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We reconcile the multiplications on the homotopy rings of motivic ring spectra used by Voevodsky and
Dugger. While the connection is elementary and similar phenomena have been observed in situations like
supersymmetry, neither we nor other researchers we consulted were aware of the conflicting definitions
and the potential consequences. Hence this short note.

14F42; 13A02

The homotopy groups of a motivic spectrum E form a Z�Z–graded abelian group ��;?E. If E is a motivic

ring spectrum, then the multiplication induces a ring structure on ��;?E, which, if E is commutative,

should be graded commutative, as explained in [Dugger 2014]. Voevodsky [2003] displays the dual

Steenrod algebra A�;? as a ring with graded commutativity x � y D y � x � .�1/ac for x 2 Aa;b and

y 2 Ac;d — the same convention is used in [Hoyois et al. 2017; Spitzweck 2018] — while [Dugger 2014]

yields x �y D y �x �.�1/.a�b/.c�d/ �.�1/bd . These are different formulas: for instance, Voevodsky claims

�0� D ��0 and, according to [Dugger 2014], we must have that �0� D ���0.

The authors were distressed to discover this, and, worryingly enough, none of those we consulted had

discovered the discrepancy (although [Dugger 2014] claims that the Betti realization is not a ring map).

Was there a subtle mistake buried in the literature somewhere? Something was surely wrong. But what?

Don’t panic

Fortunately, the results are not irreconcilable, and in fact the solution is already to be found in [Dugger

2014, Proposition 7.2]:

“The” homotopy ring of a motivic ring spectrum A is not canonical.

Let us recall the outline of this story:

(1) Taking as given the usual bigraded family of spheres Sp;q , one obtains a bigraded abelian group

��;?A D
L

p;q �p;qA. But equipping this with a product requires fixing a choice of isomorphisms

�a;b W Sa1;a2 ^ Sb1;b2 Š Sa1Cb1;a2Cb2 in the stable homotopy category. For the product to be

associative, a set of familiar pentagonal diagrams has to commute; when this happens, let us say

that the collection of �–isomorphisms is coherent.
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(2) Let S denote the motivic sphere spectrum. The set of coherent collections of �–isomorphisms is a

torsor for the group Z2.Z�Z; .�0;0S/�/ of reduced 2–cocycles on the group Z�Z with values in the

group of units in the ring �0;0S. In other words, if we fix one collection of coherent �–isomorphisms,

then any other such collection differs from it by such a reduced 2–cocycle. Recall here that a

function ˛ W Z � Z ! .�0;0S/� is a 2–cocycle when ˛.u C v; w/ � ˛.u; v/ D ˛.v; w/ � ˛.u; v C w/

for u; v; w 2 Z
2, and is reduced when ˛.0; 0/ D 1.

(3) Two different choices of coherent �–isomorphisms typically lead to two different ring structures

on ��;?A. The difference 2–cocycle is a coboundary precisely when there is a bigraded iso-

morphism between these rings that multiplies elements of each bidegree a D .a1; a2/ by a fixed

unit ea 2 �0;0.S/�. Such isomorphisms are called standard isomorphisms in [Dugger 2014].

See [Dugger 2014, Section 7] for details on the above.

It turns out that the �–isomorphisms chosen in [Dugger 2014] lead to a different ring structure on ��;?A

than the one used by Voevodsky, even up to standard isomorphism. Of course, we can still translate between

the two rings, and it is not exactly that one choice is right and one is wrong — if a person keeps their wits

about them as far as remembering the different conventions, there are no contradictions. But below we

will analyze a collection of different choices and make some suggestions about which ones seem ideal. We

stress that the underlying symmetric monoidal structure of motivic spectra and the definition of homotopy

groups are the same in [Dugger 2014; Voevodsky 2003]; it is only the choice of coherent �–isomorphisms

(not explicitly spelled out in [Voevodsky 2003], but in some sense there implicitly) that differs.

That multigraded objects have flexibility in sign conventions has been observed in situations other than

motivic homotopy theory, for instance in supersymmetry [Deligne and Morgan 1999]. We comment on

this, as well as on the connection to equivariant theory, in Remarks 2 and 3 below.

The signs they are a-changin’

Regardless of the base scheme, �0;0S always contains the following four (not necessarily distinct) square

roots of 1: 1, �1, � and ��, where �1 and � are given by g 7! g�1 on the topological and Tate circles,

S1 and Gm, respectively. When choosing the coherent isomorphisms

Sa1;a2 ^ Sb1;b2 Š Sa1Cb1;a2Cb2 ;

where Sa1;a2 D .S1/^.a1�a2/ ^ G
^a2

m , the convention in [Dugger 2014] was as follows: every time

two S1’s are moved past each other, the sign �1 appears, and every time two Gm’s are moved past

each other, we get an �. But swapping S1’s and Gm’s is not assigned any punishment in [Dugger 2014].

This convention makes sense if S1 and Gm are regarded as generic objects without any special relation

between them, which was the case in the more general settings treated in [Dugger 2014]. However, this

particular choice raises a problem: when the ground field is the complex numbers, Betti realization sends

Gm to Gm.C/ ' S1, so moving a Gm past an S1 is detected in topology. Consequently, with these
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conventions, the Betti realization map ��;?X ! ��X.C/ is not a ring homomorphism — there is an

annoying sign that comes up (see [Dugger 2014, Proposition 1.19]).

A better approach is to recognize that the isomorphism Sa1;a2 ^ Sb1;b2 Š Sa1Cb1;a2Cb2 should involve

a2.b1 � b2/ swaps of Gm’s past S1’s and we can choose to include a “generalized sign” factor to track

this. To this end, choose once and for all a unit u 2 �0;0S. In our applications we will have u2 D 1 and

u will play the role of a “generalized sign”, but the basic setup only needs u to be invertible. If A is

any motivic ring spectrum with unit map � W S ! A, we may consider the Z�Z–graded ring .��;?A; � /

provided by [Dugger 2014] and we may consider the alternative .��;?A; �u / with

x �u y D x � y � �ua2.b1�b2/

when x 2 �a1;a2
A and y 2 �b1;b2

A (“punishing” each swap of Gm’s past S1’s by multiplying with u).

Here ˛u..a1; a2/; .b1; b2// D �ua2.b1�b2/ is the 2–cocycle from our story. The cocycle condition gives

associativity of �u, and the other axioms for a ring follow readily. If A is commutative then the same

proof as for [Dugger 2014, Proposition 1.18] shows that x � y D y � x � .�1/.a1�a2/.b1�b2/�a2b2 . So

x �u y D y �u x � .�1/.a1�a2/.b1�b2/�.�a2b2ua2.b1�b2/u�b2.a1�a2//

D y �u x � .�1/.a1b1Ca1b2Ca2b1Ca2b2/�.�a2b2ua2b1�a1b2/

D y �u x � .�1/a1b1�.�u/a2b1�a1b2�.��/a2b2 :

In particular, if �.�/ D �.u/ D �1 then �.��/ D �.�u/ D 1 and thus

x �u y D y �u x � .�1/a1b1 :

This is exactly Voevodsky’s convention for commutativity in the dual Steenrod algebra: graded commuta-

tivity with respect to the total grading (see [Voevodsky 2003, Theorem 2.2]).

Remark 1 We used a special 2–cocycle in the above computations, but this wasn’t necessary. For any

reduced 2–cocycle ˛, we can define x �˛ y D x � y � ˛..a1; a2/; .b1; b2//, and then there is an associated

commutativity formula of the form

x �˛ y D y �˛ x � w..a1; a2/; .b1; b2//;

where w is a 2–cocycle that is skew-symmetric in the sense of w.a; b/ D w.b; a/�1. In fact,

w.a; b/ D .�1/.a1�a2/.b1�b2/�a2b2˛.a; b/�1˛.b; a/:

Proposition An invertible element u in �0;0S gives a functor A 7! .��;?A; �u / from motivic ring spectra

to Z�Z–graded rings.

Choosing u D �1 or u D � gives graded rings conforming with Voevodsky’s commutativity formulas for

ring spectra A having the property that �A.�/ D �1. Choosing u D 1 gives the multiplication in [Dugger

2014].

Also , over the complex numbers , when choosing u D �1 or u D �, Betti realization gives a map of

(commutative) graded rings by forgetting weight.

Algebraic & Geometric Topology, Volume 24 (2024)
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For a given choice of u, we can ask whether the rings .��;?A; � / and .��;?A; �u / happen to be isomorphic

via a standard isomorphism. Deciding this is equivalent to checking whether ˛u is a coboundary. But, if

ˇ is a 1–cochain, then .ıˇ/.a; b/ D ˇ.a/ � ˇ.a C b/ C ˇ.b/ and is therefore symmetric in a and b. As

˛u is not symmetric, it is not a coboundary.

If u2 D 1 then the subgroup hui of .�0;0S/� is just Z=2, and since B.Z � Z/ is the 2–torus we have

H 2.Z � ZI Z=2/ D Z=2. So, as far as twisting by u goes (once u is fixed), there are only two different

standard isomorphism classes of homotopy rings that can arise: these are represented by the products

� and �u that we saw above. Allowing arbitrary twists from the subgroup f1; �1; �; ��g increases the

number of possibilities to four.

Remark 2 Of course, these considerations hold in situations other than motivic homotopy theory. An

interesting example is that of C2–equivariant spectra. When over the real numbers, evaluating at complex

points gives a symmetric monoidal functor from motivic spectra to C2–equivariant spectra, where S1.C/

corresponds to the trivial representation and Gm.C/ to the sign representation � . Thus, choosing your

u’s in the same way in the motivic and in the C2–equivariant setting gives that Betti realization induces a

map of (commutative) bigraded rings.

In this C2–equivariant context, in addition to the forgetful map to nonequivariant spectra there is also

the fixed-point functor A 7! �A. This induces maps of groups �p;q.A/ ! �p�q.�A/, and so we can ask

whether ��;?.A/ ! ��.�A/ is a ring homomorphism. For u D �1 it is not, but for u D � it is. For this

reason we suggest that u D � is the best choice for both motivic and C2–equivariant homotopy. With this

convention, the graded-commutativity formula for the homotopy ring of a ring spectrum is

xy D yx � .�1/a1b1.��/a2b1Ca1b2Ca2b2 D yx � .��/.a1�a2/.b1�b2/ � �a1b1

for x 2 �a1;a2
A and y 2 �b1;b2

A.

Remark 3 We mention a connection to supersymmetry. Choosing u D 1 corresponds to the “Deligne

convention” (see [Deligne and Morgan 1999, 1.2.8]), where commuting something in degree a C b�

with something in degree c C d� would introduce the penalty .�1/acCbd� (where .�1/� is the twist

on the sign representation) while choosing u D � would result in the “Bernstein convention” with sign

.�1/.aCb�/.cCd�/.

Remark 4 Another approach to these issues is to grade the stable homotopy ring by invertible objects

rather than by isomorphism classes of invertible objects. This is sometimes referred to as a Pic–grading,

though that terminology can be confusing since Pic is often used for isomorphism classes of invertible

objects. For example, in the context of G–equivariant stable homotopy theory, one has to remember that

�V �W X depends on the pair of representations .V; W / and not just on the class V � W in RO.G/. In

the Pic–grading, �V ˚W X and �W ˚V X are different groups, albeit isomorphic ones.

The Pic–grading eliminates all questions of sign choices: everything works out canonically. However, the

cost is that one does not have a ring graded by a manageable collection of objects, so this approach is not
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conducive for computation. The sign issues considered in this paper arise when one tries to reduce the

Pic–grading to something practical for computation.

The effect on the motivic stable homotopy ring

These considerations led us to wonder whether any well-known relations in the motivic stable homotopy

groups change under the different sign conventions. For example, do any of the relations in [Dugger and

Isaksen 2013] depend on the sign convention? See [Isaksen and Østvær 2020] for a recent survey article

on motivic stable homotopy groups.

First of all, the relation .1 � �/�2 D 0 witnesses that � must play a role in graded commutativity. When

we commute the element � in �1;1 past itself, a factor of � appears. Note that 2�2 is not zero in general;

this is detected in the R–motivic homotopy groups.

Consider the list
�; �; �; �; �top; �top; �top

of elements of degrees

.�1; �1/; .1; 1/; .3; 2/; .7; 4/; .1; 0/; .3; 0/; .7; 0/;

respectively. These seven elements are defined in the motivic stable homotopy ring over any base. As far

as we are aware, the only way to produce additional “universal” examples is to assemble these elements

with Toda brackets.

By inspection, it turns out the commutativity relations amongst these elements are the same when u D 1

or u D �. The “error” factor �a2b1Ca1b2 is not equal to one in some cases. However, in all such cases, we

are saved by the relations .1 � �/� D 0 and .1 � �/� D 0.

This observation led us to search further for an explicit example where the cases u D 1 and u D � give

different commutativity relations in the motivic stable homotopy ring. We inspected the 2–complete

R–motivic stable homotopy ring in a large range [Belmont and Isaksen 2022], and we found no possible

differences. Similarly, a brief, speculative investigation of 3–complete homotopy yielded no examples.

On the other hand, assume that � detects a stable homotopy element of degree .0; �1/. This assumption

holds, for example, in the p–complete context over the field C. Then the cases u D 1 and u D �

give different commutativity relations. For example, if u D 1, then �� D ��� in �3;1; but if u D �,

then �� D ���� .

This investigation led us to notice a pattern in the 2–complete R–motivic stable homotopy groups that

had not been previously observed.

Conjecture Let ˛ have degree .s; w/ in the 2–complete R–motivic stable homotopy ring. If .1 � �/˛ is

nonzero , then w is even.
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