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KISS: Knowledge Integration System Service for
ML End Attacks Detection and Classification

Sergei Chuprov, Leon Reznik, and Raman Zatsarenko

Abstract—Machine Learning (ML) systems are integrated with
other parts of modern cyberinfrastructure (CI), which forms the
novel ML with Integrated Network (MLIN) structure. Various
security tools are already employed in CI to detect malicious
attacks. However, their operation is limited to a certain CI
part or MLIN component without considering their integration
and the ML end performance as the major indicator. We
design and implement Knowledge Integration System Service
(KISS) that introduces a novel approach to detect and classify
attacks into adversarial attacks against ML end system (A-
Attacks), and against base MLIN infrastructure (B-Attacks).
Unlike traditional security mechanisms, KISS examines how
attacks on individual MLIN components impact the overall ML
end system performance, and extracts and integrates knowledge
from each MLIN CI component to better distinguish between
the attack types. As our major contributions, we (1) investigate
the effects of A- and B-Attacks on ML systems, actively used
in industry. We (2) develop the KISS prototype and verify it
in practice. We demonstrate how KISS can be integrated into
already established MLIN CI and combined with the traditional
security tools. Our experiments verify that KISS improves attack
detection and their initial classification between A- and B-Attacks
in MLIN operational setups.

Index Terms—Machine learning, Services integration frame-
work, Adversarial attacks, Data quality

I. INTRODUCTION

OVER the last decades, Machine Learning (ML) trained
systems and services have become a critical part of the

modern cyberinfrastructure (CI), building up a novel paradigm,
which we introduced and formalized in [14] as ML with
Integrated Network (MLIN) systems. This technological ad-
vancement was almost immediately followed up by generating
new attacks, which we call adversarial or A-Attacks, against
ML systems, that significantly expanded an old arsenal of
attacks against data generation and communication systems
and networks, which we call in this paper base infrastructure
attacks or B-Attacks. Both types typically result in Data
Quality (DQ) degradation of data fed into ML systems and
consequently in their performance decrease. While multiple
methods and tools for A-Attacks detection have been devel-
oped [11], [17], [41] and added to the old tools arsenal, they
are not properly integrated together, even at the structural level.
These methods typically concentrate on a particular factor
affecting the performance (e.g., a specific aspect of DQ or
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ML model) and consider only a separate CI component (e.g.,
either sensors vs. communication channels and networks vs.
ML-trained classifiers as the end systems). Such tools fail in
many cases to detect and reliably classify malicious attacks
against MLIN components and MLIN CI resulting in ML end
system performance deterioration [30].

In contrast to the fore mentioned approaches, we con-
sider attack detection in MLIN from the system’s integration
perspective based on the knowledge utilization. We propose
to extract, accumulate, and employ the knowledge on the
MLIN components and attacks against them to design the
Knowledge Integration System Service (KISS) that facilitates
detection and classification of attacks against MLIN systems
that eventually result in the ML end performance degradation.
We propose a generic design approach that collects knowledge
from all available intrusion detection, system and network
monitoring, and security evaluation systems and tools. The
integration idea means that the proposed KISS is not intended
to replace the existing attack detection mechanisms and tools
but to integrate them. In our implementation, we develop
a KISS prototype that executes the attack classification at
the high level, differentiating between A- and B-Attacks. We
demonstrate how KISS can be merged with the existing tools,
such as SNORT. We illustrate the practical ways of the knowl-
edge extraction, accumulation and application not only for
attack classification but also for producing recommendations
on the defense against the detected attacks.

Being a knowledge integration system, KISS (see sec. IV
for its generic design description) requires knowledge on how
various attacks against MLIN components affect ML end per-
formance for a specific use case. To derive this knowledge, we
conduct an empirical study (see sec. II) that investigated how
various conditions, particularly malicious A- and B-Attacks,
affect DQ on different stages of the data life-cycle and various
MLIN components. Critically, we analyze (see sec. III) the
combined effects of these attacks on the overall performance
of the ML end system. Another part of the paper describes the
KISS prototype design, implementation and application in case
studies that integrated ML system performance evaluations and
intrusion detection tools. In our use cases, we integrate KISS
with the existing industrial security solutions, such as SNORT,
develop and verify a prototype – see Figure 1. In sec. V,
we demonstrate a practical case of KISS integration into a
real MLIN system operation with the case analysis in sec.
VI. The second use case described in sec. VII demonstrates
KISS knowledge integration with industrial knowledge and
databases.
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Fig. 1. MLIN composition and operation with, and interrelations between its components. The figure represents the data life-cycle in MLIN; the types of
knowledge derived and integrated by KISS; and the types of malicious attacks detected and mitigated by KISS based on the knowledge integration, and MLIN
components vulnerable to these attacks

II. INVESTIGATING ATTACKS IMPACT ON ML END
SYSTEMS

We examine two major attack types: A(dversarial)-Attacks,
which directly manipulate data to disrupt ML systems, and
B(ase CI)-Attacks, which target base CI infrastructure, im-
pacting ML performance. We analyze these two attack types in
video and image object detection using cloud ML-as-a-service
and open-source models. Table I summarizes our investigation,
detailed in subsequent subsections.

A. Employed ML Models

In our study, as an ML end system we consider image
recognition systems, both open-source (white box) and com-
mercial (black box) that provide As-A-Service (AAS) access
to their features, such as AWS Rekognition1 and Google
Vision AI2, with no information about their models shared.
We employ Faster-RCNN [29] and SSD [22] architectures
to configure the parameters for the applied image distortion
methods. The effects of A-Attacks are evaluated on AWS
Rekognition and Google Vision AI black box systems. We
also evaluate the effect of image examples corrupted by B-
Attacks on YOLO [28], being the example of one-stage image
detection architecture.

B. Employed Image and Video Datasets

1) A-Attack Scenario: To study ML object detector perfor-
mance under adversarial attacks, we utilize the “Traffic Sign”
and “Stop Sign” image subsets from the Open Images V6
dataset [9], dividing them into a 20-image set for preliminary
black-box attack tuning and a 101-image set for precise
evaluation of effective adversarial techniques, generating ad-
versarial images as described in sec. II-C. Additionally, to

1https://aws.amazon.com/rekognition/
2https://cloud.google.com/vision

(a) (b) (c) (d)

Fig. 2. Examples of images distorted by different packet loss and buffer
overflow during their network communication: (a) – original stop sign image;
(b) – stop sign image transmitted with buffer 128B and 5% packet loss; (c) –
stop sign image transmitted with buffer 256B and 5% packet loss; (d) – stop
sign image transmitted with buffer 512B and 20% packet loss

assess video-based attacks, we employ AWS Rekognition on
25 handpicked 8-10 second videos from the Berkeley Deep
Drive (BDD110K) Dataset, focusing on “Traffic Lights” and
“Road Sign” labels, which initially yielded confidence scores
above 90% in selected original videos.

2) B-Attack Scenario: In this case, we also utilize the
same images from the employed Open Images V6 dataset.
We utilize the original images from the employed subset
to train our models, and a separate set of testing images
with various corruptions caused by network packet loss due
to B-Attacks. For the images with various corruptions, we
employ the data produced in [14], which includes “Traffic
Sign” and “Stop Sign” images corrupted by network packet
loss while transmitting them over a real wireless network
employed using POWDER testbed [10]. Some examples of
the employed images can be seen in Figure 2. As B-Attacks
can lead to pixel distortions and color manipulations in the
images reconstructed on the receiver [14], we also produced
images with color adjustments: grayscaled images and images
with increased contrast.

C. Investigated Attacks

1) A-Attacks: A-Attacks introduce subtle, imperceptible
perturbations to fool ML object detectors [2], using techniques
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TABLE I
SUMMARY OF INVESTIGATIONS OF A- & B-ATTACK IMPACT ON ML END SYSTEMS

Study Attack Type Attacks Data
Modality Dataset Models Evaluation Metrics

Sec. III A-Attacks

LowKey [13], TI [16],
Masked Adversarial Images

[27], Admix [37],
Momentum [15]

Images Open Images V6
(121 images) [9]

AWS Rekognition,
Google Vision AI

Percentage of images
from the whole set in

which the target pattern
was detected; Average

confidence score

Random Noise Videos
Berkeley Deep
Drive 110K (25

videos)
AWS Rekognition

Confidence score;
Calculated percentage of

correct decisions

B-Attacks

Flood attacks [19], black
hole attacks [6], gray hole

attacks [21], sink hole
attacks [25], jamming attacks

[7], man-in-the-middle
(MITM) attacks [4]

Images Open Images V6
(3200 images) YOLO

Average Precision (AP),
mean average precision

(mAP)

Sec. V
and
VI

A, B-Attacks Random Noise, UDP
flooding Videos

Berkeley Deep
Drive 110K (34

videos)
YOLO

Confidence score ratio;
Detection ratio; Weighted

confidence score

Sec. VII A, B-Attacks Random Noise, UDP
flooding Images

Open Images V6
[9], DAmageNet

[12] (663
images)

YOLO Confidence Score

like Box-Constrained L-BFGS [36], FGSM [18], Carlini &
Wagner Attacks [11], Deepfool [23], and JSMA [39]. We
investigate the impact of the LowKey ensemble attack [13],
targeting AWS Rekognition and Google Vision AI, with pa-
rameters tuned against YOLO, Faster-RCNN, and SSD [22],
enhanced with Gaussian blur [40], Translation Invariance (TI)
[16], Masked Adversarial Images [27], Admix [37], Momen-
tum [15], and random noise injection. For random noise
addition, noise is injected into input data using predetermined
levels. Images are altered with intensities of 100 and 200
using the Pillow library, while videos are attacked by randomly
altering 2–15% of pixel colors to white. We limit the maximum
noise intensity introduced into the videos to 15% as with
higher percentages AWS Rekognition yields confidence levels
under 50%, rendering it ineffective for object recognition
tasks. Defense techniques employed to mitigate A-Attacks
often include anomaly detection [8], [26], gradient-based de-
tection [32], and ensemble detection [1]. However, these often
introduce computational overhead [33], [34], lack generaliza-
tion [20], and produce false positives [35]. Retrofitting these
techniques can disrupt MLIN operation and require ongoing
maintenance. In contrast, our work proposes a complementary
KISS system for integration with existing security, network,
and ML tools.

2) B-Attacks: Malicious attacks against MLIN base CI may
affect the quality of the data communicated in MLIN. Many
Denial of Service (DoS) attacks, e.g. flood attacks [19]; black
hole attacks [6]; grey hole attacks [21]; sink hole attacks [25];
jamming attacks [7]; and man-in-the-middle (MITM) attacks
[4] may result in packet loss if UDP protocol is employed
[31]. As we investigate video and image communication and
streaming, where UDP is frequently employed, packet loss
impact on the performance of end ML systems, such as object
detectors or image classifiers need to get examined. Aqqa et
al. [3] studied such renowned open-source ML architectures as

YOLOv3, Faster-RCNN, SSD512, and RetinaNet, and showed
that a decrease in performance can be expected when dealing
with packet loss if those object detectors were trained on
high-quality data only. Baidya and Levorato [5] showed that
network interference during data communication negatively
influences the performance of intelligent object detectors. In
our experiments, we investigate the case with images and
videos affected by packet loss, that might be caused by DoS
attacks, during their transmission over a network (see sec. II-B)

D. Evaluation Metrics and ML Models Preparation

For A-Attacks against images, we evaluated both AWS
Rekognition and Google Vision AI, using similar metrics but
including bounding box counts for Rekognition, which also
measured classification performance across Stop Sign (SS),
Traffic Sign (TS), and Sign labels. Video attacks were assessed
using AWS Rekognition’s confidence scores and correct deci-
sion percentages. For B-Attacks, we used Average Precision
(AP ) and mean Average Precision (mAP ) to evaluate pre-
trained ML models fine-tuned on the undistorted Open Images
V6 subset, comparing baseline performance on original data
to that on attacked data. The evaluation dataset consisted of
3200 images, with 10% randomly selected as a test set, which
was then augmented with various distortions before being fed
to the model.

III. ANALYSIS OF ATTACKS’ EFFECTS ON ML END
SYSTEMS

A. A-Attacks Scenario

1) Attacks against Images: Using 20 preliminary images,
we evaluated all the adversarial techniques (excluding En-
semble [13]) against AWS Rekognition (Figure 3, Table II).
Rekognition struggled with Stop Sign (SS) detection, identi-
fying only 9/20 original images, but surprisingly, most attacks
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Fig. 3. Samples of the images used in the A-Attacks scenario: (a) – original
image; (b) – noise (100); (c) – noise (200); (d) – masked TI; (e) – admix; (f)
– TI (30 iterations); (g) – TI (60 iterations); (h) – ensemble (6 iterations) and
high LR; (i) – ensemble (50 iterations) and momentum; (j) – ensemble (100
iterations)

TABLE II
EVALUATION OF VARIOUS A-ATTACKS AGAINST AWS REKOGNITION

(PRELIMINARY EVALUATION)

Cat.∗ Met.†

A-Attack type

Or.‡ Mask
TI

Ad-
mix

TI
(30

iter.)

TI
(60

iter.)

M-
tum§

SS

Det.∗∗
(%) 45 45 60 60 55 65

Conf. 78.5 79.7 76.5 74.9 77 74.3
Av.

conf.
(all)

35.3 35.8 45.9 45 42.4 48.3

BBs
de-

tected
0 0 0 0 0 0

TS

Det.
(%) 90 80 80 85 80 80

Conf. 95.7 91.3 92.2 87.8 90.3 90
Av.

conf.
(all)

86.1 73.1 73.7 74.6 72.2 72

BBs
de-

tected
24 12 10 8 7 6

Sign

Det.
(%) 95 85 95 95 95 90

Conf. 88.5 89.8 88.3 86.9 87 87.6
Av.

conf.
(all)

84 76.3 83.8 82.5 82.7 78.8

BBs
de-

tected
0 0 0 0 0 0

* Category; † Evaluation Metrics; ‡ Original Images; § Momentum; ** Detection

increased this rate. It performed better on Traffic Sign (TS),
detecting 18/20 original images, but all attacks halved this.
Google Vision AI (Table III) detected all 20 original SS
images, with most attacks reducing detection, and the 100-
iteration Ensemble attack failing to detect any. We then tested
both platforms on the extended set of 101 SS images (Table
IV). Rekognition showed higher robustness against attacks
but lower baseline performance (67.3% detection) compared
to Vision AI. Masked TI had the largest impact, reducing
detection to 20.8% for Vision AI and 31.7% for Rekognition.

TABLE III
EVALUATION OF VARIOUS A-ATTACKS AGAINST GOOGLE VISION AI

(PRELIMINARY EVALUATION)

Met.

A-Attack type

Or. M-
TI∗

Ad-
mix

TI
(30
iter.)

TI
(60
iter.)

M-
tum

Ens.†
(6

iter.)

Ens.
(50
iter.)

Ens.
(100
iter.)

Det.
(%) 100 85 95 100 100 80 90 40 0

Conf. 87.1 88.2 88.8 86.9 86.8 89.8 86.8 91.2 0

Av.
conf.
(all)

87.1 75 84.4 86.9 86.8 71.8 78.1 36.5 0

* Masked TI; † Ensemble attack

TABLE IV
EVALUATION OF VARIOUS A-ATTACKS AGAINST GOOGLE VISION AI AND

AWS REKOGNITION (EXTENDED DATASET)

Class.∗ Met.

A-Attack type

Or.

TI (30
iter.),
Mask,
LR=.01

TI (30
iter.),
LR=
.015

TI (30
iter.),

LR=.02

TI (5
iter.),

LR=.04

GV†

Det.
(%) 99 20.8 31.7 58 57

Conf. 87.8 85.9 87.2 89.1 85.2
Av.

conf.
(all)

86.9 17.9 27.6 52 48.9

Rek.‡

Det.
(%) 67.3 31.7 49.5 71.3 66.3

Conf. 74.7 71.9 79.6 78.4 76
Av.

conf.
(all)

50.3 22.8 39.4 55.9 50.4

* Classifier; † Google Vision AI; ‡ AWS Rekognition

Overall, Rekognition demonstrated greater resilience to adver-
sarial attacks, despite its lower accuracy on original images.

2) A-Attacks against Videos: For A-Attacks against videos,
we evaluate Rekognition’s performance using confidence
scores, presented in Figure 4(a), and the overall rate of
correct decisions, presented in Figure 4(b). Since we employ
BDD110K dataset for this case, we use object labels different
from the cases with images: “Traffic Lights” and “Road Sign”,
which are provided with the data. Our findings reveal sig-
nificant degradation in both evaluated metrics as noise levels
increased across the videos. For “Traffic Lights” detection,
confidence scores exhibit a steady decline with increasing
noise, reaching a minimum of 30.1% at the noise intensity
of 15%. Similarly, the rate of correct detections for “Traffic
Lights” drops rapidly at the noise level of 2% compared to
original videos, followed by a more gradual decline at higher
noise intensities. “Road Sign” correct decisions rate exhibits
in general lower performance than “Traffic Lights” across all
noise levels. While confidence scores also decrease with noise
for “Road Signs”, they remain overall lower compared to
“Traffic Lights”. The correct detection rate for “Road Signs”
also suffers a steeper decline with increasing noise, highlight-
ing a greater sensitivity to noise compared to “Traffic Lights”.
For all the noise intensities, we also record how the video
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Fig. 4. Experimental results obtained by processing the videos, affected by
the noise of various intensity, with AWS Rekognition: (a) – mean values of
maximum, average, and minimal confidence scores provided by Rekognition
across 25 videos affected by various noise intensities; (b) – the correct
decisions ratio demonstrated by Rekognition across 25 videos affected by
various noise intensities; (c) – the average video file size for 25 videos affected
by various noise intensities

file size changes after the pixels were corrupted in the video.
Figure 4(c) indicates that adding noise significantly increases
the average size of video files processed by Rekognition.

B. B-Attacks Scenario

Table V demonstrates the impact of various image corrup-
tion factors on a pre-trained YOLO object detector. Surpris-
ingly, “Noise (100)”, “Noise (200)”, and “Contrast increase”
positively affected Stop Sign (SS) category performance, while
conversely, Traffic Sign (TS) performance and overall mAP
decreased across all corruptions. Notably, “Noise (200)”, “2%
Packet loss”, and “5% Packet loss” resulted in extreme per-
formance drops for the TS category. As expected, packet loss
significantly degraded performance due to image corruption,
rendering images unrecognizable. Interestingly, “Noise (100)”,
“Noise (200)”, “Grayscale”, and “Contrast increase” appeared
to enhance SS detection, potentially by filtering less essential
features and preserving critical ones. However, TS images,
with their greater feature diversity, suffered negative impacts
from all distortions, increasing the diversity of feature distri-
butions in the test images.

C. Discussion of the Attacks’ Effects Evaluation Results

Based on our evaluations, B-Attacks, which assume an
attacker has limited knowledge of the ML system and its
architecture, can cause substantial and unpredictable decreases
in ML application performance. In contrast, A-Attacks require
a high intensity of distortion to significantly degrade perfor-
mance; the image distortions must be strong enough to alter
the image substantially or completely obscure the patterns
of interest for correct detection and classification. Therefore,

TABLE V
IMAGE OBJECT DETECTION PERFORMANCE FOR B-ATTACKS (YOLOV3)

Category Distortion Type AP/mAP

SS

Original 84.46
Noise (100) 99.32
Noise (200) 92.57
Grayscale 99.03

Contrast increase 99.26
2% Packet loss 41.38
5% Packet loss 30.77

TS

Original 70.69
Noise (100) 61.29
Noise (200) 43.55
Grayscale 63.25

Contrast increase 68.04
2% Packet loss 27.78
5% Packet loss 10.14

MLIN CI security and protection are vital for ensuring ML
application performance, as even attacks like network flooding
can significantly affect it. However, conventional security
mechanisms like IDS are unable to associate B-Attacks with
potential ML performance degradation. This leaves MLIN
users and operators challenged to investigate the root cause of
performance degradation, as reasons can vary, hindering their
ability to apply appropriate and effective measures to maintain
performance at the required level.

IV. KISS ARCHITECTURE AND OPERATION

To address the gap between current mechanisms employed
in MLIN, and to facilitate more informed attacks detection
and classification in cutting-edge MLIN systems, we propose
KISS: the service that integrates knowledge extracted from
MLIN components. KISS allows to: (1) extract knowledge on
interrelations between MLIN components, effects of known
attacks, and changes in ML end performance; and (2) to
accumulate and integrate this knowledge to better detect and
classify malicious attacks into A-Attacks targeted against ML
end system, and B-Attacks targeted against MLIN CI; (3)
use the results of the attack classification to better inform
recommendations on defense measures to prevent or mitigate
the degradation in ML end performance. The aforementioned
points facilitate meeting user and application requirements
towards the ML end system performance. KISS integrates
knowledge available in MLIN from three key elements:

MLIN components: this includes understanding the func-
tionalities and vulnerabilities of each component and their
influence on quality of the processed data and ML end
application performance.

Existing security mechanisms: KISS complements exist-
ing security tools, incorporated into the current MLIN CI, by
considering their reports and outputs.

ML end system performance: KISS employs the existing
ML end performance evaluation methods and tools for the
performance deterioration.

KISS, designed to complement existing security, enhances
attack detection and classification without significant resource
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overhead or MLIN redesign. Figure 1 demonstrates the inte-
gration of knowledge by KISS to identify attacks and their
impact on MLIN components, addressing data lifecycle vul-
nerabilities.

A. Knowledge Integration to Detect Malicious Attacks against
MLIN

Our approach uses ML end system performance as a core
monitoring indicator for KISS. Considering MLIN component
interrelations and leveraging existing security mechanisms typ-
ically employed in practice, such as IDS, Intrusion Prevention
System (IPS), and Security Orchestration, Automation, and
Response (SOAR), KISS integrates operational knowledge to
provide context on potential attack types. This contextual in-
formation aids in recommending actions to prevent or mitigate
ML performance degradation.

1) Knowledge on MLIN CI from Existing Tools: Data trans-
mitted to the ML system via network facilities can experience
QoS degradation, potentially from B-Attacks, leading to DQ
deterioration. By integrating network QoS data with security
tool feedback (IDS/IPS), KISS enables informed reasoning
about DQ degradation. For instance, simultaneous network
QoS drops, network attack alerts, and ML performance degra-
dation are classified as a B-Attack based on integrated MLIN
component knowledge.

2) Knowledge on ML End Application Performance: After
receiving and processing the data, ML system performance is
evaluated against specifications. Performance drops, without
network or security anomalies, indicate potential A-Attacks.
KISS can integrate with dedicated A-Attack detection tools
to scan input data and classify performance degradation due
to these attacks. In practice, detailed component knowledge
allows for more accurate mitigation. For instance, if KISS
detects a network QoS drop during data transmission, it can
analyze QoS metrics and network characteristics to distinguish
between technological and adversarial origins. Based on this
analysis and knowledge integration, KISS can recommend
specific actions to prevent or mitigate ML system performance
degradation, such as enforcing stricter security requirements,
changing network transport protocols, or re-balancing traffic
loads.

V. USE CASE 1: KISS INTEGRATION WITH MLIN
COMPONENTS

A. Technical Setup

In this use case, KISS is employed in a corporative network
segment used for transmitting media files from the client to
the server. To setup the MLIN architecture, we employ three
machines: client, server, and monitor, connected to a CISCO
Catalyst 2960G (8TC-L) switch via Ethernet. We also have the
intruder machine connected to the switch, which we use for
modeling of B-Attacks, in particular network flooding attack
mentioned in sec. II-C2. The client and monitor machines
are equipped with Intel i5-6500, 16 GiB RAM and running
Ubuntu 22.04 LTS; the server machine has Intel Xeon E5-
1620 v3, 16 GiB RAM, and is also running Ubuntu 22.04
LTS; intruder machine has Intel i5-6500, 8 GiB RAM, and is
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Fig. 5. Use case 1 operational setup: KISS integration with other MLIN
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Fig. 6. Packet structure for client packets (top) and intruder packets (bottom)

running Kali Rolling (kernel version 6.10.9-amd64). In Figure
5, we visualize the operational setup for our use case.

The client machine stores and sends data to the server, while
the monitor machine, connected to the switch, uses SNORT
IDS and tcpdump to inspect all mirrored traffic from the client,
intruder, and server. The server’s network performance, tested
with iperf3, handles approximately 1Gbps of UDP traffic.
To quantify packet loss and ensure correct packet order, we
developed a custom UDP protocol (Figure 6) with 1400-
byte packets, below the default 1500-byte MTU, preventing
fragmentation. This ensured accurate data transmission rate
measurements, video reconstruction, and SNORT inspection,
which avoided false positives caused by fragmented packets.
The packet’s SOURCE field is used to verify packet authen-
ticity.

B. Employed Data and ML Model

We employed the BDD110K dataset used in our experi-
ments in sec. III-A2. From the dataset, we manually selected
34 videos that contain various object, such as cars, traffic signs,
and pedestrians. The videos are encoded in H.264 and have
the length of approximately 10 seconds. All the 34 videos are
first processed to create a single file containing the packets for
all the videos. By doing so, we have better control over the
packet transfer rate required for the experiment for recreating
the data losses scenario due to packet flooding. This packet
file is transmitted using UDP socket from client to the server.
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The server receives the packets and saves them in a single
packet file. This packet file is then processed on the server
and all 34 videos are reconstructed ignoring missing packets
if any.

The server is responsible for receiving the data and pro-
cessing it with the YOLOv8n model pre-trained on COCO
dataset, running in the inference mode. The frames are loaded
from the input video file through the OpenCV functionality
called VideoCapture. In this step, the dimension of the frame
and the total count of the frames are retrieved while making
sure every frame is returned sequentially. It skips if any frame
fails to load. The YOLO model takes each and every frame
independently. When the frame feed in, the model releases the
results through performing inferences that detect objects and
return bounding boxes, class labels, and confidence scores.

C. Attack Model

For A-Attacks targeting the ML system, we consider an
adversary with limited capabilities who has gained access
to client-stored data. This adversary aims to degrade ML
performance while remaining undetected, lacking advanced
knowledge of A-Attacks or the specific ML model used. They
employ random noise addition, a universal attack method
applicable across various data modalities and domains, re-
quiring minimal expertise. Our evaluation, as shown in Table
V, demonstrates that even this simple attack can effectively
degrade ML performance, with the degree of degradation
dependent on the intensity of the introduced noise. For B-
Attacks, we assume an attacker has bypassed initial security
and gained full access to an intruder machine on the corporate
network, but possesses no knowledge of the ML system or
data transmitted. The attacker’s objective is to disrupt network
functionality, affecting business processes, such as delaying
data processing to harm reputation and cause financial losses.
We simulate network flooding attacks of varying intensity
using hping3 to launch UDP packet floods from the intruder
machine to the server. Due to hping3’s limitations, we specify
packet intervals in microseconds, resulting in average attack
rates of 945, 965, and 995 Mbps for video transmissions.

D. Evaluation Metrics

After processing each frame in the video, YOLO returns all
the detected objects, object class, confidence score, and bound-
ing box coordinates for each of the objects. As we have 34
videos that may contain various number of objects and object
classes in the footage, we need to employ high-level metrics to
evaluate the ML end performance across the overall data. We
use three metrics: confidence score ratio (CSR), detection ratio
(DR), and weighted confidence score (WCS). CSR quantifies
the consistency of YOLO’s detection confidence across frames
by comparing the baseline performance with the cases when
malicious attacks present. This metric is expressed in (1) and
calculates the ratio of average confidence scores frame by
frame, comparing the original video to the corrupted version.

CSR =
1
n

∑n
i=1 C

attacked
i

1
n

∑n
i=1 C

original
i

, (1)

where Cattacked
i is the confidence score in the attacked frame i;

Coriginal
i is the confidence score in the original frame i; and n

is the number of confidence score outputs per each detection
in the i’th frame.

DR demonstrates the difference in the number of detected
objects between the original and attacked videos with respect
to how YOLO consistently detects objects as packet loss
changes. A drop in the DR when the attacks are present might
refer to the case when YOLO misses the objects completely
or shows lower detection performance in the corrupted data.
This metric is used to determine if the number of consistent
object detections is affected by the attack tested and flags
frames where their count of detection differs from the baseline
performance. Equation (2) is used to calculate DR.

DR =
Dattacked

i

Doriginal
i

, (2)

where Dattacked
i is the number of detections in the attacked

frame i; Doriginal
i is the number of detections in the original

frame i.
The WCS metric incorporates detection frequency with

the confidence score given by YOLO to provide clear in-
dication regarding the reliability of detection in the case of
variable attack intensity. This metric underscores the frames
that have higher detection frequencies (more object detections
per frame) to point out the ones on which the confidence
level cannot be relied under an attack condition. The weighted
confidence for each frame is calculated according to (3).

WCS =
1
n

∑n
i=1 C

corrupted
i

Doriginal
Dcorrupted, (3)

where Ccorrupted
i is the confidence score in the corrupted frame

i; Doriginal is the average number of detections in the original
frames; Dcorrupted is the average number of detections in the
corrupted frames.

E. Threshold Selection

Threshold selection is a fundamental challenge in any
security application, as it directly impacts detection perfor-
mance. In our work, we determine these thresholds rele-
vant for our use cases, but they can be fine-tuned based
on specific data characteristics and application requirements.
For CSR, DR, and WCS, we determine thresholds through
analyzing experimental results on these metrics across all
34 videos. Specifically, for CSR and DR, ratios below 0.99
and above 1.01 consistently correspond to attack regions, as
they indicate deviations caused by malicious interference in
the transmitted data. These boundaries are established after
analyzing the distribution of CSR and DR values in both
normal and attack scenarios, ensuring they capture attack-
induced variations while minimizing false positives. Similarly,
for WCS, we set the threshold at µi

wcs · 1.1, where µi
wcs

represents the mean WCS value for video i. This choice is
guided by an empirical analysis of WCS fluctuations across
frames, allowing us to effectively detect subtle attack-induced
changes without introducing excessive false alarms.
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F. Experimental Flow

For baseline evaluation, original videos were transmitted
without malicious intervention to assess YOLO model perfor-
mance under normal conditions. To simulate B-Attacks, UDP
flooding attacks with varying intensities (945, 965, 995 Mbps)
were launched against the server during video transmission;
the reconstructed video streams were then processed by the
YOLO model, and network packets were captured by tcpdump
and analyzed by SNORT, with the client’s rate maintained
at 50 Mbps. To recreate A-Attacks, Gaussian noise (with
σ = 1 and µ = 0) was added to the videos, which were
then transmitted without flooding; network packets were again
captured and analyzed by tcpdump and SNORT, but the
client’s packet sending rate was increased to 300 Mbps to
accommodate the larger video size resulting from the added
noise.

It is important to consider the experimental approach of
evaluating B- and A-Attacks detection in our study. In real-
world operational systems, malicious attacks represent rela-
tively infrequent occurrences, with the vast majority of system
operation occurring under normal, non-attacked conditions
[38], [24]. Furthermore, the simultaneous occurrence of dis-
tinct attack types, such as a network flood and adversarial con-
tent manipulation targeting the same data stream at precisely
the same moment, constitutes an improbable event. Even in
such an unlikely scenario, our framework is designed to detect
anomalous behavior and classify it based on the dominant
attack characteristics present. Further in-depth security investi-
gation and forensic analysis can be triggered after the detection
to ascertain the precise nature of the incident, potentially
revealing the confluence of multiple attack vectors. Established
security practices and incident response protocols are typically
based on detecting and classifying anomalies, followed by a
detailed investigation to fully characterize complex security
events [30]. The design of our empirical study validates the
core capability of our framework: the accurate differentiation
between infrastructure-level anomalies (B-Attacks) and adver-
sarial data manipulations (A-Attacks) when these events occur
independently. This provides validation of KISS framework’s
feasibility and its capacity to effectively distinguish between
these attack types in practice.

VI. USE CASE 1: KISS PROTOTYPE VERIFICATION
RESULTS

To evaluate the impact of different attack types and intensi-
ties, our framework classified the considered attacks into two
categories: B-Attacks and A-Attacks. This classification was
determined based on the analysis of our established metrics
and thresholds, and further integrating it with SNORT outputs.
B-Attacks were implemented by introducing packet loss to
induce network congestion and data corruption, while A-
Attacks were implemented by adding noise to the transmitted
video stream to assess its impact. For the evaluated B-Attack
intensities of 945, 965, and 995 Mbps (94.5%, 96.5%, and
99.5% of the communication bandwidth respectively), the
packet loss in the network resulted in 1.6%, 3.28%, and
16.86% respectively. Due to space limitations, we present

detailed metric analysis for video 2 only, with comprehensive
results (data in .csv) and plots for all 34 videos available in
the attached materials3.

Based on the analysis of CSR metric, shown in Figures 7(a),
7(b), and 7(c) for video 2 and consistently observed across
all videos, a clear trend emerged where ML end performance
deteriorates as B-Attack intensity increases. At 1.6% packet
loss, CSR degradation becomes noticeable around frame 180,
fluctuating between 0.8 and 1.0 in non-attacked regions but
dropping significantly in attacked frames. With 3.28% packet
loss, CSR degrades earlier and frequently falls below 0.5, even
within the first 100 frames. Severe degradation is evident at
16.86% packet loss, where CSR remains consistently below
0.2 for almost the entire video. Similarly, DR metric analysis,
depicted in Figures 7(d), 7(e), and 7(f) for video 2 under these
attacks. At 1.6% packet loss, DR remains stable around 1.0
until approximately frame 180 before degradation, while at
higher packet loss intensities, DR shows significant drops and
instability. WCS metric results, shown in Figures 7(g), 7(h),
and 7(i) for video 2 demonstrate drop in ML performance
for the attack regions as well. For 1.6% packet loss, WCS
begins around 0.6 and drops after frame 180. Higher variations
and significant drops in WCS can be observed at 3.28% and
16.86% packet loss intensities.

Complementing the performance metric analysis, SNORT,
employed as an IDS, logged a notable increase in alerts in
the attack regions, as shown in Figure 7(l) (values for 94.5%,
96.5%, and 99.5% avg. attack rate). Specifically, SNORT
flagged approximately 0.1% of packets as malicious in the ab-
sence of attacks, while this percentage increased to 0.3% in the
attack regions. By combining the observed ML performance
degradation with the simultaneous increase in SNORT alerts,
our KISS framework effectively classified these attacks as B-
Attacks, indicative of infrastructure-level attacks targeting the
network.

Figure 7(j) presents the average confidence score per frame
for the original and A-Attacked video, using video 2 as a rep-
resentative example. While the original video’s performance
fluctuates between 0.5 and 0.8, the A-Attacked video exhibits
consistently lower confidence scores, generally ranging from
0.4 to 0.7. CSR comparisons for A-Attacks, depicted in
Figure 7(k), illustrate that for most frames, CSR remains
within 0.8 to 1.0. This suggests that while noise generally
impacts ML end performance, its effect, as captured by our
metrics, is distinct from the severe disruptions characterized
by B-Attacks. However, occasional significant performance
drops are noticeable after frame 400 and towards the end of
the video. Notably, SNORT logs for A-Attacks, as shown in
Figure 7(l) (value for 0% avg. attacks rate), revealed signifi-
cantly lower alert levels, around 0.04% of packets flagged as
malicious. This alert rate is even lower than that observed
for original, non-attacked videos, confirming that SNORT,
operating with community rules focused on network traffic
inspection, is not able to detect A-Attacks at all if used as
a standalone security measure. This discrepancy in SNORT

3https://drive.google.com/drive/folders/1uJFGmwmjyof KyQd -UzW9tQ5
QYHo20?usp=drive link
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Fig. 7. Experimental results for one of the tested videos (video 2): (a) – CSR for 1.6% packet loss; (b) – CSR for 3.28% packet loss; (c) – CSR for 16.86%
packet loss; (d) – DR for 1.6% packet loss; (e) – DR for 3.28% packet loss; (f) – DR for 16.86% packet loss; (g) – WCS for 1.6% packet loss; (h) – WCS
for 3.28% packet loss; (i) – WCS for 16.86% packet loss; (j) – average confidence score per frame for the original video and video affected by A-Attack; (k)
– CSR for the A-Attack; (l) – percentage of number of alerts issued by SNORT in relation to the average flooding attack rate. The dotted lines in (a) – (i),
and (k) represent the threshold values, described in sec. V-D, for making a decision if the frame is affected by an attack

TABLE VI
SUMMARY OF EVALUATION METRICS ACROSS ALL TRANSMITTED VIDEOS

Attack Num. of Frames Corrupted Frames Num. of Detections Confidence Score WCS DR
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Baseline (No Attack) 324.03 77.23 0 0 3218.84 1538.23 0.55 0.05 5.36 1.46 9.75 2.71
B-Attack (1.60%) 312.00 91.12 12.03 44.26 2617.84 1562.13 0.52 0.05 4.34 1.65 8.26 3.00
B-Attack (3.28%) 313.03 75.41 10.00 7.43 1280.73 980.08 0.48 0.05 2.04 1.51 4.04 2.74
B-Attack (16.86%) 246.09 42.53 77.93 104.55 79.96 119.89 0.37 0.05 0.14 0.23 0.32 0.47
A-Attack 324.57 77.27 0 1.71 750.00 854.43 0.50 0.06 1.07 0.86 2.10 1.72

alert levels, integrated with the observed ML performance
degradation, allowed our framework to classify these attacks
as A-Attacks targeting the ML end system rather than network
infrastructure.

Across all 34 videos, both A- and B-Attacks degraded ML
performance, with higher attack intensity worsening results.
Table VII summarizes the Mean and standard deviation (S.D.)
for key metrics, aggregated for all 34 videos, where values in

green represent the best performance results and values in red
the worst (excluding the baseline). B-Attacks caused highly
dynamic, near-zero performance drops, reflecting the disrup-
tive nature of packet loss. A-Attacks resulted in consistent,
approximately 30% performance degradation, maintaining a
similar trend to the original video. Integrating this metric anal-
ysis with SNORT alert patterns enabled accurate classification
of all attack scenarios into B- and A-Attacks.
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TABLE VII
SUMMARY OF NETWORK METRICS AND ALERTS ISSUED BY SNORT

Attack PL∗ (%) P. Analyzed† Alerts (#) Alerts (%)‡

Baseline (No Attack) 0 157840 2 0.13
A-Attack 0 3151939 13 0.04
B-Attack (935 Mbps) 0.9 3826997 123 0.32
B-Attack (945 Mbps) 1.6 3817936 117 0.31
B-Attack (955 Mbps) 2.7 3826706 111 0.29
B-Attack (965 Mbps) 3.28 3827493 122 0.32
B-Attack (975 Mbps) 5.83 3827497 118 0.31
B-Attack (985 Mbps) 6.35 3826655 107 0.28
B-Attack (995 Mbps) 16.86 3826825 119 0.31

* Packet Loss; † Packets Analized by SNORT; ‡ Alerts % w.r.t. Packets Analized
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Fig. 8. Use case 2 operational setup: knowledge integration in KISS from
existing security database

To assess whether the observed SNORT pattern can be
generalized to a wider range of B-Attack scenarios, we per-
formed additional runs with multiple loads for B-Attacks with
attack intensities ranging from 935 to 995 Mbps. The results
obtained demonstrate that the number (and the corresponding
percentage) of alerts produced by SNORT is much higher than
in baseline and A-Attack cases, which allows the framework
to integrate this knowledge to correctly classify the attack. As
summarized in Table VII, these additional runs consistently
showed a significantly higher number of alerts for B-Attacks
compared to the baseline and A-Attack.

VII. USE CASE 2: INTEGRATION OF KNOWLEDGE WITH
EXISTING SECURITY DATABASES

In the previous section we demonstrated how KISS is
leveraged to integrate the knowledge amongst CI components
by combining the IDS logging information with the ML
end performance. Here we demonstrate how we can utilize
existing security databases to provide a more fine-grained
classification of potential attacks and derive recommendations
on the available defenses. Figure 8 captures our setup for
this use case. We make the code and the description of our
implementation and experiments available for public4.

4https://drive.google.com/drive/folders/1g0wFk6eyCshik5n5ZF4wQMp7iR
rmE45K?usp=drive link
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Fig. 9. Attack detection matrix for the case of KISS integration with MITRE
ATT&CK. KISS was able to achieve accuracy of 85.2% and recall of 100%
in detecting CI attacks

IT industry leaders host large security databases to protect
their infrastructure. Our design targets the integration with
existing security databases. In this case, we employ MITRE
ATT&CK5, which is an open-source knowledge base with
API access that provides vast information on different attack
signatures and can help KISS provide a more fine-grained
classification of attacks, and recommendations on the defense
actions against these attacks. To showcase how KISS can be
combined with an existing security database, we employ a
smaller traffic sign dataset containing 10 A-Attacked images,
15 B-Attacked images. Both attacks are performed in the same
manner as described in sec. V, i.e., we use adversarial noise
for A-Attacks and flooding for B-Attacks. The total size of
the dataset is 663 images. The entire dataset is transmitted
from the client to the server over the network and processed
by YOLO, and the images affected by noise cause a drop in
the confidence scores.

In the image communication process, 26 SNORT secu-
rity alerts were extracted by KISS and matched in MITRE
ATT&CK using API. Seven recommendations on mitigation
actions (overlapping for all 26 records) were returned from
MITRE ATT&CK to KISS based on the attacks detected
and classified. Figure 9 presents a confusion matrix of attack
classification. In a complex scenario where both A-Attacks
and B-Attacks were present, KISS successfully detected 100%
of A-Attacks and achieved an accuracy of 85.2%, recall of
100%, and a relatively low false positive rate of 14.8%.
Listing 1 presents the output example on the recommendation
actions generated by KISS based on the response received
from MITRE ATT&CK after running the experiment. By
integrating the existing security database with KISS, it was
able to provide a more fine-grained classification of attacks,
and to derive the actions aimed at defending or mitigating the
attacks consequences. For instance, for the detected flooding
attacks, KISS provided a fine-grained description of each
attack based on the information from MITRE ATT&CK and
matched attack records.
Listing 1. Snapshot of attack detection and recommended mitigations
provided by KISS. 7 recommendations on mitigation actions (overlapping
for 26 records) were returned from MITRE ATT&CK.
Match found: Original Type: Possible ICMP Echo Request Scan, Dictionary Key: ICMP

ECHO REQUEST SCAN, Pattern ID: attack-pattern--67873dde-d728-45ae-83da-
b12d5e73ca3b

5https://attack.mitre.org/
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Match found: Original Type: Possible TCP SYN Scan, Dictionary Key: TCP SYN SCAN,
Pattern ID: attack-pattern--e3a12395-188d-4851-9a16-ea8e1d4b78b8

Match found: Original Type: Possible UDP Scan, Dictionary Key: UDP SCAN, Pattern ID
: attack-pattern--e3a12395-188d-4851-9a16-ea8e1d4b78b8

Mitigations mitigating attack-pattern--67873dde-d728-45ae-83da-b12d5e73ca3b (1):

* Pre-compromise (M1056)

Mitigations mitigating attack-pattern--e3a12395-188d-4851-9a16-ea8e1d4b78b8 (3):

* Disable or Remove Feature or Program (M1042)

* Network Intrusion Prevention (M1031)

* Network Segmentation (M1030)

Mitigations mitigating attack-pattern--e3a12395-188d-4851-9a16-ea8e1d4b78b8 (3):

* Disable or Remove Feature or Program (M1042)

* Network Intrusion Prevention (M1031)

* Network Segmentation (M1030)

VIII. KISS LIMITATIONS

The limitations of KISS can be categorized into architectural
and implementation-based aspects. We highlight these aspects
below.

(1) KISS relies on external security mechanisms (e.g.,
IDS/IPS, malware detection), networking components (e.g.,
network QoS monitors), and ML end systems (e.g., ML
models and their performance monitoring tools), making its
effectiveness dependent on the availability and accessibility of
these tools, requiring proper interfaces for seamless data ex-
change. While KISS requires certain computational resources,
it activates only when performance degradation is detected,
minimizing its resource footprint.

(2) The framework currently focuses on image and video
data for object detection, limiting its generalizability. While
the methodology could be extended to other domains, adapta-
tion and validation would be necessary.

(3) Practical implementation challenges include integration
complexity, user training, and adoption costs. Integrating
KISS into existing security and ML pipelines may require
modifications to accommodate various system architectures
and computational constraints. Additionally, user training is
essential for security analysts and ML practitioners to correctly
interpret KISS outputs, which could present adoption barriers.
To address this limitation and make our framework more
accessible, we are sharing it as an open-source solution and
providing instructions on how to run and use it.

(4) The current design of the KISS framework is not explic-
itly engineered to detect and classify scenarios where both A-
and B-Attacks are simultaneously active, targeting the same
data stream at a specific point in time during communication.
While KISS is capable of detecting anomalies under such con-
ditions, its classification accuracy in distinguishing between or
attributing performance degradation to concurrently occurring
attack types may be limited.

(5) Depending on the use case and data, the appropriate
threshold values need to be selected for the metrics integrated
by KISS for the attack classification (e.g., CSR, DR, and
WCS). While in our case thresholds were empirically deter-
mined through the analysis of experimental data across 34
videos, in general case the values are data-dependent and may
require fine-tuning for different datasets, application contexts,
and operational environments.

IX. CONCLUSION

In this paper, we developed and presented KISS – service
to be incorporated into CI of modern MLIN systems and com-
bined with the existing security mechanisms to better detect

and classify malicious attacks. KISS extracts knowledge from
MLIN CI component tools, e.g. ML end system performance
monitors and IDS, as well as from other specialized data
and knowledge bases on particular tools operation in order
to detect attacks leading to ML end performance degradation.
Based on the integrated knowledge, these attacks are classified
into adversarial A-Attacks against ML end systems, and B-
Attacks against CI. KISS is designed to complement existing
security and system monitoring tools in MLIN. Unlike other
mechanisms KISS utilizes ML end system performance as
the major metric for detecting attacks against MLIN and
integrated knowledge to classify them. We verified our design
and demonstrated KISS knowledge and service integration
with existing tools in two use cases: in the first we showed how
the knowledge can be extracted and integrated from MLIN CI
components in-place; in the second we investigated how the
existing security knowledge bases, such as MITRE ATT&CK,
can be integrated with KISS for obtaining recommendations
on the proper defense actions. While the general performance
and correctness of KISS depends on the existing MLIN CI
components in-place, in our study KISS was able to detect
and classify correctly all the attacks tested.
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