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Abstract—Bit-truncation has demonstrated great potential to
enable run-time quality-power adaptive data storage and thus
enhance the power efficiency of data-intensive applications such
as videos and deep learning. However, existing bit-truncation
memories are custom designed for a specific working condition
of the target application. In this paper, we present a novel bit-
truncation memory with full truncation flexibility, and it can
truncate any number of bits for optimal tradeoff between quality
requirements of applications and power savings. Our experiments
show that the proposed memory can support three different
video applications (including luminance-aware, content-aware,
and region-of-interest-aware) with enhanced power efficiency
(up to 50.03% power savings) as compared to state-of-the art
solutions. Also, the proposed memory achieves up to 66.56% and
63.29% power savings for baseline and lightweight deep learning
models respectively, with a low implementation cost (2.42%).

Index Terms—memory, truncation, quality-adaptive, low-
power, videos, deep learning.

I. INTRODUCTION

Today, the design challenge for an efficient computing
system is growing due to the diminishing benefits from semi-
conductor technology scaling and the increased demands of
data-intensive applications such as video processing and deep
neural networks (DNN) [1]. Fortunately, those applications
usually have non-deterministic specifications and have mul-
tiple acceptable quality levels in different conditions, which
provides exciting opportunities for quality-adaptive low-power
design [2]. Quality-adaptive low-power design aims to dynam-
ically trade off quality and power consumption to optimize
the power efficiency, while meeting the quality requirement
of applications.

To enable quality-adaptive computing systems, bit trunca-
tion is one of the most widely-applied techniques. Compared
to other techniques used for quality-adaptation, e.g., dynamic
voltage scaling, bit truncation has two major advantages: (i)
it can enable more energy savings [3] and (ii) it can achieve
better output quality [4]. For example, studies [4], [5], [6] ap-
plied bit truncation to luminance-aware video memory design
and revealed that more least-significant-bits (LSBs) of pixel
data can be truncated if the video device is operating under
high lighting conditions. Specifically, 3-bit and 4-bit LSBs can
be truncated in overcast and sunlight, respectively. Also, con-
sidering the impact of video content on viewer’s experience,
Edstrom et al. [7] truncated the number of LSBs between
zero-bit to 4-bit according to the micro-block characteristics of
videos. Very recently, Haidous et al. [8] presented a Region-
of-Interest (ROI)-aware video memory, which can truncate
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3 LSBs for non-ROI regions of videos to further optimize
video output quality while reducing the power consumption.
As for the above techniques, in each video application, i.e.,
luminance-aware [5], content-aware [7], and ROI-aware [8],
one custom bit truncation memory was developed to enable
adaptation. In other words, existing bit truncation memory
cannot provide flexibility to support different video conditions.
As such, state-of-the art bit truncation memory designs cannot
be used for other applications such as deep neural network
(DNN).

In this paper, we propose a novel bit truncation memory,
coined as TrunMEM, which enables flexible number of bits
truncation with optimal truncation values to support different
video systems as well as DNN inference. Compared to existing
work, TrunMEM is unique in the following ways: First, Trun-
MEM can enable run-time power-quality adaptation to meet
different requirements of the target application. For example,
with full flexibility, it can be used to support all three video
systems (i.e., luminance-aware [5], content-aware [7], and
ROI-aware video storage [8]). Second, by integrating pruning
in the model training process and truncation in the inference
process, TrunMEM achieves precision-scalable DNN to meet
the performance and efficiency requirement of different Al
tasks. Third, TrunMEM automatically sets the truncated bits
to the optimal values for specific video and DNN use-cases,
thereby optimizing the quality to realize maximum power
savings. To the best of the authors’ knowledge, the proposed
TrunMEM has made the first attempt to design a truly flexible
bit-truncation memory to enable quality adaptation and power
efficiency optimization for different applications.

II. ADAPTIVE BIT TRUNCATION
A. Bit Truncation

In order to enable low-power data storage, bit truncation
needs to adapt the number of truncated bits as well as setting
optimal truncation values. In terms of video data which are
represented by 8-bit integer pixel values, it has been concluded
from previous work [7] that setting the truncated LSBs to its
mean value, i.e., 10...0 in binary will minimize the expected
mean square error (MSE). Here, to apply bit truncation to
DNN weight storage, we also study the truncated values for
floating point numbers. Specifically, IEEE 754 single precision
floating point representation was used in our analysis, which
has been used widely in deep learning systems [9]. A 32-bit
number consists of three fields including a 1-bit sign, an 8-bit
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exponent, and the least 23-bit mantissa [10]. In our analysis,
we adopted one of the most popular DNN - AlexNet [11] with
CIFAR-10 dataset [12]. Fig. 1 shows the performance of the
network with two different truncation strategies. From Fig.
1, the following two observations can be made: (i) At least
16 LSBs mantissa can be truncated without accuracy loss;
with more LSBs truncated, it will cause accuracy degradation
with additional power savings. Thus, it has potential to enable
precision-scalable DNN with different precision-power trade-
offs and (ii) filling truncated bits with mean value (i.e., 10...0
in binary) retains a higher classification accuracy as compared
to all zeroing the data, thereby tolerating additional truncation
(Fig. 1). In other words, if a truncated bit is the most-
significant bit (MSB) of all truncated bits, its truncated value
should be I; otherwise, the truncated value should be 0. Also, it
is worthy to emphasize that, the number of truncated bits may
be different as the neural network changes. A detailed analysis
on different neural networks will be presented in Section 3.
Also, a flexible bit-truncation memory design to adapt the
number of truncated bits and to set the optimal truncation
values is critical to optimize the power efficiency.
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Fig. 1: Classification accuracy of AlexNet with different
truncation bits and values.

B. Proposed TrunMEM

Fig. 2 illustrates the architecture of the proposed TrunMEM.
As shown in Fig. 2 (a), the SRAM array consists of N words
by m bits, with each bitcell designed as a 6T SRAM. In
addition to the conventional memory components such as pre-
charge unit, write driver, and sense amplifier, each column
of bitcells have a truncation manager circuitry to control
truncation adaptation. Also, to reduce the power consumption
of truncated bits, the proposed truncation manager uses CMOS
power gating circuitry to connect to virtual power rails, which
can either provide a connection to the true power rails, or trun-
cate the signal by putting the virtual rails in high impedance,
as shown in Fig. 2 (b). Accordingly, each column of SRAM
bitcells have their own dedicated pair of virtual rails, such
that a single power gate can disconnect an entire column of
SRAM bitcells at once, thus minimizing power consumption.
Peripheral circuitry operating on a specific column of bits will
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also be power-gated along with the SRAM cells for additional
power savings. However, any SRAM bitcell disconnected from
the power and ground rails quickly loses the value stored
inside, and cannot be read from. As such, the truncation
manager circuit also populates read values when bit-lines get
disconnected, which can either be a / or 0.

Specifically, as shown in Fig. 2 (b), each truncation manager
consists of a truncation unit, power gating transistors, and an
output multiplexer (Mux). The truncation manager has three
operating states: normal operation without truncation, MSB of
truncated bits (MSB truncated), and non-MSB of truncated bits
(Iesser truncated). The signals to control these states are the
two inputs: Head and Tail. Head is used to detect whether
it is MSB truncated or not and Tail indicates whether it is
lesser truncated or not. The operation process is detailed as
follows. If neither signal for a specific bit (e.g., ith bit) is
active, i.e., Head < i >=Tail <i >= 0, the ith bit will be in
the normal state without truncation and the DataOut < i >
will be the normal memory readout value (i.e., Read < i >.
During the normal state, the virtual rails (vec_bl < i > and
gnd_bl < i >) remain connected to the supply voltage (VCC)
and ground (GND), respectively. When Head of the ith bit
is 1, i.e., Head < i >= 1, which indicates MSB truncated,
DataOut < i > will be I and vee_bl < i > and gnd_bl <
i > will be placed into high impedance for power savings.
Similarly, at the lesser truncated state, when Tail < i >= 1,
virtual power rails enter high impedance and a dataOut = 0
value will be generated.

As also shown Fig. 2, in either truncation states, the output
of the ith bit, i.e., Tail < i > will be applied to next bit
as input, i.e., Tail < i — 1 >, and therefore the truncation
managers of different bits work in series. As a result, Head is
the only external control signal required to be managed from
external circuitry. This series connection enables control such
that if Head < i >= 1, the truncation manager signals to all
lesser significant truncation managers to truncate, via the Tail
signals. Accordingly, the truncated memory returns an optimal
truncation value with the most significant truncated bit as /
and other bits as zeros (i.e., 10...05). The Tail < m —1 > is
directly connected to GND, and the Tail < 0 > signal is left
floating in this design, as they serve no purpose.

It can also be observed from Fig. 2 (b) that the proposed
truncation manager circuit is implemented with several simple
logic gates, which may not induce a large area overhead.
However, the sizing of power gating transistors may be point
of concern, depending on the number of transistors they need
to power. As a result, the number of truncation managers is
a trade-off between flexibility and implementation cost. Full
bit-adaptation is achieved in the design of Fig. 2, which adds
m truncation managers to the memory to support any value of
truncation from 0 to m — 1 bits. Such a flexible bit truncation
provides the best flexibility to support different applications.
However, to reduce the area overhead, if the target applications
are known, the number of the truncation manager circuit may
be reduced accordingly.
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Fig. 2: Proposed TrunMEM: (a) Memory structure and (b) Truncation manager circuitry and truth table.

III. EXPERIMENTAL RESULTS

A. Experimental Methodology

Hardware-Level Implementation and Verification: To eval-
vate the effectiveness of the proposed memory, an SRAM
with 1024 words by 32 bits was implemented using a 130
nm CMOS technology [13], [14], [15], [16]. Based on the
designed memory, a comprehensive suite of simulations were
performed. Specifically, functionality and performance pa-
rameters including timing diagram, power consumption, and
layout area overhead were evaluated and discussed.

Application-Level Evaluation: In addition to hardware-level
implementation and verification, application-level quality was
also evaluated for both videos and deep learning applications.
In terms of video storage, we used the proposed memory to
support three different video applications: luminance-aware
[6], content-aware [7], and ROI-aware [8] video storage. For
each video application, the video quality and power savings
were evaluated. Specifically, we used two widely-used metrics
including Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) for video quality assessment.

To fully evaluate the effectiveness of the proposed memory
for deep learning, two different models including one basic
VGG-16 model [17], and one filter-pruned lightweight VGG-
16 model are evaluated with TrunMEM. Specifically, we fine-
tuned the pre-trained VGG-16 model on CIFAR-10 dataset
[12], where 50,000 and 10,000 samples are used for train-
ing and testing the model, respectively. The training of the
model has been executed using stochastic gradient decent as
optimizer and categorical cross entropy as loss function. With
batch size of 32, initial learning rate of 0.001, and maximum
150 epochs were used to train the model. These settings have
been identified using the grid search algorithm where the
learning rate, the batch size, and the number of epochs have
been varied from 0.000001 to 0.01, 4 to 256, and 10 to 400
respectively. For both models, the test accuracy with different
truncated bits for weights is evaluated and discussed.
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B. Hardware-Level Simulation Results

Timing Diagram: Fig. 3 shows the timing diagram of
TrunMEM. Wlen, PreB, ReadEn and Write_en are used
to activate the word-line for reading and writing access,
pre-charge the bit-lines for reading, and enable reading and
writing, respectively. All the dataout signals are the outputs
of the SRAM from sense amplifiers, with daraout31 and
dataout( being the most and least significant bit, respectively.
Specifically, to test the functionality of TrunMEM, firstly,
the word-line is activated and the 32-bit data ”01010...01” is
written in the first clock cycle. Then, the data is read out in
the following four cycles with various levels of bit truncation.
The pattern for all truncated bits includes the most significant
bit becoming “1” and all other bits “0”. As shown in Fig. 3,
the optimal truncated values are generated for 2-bit, 3-bit, and
16-bit truncations (2 LSBs, 3 LSBs, and 16 LSBs of dataout)
are “107, “100”, and “1000_0000_0000_0000", respectively.

Power Efficiency: The power consumption with different
truncated bits is shown in Fig. 4. As expected, power savings
and number of truncated bits demonstrate a strong linear
relationship. For example, 25%, 50%, and 75% power savings
can be enabled with 8, 16, and 24 truncated bits, respectively.
On average, a power savings of 3.11% will be enabled with
each additional bit truncated.

Implementation cost. As discussed in Section 2.2, the silicon
area overhead of TrunMEM is mainly caused by the added
truncation managers. The layout design of one truncation
manager is shown in Fig. 5. To minimize the area overhead,
Power Gate transistors are implemented using a particular
finger-based design approach. Each power transistor has a
width of 16 pm and it is implemented with eight fingers.
Scaling the transistor width to the total number of fingers
used in order to maximize switching speed. As shown in Fig.
5, a truncation manager occupies an area of 373.37 um?. To
achieve full bit truncation with best flexibility, 32 truncation
managers are stacked in rows on top of a SRAM with 32
bits in each word, which occupies an area of 11,947.73 um?.
The total area of a 32x1024 TrunMEM memory is measured
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Fig. 4: Power consumption of TrunMEM at each level of bit
truncation on a 32x32 memory array.

as 493511.64 ,umz, making the addition of the truncation
managers consume only 2.42% silicon area as compared to
the traditional memory. Since each bit-line uses one truncation
manager, the area overhead ratio of TrunMEM can be further
reduced as the number of words in a memory increases.
Video Storage: We evaluated the video quality with Trun-
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MEM following the same process as prior work [6], [7], [8].
Fig. 6 shows the visual output quality with PSNR and SSIM
values as well as enabled power savings using TrunMEM. It
can be seen that the proposed TrunMEM can support all three
video applications with additional power savings. Specifically,
TrunMEM achieves 5.45% and 9.82% power savings as com-
pared to content-aware [7] and ROI-aware [8] video memory
designs, respectively. As compared to luminance-aware video
memory [6], TrunMEM enables 13.79% power savings in
overcast and 17.43% power savings in sunlight, respectively.
Thus, the proposed TrunMEM can support all three different
video applications with enhanced power efficiency.

DNN: Another DNN model - VGG-16 has been used to
evaluate the effectiveness of TrunMEM. The original VGG-
16 model is considered a baseline model. In addition, we
investigated how the filter pruning of the model during the
training process interacts with the bit truncation of TrunMEM
in the inference process. We used a proposed modification
of the Squeeze and Excitation channel attention module [19],
connected the module between each two consecutive con-
volutions layers of the baseline model, and finally retrained
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the model for 35 epochs. In addition, we calculated the
significance of the feature maps of each layer of the model
via measuring the scales vector generated at the output of
the channel attention module [19]. We then pruned different
percentages of the least significant filters within each layer
of the model. After pruning the VGG-16 model, the model
was retrained for 150 epochs by using an initial learning rate
of 0.001. The learning rate was further reduced to half of its
value after each 35-epoch to improve the convergence and
the accuracy of the model. The testing accuracy of the model
was then reported when different pruning percentages were
considered. As shown in Fig. 7, using the channel attention
method, the generated lightweight model achieved an almost
95.5% and 90.2% reduction in the model parameters and
Floating Point Operations (FLOPs), respectively at a slightly
lower testing accuracy as compared to the baseline model.
Based on the baseline and the lightweight models, a bit
truncation was applied to the weight storage for power savings.
As shown in Fig. 7, TrunMEM enabled three quality-power
trade-off levels for both models: (i) High Accuracy: without bit

91

truncation, 93.73% and 91.19% test accuracy can be achieved
by the baseline and lightweight models, respectively; (ii)
Low Power: with 19-bit truncation and 17-bit truncation, the
baseline and the lightweight models can achieve 60.04% and
53.50% power savings with negligible accuracy loss (less than
0.3%), respectively; and (iii) Ultra-Low Power: with a more
aggressive bit truncation, as high as 66.56% and 63.29% power
savings can be achieved by the two models and their test
accuracy will further drop to 85.86% and 84.94%, respectively,
which may be suitable for those relatively simple classification
tasks on resource-constrained edge devices [20]. In particular,
by applying TrunMEM to the lightweight model, we can see
that combining pruning in the training process and truncation
in the inference process has a great potential to enable power-
quality adaptation and optimization. Furthermore, it can be
concluded that TrunMEM is able to enable precision-scalable
DNNs to meet the requirements of a variety of Al tasks.
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Fig. 7: Performance of Deep Learning with TrunMEM.

IV. CONCLUSION

This paper has presented a novel quality-adaptive bit trun-
cation memory design - TrunMEM to support different video
and deep learning applications. The proposed memory enables
up to 50.03% and 66.56% power savings in videos and DNN
inference, respectively. With its full flexibility, the developed
TrunMEM can also be applied to other data-intensive ap-
plications. It also demonstrates strong promise for general
applications into application specific hardware platforms such
as GPUs.
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