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Abstract—Bit-truncation has demonstrated great potential to
enable run-time quality-power adaptive data storage and thus
enhance the power efficiency of data-intensive applications such
as videos and deep learning. However, existing bit-truncation
memories are custom designed for a specific working condition
of the target application. In this paper, we present a novel bit-
truncation memory with full truncation flexibility, and it can
truncate any number of bits for optimal tradeoff between quality
requirements of applications and power savings. Our experiments
show that the proposed memory can support three different
video applications (including luminance-aware, content-aware,
and region-of-interest-aware) with enhanced power efficiency
(up to 50.03% power savings) as compared to state-of-the art
solutions. Also, the proposed memory achieves up to 66.56% and
63.29% power savings for baseline and lightweight deep learning
models respectively, with a low implementation cost (2.42%).

Index Terms—memory, truncation, quality-adaptive, low-
power, videos, deep learning.

I. INTRODUCTION

Today, the design challenge for an efficient computing

system is growing due to the diminishing benefits from semi-

conductor technology scaling and the increased demands of

data-intensive applications such as video processing and deep

neural networks (DNN) [1]. Fortunately, those applications

usually have non-deterministic specifications and have mul-

tiple acceptable quality levels in different conditions, which

provides exciting opportunities for quality-adaptive low-power

design [2]. Quality-adaptive low-power design aims to dynam-

ically trade off quality and power consumption to optimize

the power efficiency, while meeting the quality requirement

of applications.

To enable quality-adaptive computing systems, bit trunca-

tion is one of the most widely-applied techniques. Compared

to other techniques used for quality-adaptation, e.g., dynamic

voltage scaling, bit truncation has two major advantages: (i)

it can enable more energy savings [3] and (ii) it can achieve

better output quality [4]. For example, studies [4], [5], [6] ap-

plied bit truncation to luminance-aware video memory design

and revealed that more least-significant-bits (LSBs) of pixel

data can be truncated if the video device is operating under

high lighting conditions. Specifically, 3-bit and 4-bit LSBs can

be truncated in overcast and sunlight, respectively. Also, con-

sidering the impact of video content on viewer’s experience,

Edstrom et al. [7] truncated the number of LSBs between

zero-bit to 4-bit according to the micro-block characteristics of

videos. Very recently, Haidous et al. [8] presented a Region-

of-Interest (ROI)-aware video memory, which can truncate

3 LSBs for non-ROI regions of videos to further optimize

video output quality while reducing the power consumption.

As for the above techniques, in each video application, i.e.,

luminance-aware [5], content-aware [7], and ROI-aware [8],

one custom bit truncation memory was developed to enable

adaptation. In other words, existing bit truncation memory

cannot provide flexibility to support different video conditions.

As such, state-of-the art bit truncation memory designs cannot

be used for other applications such as deep neural network

(DNN).

In this paper, we propose a novel bit truncation memory,

coined as TrunMEM, which enables flexible number of bits

truncation with optimal truncation values to support different

video systems as well as DNN inference. Compared to existing

work, TrunMEM is unique in the following ways: First, Trun-

MEM can enable run-time power-quality adaptation to meet

different requirements of the target application. For example,

with full flexibility, it can be used to support all three video

systems (i.e., luminance-aware [5], content-aware [7], and

ROI-aware video storage [8]). Second, by integrating pruning

in the model training process and truncation in the inference

process, TrunMEM achieves precision-scalable DNN to meet

the performance and efficiency requirement of different AI

tasks. Third, TrunMEM automatically sets the truncated bits

to the optimal values for specific video and DNN use-cases,

thereby optimizing the quality to realize maximum power

savings. To the best of the authors’ knowledge, the proposed

TrunMEM has made the first attempt to design a truly flexible

bit-truncation memory to enable quality adaptation and power

efficiency optimization for different applications.

II. ADAPTIVE BIT TRUNCATION

A. Bit Truncation

In order to enable low-power data storage, bit truncation

needs to adapt the number of truncated bits as well as setting

optimal truncation values. In terms of video data which are

represented by 8-bit integer pixel values, it has been concluded

from previous work [7] that setting the truncated LSBs to its

mean value, i.e., 10...0 in binary will minimize the expected

mean square error (MSE). Here, to apply bit truncation to

DNN weight storage, we also study the truncated values for

floating point numbers. Specifically, IEEE 754 single precision

floating point representation was used in our analysis, which

has been used widely in deep learning systems [9]. A 32-bit

number consists of three fields including a 1-bit sign, an 8-bit
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exponent, and the least 23-bit mantissa [10]. In our analysis,

we adopted one of the most popular DNN - AlexNet [11] with

CIFAR-10 dataset [12]. Fig. 1 shows the performance of the

network with two different truncation strategies. From Fig.

1, the following two observations can be made: (i) At least

16 LSBs mantissa can be truncated without accuracy loss;

with more LSBs truncated, it will cause accuracy degradation

with additional power savings. Thus, it has potential to enable

precision-scalable DNN with different precision-power trade-

offs and (ii) filling truncated bits with mean value (i.e., 10...0

in binary) retains a higher classification accuracy as compared

to all zeroing the data, thereby tolerating additional truncation

(Fig. 1). In other words, if a truncated bit is the most-

significant bit (MSB) of all truncated bits, its truncated value

should be 1; otherwise, the truncated value should be 0. Also, it

is worthy to emphasize that, the number of truncated bits may

be different as the neural network changes. A detailed analysis

on different neural networks will be presented in Section 3.

Also, a flexible bit-truncation memory design to adapt the

number of truncated bits and to set the optimal truncation

values is critical to optimize the power efficiency.

Fig. 1: Classification accuracy of AlexNet with different

truncation bits and values.

B. Proposed TrunMEM

Fig. 2 illustrates the architecture of the proposed TrunMEM.

As shown in Fig. 2 (a), the SRAM array consists of Ċ words

by ģ bits, with each bitcell designed as a 6T SRAM. In

addition to the conventional memory components such as pre-

charge unit, write driver, and sense amplifier, each column

of bitcells have a truncation manager circuitry to control

truncation adaptation. Also, to reduce the power consumption

of truncated bits, the proposed truncation manager uses CMOS

power gating circuitry to connect to virtual power rails, which

can either provide a connection to the true power rails, or trun-

cate the signal by putting the virtual rails in high impedance,

as shown in Fig. 2 (b). Accordingly, each column of SRAM

bitcells have their own dedicated pair of virtual rails, such

that a single power gate can disconnect an entire column of

SRAM bitcells at once, thus minimizing power consumption.

Peripheral circuitry operating on a specific column of bits will

also be power-gated along with the SRAM cells for additional

power savings. However, any SRAM bitcell disconnected from

the power and ground rails quickly loses the value stored

inside, and cannot be read from. As such, the truncation

manager circuit also populates read values when bit-lines get

disconnected, which can either be a 1 or 0.

Specifically, as shown in Fig. 2 (b), each truncation manager

consists of a truncation unit, power gating transistors, and an

output multiplexer (Mux). The truncation manager has three

operating states: normal operation without truncation, MSB of

truncated bits (MSB truncated), and non-MSB of truncated bits

(lesser truncated). The signals to control these states are the

two inputs: ĄěėĚ and ĐėğĢ. ĄěėĚ is used to detect whether

it is MSB truncated or not and ĐėğĢ indicates whether it is

lesser truncated or not. The operation process is detailed as

follows. If neither signal for a specific bit (e.g., ith bit) is

active, i.e., ĄěėĚ < ğ >= ĐėğĢ < ğ >= 0, the ith bit will be in

the normal state without truncation and the ĀėĪėċīĪ < ğ >

will be the normal memory readout value (i.e., ĎěėĚ < ğ >.

During the normal state, the virtual rails (Ĭęę ĘĢ < ğ > and

ĝĤĚ ĘĢ < ğ >) remain connected to the supply voltage (Ēÿÿ)

and ground (ăĊĀ), respectively. When ĄěėĚ of the ith bit

is 1, i.e., ĄěėĚ < ğ >= 1, which indicates MSB truncated,

ĀėĪėċīĪ < ğ > will be 1 and Ĭęę ĘĢ < ğ > and ĝĤĚ ĘĢ <

ğ > will be placed into high impedance for power savings.

Similarly, at the lesser truncated state, when ĐėğĢ < ğ >= 1,

virtual power rails enter high impedance and a ĚėĪėċīĪ = 0

value will be generated.

As also shown Fig. 2, in either truncation states, the output

of the ith bit, i.e., ĐėğĢ < ğ > will be applied to next bit

as input, i.e., ĐėğĢ < ğ − 1 >, and therefore the truncation

managers of different bits work in series. As a result, ĄěėĚ is

the only external control signal required to be managed from

external circuitry. This series connection enables control such

that if ĄěėĚ < ğ >= 1, the truncation manager signals to all

lesser significant truncation managers to truncate, via the ĐėğĢ

signals. Accordingly, the truncated memory returns an optimal

truncation value with the most significant truncated bit as 1

and other bits as zeros (i.e., 10...02). The ĐėğĢ < ģ − 1 > is

directly connected to ăĊĀ, and the ĐėğĢ < 0 > signal is left

floating in this design, as they serve no purpose.

It can also be observed from Fig. 2 (b) that the proposed

truncation manager circuit is implemented with several simple

logic gates, which may not induce a large area overhead.

However, the sizing of power gating transistors may be point

of concern, depending on the number of transistors they need

to power. As a result, the number of truncation managers is

a trade-off between flexibility and implementation cost. Full

bit-adaptation is achieved in the design of Fig. 2, which adds

ģ truncation managers to the memory to support any value of

truncation from 0 to ģ − 1 bits. Such a flexible bit truncation

provides the best flexibility to support different applications.

However, to reduce the area overhead, if the target applications

are known, the number of the truncation manager circuit may

be reduced accordingly.
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Fig. 2: Proposed TrunMEM: (a) Memory structure and (b) Truncation manager circuitry and truth table.

III. EXPERIMENTAL RESULTS

A. Experimental Methodology

Hardware-Level Implementation and Verification: To eval-

uate the effectiveness of the proposed memory, an SRAM

with 1024 words by 32 bits was implemented using a 130

nm CMOS technology [13], [14], [15], [16]. Based on the

designed memory, a comprehensive suite of simulations were

performed. Specifically, functionality and performance pa-

rameters including timing diagram, power consumption, and

layout area overhead were evaluated and discussed.

Application-Level Evaluation: In addition to hardware-level

implementation and verification, application-level quality was

also evaluated for both videos and deep learning applications.

In terms of video storage, we used the proposed memory to

support three different video applications: luminance-aware

[6], content-aware [7], and ROI-aware [8] video storage. For

each video application, the video quality and power savings

were evaluated. Specifically, we used two widely-used metrics

including Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index Measure (SSIM) for video quality assessment.

To fully evaluate the effectiveness of the proposed memory

for deep learning, two different models including one basic

VGG-16 model [17], and one filter-pruned lightweight VGG-

16 model are evaluated with TrunMEM. Specifically, we fine-

tuned the pre-trained VGG-16 model on CIFAR-10 dataset

[12], where 50,000 and 10,000 samples are used for train-

ing and testing the model, respectively. The training of the

model has been executed using stochastic gradient decent as

optimizer and categorical cross entropy as loss function. With

batch size of 32, initial learning rate of 0.001, and maximum

150 epochs were used to train the model. These settings have

been identified using the grid search algorithm where the

learning rate, the batch size, and the number of epochs have

been varied from 0.000001 to 0.01, 4 to 256, and 10 to 400

respectively. For both models, the test accuracy with different

truncated bits for weights is evaluated and discussed.

B. Hardware-Level Simulation Results

Timing Diagram: Fig. 3 shows the timing diagram of

TrunMEM. ēĢěĤ, ČĨěþ, ĎěėĚāĤ and ēĨğĪě ěĤ are used

to activate the word-line for reading and writing access,

pre-charge the bit-lines for reading, and enable reading and

writing, respectively. All the ĚėĪėĥīĪ signals are the outputs

of the SRAM from sense amplifiers, with ĚėĪėĥīĪ31 and

ĚėĪėĥīĪ0 being the most and least significant bit, respectively.

Specifically, to test the functionality of TrunMEM, firstly,

the word-line is activated and the 32-bit data ”01010...01” is

written in the first clock cycle. Then, the data is read out in

the following four cycles with various levels of bit truncation.

The pattern for all truncated bits includes the most significant

bit becoming “1” and all other bits “0”. As shown in Fig. 3,

the optimal truncated values are generated for 2-bit, 3-bit, and

16-bit truncations (2 LSBs, 3 LSBs, and 16 LSBs of ĚėĪėĥīĪ)

are “10”, “100”, and “1000 0000 0000 0000”, respectively.

Power Efficiency: The power consumption with different

truncated bits is shown in Fig. 4. As expected, power savings

and number of truncated bits demonstrate a strong linear

relationship. For example, 25%, 50%, and 75% power savings

can be enabled with 8, 16, and 24 truncated bits, respectively.

On average, a power savings of 3.11% will be enabled with

each additional bit truncated.

Implementation cost: As discussed in Section 2.2, the silicon

area overhead of TrunMEM is mainly caused by the added

truncation managers. The layout design of one truncation

manager is shown in Fig. 5. To minimize the area overhead,

Power Gate transistors are implemented using a particular

finger-based design approach. Each power transistor has a

width of 16 µm and it is implemented with eight fingers.

Scaling the transistor width to the total number of fingers

used in order to maximize switching speed. As shown in Fig.

5, a truncation manager occupies an area of 373.37 Ćģ2. To

achieve full bit truncation with best flexibility, 32 truncation

managers are stacked in rows on top of a SRAM with 32

bits in each word, which occupies an area of 11,947.73 Ćģ2.

The total area of a 32x1024 TrunMEM memory is measured
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Fig. 3: Timing diagram of TrunMEM, with writing the binary value ’01010...01’ to a word followed by four reading operations

(starting with normal reading, 2-bit truncation, 3-bit truncation, and 16-bit truncation).

Fig. 4: Power consumption of TrunMEM at each level of bit

truncation on a 32x32 memory array.

as 493511.64 Ćģ2, making the addition of the truncation

managers consume only 2.42% silicon area as compared to

the traditional memory. Since each bit-line uses one truncation

manager, the area overhead ratio of TrunMEM can be further

reduced as the number of words in a memory increases.

Video Storage: We evaluated the video quality with Trun-

MEM following the same process as prior work [6], [7], [8].

Fig. 6 shows the visual output quality with PSNR and SSIM

values as well as enabled power savings using TrunMEM. It

can be seen that the proposed TrunMEM can support all three

video applications with additional power savings. Specifically,

TrunMEM achieves 5.45% and 9.82% power savings as com-

pared to content-aware [7] and ROI-aware [8] video memory

designs, respectively. As compared to luminance-aware video

memory [6], TrunMEM enables 13.79% power savings in

overcast and 17.43% power savings in sunlight, respectively.

Thus, the proposed TrunMEM can support all three different

video applications with enhanced power efficiency.

DNN: Another DNN model - VGG-16 has been used to

evaluate the effectiveness of TrunMEM. The original VGG-

16 model is considered a baseline model. In addition, we

investigated how the filter pruning of the model during the

training process interacts with the bit truncation of TrunMEM

in the inference process. We used a proposed modification

of the Squeeze and Excitation channel attention module [19],

connected the module between each two consecutive con-

volutions layers of the baseline model, and finally retrained
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Fig. 5: Finger-based layout design in truncation managers.

Fig. 6: Visual output quality with TrunMEM. Source videos from [18].

the model for 35 epochs. In addition, we calculated the

significance of the feature maps of each layer of the model

via measuring the scales vector generated at the output of

the channel attention module [19]. We then pruned different

percentages of the least significant filters within each layer

of the model. After pruning the VGG-16 model, the model

was retrained for 150 epochs by using an initial learning rate

of 0.001. The learning rate was further reduced to half of its

value after each 35-epoch to improve the convergence and

the accuracy of the model. The testing accuracy of the model

was then reported when different pruning percentages were

considered. As shown in Fig. 7, using the channel attention

method, the generated lightweight model achieved an almost

95.5% and 90.2% reduction in the model parameters and

Floating Point Operations (FLOPs), respectively at a slightly

lower testing accuracy as compared to the baseline model.

Based on the baseline and the lightweight models, a bit

truncation was applied to the weight storage for power savings.

As shown in Fig. 7, TrunMEM enabled three quality-power

trade-off levels for both models: (i) High Accuracy: without bit

truncation, 93.73% and 91.19% test accuracy can be achieved

by the baseline and lightweight models, respectively; (ii)

Low Power: with 19-bit truncation and 17-bit truncation, the

baseline and the lightweight models can achieve 60.04% and

53.50% power savings with negligible accuracy loss (less than

0.3%), respectively; and (iii) Ultra-Low Power: with a more

aggressive bit truncation, as high as 66.56% and 63.29% power

savings can be achieved by the two models and their test

accuracy will further drop to 85.86% and 84.94%, respectively,

which may be suitable for those relatively simple classification

tasks on resource-constrained edge devices [20]. In particular,

by applying TrunMEM to the lightweight model, we can see

that combining pruning in the training process and truncation

in the inference process has a great potential to enable power-

quality adaptation and optimization. Furthermore, it can be

concluded that TrunMEM is able to enable precision-scalable

DNNs to meet the requirements of a variety of AI tasks.
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Fig. 7: Performance of Deep Learning with TrunMEM.

IV. CONCLUSION

This paper has presented a novel quality-adaptive bit trun-

cation memory design - TrunMEM to support different video

and deep learning applications. The proposed memory enables

up to 50.03% and 66.56% power savings in videos and DNN

inference, respectively. With its full flexibility, the developed

TrunMEM can also be applied to other data-intensive ap-

plications. It also demonstrates strong promise for general

applications into application specific hardware platforms such

as GPUs.
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