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Abstract

The CHAB-I-5 cluster is a pelagic lineage that can comprise a significant proportion of all Roseobacters in surface oceans and has
predicted roles in biogeochemical cycling via heterotrophy, aerobic anoxygenic photosynthesis (AAnP), CO oxidation, DMSP degradation,
and other metabolisms. Though cultures of CHAB-I-5 have been reported, none have been explored and the best-known representative,
strain SB2, was lost from culture after obtaining the genome sequence. We have isolated two new CHAB-I-5 representatives, strains
US3C007 and FZCC0083, and assembled complete, circularized genomes with 98.7% and 92.5% average nucleotide identities with the
SB2 genome. Comparison of these three with 49 other unique CHAB-I-5 metagenome-assembled and single-cell genomes indicated
that the cluster represents a genus with two species, and we identified subtle differences in genomic content between the two species
subclusters. Metagenomic recruitment from over fourteen hundred samples expanded their known global distribution and highlighted
both isolated strains as representative members of the clade. FZCC0083 grew over twice as fast as US3C007 and over a wider range
of temperatures. The axenic culture of US3C007 occurs as pleomorphic cells with most exhibiting a coccobacillus/vibrioid shape. We
propose the name Candidatus Thalassovivens spotae, gen nov., sp. nov. for the type strain US3C007T (= ATCC TSD-433T = NCMA B1607).
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Introduction

The Roseobacter group is one of the most ecologically successful
groups of bacteria found across marine habitats and is often
associated with phytoplankton blooms [1-4]. Members of this
clade exist as free-living, attached, and in symbiont forms [1]
and can make up to 20% of bacteria in coastal regimes [5]. The
most abundant Roseobacters in the open ocean belong to the
Pelagic Roseobacter Cluster (PRC), which are polyphyletic in the
Roseobacter phylogenomic tree, but form a cluster in the den-
drogram inferred from genome content similarity [3, 6, 7]. This
results from multiple Roseobacter lineages that have evolved gene
content that is adaptive for nutrient-poor pelagic waters, such as
carbon monoxide and inorganic sulfur oxidation, use of dimethyl-
sulfoniopropionate (DMSP) via multiple pathways, a reduction of
metal import systems, and a high proportion of ABC transporters,
some of which distinguish them from copiotrophic Roseobacters
[6, 8, 9]. While many Roseobacter species are easily cultured, the
PRC contains multiple clusters without currently isolated repre-
sentatives, including the CHAB-I-5 lineage. Representatives from

the CHAB-I-5 cluster have been cultured on multiple occasions
but lost [7, 10, 11], e.g. strain SB2 was the first [7].

The CHAB-I-5 cluster comprises free-living marine bacteria
distributed from tropical to polar latitudes [7, 12] and is one of the
most abundant types of Roseobacter in global oceans. It is found
in highest abundances near coastal North America and Europe
[12] and constituted up to 20% of microbial clones in the Sargasso
Sea [1, 13]. In a study of Chesapeake Bay, CHAB-I-5 was the only
Roseobacter that did not decrease in abundance along a salinity
gradient and was present in samples across salinities from 13.9-
30.5 [14]. While some other members of the Roseobacter group
typically associate with phytoplankton blooms, this pattern does
not seem to hold for CHAB-I-5 [7]. The abundance and distribution
of CHAB-I-5 in global ocean waters corresponds to a high activity
level in the cluster [1, 7, 12, 14, 15]. Furthermore, CHAB-I-5 phages
are abundant in global waters, particularly in polar and estuarine
systems [10]. This abundance, activity, and widespread phage dis-
tribution indicate this group is essential to global nutrient cycling,
though the mechanisms of these dynamics are still unexplored.

Received: 28 May 2024. Revised: 10 March 2025. Accepted: 15 April 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of the International Society for Microbial Ecology
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Gz0z Aey 1 uo 1senb Aq 628G 1.8/8901B9A/ | /S/3|01B/UNWIWOOSWSI/WO02 dNo dlwapede//:sdily Woll PaPEOjUMO(]


%0A%252013173%252023313%2520a%252013173%0A23313%2520a%0A%2520
mailto:thrash@usc.edu
mailto:thrash@usc.edu

2 | Lanclosetal.

Current predictions of CHAB-I-5 metabolism come from only
four partial genomes [7, 12]. CHAB-I-5 appears to be motile with
metabolic pathways for aerobic anoxygenic photosynthesis, car-
bon monoxide oxidation, inorganic sulfur oxidation, DMSP degra-
dation, phosphonate metabolism, and evidence for thiamin and
biotin auxotrophy similar to other PRC members [7, 9, 12]. Incom-
plete genomes have made it unclear whether CHAB-I-5 can use
nitrate, nitrite, or reduce sulfur [7]. Furthermore, we have no
knowledge of cell volumes, growth rates, or other fundamental
physiological characteristics of this group. No CHAB-I-5 isolate
has been maintained in culture long enough for experimental
analysis except for the recent isolate FZCC0083, which remains
uncharacterized except for use in phage isolations [10]. Thus, our
current knowledge of CHAB-I-5 remains limited.

Here we present a new strain, US3C007, an axenic representa-
tive of the CHAB-I-5 cluster that is readily propagated on artificial
seawater medium and reliably revived from frozen stocks. We
conducted the first physiological characterization of CHAB-I-5,
and the most extensive genomic analysis of the group to date
using new, complete genomes from both US3C007 and FZCC0083
and other publicly available data. We showed the first morphology
of a CHAB-I-5 member and examined the growth dynamics of
both strains across ranges of salinity and temperature. Addition-
ally, we analyzed the ecological distribution of CHAB-I-5 from an
expanded set of global metagenomic samples that span a wide
range of marine and estuarine locations. Together, these data
constitute the most in-depth investigation of CHAB-I-5 thus far
and provide new insights on the genomics and physiology of these
organisms.

Materials and methods

Note that for all software, default settings were used unless
otherwise stated.

US3CO007 isolation

We obtained surface water (2 m) from the San Pedro Ocean
Time series (SPOTs) monthly cruise on 09/16/2020 via CTD cast.
The seawater was transported into the lab and filtered through
a 2.7 pm GF/D filter, stained with 1x Sybr green (Lonza) for
30 minutes in the dark, and cell density was enumerated on a
Guava Easy Cyte SHT flow cytometer (Millipore, Massachusetts,
USA) with settings as described previously [16]. We diluted cells
to a final concentration of 1 cell/ul in 10 ml of sterilized AMS1
artificial seawater medium [17] and inoculated 3 ul of the diluted
cell solution into each well of a 96 x 2.1 ml well PTFE plate
(Radleys, Essex, UK) containing 1.5 ml of AMS1 for a final theo-
retical concentration of 3 cells/well. Plates were incubated in the
dark without shaking for 2.5 weeks and enumerated as described
above. Positive wells (>10* cells/ml) were transferred to Nalgene
Oak Ridge PTFE centrifuge tubes (Thermo Fisher, Massachusetts,
USA) containing MWH1 medium [18] in an attempt to move the
cultures to a more frequently used medium for convenience.
Subsequent transfers of isolates in MWH1 were not successful, so
we transferred the initial cultures in the Oak Ridge tubes contain-
ing MWH1 to acid-washed 125 ml polycarbonate flasks contain-
ing the original isolation medium, AMS1, and growth resumed.
The culture can be maintained in this manner over continual
transfers. Cultures were cryopreserved in both 10% DMSO and
10% glycerol diluted with AMS1, however, we were only able
to reproducibly revive these cultures from the cyrostocks using
glycerol. We grew US3C007 to late-log phase and filtered the cells
onto a 0.2 um polycarbonate filter (Millipore) and extracted its

DNA using a GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich
Co, Darmstadt, Germany). We amplified the DNA and purified the
PCR products as previously reported [19], and sent samples for
Sanger sequencing to Genewiz (Azenta Life Sciences, New Jersey,
USA). We inspected the resulting chromatograms to verify purity
through a lack of multiple peaks for a given base call, assembled a
contiguous sequence from the forward and reverse complement
sequences using CAP3 (https://doua.prabi.fr/software/cap3), and
used the web-based NCBI BLASTn with the nr/nt database for
sequence identification.

16S rRNA gene phylogeny to determine
placement within CHAB-I-5

We created a 16S rRNA gene phylogeny to verify placement
of US3C007 within the CHAB-I-5 cluster using the sequences
and methods from a previous Alphaproteobacteria tree [18, 19],
updated to include known CHAB-I-5 relatives including SB2 [7],
three CHAB-I-5 SAGs [12], the original CHAB-I-5 clone [20], and
our newly generated US3C007 sequence. We aligned sequences
with muscle v3.8.1551 [21], trimmed with trimal v1.4.1 [22] with
“-automatedl”, and inferred the phylogeny with IQ-TREE v2.0.6
with flag “-B 1000” [23]. The phylogeny was visualized with Figtree
v1.4.4 and all nodes were collapsed except for the branches
containing CHAB-I-5 and PRC member HIMB11 to highlight
US3C007’s inclusion within the CHAB-I-5.

Genome sequencing and assembly

We revived US3C007 from cryostocks and grew the culture in
multiple 1 L batches to gather DNA for genome sequencing. We
filtered the cells onto 0.1 um polycarbonate filters (Millipore) and
extracted DNA with a phenol chloroform approach (https://www.
protocols.io/view/modified-phenol-chloroform-genomic-dna-extr
action-ebnvwkjzwvmk/v2). DNA was pooled together and sent
for Mlumina NextSeq 2000 paired end (2x151bp) sequencing
at the Microbial Genome Sequencing Center (MiGS) (Pitts-
burgh, USA). Hlumina libraries were prepared with the Illu-
mina DNA Prep kit and 10 bp UDI indices. Demultiplexing,
quality control and adapter trimming was performed with
bcl2fastq (v2.20.0422) (https://support.illumina.com/sequencing/
sequencing software/bcl2fastg-conversion-software.html). Ilu-
mina reads were trimmed using Trimmomatic (v0.38) (—phred33
LEADING:20 TRAILING:20 SLIDINGWINDOW:13:20 MINLEN:40)
to remove poor quality bases [24]. We also performed long-
read sequencing in-house using an Oxford Nanopore MinION
with a R9.4.1 (FLOMIN106) flow cell (Oxford Nanopore, UK). For
Nanopore sequencing, DNA was sheared with a size selection of
20000 bp or greater using Covaris g-tubes (D-Mark Biosystems,
Woburn, USA) and we constructed libraries with the SQK-
LSK108 genomic DNA ligation kit (Oxford Nanopore, UK) with
modifications  (https://doi.org/10.17504/protocols.io.bixskine).
Reads were base-called with Guppy v4.4.1 [25], and demultiplexed
using Porechop v0.2.4 (https://github.com/rrwick/Porechop). We
assembled the long-read sequence data using Flye v2.9.1 [26]
using the “nano-hq” setting and four rounds of polishing with
minimap [27], included in the Flye assembler “—iterations 4”.
We then used short reads from Illumina to further improve the
assembly with Polypolish v0.5.0 [28]. The resulting assembly was
visualized for completion with Bandage v0.8.1 [29].

Bacterial cultivation and DNA extraction of FZCC0083 were
performed following our previous paper [10]. Briefly, a surface
water sample was collected from the coast of the East China
Sea. The FZCCO0083 strain was isolated following the dilution
cultivation procedure [11], and genomic DNA was extracted using
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E.ZN.A. kit (Omega Bio-tek, Norcross, USA). Library preparation
and genome sequencing was performed following the standard
protocols for Illumina sequencing on BGISEQS00 platform
(PE100, Qingdao Huada Gene Biotechnology Co., Ltd) [30] and
Nanopore sequencing on a Nanopore MinION sequencer (Oxford
Nanopore Technologies Inc.) with a R9.4.1 (FLO-MIN106D) flow
cell and the SQK-LSK109 genomic DNA ligation kit (Oxford
Nanopore, UK). The Illumina sequencing reads (coverage >200x)
were quality trimmed using Trimmomatic v0.36 [24] with
options “SLIDINGWINDOW:4:15 MAXINFO:40:0.9 MINLEN:40".
The Nanopore sequencing reads (coverage >700x) were base-
called with Guppy v5.0.0 [25] via MInKNOW v21.11.8 and corrected
using Necat v0.0.1 [31] with 'PREP_OUTPUT_COVERAGE =100
CNS_OUTPUT_COVERAGE=50" options then assembled using
Flye v2.6 [26] with default parameters. The initial assembly was
corrected using polished Nanopore sequencing reads by racon
[32] twice with -m 8 -x — 6 -g — 8 -w 500’ options and the Illumina
sequencing reads by Pilon v1.24 [33] three times with default
parameters. The assembled contig was closed as validated using
Bandage v0.8.1 [29].

Taxon selection and phylogenomics

To expand the taxon selection for the CHAB-I-5 clade, we
downloaded Rhodobacterales genomes from the NCBI and IMG
databases (October, 2022), as well as large-scale metagenomic
analyses including TARA Ocean [34, 35], BioGoShip [36], and
OceanDNA [37]. First, a total of 259 genomes closely related to
CHAB-I-5 (and a sister clade, represented by genomes like AG-
337-111 [38]) were selected based on having ANI values below 80%
to other Roseobacters outside of these two groups. To categorically
define the CHAB-I-5 cluster separate from the AG-337-111
outgroup clade, 120 conserved bacterial single-copy genes were
extracted and aligned using GTDB-tk v1.7.0 “classify_wf” [39], and
a phylogenetic tree was then constructed using IQ-TREE v2.2.0
[23] with parameters “-m LG+I+G -B 1000”. We then dereplicated
redundant CHAB-I-5 genomes using dRep v3.2.0 [40] with option
“-pa 0.99 -ps 0.99", which sets average nucleotide identity at 99%.
Genomes with higher estimated quality, which was defined as
completeness minus five times the amount of contamination
[41], were selected as representatives for the recruitment analysis.
We also excluded one genome, OceanDNA_b28631, because of
its occurrence on a long branch in the phylogenomic tree and
very low ANI (see below) to the remaining CHAB-I-5 genomes,
which made its membership in this cluster questionable. The
resulting setincluded 52 representative CHAB-I-5 genomes, which
were used to build the final phylogenomic tree using the same
approach described above. This phylogenomic tree was rooted
using mad v2.2 based on minimal ancestor deviation approach
[42]. This approach considers each branch as a possible root
position, evaluates the ancestor-descendant relationships of all
possible ancestral nodes in the tree, and chooses the branch with
the minimal relative deviation as the root node [42].

Comparative genomics

We compared the pairwise average nucleotide identity (ANI)
with fastANI v1.33 [43] and visualized it in R. We used CheckM
v1.1.3 “lineage_wf” [41] to evaluate all genomes and the specific
ssu_finder function to identify the bacterial 16S rRNA genes. NCBI
BLASTn was used for pairwise 16S rRNA gene comparisons. We
also analyzed the metabolic potential of the final 52 genomes
using Anvio’ v7.1 [44] to generate predicted amino acid sequences
from genome sequences and GhostKOALA [45] for annotation of
the amino acid sequences with the KEGG orthology database [46]

using the same approach as we previously performed [47]. The
resulting annotations and the original amino acid sequences were
used with KEGG-Decoder and KEGG-Expander v1.3 [48] to catalog
the metabolic pathways present. These metabolic annotations
were further validated by comparing our orthologous groups with
reference Roseobacter genomes (including Ruegeria pomeroyi DSS-
3, Dinoroseobacter shibae DFL12, and Planktomarina temperata RCA23)
using Orthofinder v2.2.1 [49].

Metagenomic read recruitment

Using 1425 metagenomic samples from Yaquina bay [50], Sapelo
Island [51], San Pedro Channel [52, 53], Baltic Sea [54, 55], Chesa-
peake Bay [56, 57], Columbia River [58], Black Sea [59], Gulf of
Mexico [60], Pearl River [61], San Francisco Bay (SFB) [62], and the
North Pacific Subtropical Gyre [63] along with globally distributed
metagenomic datasets [64-68], we recruited reads to the CHAB-
I-5 genomes using competitive read recruitment via RRAP [69] as
previously reported [47] with default settings. Briefly, RRAP uses
the latest versions of Bowtie2 [70] and SAMtools [71] to perform
a competitive read recruitment from metagenomic samples to
genomes, sort and index mapped reads, and normalize the data
into RPKM values (Reads Per Kilobase (of genome) per Million
(of recruited read base pairs)). We then analyzed the output
in R. The OceanDNA_b28631 was included in the recruitment
with the other 52 genomes but excluded from visualization since
we excluded it from our comparative genomics. We also exam-
ined whether there may have been bias in the read recruit-
ment towards subsections of the genomes using the five top-
recruiting genomes. We performed two analyses with a subset
of metagenomes. First, we examined the relationship of RPKM to
coverage for the top five genomes with the Pearl River and SFB
datasets and calculated coverage with SAMtools after recruitment
with RRAP as described above. Second, we compared the coverage
fraction of the five genomes with the mean coverage for the
Chesapeake Bay metagenomic reads using CoverM v0.4.0 “-p bwa-
mem, -m covered_fraction trimmed_mean” [72].

Microscopy

We initiated sample preparation by growing the US3C007 culture
to a density of up to 10° cells/ml, ensuring they were in the
exponential growth phase. Subsequently, we fixed the cells in 2.5%
(final concentration) glutaraldehyde. To harvest the fixed cells,
we passed 10 ml of the bacterial suspension through a 0.2 um
Isopore polycarbonate filter (MilliporeSigma) coated with poly-L-
lysine, facilitating cell adhesion to the filter membrane. Poly-L-
lysine coating was achieved by immersing the membrane filter
in a solution of Sigma P92155 at a concentration of 0.1 mg/ml.
For cell membrane staining, we utilized a solution comprising
0.1 M HEPES buffered 0.05% Ruthenium Red (RuRed) with 10%
sucrose. 10 ml of the RuRed solution was slowly passed through
the filter, allowing for a 10-minute incubation period to ensure
thorough staining. Then we performed a staining-fixing step using
a solution containing 0.1 M HEPES buffered 0.05% RuRed, 0.8%
Osmium tetroxide, and 10% sucrose. As in the previous step, 10 ml
of the solution was slowly passed through the filter, with cells
incubated for a minimum of 25 minutes. Following the staining-
fixing process, we washed the membrane filter sequentially with
two solutions: 10 ml of 0.1 M HEPES with 10% sucrose, followed
by 10 ml of deionized water. Each washing step was carried out
over a 10-minute duration. Subsequently, the samples underwent
sequential dehydration in 50%, 70%, 95%, and 100% ethanol. The
filter membrane was transferred to corresponding ethanol solu-
tions in small containers and subjected to microwave treatment
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for one minute in a laboratory microwave oven, maintaining a
temperature below 40°C. Finally, the samples were preserved in
100% ethanol on the filter and stored at room temperature for
further analysis. The filters were sputtercoated for 45 s with
a Cressington 108 and imaged with the JSM-7001F-LV scanning
electron microscope at the University of Southern California Core
Center of Excellence in NanoIlmaging (https://cni.usc.edu). Result-
ing images were analyzed as described previously [47].

Cell size analyses

Here we used a method adapted from previous studies [47]. Briefly,
we segmented the cell image into two half spheres and a curved
cylinder, mimicking a capsule geometry. The cell volume was then
calculated as the sum of the volumes of the curved cylinder and
the two half-spheres. While an ideal capsule assumes uniform
radii for the half-spheres and the curved cylinder, variations in
radii across different cell sections were addressed by measuring
radii at multiple points and calculating geometric parameters
(surface areas, volumes, lengths) based on each radius. Mean and
median values of these parameters were used for visualization in
our final violin plots.

We use Concepts for iPad v6.13 to measure to scale the image
and to manually segment the cell area, measured in pixel squared
(S). Additionally, the ruler feature in the application was employed
to measure the radii of the cell by drawing circles covering widths
at various sections, with each circle’s radius recorded as “r’. Math-
ematical equations for calculating surface areas (SA), volumes (V),
lengths (1), and height (h) based on S and r are detailed in the
supplemental figures. Our analysis encompassed the geometries
of 24 cells where we also showcase the segmentations and circles
drawn for measurements.

Growth experiments

The carbon substrate experiment for US3C007 was completed
first using modified versions of the isolation medium, AMS1, to
adjust the carbon concentrations while keeping all other compo-
nents of the isolation medium the same. We tested the following
concentrations of carbon serving as the presumptive electron
donor and carbon source: 0, 9.37, 18.8, 37.5, 75, 150, 300, and
600 uM, as a 1:5:5 molar ratio mixture of methionine, glycine,
and pyruvate. For better cell yields, we then further modified the
media compositions in AMS1 and created a new recipe, CCM. In
brief, the CCM media has no sulfate, completely relies on methio-
nine for reduced sulfur, and has a 20X concentrated vitamin
mix compared to AMS1. In addition, we substituted asparagine
instead of glycine (which was added to aid in culturing SAR11
[17]) based on the genomic prediction of asparagine auxotrophy.
We calculated the salinity of our media based on the chlorinity
(salinity (ppt) = 1.80655 x Cl (ppt) [73]) of the “base salts”. Although
a small amount of chloride also comes from our nutrients (e.g.
ammonium chloride as the nitrogen source, manganese chloride
and nickel chloride in the trace metals), the concentrations were
negligible, and we therefore did not incorporate those into the
calculation of chlorinity. To test the salinity range of US3C0007, we
made two batches of CCM at 0 and 50 ppt salinity and mixed them
in different proportions to obtain the following salinities (ppt): O,
5, 10, 15, 20, 25, 30, 35, 40, 45, and 49. The salinity experiment
was conducted at 18.5°C (room temperature at that time). The
temperature experiment was conducted using the CCM 30 ppt
salinity medium at the following temperatures (°C): 4, 12, 16, 18.5,
21,25, 28.5, 30, and 35.

For the carbon experiments, we counted cells with flow cytom-
etry after staining with 1x Sybr green (Lonza 50 513) for 30 minutes

in the dark. The carbon experiments were enumerated on the
Guava Easy Cyte SHT flow cytometer (Millipore, Massachusetts,
USA) as described above, except for the third transfer (fourth
growth cycle) of the carbon concentration experiment, which was
enumerated with an Accuri C6 Plus (Becton Dickinson, New Jersey,
USA). The cell signals on the flow cytometry were gated based
on the scatter plot of forward scatter vs. green fluorescence area.
For the salinity and temperature experiments, we stained the
cells using a final concentration of 10X Sybr green in addition
to 10X Tris-EDTA (Sigma-Aldrich T9285) and 0.25% glutaralde-
hyde (Sigma-Aldrich 354 400). Tris-EDTA maintains the nucleotide
staining reaction at pH 8. Glutaraldehyde helps fix the cells
and permeabilize the membrane. Together with the more con-
centrated Sybr green, the additional pH buffer and fixative help
improve the staining performance. For enumeration, we counted
30 n1-100 ul of sample/staining cocktail mixture using a medium
flow rate (35 pl/min, 15 um core size), threshold (triggering chan-
nel) of green fluorescence (533/30 nm) intensity at 1000. The cell
signals were gated based on the green (533/30 nm) vs. yellow
(585/40 nm) fluorescence intensity scatter plot. Based on the
emission spectrum of Sybr green-stained DNA, we gated the
signals with a ratio around 10:3 for green vs. yellow fluorescence
intensities. We excluded autofluorescence signals from debris
or media components, which usually have significantly higher
yellow or red fluorescence compared to Sybr green-stained cells.

Culturing experiments for FZCC0083 were completed with an
AMS1-based medium supplemented with a modified mixed car-
bon source [74], (1x concentrations of carbon mixtures were com-
posed of 0.001% [wt/vol] D-glucose, D-ribose, methionine, pyru-
vic acid, glycine, taurine, N-acetyl D-glucosamine, and 0.002%
[vol/vol] ethanol). This medium was used at the following temper-
atures (°C): 4, 12, 16, 20, 24, 26, 30, 37. For the salinity experiment
with FZCC0083, we used modified versions of AMS1 [17]. We
kept the concentration of all added nutrient stocks constant and
changed salinity by diluting or increasing the salt stocks while
keeping the ratio of components constant. The exception to this
was for sodium bicarbonate, which we kept constant to maintain
buffering capacity. We tested the following salinities (ppt): 1,
2.3,45,9, 18, 22.6, 25.8, 30.1, 36, 43 at 24°C in the dark. Cells
were enumerated on a Guava EasyCyte SHT flow cytometer as
described above.

Growth curve analysis

Growth rates were calculated using a method adapted from our
previously published sparse-growth-curve [75]. First, we applied
a sliding window for every three time points and generated a
linear regression of the time vs. log2 transformed cell densities
using SciPy package (1.13.0). The slope of the linear regression
gives us the instantaneous doubling rate. Next, to fully capture
the uncertainties and variation of the statistics, we assigned each
of the estimated slopes, plus and minus the standard deviation, to
the start, middle, and end of the sliding window. This gave us nine
candidate instantaneous doubling rates from any three time point
cell densities. Since the end of a sliding window would become
the middle of the next sliding window, and the start of the next,
etc., each unique time point contributes to multiple estimated
growth rates. We then took the median estimated growth rate
for each unique time point. We used an automated method to
identify the instantaneous growth rates belonging to exponential
phase. We attempted to fit a sigmoid decay curve to the time
vs. instantaneous doubling rate data with the expectation that
the exponential phase would correspond to the period before the
inflection point. If the curve fit failed, we took the top three
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Table 1. CheckM genome statistics for the current and previously isolated strains.

Genome Length (bp)  Scaffolds (circular) N50(bp) GC%  Coding genes  Coding density  # rRNA gene operons  Reference
US3C007 3622411 1(y) 50.7 3513 0.88 2 This study
FZCCO0083 3646439 1(y) 50.5 3564 0.88 2 This study
SB2 3636317 38 (n) 323631 50.5 3527 0.89 1 [7]

instantaneous doubling rates with maximum absolute values.
To demonstrate this growth rate calculation method, we have
added an example iPython notebook at GitHub (https://github.
com/thrash-lab/insta_growth).

Spectrophotometry

We attempted to measure bacteriochlorophyll in strain US3C007
via spectrophotometry of in vivo (whole cells) and pigment
extracts. We performed direct in vivo measurements of culture
volumes ranging from 50 ml to 1 L and cell densities from mid
10° to mid 10° cells/ml. Some runs involved filtering the cells
onto sterile 0.1 um polyethersulfone (PES) Supor filters (PALL
Corporation, Port Washington, NY, USA) or centrifugation of
cells at 9000 rpm for 30 minutes. We used sterile CCM2 media
for blanks and references. We also performed a washed cell-
suspension using 950 ml of US3C007 culture filtered onto a sterile
0.1 um PES Supor filter with a 100 ml wash of carbonless artificial
seawater media (YBC) [76] and resuspension in 2 ml of 1x PBS.
In this case, 1x PBS was used as the reference and blank. For
both in vivo approaches, cells were placed in a quartz cuvette
(Hellma GmbH & Co. KG, Millheim, DEU) and analyzed on a
SpectraMax M2 plate reader (Molecular Devices, San Jose, CA,
USA). The settings used were "Absorbance ", 350-900 nm and
700-840 nm, to obtain a full and detailed spectra profile. We
performed extract measurements by first filtering 500 ml of
US3C007 culture (5x10°" cells ml~?, sterile 0.1 um PES Supor).
Following previous methodology [77], the PES filter with the cells
was extracted in 2 ml of 100% EtOH using the following minor
modifications: PES filters were incubated for ~24 hours in sealed
borosilicate glass tubes (VWR International LLC, Radnor, PA, USA).
Following extraction, the 2 ml solution was then centrifuged at
5000 rpm for 5 minutes and 700 ul of supernatant was placed in a
quartz cuvette for analysis with the plate reader as described
above. 100% EtOH was used as the blank and reference. All
samples were kept in the dark or wrapped in foil to prevent BChla
degradation.

Results

Isolation, identification, and genome sequencing
US3C007 originated from an untargeted dilution to extinction
cultivation experiment inoculated with surface water collected
from the San Pedro Ocean Time series (SPOT) monthly cruise
on 16 September 2020. Its top 16S rRNA gene BLAST hit was
100% identity to Roseobacter sp. SB2, accession KX467571.1 (100%
identity, 100% query coverage, accession length of 1343, and E-
value of 0.0) [7]. The 16S rRNA gene phylogeny indicated US3C007
was the nearest phylogenetic neighbor to SB2 and the original
clone library sequence of CHAB-I-5 [20] (Fig. S1). Strain FZCC0083
was isolated from the coastal waters of the East China Sea as
previously described [10]. Hybrid long and short read genome
sequencing resulted in single circularized contigs for both strains.
Statistics for both genomes are reported in Table 1 in comparison

to the previously isolated strain SB2 [7]. All three strains have very
similar sizes, GC content, and coding densities.

Phylogenomic analysis of 52 CHAB-I-5 genomes resulted in two
subgroups, with US3C007 and SB2 on one branch and FZCC0083
on the other (Figs. 1A, S2-S3). We refer to these two branches
as Subcluster 1 and Subcluster 2, respectively. Subcluster 1 had
a minimum within-cluster average nucleotide identity (ANI) of
95.2%, whereas Subcluster 2 had a minimum within-cluster
ANI of 94.5%. Between-cluster ANI percentages decreased below
the species boundary, with a minimum of 90.6%, matching the
phylogenomic branching pattern (Fig. 1). US3C007 and FZCC0083
both had two copies of the 16S rRNA gene. The two from US3C007
had 100% identity with SB2 (accession KX467571.1) and the two
from FZCC0083 had 99.91% identity with SB2. The SB2 genome
had only one copy of the rRNA gene operon located on a short
contig, suggesting the other copy might not have assembled
successfully. Comparisons of bulk genome characteristics across
all 52 genomes showed a strong conservation of GC content
(51.3+0.4%) and predicted coding density (89.3+0.9%) within
CHAB-I-5 (Table S1).

Biogeography

We mapped metagenomic reads to the CHAB-I-5 genomes from
over fourteen hundred samples spanning a wide biogeography,
including large ranges of salinity and temperature, to quantify
CHAB-I-5 distribution. CHAB-I-5 was cosmopolitan, recruiting
reads from around the globe. US3C007 was one of the top three
most abundant representative genomes, including FZCC0083
and the ERR559527_bin_47_MetaBAT v2_12_1_MAG as the first
and second most abundant, with AA076_117 and SB2 rounding
out the top five (Fig. 2A). We observed recruitment across all
latitudes and saw no specific relationship between genomes
and latitude separate from that conferred by the locational bias
of the samples themselves (Figs. S4-SS5). Comparison of read
recruitment with salinity demonstrated that all members of
CHAB-I-5 prefer marine habitats, though some genomes do recruit
limited numbers of reads from samples with a salinity as low as 8
(Figs. S5-S6). We also observed a tendency for genomes to recruit
more reads from samples between temperatures of 11-20°C, even
though most samples were from warmer locations (Figs. S5, S7).
When abundance was summed by phylogenetic subcluster, the
median recruited reads were smaller for Subcluster 1 than that of
Subcluster 2 (Fig. 2B). However, Subcluster 1, containing isolates
US3C007 and SB2, had a higher recruitment than Subcluster 2, the
FZCCO0083 type, at sites such as the Western United States coast,
the Western South African coast, the North Sea, and the English
Channel (Fig. 2B). Cluster 2 had higher recruitment at locations
such as the Mediterranean, Pearl River, and much of the North
Atlantic Gyre.

Genomic content

We compared 52 non-redundant CHAB-I-5 genomes to determine
the conservation of metabolic potential and whether the two
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Figure 1. Phylogenomics and average nucleotide identity (ANI) of CHAB-I-5. (A) Phylogenomic tree of 52 CHAB-I-5 genomes rooted with minimal
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subclusters could be distinguished genomically (Fig. 3, Table S1).
Corroborating previous reports [7, 12], these organisms were
predicted to be capable of aerobic chemoorganoheterotrophic
metabolism with the potential for anoxygenic phototrophy. All
the 52 non-redundant genomes had the potential for glycolysis
via the Entner-Doudoroff pathway and the TCA cycle. All genomes
contained nearly or fully complete electron transport pathways
consisting of NADH-quinone oxidoreductases, F-type ATPases,
cytochrome c oxidases, and ubiquinol-cytochrome c reductases.
One genome, CPC58, contained a predicted cbbs-type cytochrome
c oxidase. Most genomes had genes for polyhydroxyalkanoate
(PHA) synthesis, a partial formaldehyde assimilation pathway,
and a di/tri methylamine dehydrogenase. Most genomes had the
potential to convert ethanol to acetate and acetaldehyde, and
genes for anaplerotic C-fixation. Most genomes also contained a
complete anoxygenic type-II reaction center. We found predicted
genes for synthesis of bacteriochlorophyll a and/or b (bchXYZ,
bchC, bchF, chlG, chlP- situated near the puf gene operon in
US3C007) conserved across the CHAB-I-5 group, but found
no annotated homologs for synthesis of bacteriochlorophyll
d, ¢, or e. Full or partial pathways for flagella were also
conserved.

Genes for metabolism of nitrogen, sulfur, phosphorous, trace
metals, and vitamins were largely similar between subclusters.
We found transporters for urea, ammonium, and phosphate were
conserved, and most genomes contained a phosphonate trans-
porter (Fig. 3). All 52 non-redundant genomes had the napA nitrate
reductase, and CPC58 was the sole genome to encode a nirK nitrite
reductase (Table S1). All genomes except for CPC58 contained
nearly or full pathways for thiosulfate oxidation via the sox gene
cluster, and a gene encoding a sulfite dehydrogenase quinone was
conserved. All non-redundant genomes in Subcluster 1 and most
in Subcluster 2 had genes for sulfide oxidation. Most genomes

had a DMSP lyase, all had genes for DMSP demethylation, and
most genomes also encoded a DMSP synthase (Fig. 3, Table S1).
Predicted urease genes were prevalent throughout both Subclus-
ters. Several genomes also encoded the C-P lyase complex, operon,
and cleavage potential, although the latter was more common in
Subcluster 2, and the US3C007 genome did not encode for the C-
P lyase. Most genomes had a predicted Mg-Co transporter, Mg-Zn
transport potential, and some genomes in Subcluster 1, including
US3C007, had a copA copper transporter (Fig. 3, Table S1). Most
genomes had ferric iron, Mn-Zn-Fe, zinc, and tungstate trans-
porters. Most genomes in Subcluster 1 contained partial or nearly
complete pathways for molybdate transport whereas only one
genome in Subcluster 2 contained at least a half pathway. No
genome contained the full pathway for thiamin biosynthesis,
though a partial pathway was common. Most genomes contained
either a full or partial pathway for riboflavin and cobalamin
biosynthesis and thiamin transport.

Amino acid metabolism was also very similar between subclus-
ters. Prototrophy for lysine, serine, threonine, glutamine, histidine,
arginine, cysteine, glycine, valine, methionine, isoleucine, trypto-
phan, aspartate, and glutamate was largely conserved, whereas
asparagine auxotrophy was widespread (Fig. 3). Glycine betaine
synthesis, glycine betaine/proline transport, and ectoine/hydrox-
yectoine transport were also conserved. Most genomes in Subclus-
ter 1 could transport taurine, whereas none of the non-redundant
genomes from Subcluster 2 contained this pathway, including the
complete genome of FZCC0083 (Fig. 3, Table S1).

Thus, the genome content across both subclusters was quite
similar. The notable differences between the subclusters were
the presence of the taurine and copper transporters as well
as pcaGH dioxygenase genes exclusively within Subcluster 1, a
greater prevalence of C-P lyase genes and low affinity phosphate
transporter in Subcluster 2. Therefore, the Subclusters within
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CHAB-I-5 may exhibit some niche differentiation based on dis-
solved organic nitrogen and phosphorus utilization.

Physiology and morphology

US3C007 grew consistently between 16-25°C, but not at tem-
peratures of 12°C or below, or at 28.5°C or above (Figs. 4A, S8).
Additionally, US3C007 grew at salinities of 15-49 ppt, but not at
10 ppt or below (Figs. 4B, S8). The maximum observed growth rate
was 1.55 +/— 0.05 divisions day~! at 18.5°C and 30 ppt (Fig. 4B;
Table S1). We tested US3C007’s growth across a range of carbon
concentrations to determine the carbon concentration to which
it was best adapted. The primary carbon sources in the carbon
mix were methionine, glycine, and pyruvate at a 1:5:5 molar ratio.
We tested eight concentrations up to 600 uM carbon, with 300 uM
carbon being the concentration in AMS1 medium (resulting from
10 M methionine, 50 uM glycine, and 50 uM pyruvate) (Table S1).
We observed no net change in growth rate with increasing carbon
concentration, but an increase in yield (Figs. 4C-D, S8). The consis-
tent growth rate at low carbon concentrations indicates that this
strain is particularly well adapted to low carbon environments.
However, even after three transfers (four total growth cycles from
lag to late log or stationary phase), we observed continued growth
in the negative control, (Fig. 4C), albeit to lower cell densities than
those cultures receiving carbon additions (Fig. 4D). We hypothe-
size this growth resulted from the strain having genes for PHA
storage (Fig. 3), but this remains to be tested. We attempted to
measure bacteriochlorophyll in whole cells but were unable to
determine a definitive spectrophotometric peak. This could have
been the result of inadequate biomass or growth conditions that
did not lend themselves to bacteriochlorophyll production.
FZCC0083 grew considerably faster than US3C007 in all con-
ditions tested (Figs. 4A-B, S8; Table S1). The maximum observed
growth rate was 3.41 4/— 0.44 divisions day~* at 24°C and 30.1 ppt
(Fig. 4B)- more than twice the division rate of US3C007. FZCC0083
had a wider temperature growth envelope than US3C007, growing
between 12-30°C with no growth at 4°C or 37°C. Its salinity toler-
ance was like that of US3C007, growing between 18-43 ppt, but not

at 9 ppt or below. Thus, these two strains have notable differences
in physiology which reflects their phylogenetic separation (Fig. 1).

US3C007 cells were small, having average cell lengths ~1.65 um
and radii ~0.23 um, yielding cell volumes ~0.44 um? (Fig. SA).
We observed multiple morphologies within a single clonal cul-
ture (Figs. 5B-E, S9-510). Single cells were usually bacillus-shaped,
with some displaying more curved rod morphology or bulbous
coccobacillus shapes (Fig. 5B-E, S9-510).

Discussion

This study is the most comprehensive analysis of the CHAB-I-5
subcluster within the larger “Roseobacter” group of Rhodobacterales
to date. We have expanded the genomic and ecological charac-
terization from four to 52 unique CHAB-I-5 genomes, including
the first two circularized CHAB-I-5 genomes, and two new, pub-
licly available CHAB-I-5 isolates, strains US3C007 and FZCC0083.
Both strains are reliably propagated in artificial seawater media
that are easily modified and we provided the first physiological
and morphological characterization for members of the CHAB-I-
5 group. Our expanded analysis also took advantage of recently
generated, publicly available CHAB-I-5 genomes to understand
intra-clade genomic diversity using phylogenomics and ANI. A
prior study established two subclusters within CHAB-I-5 using
environmental 16S rRNA gene sequence phylogeny [7], and we
see the same division in our analysis. Both phylogenomics and
average nucleotide identity support at least two subgroups within
CHAB-I-5, denoted Subcluster 1 and Subcluster 2, that repre-
sent two species within a genus based on within- and between-
subcluster ANI (Fig. 1). Isolate US3C007 belongs to Subcluster 1
and isolate FZCC0083 belongs to Subcluster 2.

Metabolic potential within CHAB-I-5 was highly conserved
(Fig. 3). Nevertheless, we observed a few differences between
Subclusters that may point to specific metabolic adaptations.
The taurine ABC transporter tauABC was present in Subcluster
1 and not Subcluster 2 is (Fig.3). Taurine is an important,
multifunctional compound that serves as an osmoregulation

Gz0z Aey 1 uo 1senb Aq 628G 1.8/8901B9A/ | /S/3|01B/UNWIWOOSWSI/WO02 dNo dlwapede//:sdily Woll PaPEOjUMO(]


https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf068#supplementary-data

Updated ecophysiology of Roseobacter CHAB-I-5 | 9

1.2 5 - 8 - 0.5 3.0 A
°r 1 1 . L7
1.0 A . L N - |, g L 04 F2.5
°® ® NE - 6 3
— °
©. 0.8 1 oo 3# s 3 2 = F2.0
EL— oo ’. ..... ',. ‘.'3 '35 -55 '0.35: \%
v 061 e N oe - & = 4 2 « F1.5 S
Y - =L 0% s
=) S [ .. > oo -2 O L3 @ F0.2 ot g
S 041 (o - o £ © 4 - 1.0 3
X ° o0 Uj_’ L5 8
024 ‘= = £ r 0.1 0.5
Fl S
wn
00 T T T T T 0 - O - 00 - OO
Volume Surface areaSurface area  Radius Length

/Molume

Figure 5. Cell size and shape of US3C007. (A) Dimensions from analysis of 24 separate cells (see Figs. 59, S10) of different sizes and shapes. Medians are
indicated with a bar and the violin plot shading shows the distribution of the data. (B-E) representative cells of different size/shape configurations
seen in the culture. Scale bars (500 nm B, C; 400 nm D; 1 um E) are indicated below each image.

tool and as a source for carbon, nitrogen, and sulfur for marine
bacteria [78]. This differential ability to transport taurine may
confer a growth advantage for Subcluster 1, but future research
is needed to confirm how taurine is used, as all genomes encoded
pathways for taurine catabolism, and the fewer number of
genomes in Subcluster 2 may have biased this view. Another
notable difference in metabolic content between the CHAB-
I-5 subclusters was that of the C-P lyase genes. C-P lyases
cleave carbon-phosphorous bonds and are used as a phosphate
scavenging strategy that produces methane aerobically [79, 80].
Although all strains had typical pstABCS phosphate transporters,

Subcluster 2 was enriched in C-P lyase genes, while only a
few Subcluster 1 genomes had the pathway (Fig.3). These
results suggest Subcluster 2 interacts more consistently with
the dissolved organic phosphorous pool and may contribute
to methane production in global oceans. A subset of genomes
in Subcluster 1 also contained the copA copper transporter
exclusively, including US3C007, but distribution was spotty,
suggesting a lack of conservation for the use of copper and/or
that we didn’t observe the gene due to incomplete genomes.

We also extended the analysis of CHAB-I-5 distribution through
read recruitment from over fourteen hundred metagenomic
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samples, including those in brackish and freshwater environ-
ments. Our results expand the known ecological distribution of
CHAB-I-5 members, showing their presence in sample sites such
as the North Atlantic gyre, South Pacific, Gulf of Mexico, Red
Sea, and polar locations that were unavailable or had fewer sites
surveyed in previous reports of CHAB-I-5 biogeography (Fig. 2)
[7,12]. Our work confirms and extends the view of CHAB-I-5 as a
cosmopolitan member of the global oceans, and although the Sub-
clusters were generally found in all the same locations, there were
some samples where one Subcluster dominated (Fig. 2B). Subclus-
ter 2 recruited more overall reads than Subcluster 1 (Fig. 2B), and
the FZCC0083 and US3C007 genomes recruited the first and third
most reads across all the samples (Fig. 2A). We performed spot
checks of the relationship between coverage and abundance to
explore whether recruitment was biased to conserved genomic
content. In cases where the top-recruiting genomes were rare,
the coverage of those genomes was low, however, the reverse was
also true: coverage was generally proportional to abundance, and
thus we don’t believe that read recruitment was biased to specific
regions of the genome (Fig. S12). Together, our results suggest
that these genomes are highly representative of CHAB-I-5 across
the global oceans and make the strains excellent candidates for
further study of the clade.

CHAB-I-5 can be abundant and active in polar latitudes [7, 12],
however, our data did not show strong evidence of latitudinal
preferences by genome (Fig. S4). Our initial physiological find-
ings demonstrated restricted temperature range for both strains,
representing each subcluster. US3C007 grew between 16°C and
28.5°C and FZCCO0083 grew between 12°C and 30°C. These ranges
are narrower than the observed range in metagenomic data for
each genome, which both had substantial read recruitment in
samples where the water temperatures were below 10°C (Fig. S7).
This suggests the presence of (still uncultured) strains closely
related to US3C007 and FZCC0083 with greater psychrotolerance.
In fact, many of the other SAG/MAG CHAB-I-5 genomes showed
maximum read recruitment in samples below 15°C (Fig. S6), so it
is likely that multiple strains of CHAB-I-5 are better cold-adapted
than the two isolates.

On the other hand, the discrepancy between the lab and field
measurements for US3C007 and FZCCO0083 could describe the
difference between realized and fundamental niches. Although
the ideal fundamental niche space is sometimes envisioned as
more extensive than the realized niche [81, 82], the reverse can
also be true. For example, multiple ecotypes of Prochlorococcus
had narrower temperature growth ranges in the laboratory than
the ranges observed in nature via molecular data [83]. This is
like the pattern we observed in both US3C007 and FZCCO0083,
where the realized niche appears larger than the fundamental
niche with regards to temperature (Figs. 4, S4). For Prochlorococcus,
the authors considered that a cultivation bias, stemming from
continual maintenance of cultures in a restricted temperature
range, could have led strains to evolve a different temperature
optimum than the original population [83]. Similarly, continual
culturing could also lead strains to evolve a narrower temperature
tolerance than would have been maintained by strains in the fluc-
tuating natural environment. This would result in a contraction of
the measured fundamental niche relative to the realized niche.
However, another plausible explanation was that dispersal of
Prochlorococcus resulted in cells being distributed to many locations
outside their optimal temperature range [83]. Since our culture
experiments are regularly restarted from cryopreserved samples,
it was unlikely that our strains had evolved a more restricted
temperature range since their isolation. Therefore, we consider

our observations of a wider realized niche than fundamental
niche to be consistent with the dispersal hypothesis as well.

Regarding the relationship with salinity, our experiments sug-
gested that CHAB-I-5 is an exclusively marine organism (Fig. 4B).
Our read recruitment agreed—no genomes showed strong pref-
erences for brackish or freshwater habitats (Figs. S5, S7). This is
consistent with the fact that CHAB-I-5 appears to constitute a
genus. In other abundant free-living microbial groups like SAR11
and Aegean-169 that have subclades adapted to lower salinities,
those subclades circumscribe a similar taxonomic breadth as that
of CHAB-I-5 [47, 84], so we would not necessarily expect to see
adaptation for specific salinities within CHAB-I-5. That said, other
Roseobacter relatives have been isolated from brackish salinities
[18, 19, 85, 86], and CHAB-I-5 members have been observed in
equivalent abundances along the salinity gradient of the Chesa-
peake Bay [14]. While we found no clear evidence of fresh or
brackish water specialists within CHAB-I-5, multiple genomes did
recruit low numbers of reads from brackish waters with salinities
as low as 8 (Fig. S5). Future work measuring activity of CHAB-I-5
across salinities could provide insight to whether the cells might
be active in these lower salinity environments, and/or whether
true brackish water-adapted strains exist.

The US3C007 and FZCCO0083 cultures have provided the first
growth and morphological data for CHAB-I-5. These cultures span
a wide range of growth rates, with the maximum for FZCCO083
being over twice as fast as that of US3C007 (3.41 +/— 0.44 vs. 1.55
+/— 0.05 divisions day~!). These phenotypic differences likely
reflect that these are different species, isolated from different
oceanic regimes. Strain US3C007 was isolated from surface water
collected at SPOT, a unique temperate semi-coastal location
between Catalina Island and the coast of California overlying
the San Pedro Basin at nearly 900 m depth. Water circulation
patterns in the Southern California Bight are complex [87, 88],
but SPOT is inshore of the California Current system and average
fall surface temperatures (warmest of the year) in the nearby
Santa Monica Basin can reach 20.5°C [89]. Conversely, strain
FZCCO0083 was isolated from coastal waters off Pingtan Island,
in the shallow Taiwan Strait very near the delineation of the
East and South China Seas [10]. This location is in shallow
water (< 30 m) and over 8 degrees of latitude south of SPOT
(~900 km). Regional currents in this area branch from the
Kuroshio Current system and fall average surface temperatures
can reach 26°C [90]. Minimum temperatures in both areas are
near 14°C. The optimization of FZCC0083 for growth at higher
temperatures than US3C007, as well as the ability of FZCC0083
to grow at higher maximum temperatures (Fig. 4A), likely reflects
the higher average temperatures in the Taiwan Strait compared
to the Southern California Bight. Overall relative abundances
of Subcluster 1 (US3C007-type) and Subcluster 2 (FZCC0083-
type) with temperature were subtle but showed general trends
that match the isolate physiology: both trended downward with
temperature, but Subcluster 1 had a slightly more negative
correlation (Fig. S11). Thus, the growth physiology may signify
larger habitat preferences for the Subclusters.

The considerable differences in growth rate between the two
strains suggests more complex evolutionary diversification acting
on multiple aspects of cell physiology. Nevertheless, the growth
rates of these two strains span that of others in the larger PRC.
Division rates for the model Roseobacter group organism, R.
pomeroyi DSS-3T, which is not a PRC member, have been reported
at up to 9.6 day~! [91]. The PRC includes many organisms with
distinct genomic and lifestyle differences from better-studied
copiotrophic Roseobacter group members like R. pomeroyi [7, 9, 92]
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and there are a few examples of cultured representatives from
the PRC. Isolates from the DC5-80-3 (also called RCA) and CHUG
groups that accompany CHAB-I-5 in the PRC have yielded some
important growth insights [9, 93-95]. Strain LE17 had division
rates of roughly 2-3 day~! [94], and strain HKCCA1288 had
division rates closer to 2 day~?! [9], although optimized medium
has reduced this to just under 5 hours (4.8 day~!) [91]. The type
strain for the DC5-80-3 cluster, Planktomarina temperata RCA23T,
as well as another close relative of US3C007, strain HIMB11,
grew preferentially at mesophilic temperatures like US3C007
[93, 96], and the maximum observed growth rate of P. temperata
RCA23T was very close to 1 day~! [97]. Given the close relationship
between them, the variation in growth rates between US3C007
and FZCCO0083 provide an excellent opportunity to investigate
fundamental limits on growth rate. More strains from different
locales will be important for exploring phenotypic heterogeneity
within the group.

Our microscopic observation of strain US3C007 revealed
significant pleomorphism in the culture (Fig. 5B-E). Pleomorphism
and irregular morphology has been recorded in other Roseobacter
group members, including HIMB11 [96]. Both HIMB11 and
US3C007 have cells that are coccobacillus as well irregular
rods [96] (Fig.5B-E). The weighted average cell volume of
1276 heterotrophic cells across 23 coastal ocean samples was
0.114+0.17 pm3 [98], whereas average US3C007 volume was
0.44+£0.06 um? across a variety of morphologies (Fig. 5A). Thus,
US3C007's average cell volume is greater than the average
heterotrophic bacterium, stemming in part from a relatively large
radius for the cell length, compared to cells like that of SAR11 [47,
99, 100]. Future work to determine the extent of morphological
variation and its drivers in natural populations of CHAB-I-5 will
be important to understand the biology of these organisms more
generally and for modeling the impact of carbon cycling by CHAB-
I-5.

Overall, this work provides the most comprehensive genomic
and ecological characterization of CHAB-I-5 to date and the first
physiological data for the group. These recent advances in the
availability of public CHAB-I-5 genomes and a new isolate that is
representative of the CHAB-I-5 in global waters is a crucial com-
ponent needed to characterize this abundant and highly active
fraction of the microbial community. Future work is needed on
US3C007 and the CHAB-I-5 cluster that could include comparative
physiology between FZCC0083 and US3C007 to highlight whether
a growth advantage might be conferred in the environment based
on phosphorous, copper, or taurine availability and to quantify
global estimates of CHAB-I-5’s contribution to biogeochemical
cycling in the oceans.

We have deposited strain US3C007 into two culture collections
to promote additional research on the group and propose a new
name for the strain below. We note that the originally proposed
Candidatus name, “Candidatus Planktomicrobium forsetii” [7],
was an orthographic variant of the existing genus Planctomicro-
bium [101]. Thus we have chosen a new designation for the group.

Description of Candidatus Thalassovivens,
gen. nov.

Thalassovivens (Tha.las.so.vi'vens. Gr. fem. n. thalassa, the sea; L.
pres. part. vivens, living, N.L. fem. n. Thalassovivens, an organism
living in the sea, in reference to the marine habitat of these
organisms).

Aerobic, with chemoorganoheterotrophic, chemolithotrophic,
and anoxygenic phototrophic metabolisms. Encodes genes for

glycolysis through the Entner-Doudoroff pathway and the TCA
cycle. Genome sizes of ~3.6 Mbp, with GC content ~51% and
a coding density ~89%. Prototrophy predicted for lysine, serine,
threonine, glutamine, histidine, arginine, cysteine, glycine, valine,
methionine, isoleucine, tryptophan, aspartate, and glutamate,
with asparagine auxotrophy. Glycine betaine synthesis, glycine
betaine/proline transport, and ecotine/hydroxyectoine transport
genomically conserved. Genes for the PII nitrogen regulatory
system, ntrXY, amtB, and urease conserved. Most genomes
also encode genes for aerobic vitamin B, synthesis. Genes for
synthesis of bacteriochlorophyll a and/or b conserved. Motility
via flagella is predicted.

Description of Candidatus Thalassovivens
spotae, sp. nov.

Thalassovivens spotae (spo’'tae. N.L. gen. n. spotae, in reference to
the San Pedro Ocean Time series (SPOT), from which the strain
was isolated).

In addition to the characteristics of the genus, it has the
following features. Cells are coccobacillus shaped, pleomorphic,
with average dimensions of 0.23 um radius, 1.65 um length, and
0.44 um?® volume. Halophilic, growing in salinities of 15-49 ppt,
but not at 10 ppt or below. Mesophilic, growing between 16-25°C,
but not at temperatures of 12°C or below, or at 28.5°C or above.
Has a maximum growth rate of 1.55 +/— 0.05 divisions day~* at
20°C and salinity of 30 ppt.

The type strain, US3C0077 (= ATCC TSD-433T =NCMA B1607),
was isolated from surface water (2 m) collected at the San Pedro
Ocean Time series (33°33’ N, 118°24’ W). The genome sequence is
circularized at 3622411 bp with 50.7% GC content. The genome is
available on NCBI at BioProject number PRJNA1044073.
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on FigShare (https://doi.org/10.6084/m9.figshare.25898389). The
type strain, US3C0077, is available at the American Type Culture
Collection and the Bigelow National Center for Marine Algae and
Microbiota (= ATCC TSD-433T = NCMA B1607"), as well as from the
Thrash Laboratory upon request.
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