and actor instances, vehicles, humans, etc. in
the scene) under differing conditions.

The unique challenges introduced by outdoor aerial imagery setting such
as variability in altitude and angle of image capture, skewed representation for
classes with smaller object sizes (humans, vehicles), size and occlusion vari-
ations of object classes in the same image, etc., make it a relatively difficult
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problem compared to ground-view imagery setting. This is illustrated by the
observation that the current developments in syn-to-real generalization meth-
ods [14,45] have resulted in a significant reduction in the syn-to-real general-
ization gap in ground-view settings to as minimal as 20%1, compared to the
comparatively higher margin observed in aerial imagery scenarios, reaching up
to 50% (see Sec. 4.3–4.5 in supplementary). Unlike synthetic ground plane view
datasets (especially for autonomous driving [7,26,35,38,47]), synthetic datasets
for aerial imagery (see Table 1, rows 4-10) have received relatively less atten-
tion [4,11,19,21,34,39,44]. While existing synthetic aerial imagery datasets have
tried to close this gap, they are often found lacking in a few different aspects
– complementary metadata to reproduce existing frame viewpoints under dif-
ferent conditions, limited diversity, availability of dense annotations for a wide
vocabulary of classes and image capture (height, pitch) conditions (see Table 1
for an exhaustive summary). These synthetic aerial datasets rarely allow for
reproducing the exact viewpoint with different variations based on detailed scene
metadata (see Table 1 Controlled Variations column), a key aspect for evaluating
deep learning models’ responses to changing conditions and assessing sensitivity
to single-variable alterations (e.g., weather, time of day, sensor angle).

We cover all these aspects by introducing SkyScenes, a synthetic dataset
containing 33.6k densely annotated aerial scenes, leveraging the Carla [9] sim-
ulator to capture diverse layout (urban and rural), weather, daytime, pitch and
altitude conditions. Our pipeline meticulously generates scenes with precise actor
locations and orientations, ensuring each scene’s reproducibility with a compre-
hensive metadata store and rigorous consistency checks.

SkyScenes encompasses detailed semantic, instance segmentation (28
classes), and depth annotations across 8 distinct map layouts across 5 differ-
ent weather and daytime conditions each over a combination of 3 altitude and
4 pitch variations (see Fig. 1 for examples). While doing so, we keep several
important desiderata in mind. First, we ensure that stored snapshots are not
correlated, to promote diverse viewpoints within a town and facilitate model
training. Second, we store all metadata associated with the position of actors,
camera, and other scene elements to be able to reproduce the same viewpoints
under different weather and daytime conditions. Thirdly, we ensure that the gen-
erated data mimics real-world imperfections by introducing variations in sensor
locations, such as adding jitter to specified height and pitch values.2 Finally,
since Carla [9] by default does not spawn a lot of pedestrians in a scene, we
propose an algorithm to ensure adequate representation of humans in the scene
while curating images (see Sect. 3.1 and Sect. 3.2 for a detailed discussion).

Our experiments across 3 different real datasets and 3 increasingly com-
petitive semantic segmentation architectures consistently demonstrate that
SkyScenes outperforms its closest synthetic counterpart dataset, SynDrone
[34]. However, despite these dataset-level improvements, the syn-to-real gener-

1 metric of choice: mIoU.
2 Moreover, through rigorous validations, we ensure this process is consistent and

yields error-free re-generations. See Sect. 3.1.
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alization gap persists, indicating that algorithmic improvements developed for
ground-view imagery fail to translate effectively to aerial imagery. This under-
scores the urgent need for specialized algorithmic development in this area.

Empirically, we demonstrate the utility of SkyScenes in several different
ways. First, we show that SkyScenes is a valuable pre-training dataset for real-
world aerial scene understanding by, (1) demonstrating that models trained on
SkyScenes generalize well to multiple real-world datasets and (2) demonstrat-
ing that SkyScenes pretraining improves real-world performance in low-shot
regimes. Second, we show that controlled variations in SkyScenes can serve as
a diagnostic test-bed to assess model sensitivity to weather, daytime, pitch, alti-
tude, and layout conditions – by testing SkyScenes trained models in unseen
SkyScenes conditions. Finally, we show that SkyScenes can enable develop-
ing multi-modal segmentation models with improved aerial-scene understanding
capabilities when additional sensors, such as Depth, are available. To summarize,
we make the following contributions:

– We introduce, SkyScenes, a densely-annotated dataset of 33.6k synthetic
aerial images. SkyScenes contains images from different altitude and pitch
settings, encompassing different layouts, weather, and daytime conditions
with corresponding dense annotations and viewpoint metadata.

– We demonstrate that SkyScenes pre-trained models generalize well to real-
world scenes and that SkyScenes data can effectively augment real-world
training data for improved performance. We also bring attention to the point
that while the synthetic-to-real gap has considerably narrowed for ground-
view datasets, the same algorithms are unable to bridge this gap in aerial
imagery.

– We show that our unique ability to generate controlled variations enables
SkyScenes to serve as a diagnostic test-bed to assess model sensitivity to
changing weather, daytime, pitch, altitude, and layout conditions.

– Finally, we show that incorporating additional modalities (depth) while train-
ing aerial scene-understanding models can improve aerial scene recognition,
enabling further development of multi-modal segmentation models.

2 Related Work

Ground-view Synthetic Datasets. Real-world ground-view scene-understan-
ding datasets (Cityscapes [7], Mapillary [26], BDD-100K [47], Dark Zurich [37])
fail to capture the full range of variations that exist in the world. Synthetic data
is a popular alternative for generating diverse and bountiful views. GTAV [38],
Synthia [35], and VisDA-C [31] are some of the widely-used synthetic datasets.
These datasets can be curated using underlying simulators, such as GTAV [38]
game engine and Carla [9] simulator and offer a cost-effective and scalable way
to generate large amounts of labeled data under diverse conditions. Similar to
SELMA [42] and SHIFT [41], we use Carla [9] as the underlying simulator for
SkyScenes.
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Table 1. SkyScenes compared with other Real and Synthetic Datasets.
We compare SkyScenes (row 11) with other real (rows 1 − 3) and synthetic (rows
4 − 10) aerial datasets across several axes: (i) Controlled Variations – the ability
to reproduce the exact viewpoint under different variations from fine-grained scene
metadata, (ii) Diversity – diversity of map layouts (rural, urban), weather and daytime
conditions in the provided images, (iii) Annotation Diversity – supporting dense
annotations across depth (D), semantic(S) and instance segmentation (I) tasks, (iv)
Altitude – altitude of image capture; Low is < 30m, Med is ∈ [30, 50]m and High is
> 50m, (v) Perspective – UAV pitch angle during image capture; Fwd. is forward
view with θ = 0◦, Obl. is oblique view with θ ∈ (0◦, 90◦) and Nad. is nadir view with
θ = 90◦ (θ is pitch), (vi) Resolution – resolution of the images, (vii) Scale – number
of images. We see that while existing datasets might be lacking in a subset of criteria,
SkyScenes fulfills all of these.

Dataset Controlled Variations Diversity Annotation Diversity Altitude Perspective Resolution
Scale

Town Daytime Weather

Real
1 UAVid [22] ✗ ✗ ✗ ✗ S Med Obl. 3840 × 2160 0.42k
2 AeroScapes [28] ✗ ✗ ✗ ✗ S (Low, Med) (Obl., Nad.) 1280 × 720 3.27k
3 ICG Drone [17] ✗ ✗ ✗ ✗ S Low Nad. 6000 × 4000 0.6k

Synthetic

4 Espada [21] ✗ ✓ ✗ ✗ D (Med, High) Nad. 640 × 480 80k
5 UrbanScene3D [19] ✗ ✓ ✗ ✗ - Med Obl. 6000 × 4000 128k
6 SynthAer [39] ✓ ✗ ✓ ✗ S (Low, Med) Obl. 1280 × 720 ∼ 0.77k
7 MidAir [11] ✗ ✓ ✓ ✓ (S,D) Low (Obl., Nad.) 1024 × 1024 119k
8 TartanAir [44] ✗ ✓ ✓ ✓ (S,D) Low (Fwd., Obl.) 640 × 480 ∼ 1M
9 VALID [4] ✗ ✓ ✓ ✓ (S,I,D) (Low, Med, High) Nad. 1024 × 1024 6.7k
10 SynDrone [34] ✗ ✓ ✗ ✗ (S,D) (Low, Med, High) (Obl., Nad.) 1920 × 1080 72k
11 SkyScenes ✓ ✓ ✓ ✓ (S,I,D) (Low, Med, High) (Fwd., Obl., Nad.) 2160 × 1440 33.6k

Real-World Aerial Datasets. To support remote sensing applications, it is
crucial to have access to datasets that offer aerial-specific views. Datasets such
as GID [43], DeepGlobe [8], ISPRS2D [36], and FloodNet [33] primarily provide
nadir perspectives and are designed for scene-recognition and understanding
tasks. However, this study specifically focuses on lower altitudes, which are more
relevant to UAVs, enabling object identification. Unfortunately, there is a scarcity
of high-resolution real-world datasets based on UAV imagery emphasizing object
identification. xisting urban scene datasets, like Aeroscapes [28], UAVid [22],
VDD [1], UDD [5], UAVDT [10], VisDrone [48], Semantic Drones [17] and others,
suffer from limited sizes and a lack of diverse images under different conditions.
This limitation raises concerns regarding model robustness and generalization.

Synthetic Aerial Datasets. Simulators can facilitate affordable, reliable, and
quick collection of large synthetic aerial datasets, which aids in fast prototyping,
improves real-world performance by enhancing robustness, and enables controlled
studies on varied conditions. One such high-fidelity simulator, AirSim [40], used
for development and testing of autonomous systems (in particular, aerial vehi-
cles), is the foundation of several synthetic UAV-based datasets – MidAir [11],
Espada [21], Tartan Air [44], UrbanScene3D [19] and VALID [4]. Carla [9] is
another such open-source simulator that is the foundation of datasets like Syn-
Drone [34]. However, these datasets fall short in capturing real-world irregularities,
lack deterministic re-generation capabilities, controlled diversity in weather and
daytime conditions, and exhibit skewed representation for certain classes (differ-
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Fig. 2. Ground View → (Oblique) Aerial View. (a) The same scene viewed in
Ground View vs Aerial View exhibits a significant difference in pixel proportion espe-
cially across the tail classes (vehicle, human) (b) For a subset of commonly annotated
classes across CityScapes [7] (red), UAVid [22] (dark blue) , we show the percent-
age of pixels occupied by different classes. Aerial scenes (in UAVid) have significant
under-representation of tail classes (vehicle, human).

ences summarized in Table1). This restricts their ability to generalize well to real-
world datasets and their usage as a diagnostic tool for studying the controlled effect
of diversity on the performance of computer vision perception tasks. To enable
such studies, SkyScenes offers images featuring varied scenes, diverse weather,
daytime, altitude, and pitch variations while incorporating real-world irregular-
ities and addressing skewed class representation along with simultaneous depth,
semantic, and instance segmentation annotations.

3 SKYSCENES

We curate SkyScenes using, Carla [9]3 0.9.14, which is a flexible and realistic
open-source autonomous vehicle simulator. The simulator offers a wide range
of sensors, environmental configurations, and varying rendering configurations.
As noted earlier, we take several important considerations into account while
curating SkyScenes images. These include strategies for obtaining diverse syn-
thetic data and embedding real-world irregularities, avoiding correlated images,
addressing skewed class representations, and more. In this section, we first dis-
cuss such desiderata and then describe our procedural image curation algorithm.
Finally, we describe different aspects of the curated dataset.

3.1 (Synthetic) Aerial Image Desiderata

Before investigating the image curation pipeline, we first outline a set of desider-
ata taken into account while curating synthetic aerial images in SkyScenes.

1. Viewpoint Reproducibility: Critical to understanding how models
respond to changing conditions is the ability to evaluate them under sce-
narios where only one variable is altered. However, any effort to do so in the

3 https://carla.org/.

https://carla.org/
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real-world would be uncontrolled, due to its dynamic (constantly changing)
nature. In contrast, simulated data allows us to do so by providing con-
trol over image generation conditions. Unlike certain existing aerial datasets
that do not support this feature (see Table. 1), we do so in SkyScenes by
additionally storing comprehensive metadata for each viewpoint (and image),
including details about camera world coordinates, orientation, and all mov-
able/immovable actors and objects in the scene. We couple this with rigorous
consistency checks for image generation that verify the number of actors,
their location, sensor height, pitch, etc. This meticulous approach enables us
to reproduce the same viewpoint under multiple conditions effortlessly.

2 . Adequate Representation of Tail Classes: Unlike ground-view datasets,
pixel distribution of classes in aerial images is substantially more long-tailed
(see Fig. 2 (a); classes with smaller object size, humans). This substantial dif-
ference in class proportions severely affects the performance of tail classes in
aerial datasets when compared to ground-view datasets (see Fig. 2 (b)), thus
making visual recognition tasks harder. To counter this, we consider struc-
tured spawning of humans to ensure adequate representation (see Sect. 3.2).

3. Adequate Height Variations: Aerial images are captured at different
altitudes to meet specific needs. Lower altitudes (5–15m) are optimal for
high-resolution photography and detailed inspections. Altitudes ranging from
30m–50m strike a balance between fine-grained detail and a broader perspec-
tive, making them ideal for surveillance. Altitudes above 50m are suitable for
capturing extensive areas, making them ideal for surveying and mapping.
Existing datasets (synthetic or real) often focus on “specific” altitude ranges
(see Table 1, Image Capture columns), limiting their adaptability to differ-
ent scenarios. With SkyScenes, our aim is to provide flexibility in altitude
sampling, thus accommodating various real-world requirements. We curate
SkyScenes images at heights of 15m, 35m, and 60m. Additionally, recogniz-
ing imperfections in real-world actuation, we induce slight jitter in the height
values (Δh ∼ N (1, 2.5m)) to simulate realistic data sampling.

4. Adequate Pitch Variations: Similar to height, aerial images can be cap-
tured from 3 primary perspectives or pitch angles (θ): nadir (θ = 90◦), oblique
(θ ∈ (0◦, 90◦)), or forward (θ = 0◦) views (see Table. 1, Image Capture
columns). The nadir view (directly perpendicular to the ground plane), pre-
serves object scale while forward views are well-suited for tasks like UAV
navigation and obstacle detection. Oblique views, on the other hand, cap-
ture objects from a side profile, aiding object recognition and providing valu-
able context and depth perspective often lost in nadir and forward views. To
ensure widespread utility, SkyScenes data generation process is designed
to support all these viewing angles, with a particular emphasis on oblique
views (the most common one). Similar to height, pitch variations allow mod-
els trained on SkyScenes to generalize to different viewpoint variations. We
use θ = 45◦ and 60◦ for oblique-views and introduce jitter (Δθ ∼ N (1, 5◦))
to mimic real-world data sampling.

5. Adequate Map Variations: In addition to sensor locations, it is equally
important to curate aerial images across diverse scene layouts. To ensure
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adequate map variations, we gather images from 8 different Carla [9] towns
(can be categorized as urban or rural), which provide substantial variations
in the observed scene. These towns differ in layouts, size, road map design,
building design, and vegetation cover. Figure 4 illustrates how images curated
from different towns in Carla [9] differ in class distributions.

6. Adequate Weather & Daytime Variations: Training robust percep-
tion models using SkyScenes that generalize to unforeseen environmen-
tal conditions necessitates the curation of annotated images encompassing
various weather and daytime scenarios. To accomplish this, we generate
SkyScenes images from identical viewpoints under 5 different variations –
ClearNoon, ClearSunset, MidRainNoon, ClearNight, and CloudyNoon.4 Gen-
erating images in different conditions from the same perspectives allows us to
(1) leverage diverse data for improved generalization and (2) systematically
investigate the susceptibility of trained models to variations in daytime and
weather conditions.

7. Fine-grained Annotations: To support a host of different computer
vision tasks (segmentation, detection, multimodal recognition), we curate all
SkyScenes images with dense semantic, instance segmentation and depth
annotations. We provide semantic annotations for a wide vocabulary of 28
classes to support broad applicability (see Fig. 1 column 4 for an example).

3.2 SKYSCENES Image Generation

We generate SkyScenes images from Carla [9] by taking the previously men-
tioned considerations into account. Curating images from Carla [9] broadly
consists of two key steps: (1) positioning the agent camera in an aerial per-
spective and (2) procedurally guiding the agent within the scene to capture
images. We accomplish the first by mimicking a UAV perspective in Carla [9]
by positioning the ego vehicle (with RGB, semantic and depth sensors) based
on specified (high) altitude (h) and pitch (θ) values to generate aerial views (see
Fig. 2a).5 Once positioned, the agent is translated by fixed amounts to traverse
the scene and capture images from various viewpoints (detailed in Sec. 2.1 in
the supplementary). Initially, we generate 70 datapoints for each of the 8 town
variations under ClearNoon conditions using the baseline h = 35m, θ = 45◦

setting. Subsequently, following the traversal algorithm (see Sec. 2.1 in the sup-
plementary), we re-generate these datapoints across 5 weather conditions and
12 height/pitch variations, resulting in 70 × 8 × 5 × 12 = 33, 600 images.

Checks and Balances. Additionally, we ensure the following checks and bal-
ances while curating SkyScenes images.

� Avoiding Overly Correlated Frames for Viewpoints. Carla [9] uses a
traffic manager with a PID controller to control the egocentric vehicle based on
4 Note that Carla [9] provides 14 such conditions but we use only 5 such conditions

in this preliminary version of SkyScenes.
5 This also requires setting other scenes – weather, daytime, etc. – and camera (notably

the FoV = 110◦ (field of view) and image resolution = 2160 × 1440) parameters.
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Fig. 3. SkyScenes w/ HumanSpawn() increases representation of humans
and improves SkyScenes→UAVid(S→U) performance. (a) Incorporating
HumanSpawn() in the image generation pipeline for SkyScenes increases the pro-
portion of humans in snapshots ([Top]→[Bottom]). (b) Increased representation of
humans across all the layout variations in SkyScenes after HumanSpawn(), with
the dotted line representing the proportion of humans in UAVid (c) Training on
HumanSpawn (HS) SkyScenes images improves the model’s ability to recognize
humans (improved mIoU). T = Town.

current pose, speed, and a list of waypoints at every pre-defined time step. Curat-
ing images at every time step (or tick) results in highly correlated frames with
little change in object position. Since overly correlated frames are not very useful
when training models for static scene understanding, we move the camera by a
fixed distance multiple times before saving a frame. This also helps with moving
dynamic actors by a considerable amount in the scene. Additionally, pedestrian
objects are regenerated before saving an image, which adds randomness to the
spawning and placement of pedestrians, reducing the correlation between frames.

� Adequate Representation of humans. Real-world scenes often exhibit a
long-tailed distribution in pixel proportions, particularly in aerial images where
variations in object sizes and camera positions contribute to significant under-
representation of the tail classes (in Fig. 2, for the shared set of classes across
UAVid [22] (aerial) and Cityscapes [7] (ground), we can see that the class dis-
tributions are different and aerial images are significantly more heavy-tailed).
As a result, naively spawning humans (rarest class) in Carla [9] is detri-
mental for eventual task performance – for the human class, a SkyScenes
trained DAFormer [14] (with HRDA [15] source training; MiT-B5 [46] back-
bone) model leads to an in-distribution performance of 43.03 mIoU and out-of-
distribution (SkyScenes →UAVid [22]) performance of 4.71 mIoU. To counter
this under-representation issue, we design an algorithm, HumanSpawn() (see Sec.
2.1 in supplementary), to explicitly spawn more human instances while curating
SkyScenes images. HumanSpawn() increases human instances by 40 − 200 per
snapshot, improving the proportion of densely annotated humans in SkyScenes
by approximately 10 times (see Fig. 3 (a) & Fig. 3 (b)). This improvement in
human representation is also evident in eventual task performance, with in-
distribution and out-of-distribution mIoUs for humans increasing from 43.03 to
61.79 (+18.76) and 4.71 to 10.21 (+5.50) respectively (see Table. 3 (c)).
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Fig. 4. Class-distribution Diversity in SkyScenes. We show how the distribu-
tion of densely-annotated pixels varies across different SkyScenes conditions. [Left]
Class distribution varies substantially within and across urban and rural map layouts.
[Right] Similarly, for the same SkyScenes layouts (and viewpoints) class distribution
varies substantially across different height and pitch values.

3.3 SKYSCENES: Dataset Details

Annotations. We provide semantic, instance and depth annotations for every
image in SkyScenes. Semantic annotations in SkyScenes by default are across
28 classes. These are building, fence, pedestrian, pole, roadline (markings on
road), road, sidewalk, vegetation, cars, wall, traffic sign, sky, bridge, railtrack,
guardrail, traffic light, water, terrain, rider, bicycle, motorcycle, bus, truck and
others (see Fig. 1 for an example and Sec. 2.2 in supplementary for definitions)

Training, Validation and Test Splits. SkyScenes has 70 images per town
(across 8 towns) for each of the 5 weather and daytime conditions, and 12 height
& pitch combinations, resulting in a total of 33, 600 images. We use 80% (26, 880
images) of the dataset for training models, with 10% (3, 360 images) each for
validation and testing (see Sec. 3.3 in supplementary).

Class Distribution(s). In Fig. 4, we highlight how the distribution of classes
changes across variations within SkyScenes– rural and urban map layouts and
height and pitch specifications. SkyScenes exhibits substantial diversity in class
distributions across such conditions, allowing these individual conditions to serve
as diagnostic splits to assess model sensitivity (see Sect. 4.2).

4 Experiments

We conduct semantic segmentation experiments with SkyScenes to assess a few
different factors. First, we check if training on SkyScenes is beneficial for real-
world transfer. Second, we check if SkyScenes can augment real-world training
data in low and full shot regimes. Third, we check if variations in SkyScenes can
be used to assess the sensitivity of trained models to changing conditions. Finally,
we check if using additional modality information (depth) can help improve aerial
scene understanding.

Synthetic and Real Datasets. We compare real-world generalization perfor-
mance of training on SkyScenes with SynDrone [34], a recently proposed
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Table 2. Models trained on
SkyScenes generalize well to
the real-world. We train semantic
segmentation models (DeepLabv2 [3],
DAFormer [14], Rein [45]) on
SkyScenes, SynDrone [34], and
real datasets and show how training
models on SkyScenes provides bet-
ter out-of-the-box generalization to
multiple real-world datasets.

Source (Target) Real-World mIoU (↑ )
UAVid AeroScapes ICG Drone

DeepLabv2 (R-101) [3]
1 SynDrone 39.86 24.50 8.20

2 SkyScenes 41.82 26.94 15.14
DAFormer (MiT-B5) [15]
3 SynDrone 42.31 30.53 15.92

4 SkyScenes 47.09 40.72 25.91
Rein (DINOv2)
5 SynDrone 54.92 40.28 20.01

6 SkyScenes 54.19 43.96 28.10

Table 3. SkyScenes training exhibits
strong real-world generalization for
tail classes. We show how DAFormer [14]
and Rein [45] models trained on SkyScenes
exhibit improved real-world generaliza-
tion compared to those trained on Syn-
Drone [34] for under-represented tail
classes (vehicles and humans). SkyScenes
training facilitates better recognition of tail
class instances.

Source (Target) Real-World IoU (↑ )
UAVid AeroScapes ICG Drone

vehicle human vehicle person vehicle person

DAFormer (MiT-B5) [15]
1 SynDrone 42.52 8.27 49.77 0.77 0.24 0.38

2 SkyScenes 63.64 10.21 80.99 3.09 39.71 45.89
Rein (DINOv2) [45]
3 SynDrone 68.68 21.6 84.2 10.29 7.91 0

4 SkyScenes 75.14 25.52 87.71 21.67 50.91 77.93

synthetic aerial dataset also curated from Carla [9] featuring 3 different (h, θ)
conditions across 8 different map layouts. We assess performance on 3 real-world
aerial datasets – UAVid [22], AeroScapes [28], ICG Drone [17]. Since dif-
ferent datasets have different class vocabularies and definitions, for our exper-
iments, we adapt the class vocabulary of the synthetic source dataset to that
of the target real-world datasets (see Sec. 3.1 in supplementary for class merg-
ing and assignment schemes). Additionally, since different real aerial datasets
have been captured from different heights and pitch angles, we train models on
(h, θ) subsets of synthetic datasets that are aligned with corresponding real data
(h, θ) conditions. We provide additional details for the real aligned synthetic
data selection and model evaluation in Sec. 4 in the supplementary.

Models. We use (1) CNN – DeepLabv2 [3] (ResNet-101 [13]), (2) transformer
– DAFormer [14] (with HRDA [15] source training; MiT-B5 [46] backbone) and
(3) Vision Foundation Model – Rein [45] (LoRA [16] fine-tuned Dino-V2 [29]
backbone) based semantic segmentation architectures for our experiments. We
provide implementation details for our experiments in Sec. 3.5 in supplementary
(Fig. 5).

4.1 SKYSCENES → Real Transfer

� SkyScenes Trained Models Generalize Well to Real-Settings. In
Table 2, we show how models trained on SkyScenes exhibit strong out-of-
the box generalization performance on multiple real world datasets. We find
that SkyScenes pretraining exhibits stronger generalization compared to Syn-
Drone [34] across both CNN and transformer segmentation backbones. In
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Table 4. SkyScenes aug-
mented real data improves per-
formance in low shot regimes.
We compare DeepLabv2 [3],
DAFormer [14], and Rein [45]
models trained using varying
percentages of labeled UAVid [22]
images. Models are either trained
jointly on SkyScenes and UAVid
(JT) or pretrained on SkyScenes
and finetuned on UAVid (FT). Aug-
menting real data with SkyScenes
enhances real-world generalization
in low-shot scenarios.

Source (Target) Real World mIoU (↑ )
5% 10% 25% 50% 100%

DeepLabv2 (R-101) [3]
1 Only Real 48.25 55.29 62.86 66.81 68.53

2 SkyScenes + Real (JT) 59.27 64.15 68.11 70.18 69.51

3 SkyScenes + Real (FT) 53.67 60.61 65.57 68.54 69.70
DAFormer (MiT-B5) [15]
4 Only Real 60.59 65.63 70.31 72.16 72.47

5 SkyScenes + Real (JT) 62.97 67.58 70.20 71.83 72.25

6 SkyScenes + Real (FT) 60.90 66.79 70.41 72.63 73.02
Rein (DINOv2) [45]
7 Only Real 64.04 71.87 73.87 76.05 76.55

8 SkyScenes + Real (JT) 69.15 73.54 75.07 76.08 76.54

9 SkyScenes + Real (FT) 70.07 73.99 75.01 76.44 76.89

Fig. 5. SkyScenes RGB Images and corre-
sponding depth images generated using depth
sensor for h = 35, θ = 45◦, and ClearNoon set-
ting across four different town layouts.

Table 5. Multi-modal Segmentation in
SkyScenesbf . We evaluate M3L [23] mul-
timodal segmentation architectures with MiT-
B5 [46] backbones using RGB and RGB+D
data in SkyScenes. Additional sensors improve
aerial scene understanding significantly across
various classes in UAVid [22].

Sensors SkyScenes Test IoU (↑ )
clutter building road tree low-veg. vehicle human Avg

1 RGB 87.80 94.54 94.07 88.03 69.37 82.89 43.35 80.01

2 RGB+D 90.64 95.97 94.87 89.41 74.36 86.87 50.47 83.22

Table 3, we show how generalization improvements are more pronounced for
under-represented tail classes (vehicles and humans). Comparison across all
classes is provided in Tables 5–7 in supplementary.

� SkyScenes Can Augment Real Training Data. In addition to zero-shot
real-world generalization, akin to other synthetic aerial datasets, we also show
how SkyScenes is useful as additional training data when labeled real-world
data is available. In Table 4, for SkyScenes →UAVid [22], we compare models
trained only using 5%, 10%, 25%, 50%, 100% of the 200 UAVid [22] training
images with counterparts that were either pretrained using SkyScenes data or
additionally supplemented with SkyScenes data at training time. We find that
in low-shot regimes (when little “real” world data is available), SkyScenes data
(either explicitly via joint training or implicitly via finetuning) is beneficial in
improving recognition performance (see Sec. 4.5 of supplementary).

4.2 SKYSCENES as a Diagnostic Framework

As noted earlier, the images we curate in SkyScenes contain several variations
– ranging from 5 different weather and daytime conditions, rural and urban map
layouts, and 12 different height and pitch combinations (see Fig. 4 for variations
in class distributions). We curate images under such diverse conditions in a
controlled manner – ensuring the same spatial coordinates for (h, θ) variations,
same spatial coordinates and (h, θ) settings across different weather and daytime
conditions, the same number of images across layouts.
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Table 6. Model Sensitivity to Changing Conditions. We show how changing
conditions (weather, daytime, map, viewpoint) in SkyScenes can serve as diagnostic
test splits to assess the sensitivity of trained DAFormer [14] semantic segmentation
models. In (a) and (b), we evaluate models trained under different weather and daytime
conditions across the same conditions. In (c), we evaluate models trained on rural and
urban scenes across the same layouts. In (d), we evaluate a model trained on moderate
height, pitch settings (h = 35m, θ = 45◦) across different h, θ variations. Best numbers
across each row condition is highlighted in blue.

Train Test mIoU (↑)
Clear Cloudy Rainy

1 Clear 73.91 73.59 69.95

2 Cloudy 69.60 74.02 69.14

3 Rainy 69.00 73.36 72.62

(a) Weather Variation

Train Test mIoU (↑)
Noon Sunset Night

1 Noon 73.91 71.16 35.60

2 Sunset 63.16 66.53 39.36

3 Night 52.00 57.35 70.36

(b) Daytime Variation

Train Test mIoU (↑)
Rural Urban

1 Rural 58.00 35.90

2 Urban 38.99 73.16

(c) Map Variation

Height Test mIoU (↑)
Pitch
θ = 0◦ θ = 45◦ θ = 60◦ θ = 90◦

1 h = 15m 48.50 50.71 45.22 42.21

2 h = 35m 50.49 55.74 57.11 52.19

3 h = 60m 45.33 49.79 50.37 44.62

(d) Height & Pitch Variation

This allows us to assess the sensitivity of trained models to one factor of
variation (h, θ, daytime, weather, map layout) by changing that specific aspect.
We summarize some takeaways from such experiments in Table 6.

In Table 6 (a), we show how models trained in a certain weather condition
are best at generalizing to the same condition at test-time. We make similar
observations for daytime variations in Table 6 (b). In Table 6 (c), we show how
models trained in rural conditions fail to perform well in urban test-time condi-
tions and vice-versa. In Table 6 (d), we evaluate a model trained under moderate
(h = 35m, θ = 45◦) conditions under different (h, θ) variations. We find that as
altitudes increase, trained models are better at recognizing objects from oblique
(θ ∈ (0◦, 90◦)) viewpoints. We provide exhaustive quantitative comparisons in
Sec. 4.6 in the supplementary (Fig. 6).

4.3 SKYSCENES Enables Multi-modal Dense Prediction

Sensors on UAVs in deployable settings often include modalities beyond RGB
cameras, such as depth sensors. These additional modalities can significantly
enhance aerial scene understanding. In Table. 5, we investigate the impact of
augmenting RGB data with depth observations from SkyScenes viewpoints on
aerial semantic segmentation using M3L [23], a multimodal segmentation model.
Similar to our DAFormer [14] experiments, we consider a SegFormer equivalent
version of M3L [23] (with an MiT-B5 [46] backbone). We test RGB and RGB+D
models trained under (h = 35, θ = 45◦) (moderate viewpoint) conditions on
SkyScenes and find that incorporating additional Depth observations can sub-
stantially improve recognition performance. This demonstrates that images in
SkyScenes can be used to train multimodal scene-recognition models.

5 Conclusion

We introduce SkyScenes, a large-scale densely-annotated dataset of synthetic
aerial scene images curated from unmanned aerial vehicle (UAV) perspectives.
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Fig. 6. UAVid, SkyScenes + UAVid and SkyScenes → UAVid semantic
segmentation predictions Predictions on randomly selected UAVid [22] validation
images by a Rein [45] model trained on UAVid and SkyScenes. Columns 1 and 2
show the original image and its ground truth. Columns 3, 4, and 5 display predictions
from models trained exclusively on UAVid, jointly on SkyScenes and UAVid, and
exclusively on SkyScenes, respectively.

SkyScenes images are generated using Carla by situating an agent aerially
and procedurally tele-operating it through the scene to capture frames with
semantic, instance, and depth annotations. Our careful curation process ensures
that SkyScenes images span across diverse weather, daytime, map, height, and
pitch conditions, with accompanying metadata that enables reproducing the
same viewpoint (spatial coordinates and perspective) under differing conditions.

Through our experiments, we demonstrate that: (1) SkyScenes-trained
models generalize well to real-world settings, (2) SkyScenes augments labeled
real-world data in low-shot scenarios, (3) SkyScenes serves as a diagnostic tool
for assessing model sensitivity to varied conditions, and (4) incorporating addi-
tional sensors like depth enhances multi-modal aerial scene understanding.

We aim to enhance SkyScenes with improved realism, additional antici-
pated edge cases, and support for 3D perception tasks aligning with advance-
ments in our simulator (additional details in Sec. 6 of supplementary) We have
publicly released the dataset and associated generation code and hope that our
experimental findings encourage further research using SkyScenes for aerial
scenes.
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