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We reconcile the multiplications on the homotopy rings of motivic ring spectra used by Voevodsky and
Dugger. While the connection is elementary and similar phenomena have been observed in situations like
supersymmetry, neither we nor other researchers we consulted were aware of the conflicting definitions
and the potential consequences. Hence this short note.

14F42; 13A02

The homotopy groups of a motivic spectrum E form a Z xZ—graded abelian group w4 « E. If E is a motivic
ring spectrum, then the multiplication induces a ring structure on 7wy« « £, which, if £ is commutative,
should be graded commutative, as explained in [Dugger 2014]. Voevodsky [2003] displays the dual
Steenrod algebra si4 . as a ring with graded commutativity x - y = y - x - (—=1)% for x € s, and
y € . 4 — the same convention is used in [Hoyois et al. 2017; Spitzweck 2018] — while [Dugger 2014]
yields x- y = y-x-(—1)@b)c=d) (_1)bd These are different formulas: for instance, Voevodsky claims
ToT = T 7o and, according to [Dugger 2014], we must have that tot = —1 1.

The authors were distressed to discover this, and, worryingly enough, none of those we consulted had
discovered the discrepancy (although [Dugger 2014] claims that the Betti realization is not a ring map).
Was there a subtle mistake buried in the literature somewhere? Something was surely wrong. But what?

Don’t panic

Fortunately, the results are not irreconcilable, and in fact the solution is already to be found in [Dugger
2014, Proposition 7.2]:

“The” homotopy ring of a motivic ring spectrum A is not canonical.
Let us recall the outline of this story:
(1) Taking as given the usual bigraded family of spheres S#4, one obtains a bigraded abelian group
Tx A =P ».q Tp.q A. But equipping this with a product requires fixing a choice of isomorphisms
Gap: S22 A §bi:b2 o gartbi.az+ba i he stable homotopy category. For the product to be

associative, a set of familiar pentagonal diagrams has to commute; when this happens, let us say
that the collection of ¢p—isomorphisms is coherent.
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(2) Let S denote the motivic sphere spectrum. The set of coherent collections of ¢p—isomorphisms is a
torsor for the group Z2(Z xZ, (770,0S)*) of reduced 2—cocycles on the group Z xZ with values in the
group of units in the ring ¢ ¢S. In other words, if we fix one collection of coherent ¢p—isomorphisms,
then any other such collection differs from it by such a reduced 2—cocycle. Recall here that a
function a: Z x Z — (70,0S)* is a 2—cocycle when o (u + v, w) - a(u, v) = (v, w) - (u, v + w)
for u, v, w € Z2, and is reduced when «(0,0) =1.

(3) Two different choices of coherent ¢—isomorphisms typically lead to two different ring structures
on m« «A. The difference 2—cocycle is a coboundary precisely when there is a bigraded iso-
morphism between these rings that multiplies elements of each bidegree a = (a1, a;) by a fixed
unit e, € 19,0(S)*. Such isomorphisms are called standard isomorphisms in [Dugger 2014].

See [Dugger 2014, Section 7] for details on the above.

It turns out that the ¢—isomorphisms chosen in [Dugger 2014] lead to a different ring structure on 4 A
than the one used by Voevodsky, even up to standard isomorphism. Of course, we can still translate between
the two rings, and it is not exactly that one choice is right and one is wrong —if a person keeps their wits
about them as far as remembering the different conventions, there are no contradictions. But below we
will analyze a collection of different choices and make some suggestions about which ones seem ideal. We
stress that the underlying symmetric monoidal structure of motivic spectra and the definition of homotopy
groups are the same in [Dugger 2014; Voevodsky 2003]; it is only the choice of coherent ¢p—isomorphisms
(not explicitly spelled out in [Voevodsky 2003], but in some sense there implicitly) that differs.

That multigraded objects have flexibility in sign conventions has been observed in situations other than
motivic homotopy theory, for instance in supersymmetry [Deligne and Morgan 1999]. We comment on
this, as well as on the connection to equivariant theory, in Remarks 2 and 3 below.

The signs they are a-changin’

Regardless of the base scheme, 7 oS always contains the following four (not necessarily distinct) square

1

roots of 1: 1, —1, € and —e, where —1 and ¢ are given by g — g~ on the topological and Tate circles,

S! and G,,, respectively. When choosing the coherent isomorphisms

§91,:a2 5 gb1b2 ~ Sal+bl,az+b2’

where $%1-92 = (S1)Ma1=a2) A G2 the convention in [Dugger 2014] was as follows: every time
two S!’s are moved past each other, the sign —1 appears, and every time two G,’s are moved past
each other, we get an €. But swapping S!’s and G,,’s is not assigned any punishment in [Dugger 2014].
This convention makes sense if S and G, are regarded as generic objects without any special relation
between them, which was the case in the more general settings treated in [Dugger 2014]. However, this
particular choice raises a problem: when the ground field is the complex numbers, Betti realization sends
Gm to G(C) ~ S, so moving a G, past an S! is detected in topology. Consequently, with these
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conventions, the Betti realization map 4« X — m«X(C) is not a ring homomorphism — there is an
annoying sign that comes up (see [Dugger 2014, Proposition 1.19]).

A better approach is to recognize that the isomorphism S?1:42 A §b1:02 o~ ga1+b1.a2+b2 ghoyld involve
ay (b1 — by) swaps of G,’s past S1’s and we can choose to include a “generalized sign” factor to track
this. To this end, choose once and for all a unit u € 7¢,9S. In our applications we will have u?>=1and
u will play the role of a “generalized sign”, but the basic setup only needs u to be invertible. If 4 is
any motivic ring spectrum with unit map n: S — A, we may consider the ZxZ-graded ring (1% + A4, )
provided by [Dugger 2014] and we may consider the alternative (7« + 4, -, ) with

Xup=x-y- nuaz(bl—bz)

when x € 74, 4,4 and y € 7p, p, A (“punishing” each swap of G,’s past S s by multiplying with u).

Here oy, ((ay, az), (b1, by)) = nu®2(®1=52) js the 2—cocycle from our story. The cocycle condition gives

associativity of -, and the other axioms for a ring follow readily. If 4 is commutative then the same

proof as for [Dugger 2014, Proposition 1.18] shows that x - y = y - x - (—1)@ a2 (b1=b2) cazbz g,
XuV=Yux- (_1)(a1—az)(bl—bz)n(eazbzuaz(bl—bz)u—bz(al—az))

u X (_1)(a1b1+a1b2+a2bl+a2b2) a2b2ua2b1—a1b2)

=Y n(e
= g (= 1)@ (g @br1—a1ba  (_gyazba
In particular, if n(e) = n(u) = —1 then n(—e) = n(—u) = 1 and thus
Xy =y x- (=140,
This is exactly Voevodsky’s convention for commutativity in the dual Steenrod algebra: graded commuta-

tivity with respect to the total grading (see [ Voevodsky 2003, Theorem 2.2]).

Remark 1 We used a special 2—cocycle in the above computations, but this wasn’t necessary. For any
reduced 2—cocycle «, we can define x -4 y = x-y-a((ay,az), (b1, b3)), and then there is an associated
commutativity formula of the form
XagV=D)VuaX: w((al ’ a2)7 (bl’ b2))7

where w is a 2—cocycle that is skew-symmetric in the sense of w(a, b) = w(b,a)~!. In fact,

w(a, b) = (—1)@=a)bi1=b2) cazbz, (y p\~1o(p, g).
Proposition An invertible element u in 7o oS gives a functor A+ (7« + A, -, ) from motivic ring spectra
to Z,x Z—graded rings.

Choosing u = —1 or u = € gives graded rings conforming with Voevodsky’s commutativity formulas for
ring spectra A having the property that n4(e) = —1. Choosing u = 1 gives the multiplication in [Dugger
2014].

Also, over the complex numbers, when choosing u = —1 or u = €, Betti realization gives a map of
(commutative) graded rings by forgetting weight.
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For a given choice of u, we can ask whether the rings (774 « 4, -) and (7« « 4, -, ) happen to be isomorphic
via a standard isomorphism. Deciding this is equivalent to checking whether «,, is a coboundary. But, if
B is a 1—cochain, then (§8)(a, b) = B(a) — B(a + b) + B(b) and is therefore symmetric in @ and b. As
oy 1S not symmetric, it is not a coboundary.

If u? = 1 then the subgroup (u) of (7g,0S)* is just Z/2, and since B(Z x Z) is the 2—torus we have
H*(Z xZ;7]2) = 7/2. So, as far as twisting by u goes (once u is fixed), there are only two different
standard isomorphism classes of homotopy rings that can arise: these are represented by the products
- and -, that we saw above. Allowing arbitrary twists from the subgroup {1, —1, ¢, —€} increases the
number of possibilities to four.

Remark 2 Of course, these considerations hold in situations other than motivic homotopy theory. An
interesting example is that of C,—equivariant spectra. When over the real numbers, evaluating at complex
points gives a symmetric monoidal functor from motivic spectra to C;—equivariant spectra, where S (C)
corresponds to the trivial representation and G, (C) to the sign representation o. Thus, choosing your
u’s in the same way in the motivic and in the C,—equivariant setting gives that Betti realization induces a
map of (commutative) bigraded rings.

In this Cy—equivariant context, in addition to the forgetful map to nonequivariant spectra there is also
the fixed-point functor 4 — ¢A. This induces maps of groups 7, 4(A) — 7p—q(¢A), and so we can ask
whether 74 »(A) — 7« (¢A) is a ring homomorphism. For u = —1 it is not, but for u = € it is. For this
reason we suggest that # = € is the best choice for both motivic and C,—equivariant homotopy. With this
convention, the graded-commutativity formula for the homotopy ring of a ring spectrum is

Xy = yx- (_l)albl (_G)azb1+a1bz+azbz = yx- (_6)(01—02)(171—172) .ea1b
for x € mg, a,A and y € 7y, p, A.

Remark 3 We mention a connection to supersymmetry. Choosing # = 1 corresponds to the “Deligne
convention” (see [Deligne and Morgan 1999, 1.2.8]), where commuting something in degree a + bo
with something in degree ¢ 4+ do would introduce the penalty (—1)%¢T049 (where (—1) is the twist

on the sign representation) while choosing # = € would result in the “Bernstein convention” with sign
(_1)(a+ba)(c+da).

Remark 4 Another approach to these issues is to grade the stable homotopy ring by invertible objects
rather than by isomorphism classes of invertible objects. This is sometimes referred to as a Pic—grading,
though that terminology can be confusing since Pic is often used for isomorphism classes of invertible
objects. For example, in the context of G—equivariant stable homotopy theory, one has to remember that
my—w X depends on the pair of representations (V, W) and not just on the class V — W in RO(G). In
the Pic—grading, npyow X and mpqp X are different groups, albeit isomorphic ones.

The Pic—grading eliminates all questions of sign choices: everything works out canonically. However, the
cost is that one does not have a ring graded by a manageable collection of objects, so this approach is not
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conducive for computation. The sign issues considered in this paper arise when one tries to reduce the
Pic—grading to something practical for computation.

The effect on the motivic stable homotopy ring

These considerations led us to wonder whether any well-known relations in the motivic stable homotopy
groups change under the different sign conventions. For example, do any of the relations in [Dugger and
Isaksen 2013] depend on the sign convention? See [Isaksen and @stvar 2020] for a recent survey article
on motivic stable homotopy groups.

First of all, the relation (1 —€)n? = 0 witnesses that € must play a role in graded commutativity. When
we commute the element 7 in 71 ; past itself, a factor of € appears. Note that 2n? is not zero in general;
this is detected in the R—motivic homotopy groups.

Consider the list
P, N, VYV, 0O, TMNop,» Viep» Otop

of elements of degrees

(_1’_1)’ (171)’ (3?2)? (7’4)’ (1?0)? (3’0)’ (79 0)9

respectively. These seven elements are defined in the motivic stable homotopy ring over any base. As far
as we are aware, the only way to produce additional “universal” examples is to assemble these elements
with Toda brackets.

By inspection, it turns out the commutativity relations amongst these elements are the same when u = 1
or u = €. The “error” factor €#261ta1b2 j5 ot equal to one in some cases. However, in all such cases, we
are saved by the relations (1 —¢)p =0 and (1 —€)n = 0.

This observation led us to search further for an explicit example where the cases u = 1 and u = € give
different commutativity relations in the motivic stable homotopy ring. We inspected the 2—complete
R-motivic stable homotopy ring in a large range [Belmont and Isaksen 2022], and we found no possible
differences. Similarly, a brief, speculative investigation of 3—complete homotopy yielded no examples.

On the other hand, assume that 7 detects a stable homotopy element of degree (0, —1). This assumption
holds, for example, in the p—complete context over the field C. Then the cases u = 1 and u = €
give different commutativity relations. For example, if u = 1, then tv = —v7 in 73 ;; but if u = ¢,
then Tv = —evr.

This investigation led us to notice a pattern in the 2—complete R—motivic stable homotopy groups that
had not been previously observed.

Conjecture Let o have degree (s, w) in the 2—complete R—motivic stable homotopy ring. If (1 —€)x is
nonzero, then w is even.
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