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Abstract

Soil moisture plays a critical role in several domains and
can be used to inform decision-making in agricultural set-
tings, drought forecasting, forest fire predictions, and wa-
ter conservation. Soil moisture is measured using in-situ
and remote-sensing equipment. Depending on the type of
equipment that is used, some challenges must be reconciled,
including the density of observations, the measurement pre-
cision, and the resolutions at which these measurements
are available. In particular, in-situ measurements are high-
precision but sparse, while remote sensing measurements
benefit from spatial coverage, albeit at lower precision and
coarser resolutions. The crux of this study is to produce
higher-precision soil moisture estimates at high resolutions
(30m). Our methodology combines scientific models, deep
networks, topographical characteristics, and information
about ambient conditions alongside both in-situ and remote
sensing data to accomplish this. Domain science infuses sev-
eral aspects of our methodology. Our empirical benchmarks
profile several aspects and demonstrate that our method-
ology accounts for spatial variability while accounting for
both static (soil properties and elevation) and dynamically
varying phenomena to generate accurate, high-precision
30m resolution soil moisture content maps.

CCS Concepts

• Information systems→ Geographic information systems;
• Computing methodologies → Neural networks; Spa-
tial and physical reasoning.
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1 Introduction

There has been a proliferation of in-situ and remote sens-
ing equipment in several geospatial domains such as atmo-
spheric sciences, agriculture, environmental and ecological
monitoring, etc. These systems are used extensively to mon-
itor and understand diverse phenomena[3, 69]. The devices
report measurements at different frequencies, precision, and
spatial resolutions.

Remote sensing systems provide excellent spatial cover-
age encompassing vast spatial extents (often earth scale).
However, the data are available at coarse resolutions, and the
reported measurements are commensurately low-precision
and contribute to averaging effects across the spatial extent.
The coarse measurements coupled with the lower temporal
revisit intervals preclude effective use in decision-making.

In-situ sensing environments provide high-precisionmea-
surements and are typically equipped with networking ca-
pabilities and batteries allowing data generation to occur at
higher frequencies. Given that in-situ devices provide point
measurements their spatial coverage is poor. The costs for
deploying in-situ sensors to ensure reasonably dense spatial
coverage are often too prohibitive.

Scientific models encapsulate domain science and knowl-
edge within the community to describe, analyze, and fore-
cast phenomena. A challenge with scientific models is their
parameterization to account for regional variations coupled
with ancillary measurements to seed and calibrate them.

The crux of this study is the generation of higher-precision
soil moisture content (SMC) maps at high spatial resolutions
(30m) daily that can facilitate decision-making. Soil mois-
ture, which is the amount of water available in the soil,
plays a critical role in several domains including agriculture
and forestry. The broader science issue that we consider is
how to combine remote sensing, in-situ data, and scientific
models to produce high-precision (similar to in-situ) maps
at higher resolutions (much higher than remote sensing),
with substantial spatial coverage (similar to remote sensing),
and at moderate temporal frequencies (higher than remote
sensing but lower than what in-situ devices provide). This
research is based on the overarching principle of knowledge-
guided machine learning (KGML) as further explained in
the related work.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678717.3691261&domain=pdf&date_stamp=2024-11-22
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1.1 Challenges

Generation of soil moisture maps by combining in-situ, re-
mote sensing, and scientific models face several challenges.

(1) Regional heterogeneity: Soil moisture is subject
to regional variations stemming from ambient con-
ditions. As such, methods should account for such
heterogeneity that drive subtle variations.

(2) Multimodal data:Generation of suchmaps relies on
the inclusion of ancillary data relating to topography,
weather, and soil characteristics. These multimodal
data are often available at different resolutions.

(3) Voluminous data: Cumulatively, the data are volu-
minous and available at different dimensionality, and
rates, and may have temporal and spatial sparsity.

1.2 Research Questions

Specific research questions that we explore include:
RQ-1: How can we combine the benefits of remote sens-

ing and in-situ sensing schemes?
RQ-2: How can we leverage domain science to regulate

model training and ensure scientific consistency in models?
RQ-3: How can we reconcile the competing pulls of com-

putational tractability vs. refining models that are tuned to
the particular spatial extent?

1.3 Approach Summary

The two sources of ground-truth SM measurements are at
different precisions and spatial resolutions are: (1) NASA’s
SMAP satellite producesmedium-precision, coarse-resolution
(36km i.e., each pixel is a 1000 sq km) estimates that are
unable to account for field-scale variations. (2) In-situ sta-
tions maintained by state agencies in the U.S. provide high-
precision measurements albeit at a limited number ( 1200)
of locations nationwide. Our model reconciles these limita-
tions while estimating SMC precisely at finer-scale spatial
resolutions and larger spatial extents is critical.

We combine data from in-situ, remote sensing, and sci-
entific models alongside ancillary data to generate higher-
precision soil moisture maps. To accomplish this, we rely
on a novel mixture of - (1) data wrangling, (2) creation of
science-infused training datasets, (3) leveragingmulti-modal
data from ancillary phenomena that contribute to variations
in soil moisture such as meteorological, topological, and
soil properties, (4) designing deep neural networks with
carefully calibrated layers to account for spatiotemporal
variations, (5) leveraging clustering to segment the U.S. into
hydrologically similar spatial extents, and (6) training deep
networks using multi-part, science-guided loss functions.

Our data-wrangling schemes rely on leveraging data from
diverse sensing equipment alongside related phenomena.
These data are available at different resolutions and tempo-
ral frequencies. Furthermore, the data have a mix of static
components – such as soil properties, hydraulic conductiv-
ity, and topographical information – and dynamically vary-

ing components such as measurements, weather, vegetation,
etc. We spatiotemporally align these datasets, partition them
along pre-configured boundaries, and disperse them over
our cluster of machines to ensure data locality. Next, we

generate fixed-size tiles from these datasets that are suited
for being input to our models.

We supplement these with data from a well-known scien-
tificmodel, HydroBlocks[14], to curate training datasets. Hy-
droBlocks outputs are generated at 30m resolutions. While
HydroBlocks encapsulates domain science, a disadvantage
of HydroBlocks is that there are errors in its estimations.
We reconcile errors in the HydroBlocks data using ground-
truth data from in-situ sensors and remote sensing in the
loss function during model training.

Our deep networks consider observations (in-situ and
remote) alongside ancillary information such as topography,
elevation, weather conditions, etc., that, when collated to-
gether, get us closer to generating accurate, high-resolution
estimates. Our deep network, DeepSoil, is a variant of the
U-Net architecture [56]. It is a convolutional neural net-
work commonly used for image-to-image translation tasks.
U-Net is ideal for tasks like semantic segmentation, image
colorization, and medical image analysis, as it preserves
spatial details and contextual information through skip con-
nections, making it highly effective in maintaining image
quality during translation. We modify this architecture to
generate high-resolution soil moisture maps, by adding spa-
tial feature maps to further enhance image quality.

We calibrate custom loss functions to ensure effective
training of our deep networks. Our loss functions are multi-
part, science-guided, and account for several aspects such
as the mean squared error (MSE), incorporating SMC of
in-situ observations, and enforcing fuzzy bounds on the
expected variation of soil moisture within a tile. Different
components of the loss function are weighted dynamically
to account for their contributions and significance during
model training. Our loss functions allow the training to be
robust and numerically stable while enhancing the model’s
capability for generalization. This is accomplished by regu-
lating the model training using the van-Genuchten model
[63], which characterizes theWater Retention Curve (WRC),
capturing the relationship between water content and soil
water properties.

Finally, our methodology involves a scaling component
that relies on an ensemble of models to generate the soil
moisture maps. Rather than train each of these constituent
models exhaustively, we first partition the area of interest
(CONUS or the contiguous United States) into a set of clus-
ters based on their land cover, climatic classifications, and
soil characteristics.

1.4 Contributions & Translation Impact

Our methodology targets the generation of high-precision
soil moisture maps from observational and other ancillary
data to produce high-resolution maps at temporal frequen-
cies that can be used to inform decision-making. Our specific
contributions include the following:

(1) We reconcile multimodal data from not just sensing
devices, but other ancillary data.

(2) Our methodology combines the spatial coverage of
remote sensing with the precision of the in-situ mea-
surements.
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(3) This study represents a novel combination of sci-
entific models, deep networks, equations governing
physics of the phenomena used to regulate how the
model learns, and multimodal data working in tan-
dem to generate soil moisture maps.

(4) We demonstrate how ancillary-related data can be
combined with scientific/domain-theoretic models
to inform the generation of soil moisture maps. In
particular, we show how such models can be trained
and how their loss functions can be calibrated and
refined to guide the training of models.

Translational Impact: Similar issues arise in other sci-
entific domains where remote sensing sources may have
higher spatial coverage, but lower precision while in-situ
measurements may have poor spatial coverage but higher
precision. Combining such diverse observational phenom-
ena to produce higher-precision maps at high resolutions
has applications in tracking greenhouse gas emissions, eco-
logical monitoring, health hazards due to airborne pollu-
tants, and other phenomena where spectral measurements
are available alongside in-situ observations. Finally, we note
that there will always be subtle regional variations relat-
ing to ambient conditions; it is important to account for
these variations to ensure model accuracy. The proposed
methodology describes how to accomplish this objective.

2 Datasets Leveraged in DeepSoil

2.1 Input and Target Datasets

Our methodology is designed to produce daily soil moisture
maps at 30m spatial resolutions. A key focus is on accu-
rately estimating soil moisture values in the top 5 cm of soil.
We have developed a model that accounts for a rich set of
features from phenomena that influence soil dynamics. We
categorize these data sources into two main groups: ‘Static’
and ‘Dynamic’ Phenomena. These datasets play a pivotal
role in training our multi-step deep neural network. Static
features represent attributes or characteristics that are rela-
tively constant for a given region but have variability across

spatial regions. In contrast, dynamic phenomena include
features that change on a daily/hourly basis. In our model,
DeepSoil, we integrate 11 distinct datasets, each described
in this section and tabulated in Table 3 (see Appendix A.3);
we also leverage these datasets for inferences and estimates
that we produce over the states of Colorado and Oklahoma.

1) Static Phenomena

Soil Properties:We incorporate two distinct soil proper-
ties datasets: the Gridded National Soil Survey Geographic
(gNATSGO) Database [61] and the Probabilistic Remapping
of SSURGO (POLARIS) soil properties [15] dataset, both
covering the CONUS.

From the gNATSGO database, we selectively utilize a sub-
set of key properties at 30m spatial resolution. These include
the available water storage estimate (in mm) and the thick-
ness of soil components (in cm). The available water storage
estimate is a vital factor in our soil moisture estimation,
offering insights into the actual soil water content at a given
location. Although it exhibits dynamic characteristics and
is influenced by factors such as precipitation, plant water

uptake, and evaporation, it serves as a baseline for the ex-
pected available water storage in a particular region. This is
very useful, especially in regions where in-situ observation
stations are lacking. Additionally, we incorporate derived
features at coarser (90m) spatial resolution, encompassing
available water content, field capacity, and soil porosity. The
available water content represents the range of moisture
available for plant uptake. In cropping settings, the available
water content is between the soil’s maximum water-holding
capacity (field capacity) and the point at which plants can no
longer extract water effectively (wilting point). Soil porosity
provides information about soil pore volumes that impact
water-holding capacity, aeration, and root penetration.

The POLARIS dataset provides additional details (at 30m
resolution) about soil properties, including soil texture, pH,
organic matter content, and mineral composition. We specif-
ically leverage data on soil texture, such as silt, clay, and sand
percentages. Additionally, we utilize bulk density (𝑔/𝑐𝑚3),
residual soil water content (𝑚3/𝑚3), organic matter (%),
and saturated hydraulic conductivity (𝑙𝑜𝑔10 (𝑐𝑚/ℎ𝑟 )) to ac-
count for soil mass per unit volume and its ability to transmit
water. One such known relationship is between soil organic
matter and soil porosity, where a high percentage of organic
matter increases soil porosity value, allowing the soil to
store more water and air for plant roots, thus increasing
soil moisture content [26]. Also, soil moisture, soil matric
potential, and hydraulic conductivity hold non-linear re-
lationships with soil potential (energy exerted by plants
to extract water from the soil) which varies depending on
soil texture and composition (soil particle size), pore size,
organic matter content, etc. These interactions are also ex-
pressed using soil retention curves (WRCs) and hydraulic
conductivity functions (HCFs).

Satellite Imagery:We also include cloud-free satellite
imagery obtained from the Landsat 8 Collection 2 Level-2
atmospherically corrected surface reflectance product [41].
This imagery provides a high-resolution view of the land
surface at 30m across the red, blue, green, and near-infrared
(NIR) spectra. These spectral bands enable us to compute
the Normalized Difference Vegetation Index (NDVI), a valu-
able indicator for assessing vegetation health. Lower NDVI
values suggest moisture-stressed vegetation, while higher
values indicate denser and healthier green vegetation.

Land Cover and Climatic Conditions:We incorporate
two additional datasets to enhance our model’s contextual
grounding. The first dataset is the National Land Cover
Database (NLCD) [25] that provides a comprehensive clas-
sification of the Earth’s surface into 16 distinct categories,
including forests, urban areas, agriculture, and water bodies.
This dataset enables precise characterization of land covers
within our study area.

The second dataset we leverage is the Köppen climate
classifications [33]. The Köppen classifications offer insights
into long-term climatic patterns across different geographic
regions. In particular, these classifications segment CONUS
into 30 classes organized under five primary climatic groups:
tropical, dry, temperate, continental, and polar.

Elevation Dataset: Relative slopes have an impact on
pooling, watermovement, and soil moisture variationswithin
a region. We include the 3D Elevation Program’s (3DEP) 1
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Arc-second Digital Elevation Models (DEMs) dataset [62].
This dataset represents the bare-earth topographic surface,
offering elevation values at a 30m spatial resolution.

2) Dynamic Phenomena

Meteorological Conditions:We leverage the Gridded
Surface Meteorological (GridMET) dataset [5] for access
to daily surface meteorological data covering CONUS. The
GridMET data is at 4 km resolution and includes several
meteorological variables that exhibit dynamic changes over
time such as precipitation accumulation, maximum and min-
imum relative humidity, temperature, etc.

Leaf Area Index (LAI): To capture the dynamic as-
pect of vegetation and its influence on soil moisture, we
incorporate the MODIS/ Terra+Aqua Leaf Area Index/FPAR
(MCD15A3H.061) dataset [46] available every 4 days at 500m
resolution. The leaf area index plays a pivotal role in regu-
lating soil moisture dynamics. As vegetation grows, it can
extract water from the soil through transpiration. Higher
leaf area index values may indicate increased water uptake,
potentially leading to reduced soil moisture levels, while
lower values suggest reduced vegetation. The dataset quan-
tifies the leaf area in a specific region; the leaf area index
changes with plant growth and seasonal variations.

Satellite-Based Soil Moisture Maps:We also rely on
the Soil Moisture Active Passive (SMAP) satellite data [21]
to obtain a time-series of soil moisture measurements at a
spatial resolution of 9 km within the top 5 cm of the soil.
This dataset is categorized as a Level 3 product, presenting
daily composites derived from Level 2 surface soil moisture
data (36 km). The dataset offers a relatively coarse estimate
of soil moisture, providing an overview of moisture trends
within a region [22, 31], although with limited precision in
capturing field-scale soil moisture.

In-situ Soil Moisture Measurements [RQ-1]: Our ob-
jective in this research extends beyond generating high-
resolution (30m) soil moisture maps using deep neural net-
works (DNNs). A key goal is to ensure accuracy and pre-
cision that are close to in-situ station data. Notably, Hy-
droBlocks exhibits errors when compared to in-situ obser-
vations. A key source of these errors seems to be limitations
in accounting for the influence of precipitation events on
soil moisture dynamics. In-situ soil moisture station data
is the most accurate soil moisture estimate available; given
that it is a point measurement the estimate is accurate within
proximate spatial regions (typically 10-30m), making our
task particularly challenging.

To produce 30m spatial soil moisture maps that closely
align with in-situ data, we harness soil moisture measure-
ments from 15 distinct soil moisture observation net-

works, as detailed in Table 2 (see Appendix A.3). In total,
there are 1216 observation stations, each continuously
measuring soil moisture levels on an hourly/daily basis. The
precise locations of these stations are depicted in Fig. 1.

Physics-Based Soil Moisture Maps [RQ-2]: SMAP-
Hydro Blocks (SMAP-HB) [14, 65] are high-resolution soil
moisture maps generated through a physics-based approach
using the Tau-Omega Radiative Transfer Model (RTM), re-
verse RTM models and Bayesian Merging Scheme. This
methodology starts by identifying hydrologically similar

Figure 1: Geographic distribution of in-situ soil mois-

ture monitoring stations operated by state and federal

agencies within the United States.

units within a region, capturing interactions based on mete-
orological, topological, water flow, and hydrological proper-
ties of the soil. Next, RTM-based temperature products are
computed and integrated with SMAP L3 brightness temper-
ature observations through a Bayesian merging approach.
Finally, an inverse RTM is applied to convert these temper-
ature products into downscaled soil moisture maps. This
satellite-based surface soil moisture dataset covers an entire
continent, serving as our primary target dataset for training
our deep neural networks. Although not representing the
ground truth data, it provides accurate soil moisture (7%
MAE) that closely approximates real-world conditions. The
HydroBlocks product offers data at a 30m spatial resolu-
tion, with a temporal frequency of 6 hours, encompassing
CONUS but only for the period spanning 2015 to 2019.

3 Methodology

Our overall approach for generating 30m daily soil moisture
maps is presented in Fig. 2. Our methodology encompasses:

(1) Data wrangling and harmonization: To reconcile and
harness diverse multimodal data. We distribute our
raw input datasets uniformly across a cluster of ma-
chines, with each machine responsible for prepro-
cessing and modeling a subset of the data.

(2) Design of deep neural networks: The network design
includes layers suited to our task alongside a calibra-
tion of the network structure and hyperparameters
using the HyperBand algorithm[36].

(3) Science-guided loss functions: We have designed a
novel, multi-part loss function that accounts for non-
linear interactions between soil properties to regulate
how our deep neural network learns.

(4) Clustering regions based on SMC dynamics: This is
used to manage the competing pulls of refinements
and computational requirements. Rather than train
an all-encompassing model, we cluster spatial ex-
tents based on their spatial similarities along soil and
hydrological characteristics. Models are trained for
clusters of regions. During inferences, each spatial
extent is parameterized based on their available mul-
timodal data.

Our model development proceeds in two phases. First, we
design a model that forecasts monthly average soil moisture
maps. The monthly-average model captures nonlinear rela-
tionships between soil characteristics within a region and
the monthly average precipitation patterns within a spatial
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Figure 2: System Overview: Dataset preprocessing is performed while preserving data locality. k-means++ cluster-

ing, process-based models, and science-informed multipart loss functions are key components of DeepSoil.

extent. The coarse temporal granularity of the monthly-
average model allows us to ensure accuracy and provides
contextual grounding for the daily-moisture model.

In the second phase, we design a daily-moisture estima-
tion model that specializes in assimilating daily variations
across input features such as meteorological data (GridMET),
leaf area indices, land cover, and topographical information
to estimate daily soil moisture maps. We also include coarse-
grained, low-precision SMAP satellite soil moisture mea-
surements. All the input datasets fed to the daily-moisture
model are available daily and at diverse spatial resolutions.

Our methodology partitions the area of interest into spa-
tial extents, 𝑆𝐸 . Each spatial extent, 𝑆𝐸 , comprises 9 tiles,
and each tile has 64x64 pixels, where each pixel has a 30m
resolution. Our training datasets are collated in terms of
spatial extents. For each spatial extent, we spatiotemporally
harmonize and align multimodal data across meteorologi-
cal, topographical, soil properties, etc. These data are often
available at different spatial resolutions. Spatial extents are
also employed to adjust soil moisture estimates generated
using scientific models.

3.1 Data Preprocessing [RQ-1]
Our research involves the integration of diverse data sources
with varying value ranges, spatial resolutions, and temporal
frequencies. To ensure efficient model training, we harmo-
nize all datasets to a consistent spatial resolution (30m),
temporal frequency (daily), one-hot encoding (for categor-
ical data), and normalized values (0 to 1). Missing values
are marked as -1, and a mask is created to identify these
locations. Datasets that are not available on a daily basis un-
dergo the nearest temporal interpolation process to bridge
temporal gaps using proximate temporal scans. For spatial
consistency, we employ OpenCV’s [10] inter-nearest image
resizing, reducing all datasets to a uniform 64x64 pixels.

To handle large raw tiles, some of which encompass the
entire CONUS, we adopt the quadkeys concept [1]. This ap-
proach recursively divides the geospatial coordinate space
into non-overlapping bounding boxes, each assigned a spe-
cific identifier. Smaller quadkey lengths represent larger spa-
tial regions. We partition all datasets with 14-character-long
quadkeys. For GridMET and SMAP datasets with coarser
spatial resolutions, we use 12-characters long quadkeys.
This partitioning strategy aligns with memory and compu-
tational constraints during model training.

In addition to partitioning images into 64x64 spatial re-
gions, we introduce the concept of Spatial Extent (𝑆𝐸 ). This
is a spatial region generated bymerging 9 neighboring 64x64
tiles centered around an in-situ station. The resulting image
encompasses a larger spatial area, measuring 192x192 pixels.

This is illustrated in Fig. 11 (in Appendix A.3). When we
cluster the tiles and perform the warm-start model training,
we have used a similar scheme of spatial extents.

3.2 Clustering Regions [RQ-3]
Next, we identify regions that share similar soil moisture dy-
namics and properties. This is achieved by integrating an ex-
tensive range of environmental and climatic datasets. These
datasets encompass the Köppen climate map, landcover in-
formation, elevation data, seasonal averages of soil moisture
extracted from SMAP observations, and soil property data
sourced from the POLARIS and gNATSGO databases.

We cluster spatial extents characterized by similar soil
moisture dynamics and properties. We leverage k-Means++
clustering algorithm, known for its capacity to optimize
cluster initialization. Identification of the number of clus-
ters, k, is guided by the maximization of Silhouette scores
which assess how well data points within a cluster are sep-
arated from each other compared to how close they are to
data points in neighboring clusters. We classify 1216 spatial
extents into 19 distinct clusters.

The number of identified clusters corresponds to the num-
ber of distinct model instances that we train. We train 19
distinct model instances, each specializing in the prediction
of soil moisture dynamics within regions classified as hy-
drologically similar. Each cluster is comprised of 20 to 110
distinct locations. We distribute the training data across 19
machines, each corresponding to these distinct clusters, and
simultaneously train the models. Each model utilizes locally
stored data on its respective machine’s disk.

3.3 DNN Architecture [RQ-2, RQ-3]
Our proposed architecture is a modified U-Net framework
[27], a 4-block encoder-decoder DNN with skip connections
between corresponding layers in both the encoder and de-
coder stacks. DeepSoil has a total of 12.9 million trainable
parameters (see Appendix A.3 Fig. 10).

Each encoder block comprises a stack of 2D convolutional
layers, batch normalization, and LeakyReLU activation func-
tions within the inner layers. In contrast, the outer layer em-
ploys a ReLU activation function, ensuring that all negative
values are set to zero. These activation functions allow our
network to model and capture complex non-linear relation-
ships between input variables such as hydraulic conductiv-
ity, porosity, etc, and output soil moisture predictions. These
encoder blocks extract embeddings from the input meteoro-
logical and hydrological features. Identical decoder blocks re-
place the convolutional layer with Conv2DTranspose, which
upsamples the latent vector (4x4x512) from the encoder back
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to a 64x64 image, representing the generated soil moisture.
Skip connections are introduced to recover information lost
during input downsampling in the Encoder blocks. Skip
connections have been known to facilitate faster training
and gradient flow during backpropagation, effectively miti-
gating the vanishing gradient problem. Dropout layers are
also strategically added to prevent overfitting during model
training. In the final decoder block, we employ a concatena-
tion operation, merging low-level features extracted from
the NDVI index, landcover classification maps, and Landsat-
derived bands with the upsampled image from the U-Net
architecture. This enhances model performance by captur-
ing intricate spatial relationships within the input data. This
informs our model’s understanding of road structures, agri-
cultural patterns, and spatial region structures, ultimately
improving its ability to produce high-quality outputs.

3.4 Science-Guided Loss Function [RQ-2]
A key contribution of this study is a novel loss function to
regulate model training by accounting for the influence of
key physical processes that account for the dynamics of soil
water content within the top 5 cm of soil. We use multi-part
loss functions that combine traditional measures of learn-
ing with domain science. Our multipart loss functions go
beyond pixel-to-pixel error minimization to include con-
sistency with well-established physical laws in hydrology,
such as those derived from the van-Genuchten equations
(see Equation 3). This ensures that the model’s predictions
are not only accurate but also aligned with well-known
underlying hydrological relationships.

Our loss function accounts for various factors, including
soil texture, soil dryness/wetness, and available water for up-
take by the plant. The weights assigned to each component
of the loss function are dynamically adjusted over training
epochs tomodify the impact of loss terms on accuracy across
various model training scenarios. For all experiments, the
predicted soil moisture values and the ground truth values
are multiplied by a mask to exclude invalid or missing data
points as marked in the target data.

Overall, our unified loss function is a weighted combina-
tion of the L2 error (MSE) and a science-based loss shown in
Equations (1) and (2), that enforce the scientific consistency
of relationships across soil characteristics, soil matric po-
tential, and soil moisture dynamics during model training.
Here,𝛾 represents a hyperparameter whose value is reduced
dynamically while training to reduce the impact of the basic
loss component (MSE) and increase the weight of the scien-
tific loss term.We dynamically adjust𝛾 based on the training
epoch and the total number of epochs with the objective of
enhancing model performance. Our methodology divides
the training process into steps, gradually decreasing 𝛾 to
fine-tune the learning rate over time. During initial training
epochs, the model prioritizes backpropagating errors from
pixel-wise squared errors of SMC from the HydroBlocks
dataset. Towards the end of the training, the scientific loss
term attains the highest weight as 𝛾 values decrease to 0 to
consider the relations among the predicted SMC and other
soil properties. This approach is an effective optimization

technique for achieving convergence; crucially, as our per-
formance benchmarks demonstrate, this allows DeepSoil
to achieve better generalization on unseen locations.

LTotal = 𝛾 · LMSE + (1 − 𝛾) · Lsci (1)

3.4.1 Mean Squared Errors. We define a custom MSE
loss between the predicted and target soil moisture maps.
This criterion calculates the pixel-wise average of the squared
difference between the corresponding valid elements of the
predicted and target soil moisture maps. The squaring op-
eration, allows the MSE to be more sensitive to outliers or
large errors. The MSE plays a significant role during the
initial training epochs when errors are typically higher.

𝐿MSE =
1

𝐵

𝐵∑

𝑘=1

1

𝑁

𝑁∑
𝑖=1

(
𝑤𝑖 ·

��𝑥𝑘,𝑖 ·𝑚𝑎𝑠𝑘𝑘,𝑖 − 𝑦𝑘,𝑖 ·𝑚𝑎𝑠𝑘𝑘,𝑖
��2)

(2)

Here, 𝐿MSE represents the average MSE over the training
dataset. B represents the number of images in the batch.
N is the total number of pixels in each image. 𝑥𝑘,𝑖 is the
value of the pixel at index i in the predicted image of the
k-th image in the batch. 𝑦𝑘,𝑖 is the value of the pixel at
index i in the target image of the k-th image in the batch.
𝑤𝑖 is the weight associated with the pixel at index I. For
the 16 neighboring pixels around the given index where
in-situ is located,𝑤𝑖 has a higher value, giving them more
importance than remaining pixels, and 𝑚𝑎𝑠𝑘𝑘,𝑖 provides
valid pixel locations.

3.4.2 SoilWater Retention Curves (WRC). As reported
by the authors of HydroBlocks, the SMC dataset exhibits
notable errors that can range from approximately 7% to
15%, when compared to in-situ station measurements of soil
moisture. Given our reliance on HydroBlocks as a scien-
tifically consistent target dataset, addressing the inherent
disparities between these target values and ground-truth
measurements is necessary.

Figure 3: Using van-Genuchten to capture nonlinear

relationships between water content and soil matric

potential (in logarithmic scale) for different soil types

using 1200+ in-situ sensors observation over a year.

The soil Water Retention Curve (WRC) represents a well-
known relationship between soil characteristics - soil matric
potential (𝜓 ) and water content (𝜃 ) [48]. Soil matric poten-
tial, also known as capillary pressure, denotes the pressure
or energy required to extract water from the soil against
gravity, and the force with which water is withheld within
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soil pores and particles. (𝜓 ) serves as a direct measure of the
available water for plants to uptake from soil. As soil mois-
ture decreases, capillary forces increase, causing water to be
retainedmore tightly within the soil pores. A decrease in soil
moisture thus results in a more negative matric potential (𝜓 ),
indicating a greater energy requirement for water extraction
from the soil and vice versa. The relationship is accurately
captured in a widely-used numerical equation called the
van-Genuchten equation [63], which is based on observed
field/lab values of soil properties. Our model training relies
on this scientific relation between soil properties, soil matric
potential, and SMC to adjust the model’s trainable parame-
ters. Key parameters characterizing this relationship include
soil type, residual water content, saturated water content,
the 𝛼 parameter influencing curve shape (shown in Fig. 3),
and the n parameter representing soil pore-size distribution.
This relationship can be mathematically formulated -

𝜓 =
1

𝛼
·
[ (𝜃𝑠 − 𝜃𝑟

𝜃 − 𝜃𝑟

)𝑛/𝑛−1
− 1

]1/𝑛
(3)

here,𝜓 is soil matric potential, 𝛼 is inverse of air-entry
value, 𝜃𝑠 is saturated water content, 𝜃𝑟 is residual water con-
tent, 𝜃 is volumetric water content, 𝑛,𝑚 are some constants
defining curve. Our scientific loss term then becomes -

𝐿𝑠𝑐𝑖 = 𝜓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −𝜓𝑡𝑎𝑟𝑔𝑒𝑡 (4)

We capture this non-linear relationship in our science-
guided loss function to calculate 𝜓 using Equation (3) by
leveraging some of the variables from POLARIS datasets
available at 30m resolution and ground-truth SMC using
in-situ sensors. The soil matric potential serves as a regular-
ization term for our DeepSoil model by calculating how far
the desired𝜓 is from the𝜓 calculated usingmodel-generated
SMC. In regions where SMC is unavailable through in-situ
sensors, our target dataset, HydroBlocks SMC is used to
calculate𝜓 using the van-Genuchten equation. By integrat-
ing both HydroBlocks data and in-situ measurements, we
leverage the strengths of both these products. This approach
helps us mitigate inaccuracies inherent in HydroBlocks by
weighting them appropriately using convolutional layers of
our deep neural network and refining the model using more
accurate in-situ data. This enhances the overall accuracy of
our predictions.

DeepSoil learns the relation between soil matric poten-
tial and soil moisture content by learning patterns over
diverse soil conditions at different locations.

By integrating station-based error adjustments through
loss function into our approach, we achieve a higher level
of precision and reliability in the target soil moisture maps
that we used to train our model against. This scientific ap-
proach enables us to capture localized variations and ad-
dress discrepancies between ground truth measurements
and physics-modeled values (HydroBlocks), ultimately in-
creasing the accuracy of our predictions.

4 Empirical Benchmarks & Evaluation

To assess the performance of our models, we performed
empirical benchmarks over a 19-node cluster. Each node in
our distributed cluster is equipped with an Intel Xeon E5-
2620v3 processor, 64 GB of RAM, and a Quadro P2200 GPU

with 5GB of memory and 1280 cores. Our approach involves
the uniform distribution of datasets, organized by spatial
clusters identified through quadkey assignments. Data origi-
nating from different sources but sharing the same quadkey
are placed on the same machine to ensure data locality and
minimize network transfers during model training.

We use the PyTorch framework and the Adam Optimizer
to train all our models. We train our models for 1000-1500
epochs, leveraging a dataset comprising 13,000 randomly
selected training samples over 1219 spatial extents. The
input dataset used for training consists of soil moisture maps
from the year 2019, focusing on areas close to in-situ stations,
as visualized in Fig. 1. We evaluate the performance of our
models using data from unfamiliar geographical locations.

4.1 Loss function components [RQ-2]
We begin by assessing the significance of incorporating a
science-guided loss function into our model training pro-
cess. Our combined loss function comprises two primary
components: the traditionalMSE loss (𝐿MSE) and the science-
guided loss component (𝐿sci). Each of the component’s weights
is dynamically adjusted while training. We start by evaluat-
ing the contribution of each of these loss terms.

(a) 𝐿MSE (b) 𝐿MSE with learning rate decay

(c) 𝐿MSE and 𝐿sci (HydroBlocks) (d) 𝐿MSE and 𝐿sci (In-situ sensors)

Figure 4: MAE for models with different combinations

of MSE and science-guided loss components. The test-

ing errors are measured using MAE between predicted

and target soil moisture maps at unseen locations.

In Fig. 4, we depict training and testing loss profiles un-
der four different scenarios - (1) Training only with the
MSE loss function (also BASELINE model i.e. without using
science-guided learning), (2) Training with MSE loss while
gradually reducing learning rate by a factor of 0.8 every
100 epochs using step scheduler, (3) Training with MSE loss
and scientific loss using𝜓 prediction based on HydroBlocks’
model outputs, and (4) Training with MSE loss and scientific
loss using𝜓 prediction based on in-situ sensor observations.

The optimal model training results are achieved when
the loss function combines (𝐿MSE and 𝐿sci) using in-situ
observations while reducing 𝛾 parameter using step decay.



SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Khandelwal et al.

This combination yields an outstanding overall testing loss
of 0.017 (1.7%) and a testing PSNR of 34.48 dB. While a
model trained only with the MSE loss exhibits relatively low
testing MAE (1.9%) and PSNR accuracy of (33.92 dB), the
images produced are slightly blurry and lack finer details.

Figure 5: Sample images generated by models trained

with different configurations: (a) Target SMC map; (b)

𝐿MSE, (c) 𝐿MSE with learning rate decay, (d) 𝐿MSE and

𝐿sci using HydroBlocks-based soil matric potential.

and (d) 𝐿MSE and 𝐿sci using in-situ sensor data.

An important observation is that while the loss value of
a model trained with the MSE loss is considerably low, the
image quality is quite low when assessing using measures
such as PSNR and SSIM (structural similarity index measure;
higher the better), which quantifies the fidelity of images.
This is evident in Fig. 5, where 5(b) and (c) corresponds
to an image generated by a model trained only with MSE
in the loss function. The image appears blurry and lack-
ing in finer, sharper spatial details such as road structures
and landcover boundaries. Overall, the training and testing
loss show that much better generalization achieved us-

ing the scientific loss component, and the model does

not overfit. This shows that DeepSoil is able to cope with
limited training samples (due to the low number of in-situ
sensors) while achieving a solid performance over entirely
unseen locations. As can be seen, the SMC maps are much
sharper than pure MSE-based loss functions.

Figure 6: Emergent behavior in DeepSoil: Regenera-

tion of missing pixels based on landcover types.

We also observed an emerging behavior within our DNN
models, as depicted in Fig. 6. These models were trained
with a science-guided loss function, leveraging inputs from
landcover maps, NDVI indices extracted from Landsat im-
agery. We observed that approximately 1.1% of pixels in the

Table 1: Comparing SMAP, HydroBlocks, and varia-

tions of DeepSoil w.r.t to ground station data.

Model MAE Std. Deviations

SMAP 0.26 +/- 0.06
HydroBlocks 0.077 +/- 0.067

BASELINE (𝐿𝑀𝑆𝐸 ) 0.061 +/- 0.043
𝐿MSE with learning rate decay 0.16 +/- 0.062
𝐿MSE and 𝐿sci (HydroBlocks) 0.0638 +/- 0.046
𝐿MSE and 𝐿sci (In-situ sensors) 0.046 +/- 0.0331

HydroBlocks ground-truth dataset were missing, primarily
associated with water bodies. While these missing pixels
were intentionally excluded during the loss calculation pro-
cess to decrease training errors, our DNN models exhibited
a remarkable, emergent ability to regenerate these water
bodies effectively. During the testing phase, the model in-
dicated the ability to regenerate the missing pixels within
the image and accurately distinguish soil moisture values
based on the land cover type.

4.2 Clustering [RQ-3]
We did an accuracy analysis of our model, comparing its
performance with and without the incorporation of our k-
means++ clustering scheme. Specifically, we evaluate two
different model training approaches: one involving a single
global model trained on all locations in the training set but
with fewer time steps and the other utilizing models trained
on clustered spatial extents. The clustering process is based
on a combination of soil, land, and hydrological properties,
resulting in 19 distinct clusters.

Figure 7: Training and testing MAE in models with

and without clustering.

As illustrated in Fig. 7, the model trained without cluster-
ing indicates significantly higher errors. It converges slowly
during training but also demonstrates poor performance on
unseen data, with MAE errors increasing to 10-12%. Con-
versely, the models trained using multiple clusters exhibit
faster convergence and consistently achieve lower test loss,
with an average MAE of 5%. These models, when trained on
clustered spatial extents, become more specialized as they
focus on a smaller number of distinct spatial regions. This ex-
periment highlights the advantages of our clustering-based
approach in enhancing model performance and achieving
better generalization overall.
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4.3 30m Resolution SMCMaps [RQ-1, RQ-2]
Finally, we assess the overall effectiveness of our approach
by contrasting soil moisture prediction errors with different
variations of loss functions in DeepSoil, HydroBlocks, and
the satellite-based SMAP 36 km data product. These assess-
ments are performed by contrasting estimates with in-situ,
ground truth measurements. This evaluation is performed
over 100+ testing locations spanning March-November of
2019, which were unseen during the model training phase.
We report MAE and standard deviations in Table 1 for loca-
tions where ground-truth stations are available.

Notably, DeepSoil has an average of a 4.6% soil mois-

ture error when compared to in-situ station observa-

tions over 19 clusters. We achieve a (substantial) 82.3%
reduction in SMC percentage error over SMAP 9 km
and 40.25% reduction in error over HydroBlocks. As
we experiment with different loss terms, the errors reduce
significantly while incorporating scientific knowledge using
van-Genuchten equation. Our model outperforms the BASE-
LINE model that is based on regular MSE-based loss with a
24.59% reduction in errors. DeepSoil reduces the weight of
MSE errors and increases the overall impact of the scientific
equation over training epochs in the loss function. For fair
comparisons, we also performed experiment by training
model using pure MSE-based learning but with reducing
learning rates over epochs (using step learning rate decay).
From Table 1, this variation leads to the worst performance
with an increase in errors by 162.2% and 247.8% compared
to BASELINE and our science-guided model respectively.

Lastly, we compare the model performance and show
how incorporating in-situ sensors in scientific-loss term
helps in reducing errors in HydroBlocks. Overall, we achieve
27.8% decrease in errors when in-situ sensor observations
are leveraged to drive the model training. These results
demonstrate the accuracy and precision of our model in
predicting soil moisture. Our approach has a demonstrably
high correlation with in-situ stations.

We also conducted an extensive evaluation encompassing
the entire state of California and Oklahoma (depicted in Fig.
8 and 9). We compared our predictions with satellite-based
SMC from SMAP at its original sensing resolution of 36 km.
We generated the SMC map for the months of April (for CA,
2024) and July (for OK, 2023) because these months influ-
ence planting and irrigation plans. April marks the start of
the growing season in temperate regions such as California.
Similarly, mid-summer (July), marks a critical period for
crops such as corn as they are in pivotal stage of develop-
ment and are highly sensitive to available water content.
Lack of water intake can lead to significant loss of crop yield.
This evaluation involved utilizing datasets of over 200,000+
64x64 pixel tiles, amounting to approximately 83 GB data.
To contrast the scales involved: our model generated images
for the area of 163,000𝑚𝑖2 for California with 35097x38100
pixels (versus SMAP’s 23x26 pixels) and 24849x11930 pixels
for Oklahoma (versus SMAP’s 9x21 pixels).

SMAP data products include several flags regarding the
poor quality of the data, especially for surfaces with perma-
nent ice and snow, urban areas, wetlands, and proximity of
large water bodies or coastlines [32, 50, 51]. Our experiment

includes coastal regions and urban areas where SMAP is
known to have high errors [16]. Our model performs well
with the limited number of in-situ stations in this target re-
gion and demonstrates an accuracy of higher than 99.7%

across the areas unseen by the model. In particular, this
result highlights the effectiveness of our approach in the
regions where SMAP underperforms significantly.

On the other hand, in Oklahoma, in-situ stations are near-
uniformly dispersed, providing rich data coverage for soil
moisture mapping. DeepSoil consistently demonstrates its
capacity to generate high-quality soil moisture predictions
that closely align with SMAP observations that are very
coarse in spatial resolution. Crucially, our approach captures
subtle spatial variations in soil moisture, particularly in
distinguishing between riverbeds and surrounding land.

Figure 8: Visualizations contrasting soil moisture

maps for April 6th, 2024 over California generated by

DeepSoil (30m) vs SMAP (36km sensed resolution).

We compared our predictions with the soil volumetric
water content (VWC) data produced by Oklahoma State
University at 800m spatial resolution[49], as illustrated in
Fig. 9(c). This map’s generation process involves utilizing
in-situ SMC measurements from the Oklahoma Mesonet for
a regression kriging algorithm. This algorithm integrates
soil texture information, specifically the percentage of sand,
along with the precipitation index. The map depicts elevated
levels of VWC in the western region of the state, with sev-
eral localized hotspots (high VWC). However, this diverges
from both SMAP satellite data and our prediction. These re-
sults, which includes the years 2023 and 2024 show that the
model performs consistently well across years, demonstrat-
ing robustness to climate variations and its ability to capture
non-linear interactions from daily meteorological data and
satellite-based coarse resolution soil moisture content.

5 Related Work

Estimation of soil moisture maps at high precision is critical.
Research efforts can be broadly categorized as being based
onmachine learning techniques, conventional physics-based
models, and hybrid methods that seek to integrate both.

Numerical models: Physics-based approaches use fun-
damental equations to predict soil moisture dynamics. For
example, ParFlow, Hydrus-1D/2D, pedotransfer functions
[14, 17, 35, 42, 44, 53, 54, 60] are numerical hydrologymodels
that employ Richards’ equations to simulate 2D/3D subsur-
face flows. Richards’ equation [55] is a partial differential
equation that estimates water flow through unsaturated
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Figure 9: Visualizations contrasting soil moisture maps over Oklahoma for 17th July 2023 generated by - (a) SMAP

at 36 km resolution, (b) DeepSoil at 30m spatial resolution, and (c) A kriging-based data product from OSU.

soils as a function of space and time. The equation considers
various factors, including soil properties, hydraulic conduc-
tivity, and initial moisture content. These 2D/3D models
account for surface and subsurface water flow, as well as
land surface processes (CLM) such as evapotranspiration
and snow. While it is very effective for simulations, its reso-
lution is limited by the resolution (spatial) of input datasets.
Furthermore, parameterizing the governing equations can
be a challenge alongside the substantial computational re-
quirements. These models also have known deficiencies in
estimating soil moisture values over water-stressed regions.

Machine Learning Approaches: Most recent efforts
have focused on utilizing time-series deep neural networks
[28, 30, 37], such as the dynamic NN in Adeyemi et al. [6],
offering a one-day-ahead irrigation-oriented soil moisture
predictions using LSTM networks while leveraging dynamic
and static climate features. Peng et al.’s [52] introduces the
External Parameter Orthogonalization-Partial Least Squares
model, improving soil moisture predictions by mitigating
the effect of parameters such as soil salinity. In a compar-
ative study, Senyurek et al. [58] assess the performance of
Artificial Neural Networks (ANN), Random Forests (RF), and
Support Vector Machines (SVM) for soil moisture prediction.
Other efforts involve downsampling satellite-basedmeasure-
ments from Landsat and SMAP-based soil moisture using
RFs[67, 68]. Ge et al. [23] propose a method combining UAV
data with Extreme Learning Machines for automated pa-
rameter selection. While these techniques demonstrate solid
performance, often achieving soil moisture errors within
the range of 5-10%, their applicability at larger scales poses
a significant challenge. Point-based prediction and evalu-
ations at smaller spatial scales restrict the generalizability
and scalability of these models.

Physics-informed machine learning models: To ad-
dress these limitations efforts have leveraged knowledge-
guided machine learning (KGML) in other domains. For
example, Karpatne et al. [18, 29] propose an approach that
integrates physics-based principles and domain knowledge
into machine learning models while predicting lake wa-
ter temperature with minimal in-situ measurements. This
involves modifications to loss functions, network architec-
tures, and ingesting numerically simulated input datasets.
Such knowledge-guided efforts have shown promise in var-
ious applications, including weather and climate modeling
[70] and carbon cycling [38]. Some physics-informed ma-
chine learning models [7, 8, 19, 24] formulate water flow
by utilizing numerical models outputs to solve Richard’s
equation in the loss function. In super resolving tasks, ma-
chine learning models like GANs, Pix2Pix networks, and

ESRGAN are often coupled with PDE-constrained loss func-
tions by penalizing errors based on energy spectrum differ-
ences [40, 64]. We adopt a KGML approach that combines
the U-Net architecture with a science-informed loss func-
tion. This combination allows us to predict high-precision
soil moisture maps at 30m resolution at scale.

6 Conclusions & Future Work

In this study, we described our methodology to combine
remote sensing, in-situ sensing, and scientific models to pro-
duce high-precision soil moisture maps. Our results demon-
strate the effectiveness of our model for accurate and precise
soil moisture mapping across diverse geographic regions.

RQ1: Our approach dynamically assigns higher weights
to loss values in the surroundings of in-situ stations. This
tailored approach ensures that the model training is guided
by ground truth data. Despite the sparsity of in-situ data,
our model successfully integrates essential information, en-
abling the generation of large-scale soil moisture maps.
Our empirical evaluation demonstrates that our approach
achieves soil moisture predictions with a very low 4% MAE
when compared to in-situ station measurements.

RQ2: Our weighted multipart loss function assimilates
scientific insights and conventional loss functions. This also
enhances the model’s convergence by tailoring soil moisture
estimates to account for the interrelated factors influencing
them using well-established scientific equations. Our loss
function also contributes to a perceptible improvement in
the quality of the generated images.

RQ3: Our approach of clustering spatial extents based
on soil properties, monthly soil moisture averages, land-
cover types, and other land-surface properties proved to be
effective in reducing training errors when compared to a
single global model trained for CONUS. Additionally, the
clustered approach significantly reduces the required mem-
ory footprint and training times by converging faster. This
allows our models to scale while tuning individual models
for specific spatial regions.

In future work, we plan to extend our approach to predict
soil moisture at deeper soil depths, specifically sub-surface
soil in the range of 5-30 cm using Richard’s Equation to
account for hydraulic conductivity in unsaturated soils.
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A APPENDIX

A.1 Data Availability

All datasets we use are publicly available and several (such
as the in-situ soil moisture sensor data) have redistribution
restrictions.
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A.2 Model Architecture

Figure 10: Soil moisture prediction architecture: the

Encoder-Decoder extracts latent features from various

data sources, which along with high-resolution land-

cover maps and Landsat images are used to produce

30m soil moisture maps. Both input and target images

are 64x64 pixels.

A.3 Dataset Description

Table 2: In-situ soil moisture observational networks

used for DeepSoil predictions. Individual networks

are managed by different federal and state agencies.

Soil Moisture Network/No. of stations

TexMesonet/32 [4] Nebraska Mesonet/18 [59]
Texas Soil Observation Network/69 [13] Oklahoma Mesonet/114 [11, 43]
Kentucky Mesonet/42 [39] USCRN/157 [9, 20]
Missouri Agricultural Database/3 Soil Scape/54 [45]
New York State Mesonet/121 [12] Scan/178
Illinois Climate Network/19 [47] Snotel/350 [57]
Montana Mesonet/14 [2] NoahHMT/21 [66]
Delaware Environment Observing System/24 [34]

Figure 11: Example of multiple spatial extents in

Northern Delaware represented as a 3x3 grid arrange-

ment of 9 tiles. Here, each tile is 64x64 pixels in size.

The center tile in each spatial extent is colored yellow

and encapsulates an in-situ station. Each tile has an

associated unique 14-character key.
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Table 3: Datasets leveraged for training and inferences using DeepSoil.

Dataset Training size Inference Dataset size Spatial Resolution Temporal Resolution

gNATSGO 1.6 GB 8.6 GB 30m Static
Polaris 2.4 GB 45 GB 30m Static
Landsat 351 MB 8 GB 30m 8 days
NLCD 114 MB 2.3 GB 30m Static

Köppen Climate 76 MB 1.7 GB 1km Static
DEM 241 MB 4.2 GB 30m Static

GridMET 3.3 GB 92 MB 4km Daily
MCD15A3H (Interpolated) 41 GB 13.6 GB 500m 4 days

SMAP 1.2 GB 93 MB 9km 2-3 days

HydroBlocks 70 GB - 30m 2-3 days
In-situ stations 1.4 GB - - Daily

Total 121.68 GB 83.56 GB -


