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1 Introduction

Modern smartphones and other mobile devices, whose market is predicted to grow up by 7.3%
per year in 2022-2029 [43], incorporate numerous instrumentation gadgets, which may generate
various sensor-originated data available for community use in science and technology. Diverse
crowd-sourcing applications [13, 31], mobile crowdsensing missions [12, 23, 24, 26, 44, 48], and
the Internet of Things (IoT) have a huge potential to employ these devices to produce unprece-
dented volumes of data that could be shared and utilized in science and industry. Data collected
from these devices can be fused in third-party applications, too. However, this resource remains
hugely underused due to the lack of methodological and organizational support and the short-
age of automation tools that should provide assistance in instruments selection and their system
integration, on one side, and the trust deficit from the scientists and practitioners who might be re-
luctant to utilize data coming from unverified and uncalibrated sources with no information about
their quality on the other.

Diverse instrument gadgets can provide data of various quality that might not satisfy the
user’s and application’s demands. To design mobile instrumentation systems that meet their
requirements, users aim at selecting sensors that produce the best quality data that might be hard
to accomplish in the case of numerous sensors commonly embedded in miscellaneous platforms.
Regular users usually do not possess an expert knowledge of the instruments to make their
selection. The development of instrument selection automation tools will help to design more
effective and efficient instrumentation that can supply users with the Data Quality (DQ) they
require.

A common issue that is overlooked when instrument selection is considered is that the security
of the platform that embeds sensors is often not evaluated properly and neglected when evalu-
ating the DQ produced by instruments. To address this issue, we develop our framework that
integrates DQ metrics with security metrics when evaluating the overall quality of the data sup-
plied by a platform. In this article, we integrate sensor selection methods and tools into a unified
Data Quality with Security- (DQS) based intelligent framework that allows for the automation
of sensor selection and composing mobile instrumentation systems aimed at providing users with
the required functionality and the DQS that satisfy their requirements. As instruments and sensors
frequently operate in real time, the quality of data they produce may vary due to changing oper-
ational conditions. Our solution is aimed to work at both instrumentation design and operation
stages, which allows dynamic restructuring of the system in near real time to adjust to the current
conditions. This operation poses additional requirements on the optimization techniques that lead
to the application of intelligent methods.

In our previous research [8, 19], we collected data, gathered knowledge, and implemented sev-
eral methods and tools that we now integrate into our framework described in this article. In
Reference [19], we developed DQS integration calculus, which incorporated accuracy, security,
and other metrics to evaluate a smartphone sensor system. In Reference [8], we expanded the de-
veloped DQS calculus from smartphones to other mobile devices and included measurements of
various modalities. In this article, we employ our previously developed knowledge base on sensor-
embedded mobile device characteristics to develop real-time sensor selection methods and tools
based on Genetic Algorithms (GA) techniques.

Generalizing from our previous research [8, 19], here we concentrate on the integration of the
developed sensor selection methods and tools into a unified framework, which itself can be opti-
mized in real time to satisfy user requirements toward DQS and the system’s functionality. Our
framework subsumes several integration levels that are described in Section 2. This article’s nov-
elty and major contributions include the following:
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(1) the integration of the developed methods and tools into a unified instrumentation selection
framework that can be employed in both sensor selection system’s design and operation
stages;

(2) multi-level measurements and the instrumentation integration procedures (see Figure 1),
which incorporate the following:

(a) DQS evaluation with both accuracy and security,
(b) multi-modal data fusion,

(c) multi-platform system realization,

(d) and knowledge utilization;

(3) demonstrations of how the developed methods and tools can be realized and integrated to
select sensors on various instrumentation platforms;

(4) expansion of previously developed calculus and integration into a unified framework. In
our previous research [8, 19], the DQS calculus was developed specifically for mobile
platforms. Here we present a novel theoretical framework, described by our generalized
DQS calculus, which can be used on any instrumentation platform equipped with real-time
sensing instruments;

(5) demonstration of practical applications of the developed theoretical framework. In Section 6,
we provide a comprehensive overview of our practical contributions to the field. We devel-
oped multiple Android applications and an instrument-selection knowledge-base aimed at
automating the novel DQS-informed instrument selection process on Android platforms.

Our research presented in this article follows the design science methodology. In our work,
we design and present various artifacts, such as the DQS evaluation calculus, the metrics defined
and used in this calculus, and, finally, the GA-based sensor selection algorithm, to facilitate the
DQS-informed instrument selection process. We then demonstrate in practice that our approach
is competent at finding a selection of instruments that provides the best possible DQS under
constraints that exist in real-time sensing applications. The article proceeds as follows: Section 2
describes the problem relevance and our generic approach to tackle the problem of instrument and
sensor selection. Sections 3 and 4 describe artifacts designed for this study. Following the common
patterns for a design-based study [14], we evaluate our designed approach analytically and exper-
imentally in Section 5. At last, we describe the practical contributions of our design in Section 6.

2 Integration Framework for Instrument Selection
2.1 Related Work on Sensor Selection and DQ Evaluation

Sensor selection is a well-known problem that is commonly formalized as an optimization task.
Several different approaches exist in literature that propose different optimizations for sensor
selection in dynamic systems. Debouk et al. [9] proposed to view the sensor selection task as a
test-strategy optimization that is subject to minimizing the cost. Joshi et al. [17] proposed a convex
optimization heuristic for selecting a subset of sensors out of a given set. Yao et al. [47] considered
using GA for optimal sensor placement on large space structures. In a more recent study, Liu et al.
[27] proposed a sensitivity-based optimization approach for sensor selection. In general, it has
been shown previously that sensor selection is an NP-hard problem [5]. Nevertheless, GA present
an effective heuristic to approximately solve the sensor selection problem for a given application.
Works such as [16, 34, 36, 37] demonstrate applications of GA for sensor-related optimization
tasks. However, the issues of quality of the data supplied by the sensors and the security of sensing
platforms traditionally are not considered during sensor selection optimization. In this work we
aim to bridge the existing gap by proposing metrics and calculus to evaluate and integrate DQS,
which we then use to perform sensor selection based on a GA approach.
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Fig. 1. Multi-level integration procedures in framework design and operation. Sub-level 1 represents metrics
integration, where DQ metrics are integrated with security metrics. Here the initial DQS score is produced.
Sub-level 2 represents data integration, where we fuse the data available across multiple sensor platforms
and produce a fused DQS score for these data. Sub-level 3 stands for knowledge utilization, where we use
the knowledge about the sensors or instrumentation platforms (for example, from our developed knowledge
base in Reference [22]) along with user expert knowledge to manage the sensor selection.
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Evaluating DQ is a research problem that attracts significant efforts, especially now in the era of
IoT and Big Data. Previously, researchers have identified and classified DQ metrics into multiple
categories [45]: (1) intrinsic DQ metrics that do not depend on the application, (2) contextual DQ
metrics that rely on the application, (3) representational DQ metrics that describe representation
formats, and (4) accessibility DQ metrics. Similarly, Bar-Noy et al. [3] also divide DQ metrics into
intrinsic and contextual. In terms of our study, the metrics proposed in Section 4.2, except for the
device security, can be considered intrinsic. The device (instrumentation platform) security in our
case is both an intrinsic and a contextual metric. The context of the application domain partially
dictates device security. The contextual nature of security is accounted for in our four-way evalua-
tion of security, which considers app security, device features, sensor security, and cloud security.

2.2 Our Integral Framework

We develop a novel instrument (sensor) measurements quality and security integration frame-
work that aims to optimize the instrument selection process through DQS multi-modal and multi-
platform instrumentation composition. Our framework takes functionality and DQS specifications
as the input and automates selecting sensors whose integration satisfies specific requirements set
by the data consumers. It incorporates multi-metric DQS evaluation procedures, which integrate
diverse metrics ranging from measurements accuracy to instrumentation security. Commonly, the
aspect of security is paid insufficient attention in sensor systems’ instrumentation design [11].
However, the security violation might lead to the DQ degradation collected from sensors, especially
when measurements from various platforms are fused together and result in the total malfunction-
ing [8]. To address these issues, we consider the instrumentation platform security characteristics
as a DQS component, which is incorporated into the DQS evaluation alongside the measurements
accuracy and other quality metrics. In our framework, security characteristics depend not only on
the sensor itself, but on the instrumentation platform into which this sensor is incorporated. This
approach allows constructing a comprehensive security evaluation process. Hence, our framework
can be adapted to each individual sensor instrumentation platform realization and allows evaluat-
ing its unique security characteristics.

Measurements from various sensors can be fused to increase their accuracy [32]. To facilitate
sensor selection, users usually rely only on the accuracy of the produced data. Security metrics
incorporation into the sensor selection may allow the users to enhance the overall DQ and make
system operations more secure. The proposed unified sensor selection end-to-end framework inte-
grates methods, techniques, and knowledge to supply sensor system users with the data that best
satisfies their requirements.

In Figure 1, we schematically represent the framework structure with the operational levels
that demonstrate how multi-layer integration is performed. Our framework goal is to facilitate
the design optimization of multi-modal and multi-platform sensor systems. Below the major
design goal, we present the main level of the proposed integration. This level demonstrates the
major operations proposed by the framework design: merging sensor fusion and sensor platform
integration to achieve the optimization goal. Under the main level, we depict three sub-levels that
facilitate the operations performed at the main level. Sub-level 1 is metrics integration, in which
such data characteristics as accuracy, which depend on the sensor itself, are integrated with
security, which depends on the platform the sensor is embedded into. In this sub-level, the DQS
characteristic is produced. Sub-level 2 is responsible for the data integration. In this sub-level,
sensor measurements are integrated among multiple sensor modalities and platforms. The result
of this stage are data obtained from various sensors and platforms. Then, metrics are aggregated
to calculate the integral DQS for this data. Sub-level 3 is knowledge utilization, in which the
available knowledge on sensors and instrumentation platform characteristics are employed to
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manage the sensors/platform integration at the main level. This sub-level also incorporates user
and application specifications that are employed to select sensors that meet these requirements.

3 Data Fusion Effect on Accuracy and Security
3.1 Security Metrics Integration into DQS Calculus

Fusing data from various sensors is a well-known approach employed by designers to improve
measurement data accuracy and trustworthiness [18]. Multiple fusion techniques have been im-
plemented in sensor systems. For example, fusing measurements from local sensors (e.g., camera,
LiDAR, radar) with global sensors (e.g., global navigation satellite systems) [33] or between the
inertial and vision sensors [10, 15] allowed to improve the quality and robustness of the obtained
data in real time. Alongside the aim to improve data accuracy and trustworthiness, data security
characteristics should be paid substantial attention, which was demonstrated by various attacks
conducted against sensor systems. For instance, Cao et al. [7] presented a novel adversarial attack
against multi-sensor fusion system, which allowed to affect both three-dimensional LiDAR point
cloud and camera pixels representation. Despite the benefits achieved with the data fusion, data
and sensor platform security ignorance may decrease its overall effectiveness and the quality of
the resulting data.

3.1.1  Security Metrics Employed. In this article, we integrate instrumentation platform secu-
rity with other sensor characteristics into a unified DQS indicator. We consider instrumentation
security as an inseparable component of DQS calculus, which allows evaluating of how security
conditions affect the overall quality of data. We develop calculus tools, which are described in
more detail in Section 4.2 and demonstrate their utilization. We also provide a practical example
of how these security metrics might be calculated, and demonstrate their extended definitions and
descriptions in Section A.1. Those metrics are introduced in Section 4.3 on a practical example for
the reader’s convenience.

3.2 Accuracy and Security Evaluation Pipeline

Below we present the steps incorporated into the data accuracy and security evaluation procedure
in our framework.

3.2.1 Device Measurement Data Quality Evaluation. In this step, the quality of all sensors em-
bedded into an instrumentation platform is evaluated. To facilitate this evaluation in practice, we
develop an Android application that we describe in detail in Section 6.2. We employ this applica-
tion to collect sensor quality characteristics and include them in the knowledge base, described in
Section 6.4.

3.22  Measurement Fusion Accuracy Evaluation. In this step, the resulting accuracy after fusing
the data from the sensors embedded on a single platform is evaluated. We propose a way to fuse this
data below; however, the fusion operation can be fine-tuned based on the data consumer’s needs.

3.2.3 Instrumentation Platform Security Evaluation. In this step, the instrumentation security is
evaluated. As in the previous step, the security evaluation calculus may vary and depend on the
platform realization. To facilitate the platform security evaluation in our use case, we develop an
Android application described in Section 6.1.

3.24  Multi-platform Fusion Security Evaluation. In this step, the data from multiple platforms
are fused together, and the resulting multi-platform security score is calculated. This step can be
performed optionally depending on the needs of the end user. In our use case, we demonstrate
how the security characteristics of multiple platforms can be fused in practice in Section 5.3.
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Table 1. Sensor Platform Accuracy and Security after Data Fusion

Platform A+B | Platform A+C | Platform B+C
Combined Security 3.49 10 3.49
Accuracy 95% 95% 80%
Overall DQS Score 6 9.8 5.45

15:7

3.2.5 Sensor Selection. In this step, the combination of instruments that best satisfies the user’s
accuracy and security requirements is selected from the evaluated ones. For sensor selection, vari-
ous techniques may be employed. We propose a novel GA-based approach, the realization of which
is available on Android platforms and described in Section 6.3.

3.3 Security Role in Measurement Fusion

In fusion design, one has to consider security and privacy protection and evaluation from various
perspectives. For example, some platforms might store or produce private or confidential data.
The integration of these data with publicly available information may result in decreasing the
confidentiality level to the lowest in the system. As one can observe from Table 1, the integration
of “Platform A” and “Platform B” leads to a higher accuracy but lower overall score. The flaws in
“Platform B” security result in the lower overall DQS score in case of A+B platforms integration.
There might be security conflicts in case of various mandatory access control policies employment
in the instrumentation system. For instance, if the Bell-LaPadula model is employed for the access
control evaluation [6], then the integration of data with various confidentiality characteristics is
unacceptable in terms of this model.

In case when the sensor measurements are integrated from the platforms with various clearance
levels, the clearance level of all integrated platforms is decreased according to the lowest one. This
leads to potential data leakage. One can see that relying only on measurements obtained from a
platform with a higher clearance level will not decrease the overall one. However, this strategy
will decrease the overall data accuracy and robustness and may not be compatible with integrity-
enforcing access control models. One of the examples is Biba access control model [29], employ-
ment of which may lead to improper decisions in the case of multi-platform measurements fusion.
For instance, fusing the data from platforms with various veracity leads to decisions made based
on data with a lower veracity level. This multi-platform sensor fusion strategy is not acceptable
by the integrity-enforcing access control policies.

As Table 1 demonstrates, while the measurements fusion from “Platform A” and “Platform B”
allow improving an overall data accuracy, it results in lowering the overall data security level
according to “Platform B.” The same situation occurs in the case of platforms “B” and “C” mea-
surements integration. Fusing the data obtained from “A” and “C” platforms not only allows us to
achieve higher accuracy but also results in a higher overall DQS, as both “A” and “C” possess high
data security level that complements a higher overall DQS score.

4 Intelligent Sensor Selection Use Case

GA represent a subclass of evolutionary algorithms, which have been widely employed to optimize
search and selection processes in various applications, such as routing optimization in IoT [46] and
network Quality of Service improvement [30]. In our framework, we employ GA to select sensors
that best satisfy data consumers’ requirements. In comparison to other search techniques, GA are
known for their ability to handle high-dimensional problems even in real time—the feature that
motivated us to select this technique in our implementation.

In References [20, 35], as the GA fitness function, we used the integral DQS indicator composed
from accuracy and security metrics. However, those studies were highly limited in terms of sensor
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devices population and their diversity. In this article, we address those limitations by significantly
extending the metrics employed in DQS calculus and the employed sensor device population size.
We collect knowledge on multi-modal sensors embedded into heterogeneous platforms and em-
ploy this knowledge to expand and diversify our population, from which the best instrument com-
bination is selected. In addition to these extensions, we also remove the limitation on the number
of devices included in a single generation. DQS calculus, developed in Reference [20], could not
handle data of various modalities, so in this article we sufficiently extend it by supplementing it
with the deducible hierarchical levels. These levels incorporate multiple metrics calculated for var-
ious sensors and instrumentation platform properties, which are integrated on a higher level to
produce the overall DQS score, expressed by Equation (8). We implement the developed calculus
in our Android application [40], which is described in more detail in Section 6.2. To verify the
effectiveness of our GA-based instrument system optimization approach, we conduct an empirical
study. We compare GA with the brute-force sensor selection in terms of elapsed wall-time and the
achieved DQS score. In Section 5, we provide more detailed analysis of the results achieved.

4.1 Formalization of Instrument Selection Problem for Multi-Modal Data Fusion

In instrument selection, we evaluate the DQS of two major instrumentation components: sensor
devices themselves and instrumentation platforms, into which these sensors are incorporated. In
our use case, we integrate sensors embedded into various Android mobile devices. We use various
types of sensors embedded into a single platform employed for data collection. Below we formalize
the sensor selection and data fusion problem. Given:

— a set of N instrumentation platforms, which include the sensors P;, i € {1,...,N};

— a set of quality indicators PQ;q, q € {1,..., M}, where M represents the number of quality
indicators defined by each platform’s technical characteristics;

— each platform is composed of K sensors S;j, j € {1,...,K};

— each sensor’s quality indicator can also be defined with PS;j., r € {1,...,L}, where Lis a
number of quality indicators determined for the sensor.

Goal: to find such instrumentation system configuration S that will provide the required level
of the overall DQS indicator.

The configuration includes the integration of (1) sensor devices and (2) instrumentation plat-
forms, whose data are fused to achieve the required DQS. The data collected and fused by the
instrumentation can be defined as D = FZ(data;;), where FZ(-) is the fusion operation over
the data collected from S;; sensor combination. Then FZQ corresponds to the DQS integration
operator, which aggregates various DQS metrics, such as sensor accuracy, instrumentation plat-
form security, and others. FZQ operator depends on particular DQS metrics and may vary to
adjust the data fusion function toward multi-modal data. The integration of the DQS indicators
obtained from various platforms is performed by A operator to calculate the overall DQS indica-
tor. Then, the overall DQS after the multi-modal and multi-platform data integration is defined as
DQS, = A(FZQ(PQ;q)). We shall define the goal as the DQS maximizing FZQ(PS;;) — max or
achieving at least the required level f, established by the data consumer.

4.2 Data Quality and Security Evaluation Calculus

In this section, we present an example of the DQS calculus that facilitates DQS evaluation for
the employed set of sensors described in Section 4.5. The characteristics of sensor devices and
instrumentation platforms may vary, so the calculus is flexible enough and can be adjusted to the
properties of sensors and platforms. We design our calculus based on our previous developments
[20] intended for fusing the data of a single modality derived from an instrumentation platform.
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We substantially extend those developments by incorporating the calculus operations under the
multi-modal data, and the multi-platform integration functions. Below we present our calculus
developed and adjusted toward the set of sensors and platforms employed in our case study.

4.2.1 Instrumentation Platform and Sensor Object. An instrumentation platform S is composed
of a number of sensor devices si; €5, € {1,...,m}, m > 1, which are divided into groups
t; €T, i € {1,...,n}, t > 1, by the data type these sensors produce. In our GA implementation,
described in Section 4.4, we refer to each instrumentation platform as the sensor object. The metrics

for evaluating the DQS indicator of the employed sensors are formalized below.

4.2.2  Sensor Accuracy and Total Sensor Accuracy. The Sensor Accuracy (SA) metric refers to
the precision and is calculated based on the sensor’s resolution characteristics. Here resolution
generally refers to the sensor’s ability to capture detail or clarity in a received signal. Specific
measurements of resolution depend on the sensor type and were previously studied in Reference
[21]. In Appendix A.2, we provide some descriptive statistics, accumulated from our previous
research, which can aid in this metric computation. Total Sensor Accuracy (TSA) is a metric
calculated based on SA over all the sensors in a platform. SA and TSA can be formalized according
to (1) and (2), respectively,

resolution(s;;)

SA=1-———F"—7—, 1
max(resolution) )

TSA = J%. (2)

4.2.3 Sensor Latency. This metric is calculated based on the average of min and max delays
the sensor device demonstrates between its measurements. As delays of the sensor devices vary
in practice, we normalize the delay values by dividing them by max for each sensor. In this case,
the resulting delay value for each sensor ranges in the {0, 1} interval. To ensure that higher delay
results in lower Sensor Latency (SL) values, we define the latency value [, which is calculated
according to Equation (3). The smallest [ value across all the sensors in the combination is then
used to define SL, which corresponds to Equation (4),

delay(s;;)
by =1- max(delay(t;))’ ®)
SL = min(l;)). (4)

4.2.4 Instrumentation Power Consumption. This metric is based on the power that instruments
are expected to consume over their operation in both measuring and idling conditions. The power
consumption characteristics are taken from the sensor device specifications or other publicly avail-
able documentation. We assume that all the sensors work simultaneously while performing the
measurements, so Instrumentation Power Consumption (IPC) can be formalized according to
Equation (5),

IPC = i1 21 power(s, ). (5)
nxm

4.2.5 Instrumentation Platform Security. This metric is based on the platform security charac-
teristics. In our case, as we employ Android OS mobile devices, we use such security metrics as
“screen lock activation status,” “Android OS basic integrity test,” and others. After calculating the
metrics for each sensor device, the min value across all the sensors is used to initialize Instrumen-

tation Platform Security (IPS). The overall IPS metric for a particular instrumentation platform
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can be calculated as Equation (6),

IPSs = sl(s) + dm(s) + bit(s) + act(s) + (6)
\/(usmax —us(s)) X |us(s)| + (phamax _Pha(s)) X |Pha(3)|,

where IPS; is an instrumentation platform s security evaluation, sl(s) is a value based on the plat-
form’s screen lock parameter, dm(s) is a value based on the platform’s s developer menu parameter,
bit(s) is a value based on the platform’s s basic integrity test parameter, act(s) is a value based on
the platform’s s Android OS compatibility test parameter, us(s) corresponds to the platform’s s un-
known source value, us,qx is a maximum value over all the evaluated instrumentation platforms,
|us(s)| corresponds to the number of unknown applications installed on the instrumentation plat-
form s, pha(s) is a value for potentially harmful applications installed on the instrumentation plat-
form s, phamqx corresponds to the pha’s maximum value, and [pha(s)| is a number of potentially
harmful applications installed on the platform S. The overall IPS value can be calculated as Equa-
tion (7). We refer our reader to Appendix A.1 where we explain in detail the metrics acquisition
and evaluation process. This process was also implemented in the application in Section 6.1,

IPS = min(IPSy). (7)

In this article, we present a specific example of the DQS calculus implementation for the em-
ployed set of sensors and instrumentation platforms. However, the instrumentation designer is
able to adjust it. To achieve this, on the higher DQS integration level, we define the overall DQS
fitness function that incorporates weights whose values can be modified and adjusted. An example
of this overall DQS function defined for our established metrics is demonstrated in Equation (8),

DOS = wiTSA + w,SL v;r w3 + w4IPS’ ®
Zi:] Wi
where wy, wy, ws, and wy represent the weight coefficients and W is the number of weights incor-
porated in the DQS calculation. In our use case, we calculate the DQS value with equal weights,
however, they might be adjusted according to the data consumers’ priorities and needs.

4.3 DAQS Calculus Use Case

Here we present a scenario of how the proposed DQS calculus can be employed to evaluate the
accuracy of measurements and security of a particular platform.

The research company MedResML (not a real name) is conducting medical research that inves-
tigates the feasibility of movement system impairment syndrome diagnostics based on an individ-
ual’s motion patterns analysis. To facilitate the research, the company collects a comprehensive set
of measurement data that are processed to extract diagnosis patterns. Such sensors as a gyroscope,
accelerometer, pedometer, and magnetometer are employed to collect measurements. As modern
smartphones are equipped with these devices, MedResML decides to use personal smartphones
as measurement collection instruments. This approach is cost-efficient, as there is no need to dis-
tribute other devices to the research subjects, and convenient, as the majority of research subjects
keep their smartphones with them during their walking activities. To facilitate data collection,
MedResML develops an Android OS application.

The agency decides to fuse the data obtained from various users and multiple instruments to
improve its quality. Users’ smartphones are equipped with diverse embedded devices of varying
characteristics, which can influence the overall DQS. A higher accuracy score can be achieved if
security is neglected. However, the overall DQS of the collected data is affected by a low-security
level. Conventional methods of multi-modal and multi-platform data fusion rely only on accuracy
characteristics while ignoring the security of the platform from which the data are acquired. These
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Table 2. Instrumentation Platforms Accuracy and Security Evaluation Example
Platform A Platform B Platform C | Platform D
blacklisted apps 0% 20% 0% 0%
potentiallyDangerous 0% 10% 0% 0%
Se?fgty unknown s.ou.rces 0% 50% 0% 20%
app permission 1% 60% 1% 1%
10.00 4.78 10.00 6.80
OS version 26 [API 26] 24 [API 24] 26 [API1 26] | 26 [API 26]
Device security patches 2 [1-Jun-18] 8 [1-Dec-17] 2 [1-Jun-18] 2 [1-Jun-18]
feature device model 5.00 9.00 5.00 5.00
10.00 5.00 10.00 543
bootLoader locked unlocked locked unlocked
Sensor rootAccess disabled enabled disabled disabled
security developer’s menu disabled enabled disabled enabled
device lock locked unlocked locked locked
10.00 0.00 10.00 0.00
historic trend 1 [increasing] | (-)0.5 [decreasing] | 1 [increasing] | 0.1 [increasing]
Sgﬁ‘r‘i‘fy same device comparison | 0.95 [top 5%] | 0.2 [bottom 20%] | 0.95 [top 5%] | 0.75[top 25%]
9.81 2.74 9.81 5.16
Device security 10.00 3.49 10.00 5.44
accelerometer 90% 5% 40% 70%
Asc:izzy g.yr(?scope 90% 10% 10% 40%
proximity sensor 90% 12% 60% 50%
Total Sensor Accuracy 90% 9.47% 42.03% 61.64%
Overall DQS Score 9.76 0.39 5.36 5.21

Accuracy values are scaled and represented as a percentage for convenience.

accuracy-oriented approaches might lead to prioritizing low-security platforms for data fusion that
may jeopardize the research subjects’ privacy and the research results trustworthiness.

To address this issue, MedResML decides to integrate instrumentation platform security eval-
uation into their data collection application. From Table 2, one can observe the results of four
Android smartphones security evaluations, which are integrated with the accuracy produced by
the sensor devices embedded in these smartphones to obtain the “Overall DQS Score,” which was
computed based on the calculus described previously. Appendix A provides a more detailed expla-
nation on which calculus was used to compute the values represented in Table 2. Here we represent
a high level explanation how device security is evaluated. In general, the devices (instrumentation
platforms) have the following characteristics:

— Application security—presence of any suspicious applications, application permissions,
sources of applications installed.

— Device feature security—what OS software is running, were security patched installed.

— Sensor security—is the bootloader locked, root access disabled, developer tools disabled, a
pin-lock enabled.

— Cloud security—what is the historic security trend for this device; how does this device
compare to similar devices.

Several metrics are used to numerically describe the above security characteristics of a particular
device with concrete definitions detailed in Appendices A and A.1. Those metrics are then fed to
an expert system that finally performs the security evaluation in relation to application security,
device feature security, sensor security, and cloud security.
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4.4 Genetic Algorithms for Sensor Selection Description

GA are a family of derivative-free heuristics that are empirically good at finding an optimal solu-
tion under certain constraints. The motivation for employing GA in the sensor selection scenario is
based on the fact that the quality of data provided by each particular set of sensors can be defined in
terms of discrete characteristics of the sensors, as shown in Section 4.2 and, as we demonstrate later
in Section 5, GA are capable of finding an optimal solution over a discrete dataset under given time
constraints, which is an important factor in real-time sensor selection applications. Researchers
and developers already tried to employ GA in sensor networks optimization [4, 16, 34, 36, 37].
However, these publications mainly focus on reducing sensor energy consumption by improving
a sensor network topology. In this research, we employ a GA to facilitate data consumers’ deci-
sions on what data source to choose for the aggregation to achieve optimal DQS. With GA, the
decision time could be adjusted to the external conditions changes, for example, to the time of the
attack against sensor networks. Further, we present and discuss in more detail how we implement
them in our article.

GA is a type of optimization algorithm that finds either minimum or maximum value for a
fitness function. The value of the fitness function is called a fitness value. As defined previously,
we can formulate the goal for our GA as FZQ(DQS) — max, where the DQS for an individual
platform is defined by Equation (8), and FZQ corresponds to the DQS integration operator. Below,
we provide a clear definition of the classic terminology used in GA in the context of our sensor
selection problem.

— Population is a group or list of solutions, each of which can solve the problem at hand. This
would be represented by a list of all sensor objects.

— Chromosome is a single value in the population, i.e., a single solution to the problem. In our
case, it is a combination of sensors represented by a sensor object, as previously described in
Section 4.2.1.

— Gene is a single element in the solution/chromosome, i.e., a single sensor.

— Fitness function is a measure of the optimality of a solution (sensor object). The formula to
evaluate the fitness of a particular solution is mathematically presented by Equation (8).

First, the algorithm encodes information of sensors within a sensor object. Then it randomly
generates a list of sensor objects. The number of sensors within each sensor object is defined by the
chromosome length parameter. The number of sensor objects in the population is defined by the pop-
ulation limit parameter. To initialize the population, we need an initial list of possible solutions that
can be improved in the next steps. Hence, we randomly generate the initial population with a size
equal to the population limit that is a hyper parameter. This parameter was set as a rounded value
of 1/10th of all available platforms with embedded sensors. To create a population, we go through
every platform and randomly decide whether to select it or not. After selecting the platforms, we
go through sensors associated with these platforms and again randomly decide whether to select
them. In this way we form one sensor object and continue in this manner until we have as many
sensor objects as the population limit value. Once the initial population is produced, the evolution
process starts as follows:

(1) The fitness value, as defined by Equation (8), for each sensor object in the population is cal-
culated;

(2) The population of sensor objects is then sorted in descending order of their fitness values,
such that the sensor with the best fitness value appears first;

(3) Based on the parameter retention limit, a percentage of sensor objects are selected, and a list
of the best sensor objects in this population (rank-based selection) is generated. To avoid
sorting altogether, the roulette-based selection is used, wherein a selection probability based
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Table 3. Employed Sensor Types and Their Characteristics

Sensor Type Characteristics

Accelerometer (A) Sensitivity, Non-linearity, Noise Density
Gyroscope (G) Sensitivity, Noise Density, Cross-axis Sensitivity, Non-linearity
Proximity (P) Resolution, Range, Absolute Response

on the relative fitness of the sensor object is assigned. A sensor object with a higher fitness
value has a higher chance of being retained;

(4) A list of sensor objects that are ready for mutation and crossover is generated;

(5) To ensure that the sensor selection process is not stuck in a local maximum, based on the
parameter mutation probability, each of the sensor objects is altered, wherein one of the ran-
domly chosen sensors within the sensor objects is replaced by another sensor from the list
of all available sensors. Then, two sensor objects are randomly chosen for the crossover op-
eration, where a new child sensor object is generated by combining half of the sensors from
each of the selected parent sensor objects. As such, during the crossover operation, the sen-
sors (genes), along with their characteristics, that belong to a particular sensor object are
being crossed over.

(6) A newly generated sensor object is added to the new population. This crossover process
repeats until the population limit is reached;

(7) The average fitness value of the new population is evaluated;

(8) Once there is no sufficient change in the average fitness value, the selection process stops
and returns the sensors contained within the best population. These sensors are expected to
have high DQS if data from these sensors are fused.

4.5 Sensor Devices and Platform Characteristics with Their Data Quality Evaluation
Knowledge Base

To verify our framework and test it with real-life data, we employ our knowledge base, described
in References [22, 25] and in Section 6.4, which contains characteristics of thousands of diverse
sensor devices. We evaluate our intelligent sensor selection on the three most popular sensor types
(accelerometer, gyroscope, and proximity sensor) incorporated in the devices from our collection.
Our knowledge base includes information on 52 accelerometers manufacturer brands, 20 proximity
sensors brands, and 14 gyroscope brands. In Table 3 one can see the characteristics presented in
our knowledge base for these sensor types.

5 Framework Evaluation Results
5.1 Brute-force Algorithm Analysis

To provide a baseline for the evaluation of our proposed GA, we developed a brute-force algorithm
that exhaustively selects devices with the best DQS score while generating all possible combina-
tions of sensors for each type. Let us consider a list of available sensors n as well as a number
of sensor types t for a particular device. We can represent a selection of sensors for a particular
sensor type as a binary string. As an example, let us consider n = 3 and t = 1, which means that
we have three sensors (s1, s, and s3) of a single type to select from. We can represent each possible
selection as a binary string, e.g., 111 for a selection of [sy, sz, s3], or 101 for a selection of [sy, s3].
For a single device or instrumentation platform, the number of possible selections to generate can
be evaluated as 2"'. Given d platforms, the number of possible platforms to select from can also
be represented as a binary string equal to at most 2¢ when all platforms are selected. As a result, a
brute-force algorithm would have to go through all the possible sensor selections of each type of

ACM J. Data Inform. Quality, Vol. 16, No. 3, Article 15. Publication date: October 2024.



15:14 S. Chuprov et al.

sensors for each platform, with the number of possible selections equal to 2™ - 2¢, which results
in the overall time complexity of the algorithm being exponential: O(2™**¢).

5.2 Genetic Algorithm Analysis

The time complexity of a generic GA can be defined in terms of the population size N, num-
ber of generations G, fitness evaluation time Tr;sness, and the complexity of selection, crossover,
and mutation,

O(G - (N - Tfitness + N - O(Selection) + N - O(Crossover) + N - O(Mutation))). 9)

In our implementation the crossover operation takes O(1) time as we are simply recombining
the data encoded into the parent sensor objects. The mutation operation is linear in terms of time
complexity, O(d), where d is the number of all available devices (i.e., sensor objects in step (5) in
Section 4.4). The evaluation time of a fitness of a particular solution Tr;spess takes O(1) time as it
is a numerical computation. In Section 4.4, we describe two selection strategies: rank-based and
roulette-based. If the rank-based selection is used, then Equation (9) is dominated by O(Selection)
and the overall complexity of the algorithm largely depends on the sorting method used. Assuming
a sorting method similar in time complexity to merge sort is used for selection, and also assuming
the population size of N = d, where d is the number of platforms, Equation (9) can be simplified
to Equation (10),

O(Gdlogd). (10)

If the roulette-based selection method is used, then the selection step takes O(d) time and Equa-
tion (9) can be transformed into Equation (11),

0(Gd). (11)

In practice, we run the roulette-based algorithm until the desired level of DQS is reached or a
user-imposed time limit is exceeded instead of running the algorithm for G generations.

5.3 Practical Evaluation

In Reference [22], we developed a knowledge base of sensors incorporated in various IoT devices.
In our practical evaluation of the proposed sensor selection algorithm, we employ the data from
the developed knowledge base. Our knowledge base has data on 19 sensor types with informa-
tion about 9,443 sensor incorporating devices. Here we concentrate on the most widespread types
of sensors—accelerometer, gyroscope, and proximity sensors. For the purposes of our practical
evaluation and with the sensor types narrowed down to three, we possess data about 2,886 sen-
sors embedded into 107 devices, which were employed for the evaluation of our GA. We provide
descriptive statistics regarding the characteristics of each particular type of sensor used in this
evaluation in Appendix A.2.

We evaluate our intelligent instrument selection framework by measuring the achieved overall
DQS and its computational performance on actual sensor characteristics’ data from our knowl-
edge base [22, 25]. As the instrument selection should be able to work in real time, to measure
computational performance we rely on the wall-time elapsed between the moment of starting the
selection process and the moment of obtaining the instrument combination with the highest DQS
value. To facilitate our framework application in practice, we implement the developed GA-based
instrument selection procedures as a software application and compare its performance against
the brute-force-based selection.

In Figure 2, we present instrument selection techniques comparison results. Figure 2(a) com-
pares the results of the achieved overall DQS value of the instrument combination selected by the
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Fig. 2. Evaluation of GA vs. brute-force search: (a) in terms of DQS; (b) in terms of computational perfor-
mance; BF refers to brute-force; GA to Genetic Algorithms, A means accelerometer, AG means accelerometer
and gyroscope (search across two sensor types), and AGP means accelerometer, gyroscope, and proximity
sensor (search across three sensor types). In (b) we represent the case with the maximum wall-time taken
by the brute force to return the result for each sensor type over all experiments.

GA-based tool against the brute-force procedures. In this case, we do not stop the tools perform-
ing the search and give them enough time to converge. The GA-based tool demonstrates results
commensurable to the brute-force technique. However, the brute force performs slightly better
as it directly iterates through each sensor combination and finally outputs the best result. More
interesting is to verify how fast the GA-based tool performs against the brute-force one.

In Figure 2(b), we compare the elapsed wall-time taken by each technique. The wall-time values
are rounded up for the representation convenience. In this case, we decided to limit the time for
the solution output, as security in IoT applications is a dynamic characteristic that changes very
rapidly, which was previously demonstrated in some IoT malware spread studies [2, 28]. As shown
in Reference [28], malware can spread at a rate of 0.75 devices per second or even faster. Taking this
into account, in most experiments we pick 500 seconds as a time limit in our practical evaluation,
which is a realistic limit given the rates of contemporary malware infections spread. As can be seen
from the comparison, the GA-based technique requires sufficiently less time to output the result
with a nearly similar performance for all sensor types. Notably, the GA-based approach finishes
execution well within the 500 seconds time limit in every case. At the same time, the brute-force
approach comes very close to the threshold in case of sensor selection from two categories (AG,
A: accelerometer, G: gyroscope). Moreover, in the case of selection from three categories (AGP,
P: proximity sensor) the brute-force algorithm runs well over the imposed limit of 500 seconds,
taking a total of 3,651 seconds to finish executing.

As Figure 2 demonstrates, there exists a tradeoff between finding the best possible DQS score
and executing the search in a reasonable time. The benefit of our GA-based tool is that, while the
DQS score obtained by it might be marginally lower, the execution time is substantially shorter
when compared to the brute-force search. We note that in applications where the pure DQS score
is of utmost importance and the execution time is not important, our GA-based tool might be
irrelevant as it does not always achieve the best overall performance given unlimited execution
time. However, in situations where both the DQS values and the execution time are important, our
heuristic approach stands superior.

In Table 4, we present a different example of the calculated metrics and the overall DQS value for
three sensor types combinations. As one can see from this example, fusing multi-modal data from
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Table 4. Results for Sensors DQS Evaluation

Sensor Type TSA SL SPC | SPS | DQS
Accelerometer (A) 84.918 | 0.9831 9.304 3 22.2521
Accelerometer (A) , Gyroscope (G) 82.9613 | 0.9831 | 52.1095 | 4 | 21.9909
Accelerometer (A) , Gyroscope (G), Proximity (P) | 85.9504 | 0.9830 | 47.9222 | 4 | 22.7385

Table 5. Instrument Selection Framework Integration Aspects, Methods, and Tools

Multi-modal and
multi-platform
data fusion

Our contributions

Our prototypes and
products

Metrics integration

Data Quality and Security
Evaluation calculus

Instrument Quality
Assessment Android
OS application;
Instrument Platform
Security Evaluation

Android OS
application
Data fusion and CAbased i Instrument Selector
. - t t .
multi-platform anec s Twmen Android OS
. . selection technique R
integration application
Autonomous instrument
Knowledge utilization ‘ selection tf)ols Collected knowledge
implementation on base

the collected database

various platforms may influence the overall DQS value. Low deviations in the DQS value across
various sensor combinations relate to equal weights we employ in Equation (8) for our calculations.
However, more sensitivity can be added into the DQS calculus by adjusting the coefficients in
Equation (8).

6 Prototypes Implementation

To facilitate the usability of our design in practice, we develop software tools integrated into multi-
ple Android applications, publicly available in the Google Play store. In addition, we make available
our knowledge base on measurement devices and instrumentation platform characteristics, which
can be employed by our applications as well as beneficially utilized by the community for further
research. In Table 5, we summarize various integration aspects, methods and tools, and describe
how our developed methods and tools facilitate the instrument selection and how they were real-
ized in practice. Below, we list and provide an overview of the developed and publicly available
products and prototypes mentioned in Table 5 in more detail.

6.1 Instrumentation Platform Security Evaluation Tool

The developed application is a tool for assessing the security level of instrumentation platforms,
such as smartphones and tablets, that are used for collecting and processing data. The application
computes a security score for each device based on a set of criteria that reflects the potential risks
and vulnerabilities of the platform. The security score is calculated by integrating the following
platform parameters with the quantitative definitions detailed in Appendix A.1:
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— Screen lock activation status: This parameter indicates whether the device has a screen lock
mechanism enabled, such as a password, a PIN, a pattern, a fingerprint, or face recognition.
A screen lock can prevent unauthorized access to the device and its data in case of loss or
theft.

— OS version: This parameter reflects the operating system version of the device, which deter-
mines the availability of security patches and updates. A newer OS version usually means
a more secure device, as it may fix some known bugs and exploits. In addition, it has less
known vulnerabilities.

— Applications installed from unverified app sources: This parameter shows whether the device
has any applications that are not downloaded from the official app store, such as Google
Play. Unverified app sources may contain malicious or compromised applications that can
harm the device or its data.

— Presence of the potentially harmful software: This parameter detects whether the device has
any software that is classified as potentially harmful by Google’s SafetyNet service [38].
Potentially harmful software includes malware, spyware, ransomware, phishing apps, and
other types of unwanted or harmful applications.

— Enabled developer’s menu: This parameter checks whether the device has the developer’s
menu enabled, which is a hidden menu that provides access to some advanced settings and
features. Enabling the developer’s menu may expose the device to some security risks, such
as allowing USB debugging, installing apps from unknown sources, or modifying system
settings.

— Android OS basic integrity test: This parameter verifies whether the device meets a basic
level of integrity, which means that it has not been tampered with or modified in a way
that compromises its security. The basic integrity test is performed by Google’s SafetyNet
service [1, 38] and includes various parameters of the device, such as the bootloader state
(locked or unlocked) and root access. A locked bootloader prevents unauthorized modifica-
tions to the device’s firmware, while root access grants full control over the device’s system
and data.

— Android OS compatibility test: This parameter confirms whether the device is compatible
with the Android OS, which means that it conforms to the Android compatibility definition
document. The compatibility test is also performed by Google’s SafetyNet service [1, 38] and
has stricter rules than the basic integrity test. A compatible device ensures that the device’s
software and hardware work properly with the Android OS and its applications. SafetyNet
is a part of the Android OS and does not require downloading additional libraries.

The prototype of the application is publicly available and can be downloaded from Google Play
[41]. The application can be used by researchers, developers, and users who want to evaluate the
security of their instrumentation platforms and compare them with other devices. The applica-
tion can also provide suggestions and recommendations for improving the security score of the
device.

6.2 Instrument Quality Assessment Tool

This tool evaluates various instruments embedded in mobile platforms like tablets, wearable de-
vices, and smartphones. The quality evaluation tool checks which instruments are embedded in
the given platform, gathers further information about the instrument’s quality from our support-
ing database [39], and then rates each instrument as “good,” “bad,” or “average.” In addition, this
application may be used to educate users about instruments available in their mobile devices, their
possible use, and their limitations. The developed tool is publicly available in Google Play [42].
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6.3 Instrument Selector Tool

We release this tool as an Android OS application, which allows selecting instruments and the
mobile platforms they are embedded in to satisfy the given DQS specifications. The application
employs the developed GA-based instrument selection techniques to find the best combination
of instruments for data fusion. To calculate the overall DQS value, we integrate data accuracy,
platform security, and other metrics. To improve the application’s usability and its adaptation to
various user requirements, we allow users to manually select and exclude metrics to be employed
in the instrument’s selection. The application of the GA-based technique allows producing results
in real time. Due to user’s security and privacy considerations, the public version of the application
employs pre-uploaded instrument devices and platforms characteristics dataset [39] produced in
References [22, 25]. However, the data for instrument selection can be provided by the user based
on their mobile device instrument accuracy and security characteristics. The application is publicly
available in Google Play [40].

6.4 Knowledge Base on Sensor Devices and Platforms Quality Characteristics

In References [22, 25], we described how we collected knowledge on the characteristics of
thousands of mobile instrument-incorporating devices. We obtained their technical character-
istics alongside with evaluating their DQS metrics. The database includes various instrument-
incorporating devices’ technical characteristics, such as measurements type, dimensions, resolu-
tion, camera, instrument performance, hardware characteristics, and so on. At present, our data-
base contains the characteristics of 9,443 instrument-embedded platforms, such as mobile devices,
tablets, wearable devices, and so on. The knowledge base contains 58 various attributes for the om-
nipresent instrument-incorporating devices manufactured by over 114 brands. There are 19 types
of sensor devices presented in the database currently [39], such as a barometer, pedometer, gyro-
scope, accelerometer, and others. In our knowledge base, the data representation has the following
structure.

6.4.1  Generic Information on the Instrument-incorporating Devices. contains data on the manu-
factured devices’ technical characteristics. The device list includes major well-known manufactur-
ers that allow their devices to run Android OS, such as Samsung, OnePlus, Xiaomi, Motorola, and
so on. Technical characteristics might include device’s form-factor, dimensions, camera character-
istics, and so on.

6.4.2 Information on Instrument Characteristics. This represents data on the available instru-
ments and their association with the device they are incorporated in. Depending on the instrument
type, the characteristics might include delay (minimal and maximal), resolution, range, power con-
sumption, and others.

6.4.3 Information on Instrument Platform Security. This represents data on instrument-
incorporating device security, including the screen lock activation status, Android OS basic in-
tegrity test results, number of potentially harmful applications, the status of installing the applica-
tions from unknown sources, and others.

7 Conclusion

In this article, we developed and presented the unified intelligent DQS-based instrumentation se-
lection framework, which integrates methods and tools to automatically select instruments that
best satisfy the user’s specifications. The framework supports integration on multiple levels: from
fusing multi-modality data to incorporating diverse metrics for DQS evaluation. The developed
solutions allow instrumentation designers and users to integrate multi-modal data obtained from
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heterogeneous platforms to achieve the required DQS level. The integral DQS indicator application
as an optimization goal enhanced the conventional sensor-originated DQS evaluation by incorpo-
rating security metrics into it. This, in contrast to using accuracy oriented metrics only, allowed to
consider security characteristics too in configuring the best instrumentation. The empirical eval-
uation of the developed integrated DQS calculus and GA-based intelligent selection tools demon-
strated the advantage of the proposed solutions against conventional techniques in instrumenta-
tion design. Our software and data prototypes and products are available for community use. Their
application will facilitate the instrumentation design automation.

A  Appendix

The sensor data evaluation alone does not provide sufficient information to identify data integrity
violations. Thus, the company decides to include a device security evaluation in conventional DQ
estimation procedures. In this case, the application that gathers sensor data also acquires informa-
tion from the framework’s module, which is responsible for the device security evaluation.

A smartphone may provide the raw data from sensors such as an accelerometer, a gyroscope,
a GPS, a magnetometer, a gravity sensor, an illumination sensor, a proximity sensor, and so on.
Each “sensor” entity has technical characteristics of the sensor hardware that participate in DQ
evaluation. In this use case, two types of calculus implementation were used: based on expert
system and based on a neural network that approximates the expert system input-output surface.

We developed an expert system module for a sensor correctness evaluation that takes as inputs
Sensor accuracy, noise, consistency, and time resolution. Scaling these parameters between “0” and
“100” allows us to use developed calculus for various types of sensors.

Here we focus on platforms “A” and “C”, considered in Table 2. As stated in Table 2, both plat-
forms “A” and “C” have excellent device security; both devices have the following characteristics:

— Application security: no suspicious applications, no unknown source applications, and rela-
tively strict permission controls.

— Device feature security: Android OS Oreo (API 26), security patch installed two months ago,
and running on Samsung Galaxy S9, which was released on June 1st, 2018, about five months
ago (on the moment of table generation).

— Sensor security: bootloader is locked, root access is disabled, developer menu is disabled, and
has a pin code locking mechanism.

— Cloud security: the device evaluation history has an upward trend.

Naturally, both platform “A” and platform “C” achieve a high score of 10 on device security
evaluation. We now have a secure environment that can foster the production of high-quality
data. Since both platforms “A” and “C” have highly secure devices, does that mean the data quality
is high for both devices? Looking back at the lower portion of Table 2, a clear distinction in the
accuracy of the sensors between the two platforms stands out.

Platform “A” has a relatively good accuracy of 90%. After we combined platform “A” device
security evaluation, “10,” and the accuracy, “90%,” we calculated the overall DQS score of “9.76/10.

However, platform “C” device sensors performed poorly with a bad accuracy of 42.03%. Consid-
ering device security alone may lead the researchers to overlook important details that could tam-
per with the data quality. The integration of both security and accuracy scores results in medium
overall DQS score of “5.36/10.”

A.1 Initial Security Metrics Acquisition

We have developed an Android OS library and a specialized application based on this library that
retrieves security and privacy-related parameters, which are used as inputs to the expert system.

ACM J. Data Inform. Quality, Vol. 16, No. 3, Article 15. Publication date: October 2024.



15:20 S. Chuprov et al.
Table 6. System’s Parameters That Are Gathered for the Initial Security Evaluation
Metric Symbol Values
Screen lock Msp 1 - Pattern, PIN or password; 0 - otherwise
Android OS version My 2 - The latest version, 1 - previous version; 0 - other-
wise
Unknown sources Mys 1 - Unknown sources disabled; 0 - otherwise
Potentially harmful Mpy 0 - Installed at least one potentially harmful applica-
applications tion; 1 - otherwise
Developer’s menu Mpo 1 - Developer option menu disabled; 0 - otherwise
Basic integrity test Mp; 1 - System passed basic integrity test; 0 - otherwise
Android compatibility Mecr 1 - System passed Android compatibility test; 0 - oth-
test erwise

The developed library provides an API that can be used by other researchers and software develop-
ers and is available at the Google Play Store. The developed software provides recommendations
on how to improve the smartphone security level and gives an explanation of each parameter to a
user. In addition, it allows opening a “simulation” screen where users can experiment with these
parameters and see how they influence overall security. Table 6 provides the library’s APL

Table 7 presents equations of metrics presented in Table 2.

Table 7. Data Security Metric Formulas

Metric and its description

Formula

OS version score

0 if CurVer > VerThreshold
MaxVerScore—

VerScore = — MaxVer — CurVer
if CurVer < VerThreshold
0 if CurVer > VerThreshold
Security patch score _ | MaxPatchScore—
PatchScore = — MaxVer — CurVer
if CurVer < VerThreshold
0 if CurVer > VerThreshold
. MaxVerScore—
Device model score ModelScore =

— MaxVer — CurVer
if CurVer < VerThreshold

Overall firmware score

FirmwareSecurity = VerScore +

+ PatchScore + ModelScore

Continued on next page
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Table 7 — Continued from previous page

Metric and its description Formula
App unknown sources score.
NumOfUnkn—number of all 0 if UnknSrc is ON
devices in an organization that | ypknSreScore = {1 — P(UnknSrc)
allows unknown application if UnknSrc is OFF
sources
P(UnknSrc) = _NumOfUnkn_
NumO fAllUsers

0 if Number > Threshold
MaxScore—

— (Num — Threshold)
if Number < Threshold

Black listed app score BlkLstScore =

Dangerous permission

utilization score 0 if Number > Threshold
PDans MaxScore — (Number—
anscore = — Threshold)

if Number < Threshold

AppSecScore = UnknSrcScore A BlkLstScore )

Application security score
A PDanScore )\ PermScore

{\ is metrics integration through an expert system.

A.2 Descriptive Statistics of Sensor Characteristics

Here we provide some descriptive statistics of the sensors and their features used in the practical
evaluation of our GA. Table 8 provides descriptive statistics for the accelerometer sensor type
based on the data accumulated in our developed knowledge base of sensors, while Tables 9 and 10
provide descriptive statistics for the gyroscope and proximity sensor type, respectively.

Table 8. Descriptive Stats for Accelerometer Sensor Type

Stat | Sensitivity | Non-linearity | Noise Density
Min 16 0.10 75
Max 17039 2.00 800
Mean 6033.91 0.61 308.08
SD 7434.01 0.39 183.23
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Table 9. Descriptive Stats for Gyroscope Sensor Type
e Noise Cross-axis | Non
Stat | Sensitivity . e . .
Density | sensitivity | linearity
Min 33.8 0.0038 1.0 0.10
Max 131.2 0.030 2.0 0.20
Mean 114.55 0.0117 1.66 0.142
SD 24.62 0.008345 0.32025 0.036
Table 10. Descriptive Stats for Proximity Sensor Type
Stat | Resolution | Range | Absolute Response
Min 8.00 50.00 100.00
Max 20.00 100.00 165.00
Mean 12.91 93.75 131.42
SD 3.43 11.023 17.54
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