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Abstract—Federated Learning (FL) is a decentralized ap-
proach to Machine Learning (ML) that allows distributed
model training locally across different devices, instead data
transportation to the aggregation point, thus increasing the
data privacy protection. Nevertheless, adversarial attacks still
possess a problem for FL in real-world applications, aiming to
deteriorate the aggregated ML model performance or reconstruct
the training data using the model updates. In this paper, we
prove that our Model Anomaly Detection (MAD) technique
based on model trust evaluation not only allows for the robust
identification of the malicious participants during the distributed
ML model training on early aggregation stages, but also improves
the model convergence. We verify our findings on the subset of
the MedicalMNIST dataset.

Index Terms—federated learning, medical images, model
anomaly detection, attack mitigation, medical imaging

I. INTRODUCTION

Federated Learning (FL) was introduced in 2016 [6] and
has received significant attention from the research community
ever since. The key advantage of the FL over a conventional
Machine Learning (ML) is the preservation of the training
data privacy. In FL architecture, each data source produces
its own local model which training is maintained locally as
well. After each training round, local models are sent to
the centralized aggregation server where the global model
is generated using a specific aggregation strategy. Therefore,
the confidential user data is never transferred over a network,
enhancing data privacy protection in order to satisfy regulatory
requirements. The FL feature is especially important for fields
such as medical imaging, where the patient data privacy is
heavily regulated. The schematic representation of the FL
model training process can be found in Figure 1.
Although user data remains stored locally on individual data

sources, the overall system is still vulnerable if these sources
get compromised. The potential for intruders to compromise
participating devices presents a risk to the global ML model.
First, if a malicious entity joins the training process, it will
receive global model updates after each aggregation round. As
demonstrated in [10], it is feasible to reconstruct training data
by accessing only the gradient updates from the centralized
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server. This vulnerability poses a considerable threat to the pri-
vacy of sensitive data, such as medical images and associated
labels. Second, as our study reveals, the presence of malicious
models within collaborative training not only degrades the
accuracy of the centralized model but also negatively affects
its convergence.
In this paper, we investigate the domain of medical images,

conducting our experiments on the PneumoniaMNIST – a
dataset which is a part of Medical MNIST dataset [8]. We
utilize our Model Anomaly Detection (MAD) technique based
on FL model trust evaluation during the collaborative ML
model training.
The idea behind MAD consists of the set of techniques to

identify and exclude malicious participants from the training
process on the aggregation server [7]. By calculating trust val-
ues based on each client’s historical behavior and the quality
of their contributions, this approach allows for the detection
and exclusion of clients supplying abnormal models from the
aggregation process. MAD approach also incorporates trust
thresholds for the client exclusion, enabling greater flexibility
for implementation across diverse domains beyond medical
imaging. The contributions of this work are as follows:

A. Using the medical imaging dataset, we verify that our MAD
algorithm improves the overall FL security by identifying and
excluding anomalous models from the joint training process;

B. We show that incorporation of MAD security measures
improves the model convergence;

C. We show that the early exclusion of malicious parties
allows for more robust aggregated model to be achieved
earlier.

II. MODEL ANOMALY DETECTION FOUNDATION

Our MAD approach is based on the calculation of the
trust indicator for each model that is supplied by participat-
ing clients [2], [9]. Before generating the final model, the
aggregation server uses K-means clustering on the clients’
model parameters to group them based on similarity. We then
calculate each client’s reputation, R, using the normalized
Euclidean distance d from the center of the main cluster.
Initially, the reputation Rt0

i for the i-th client is based on the
first training round, where di is the difference between one and
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Fig. 1. Federated Learning Model Training Process

the normalized distance. Reputation is updated in each round:
if d → ω (with ω set to 0.5 in our case), R increases linearly; if
d < ω, it decreases exponentially. We also apply exponential
smoothing to update parameters, combining the current and
previous round’s reputation with a smoothing factor ε (0.75
in our case). The reputation at time t is adjusted based on
the previous value Rt→1

i , penalizing clients that supply poor-
quality models and requiring consistent positive contributions
to build reputation.

Rt0
i = di R, d ↑ [0, 1] ↓ R (1)

Rt
i =

{
(Rt→1

i + di) + (Rt→1
i /t), if d → ω,

(Rt→1
i + di)↔ e→(1→d)(Rt→1

i /t) if d < ω
(2)

Rt
i =

{
1, if R → 1

0, if R ↗ 0
(3)

Rt
i = ε ·Rt

i + (1↔ ε) ·Rt→1
i (4)

Finally, the trust indicator, derived from R, determines how
changes in R affect trust for each client. If the trust score falls
below a set threshold ε, the client’s model is excluded from
the current and future aggregation rounds. Trust for the i-th
client at time t is calculated using R, the trust value di, and
the previous round’s trust value, with the first round starting
at 0 for all clients. We use the same exponential smoothing
method for trust, with a ε value of 0.85. This ensures that
clients with consistently good contributions maintain trust,
while those with lower reputation or questionable models are
removed from the FL process.

Trustti =
√
(Rt

i)
2 + d2i ↔

√
(1↔Rt

i)
2 + (1↔ di)2 (5)

Trustti = ε · Trustti + (1↔ ε) · Trustt→1
i (6)

Trustti =

{
1, if Trust → 1,

0, if Trust ↗ 0
(7)

III. EMPIRICAL STUDY

A. Target Domain

For the assessment of our MAD approach, we explore the
domain of computer vision applications for medical imaging.
FL is especially suitable for medical image processing since
its architecture enables local data preservation, thus facilitating
the collaboration among hospitals and medical centers [3], as
well as ensuring the compliance with privacy regulations such
as HIPAA [3]. FL-enabled setups preserve patient privacy and
comply with legal and ethical constraints, which is especially
important in handling sensitive medical images from MRI, CT,
X-ray, and histology. For instance, FL is already increasingly
being used for tasks like tumor detection, organ segmentation,
and disease diagnosis based on imaging data [4].

B. Data Collection

In our setup, we exercise the task of binary classification uti-
lizing the PneumoniaMNIST dataset, a part of MedicalMNIST
[8]. The dataset consists of 5856 images (4708 for training) of
the chest x-rays with the labels indicating whether the patient
associated with each X-ray was diagnosed with pneumonia.
Since each image is stored as an array representing pixel
brightness values, we process the dataset in order to convert
these arrays into PNG images, which are more appropriate
for simulating the real-world conditions. The MedicalMNIST
dataset does not contain metadata that could link images to
specific data sources due to privacy restrictions. Therefore,
we distribute the training partition of the dataset in its entirety
among participating clients manually in an IID (Independent
and Identically Distributed) manner in such a way so that each
client has its own subset of images, and these subsets do not
intersect between each other. The IID setting is suitable for
theoretical evaluation of our MAD mechanism. Examples of
the images from the dataset can be found in Figure 2.
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Fig. 2. Examples of dataset images: (a), (b) – chest x-rays of patients without
diagnosed pneumonia; (c), (d) – chest x-rays of patients with diagnosed
pneumonia

C. Attack Model
We implement label flipping as a poisoning attack in our

testing setup. We consider this specific type of attack, because,
on the one hand, in the case of an intrusion this type of
attack is easy for a malicious party to implement [5], and, on
the other hand, it can significantly degrade the global model
performance [5]. We implement 100% label flipping for 20%
of participating clients as we see this as a realistic partition
when considering a medical institution collaboration in the
medical image processing domain.

D. Federated Learning Testbed Setup
For our experiments, we employ our FL testbed that is

based on the Flower framework [1] that incorporates a custom
aggregation strategy featuring MAD algorithm. This setup
involves 10 participating clients and a range of 100 to 1000
aggregation rounds, depending on the experiment. Our testbed
enables the comparison of metrics, such as aggregated loss
and accuracy, across different simulation strategies with the
consistent number of aggregation rounds. We vary the aggre-
gation round at which the detection and exclusion of malicious
clients is initiated, and execute FL simulations under these
conditions. Subsequently, we analyze the collected history of
loss and evaluation accuracy for each strategy.

IV. RESULTS

Figure 3(a) illustrates the history of average client loss over
rounds across strategies where the MAD algorithm is engaged
from aggregation rounds 5, 20, 40, 60, and 80. Additionally,
we illustrate the history of average client loss for the case when
there is no attack. During each simulation, our MAD algorithm
was able to detect and exclude both malicious clients that
performed the label flipping attack on their data subsets. On
the one hand, as clearly displayed on this figure, the exclusion
of anomalous models leads to the immediate and significant
decrease in the loss (in our experiments we utilized cross-
entropy loss function). It is also clear from this graph that the
presence of anomalous models entirely deteriorates the model
training, as the average loss does not converge to an optimal
value, instead slightly increasing with each aggregation round.
On the other hand, as one can see in Figure 3(b), the removal
of malicious clients immediately improves the average training
accuracy.
In order to further showcase the importance of removal of

malicious clients for the FL robustness with the regard to
its accuracy, we conduct another set of simulations with the

greater number of aggregation rounds. Specifically, we run the
simulation for a total of 1000 rounds, comparing the average
evaluation accuracy history of benign clients when the MAD
algorithm was activated at round 10 versus round 500. The
outcomes, shown in Figure 3(c), indicate that the presence of
malicious clients in the aggregation process adversely impacts
the accuracy of benign clients. The architecture of FL explains
this effect: during centralized aggregation, anomalous models
influence the global model, which is then redistributed to
all clients at the end of each round. Moreover, the average
accuracy in the presence of anomalous models is not only less
in comparison to the case when such models were removed
at the round 10, but also fluctuates from round to round until
the MAD algorithm engages and the round 500, rendering the
lesser robustness of the FL setup as a whole.

V. CONCLUSION

In this study we showed the importance of the implemen-
tation of MAD techniques in FL, with a focus on applications
within the domain of medical imaging. We employed our
MAD algorithm that is based on the client trust evaluation,
utilizing the PneumoniaMNIST dataset, a subset of MedicalM-
NIST, for our experiments. The simulations were conducted
within our FL testbed that is based on the Flower framework,
incorporating our custom aggregation strategy. Across all of
our experiments, the MAD algorithm successfully detected and
excluded clients that performed the label flipping attack on
their training subsets, from the training process. The removal
of malicious clients increased the overall security of FL setup,
as these clients were no longer able to receive global model
updates, thereby preventing them from conducting member-
ship inference attacks. Furthermore, our results showed that
early exclusion of malicious clients improves the evaluation
accuracy of benign client models, contributing to a more robust
FL setup – an essential factor in sensitive fields such as
medical imaging.
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Fig. 3. Comparison of collected metrics among conventional FL and aggregation strategies with MAD applied at different aggregation round. (a) - history of
average loss among clients, (b) - history of average accuracy among clients, (c) - history of average accuracy of benign clients.
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