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Oscillations in delayed positive feedback systems

Christopher J. Ryzowicz, a Richard Bertram abc and
Bhargav R. Karamched †*abc

Positive feedback loops exist in many biological circuits important for organismal function. In this work,

we investigate how temporal delay affects the dynamics of two canonical positive feedback models.

We consider models of a genetic toggle switch and a one-way switch with delay added to the feedback

terms. We show that long-lasting transient oscillations exist in both models under general conditions

and that the duration depends strongly on the magnitude of the delay and initial conditions. We then

show the existence of long-lasting oscillations in specific biological examples: the Cdc2-Cyclin B/Wee1

system and a genetic regulatory network. Our results challenge fundamental assumptions underlying

oscillatory behavior in biological systems. While generally delayed negative feedback systems are

canonical in generating oscillations, we show that delayed positive feedback systems are a mechanism

for generating oscillations as well.

1 Introduction

Positive feedback loops are a prominent network motif in many

biophysical and biochemical circuits. They appear at multiple

different scales ranging from gene regulatory networks through

hormone secretion. Well-known examples of this motif include

platelet activation during blood coagulation,1–3 the Ferguson

reflex during human child birth,4,5 the Cdc2-Cyclin B/Wee1

network for cell cycle regulation,6–8 the interaction between the

central nervous system and hypothalamus-pituitary-adrenal

axis,9,10 and the Mos/MEK/p42 MAPK cascade.6,11

Models of positive feedback systems have been studied

extensively and many display bistability, a feature where two stable

steady states exist simultaneously.12–14 Beyond bistability, models

of positive feedback often do not exhibit more complicated

dynamics such as oscillations. A very common motif for the

generation of oscillations is delayed negative feedback, which is

a control motif used in homeostatic systems such as the pancreas

and its regulation of blood sugar.15,16 Models of delayed negative

feedback are well-known to generate limit cycles emerging from a

delay-dependent supercritical Hopf bifurcation. The effect of

temporal delay on positive feedback systems has received much

less attention. This article is a first step in delineating the effect of

delay on positive feedback systems.

We study the effect of delays on positive feedback models

by incorporating explicit delay into feedback terms of two well-

known models: a genetic toggle switch and a one-way switch.7,12,17

Both models describe two proteins that undergo production

governed by a Hill function and linear degradation. In parameter

regimes that facilitate bistability, we show that these models

exhibit long-lasting transient oscillations before reaching a steady

state. These findings suggest a mostly unexplored mechanism for

generating oscillatory behavior in a biological system. Under

certain conditions, the duration of these oscillations is so long

as to be indistinguishable from true limit cycle oscillations. From

the viewpoint of biology, the transient oscillations could last longer

than the lifespan of the cell or organism that generates them.

Our findings challenge fundamental understanding of mechan-

isms that drive oscillations in biological and biochemical systems.

Historically, when oscillations were observed in an experimental

setting, it was assumed that they weremost likely caused by delayed

negative feedback. We argue against this assumption.

We begin by giving a preliminary overview of the positive

feedback systems that we investigate. For completeness, we also

describe how delays facilitate pulsatile dynamics in delayed

negative feedback systems. Thereafter, we incorporate explicit

delay in positive feedback systems and describe the means by

which long-lasting but transient oscillations emerge.

2 Preliminaries
2.1 Genetic toggle switch, one-way switch, and bistability

We begin with a review of minimal models of canonical positive

feedback systems that exhibit bistability. The dynamics of these
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models with time delay in the feedback are analyzed later in the

manuscript.

2.1.1 The toggle switch. The toggle switch is a canonical

system describing mutual inhibition between biochemical spe-

cies such as proteins12,14,17,18 (Fig. 1A). This system can be

described by the ordinary differential equations (ODE)‡

dx

dt
¼ a

1þ yn
� x

dy

dt
¼ a

1þ xn
� y; (1)

where x(t), y(t) are concentrations of transcription repressors

and a 4 0 is the maximal protein production rate for both

species (assumed here to be equal). The parameter n A Z

measures the cooperativity between the repressors13 and is

positive for the mutual inhibition case. Because each molecule

inhibits the production of its inhibitor, the feedback provides

positive feedback of x onto x and y onto y. That is, x inhibits its

inhibitor y (and vice versa), so the cumulative effect is positive

feedback of x onto x and y onto y. For n Z 2 the system admits

three real steady states (x*,y*): two stable nodes and one saddle

point. The existence of two stable steady states classifies system

(1) as bistable, a feature that can emerge in positive feedback

systems.7,12 Fig. 1A–C depicts dynamics of this system. The

two stable nodes in Fig. 1B (black circles) are characterized by

the dominance of one protein over the other x� o
4 y�

� �

and the

saddle point (black triangle) describes coexistence (x* = y*). The

basins of attraction of each stable steady state are separated by

the stable manifold of the saddle point, which for this system is

W
S
I = {(x,y)|y = x}.13

The Hill function§ used for the feedback is a modeling

choice but is not necessary for the results in this work, which

hold for more general functional choices for the feedback. With

a feedback function g(u) that describes inhibition, we require

that g(u) Z 0 for all u, g should be monotonically decreasing,

and g - 0 as u - N. Similarly, if g describes activation, we

require g(u)Z 0 for all u, g should be monotonically increasing,

and g- A A R
Z0 as u-N, for some constant A. For n 4 0, it

is straightforward to see that g(u) = (1 + un)�1 satisfies the

inhibition conditions. Similarly, for n o 0, g(u) = (1 + un)�1

satisfies the activation conditions.

One alternative popular function used for modeling biochemical

systems is the Boltzmann function, gðuÞ ¼ 1þ exp
x� a

b

� �� ��1

,

where a,b are constants. For b 4 0, this equation satisfies the

inhibition conditions. Similarly, for b o 0, the equation satisfies

the activation conditions. Another example is the hyperbolic

tangent function, gðuÞ ¼ tanh
x� a

b

� �

þ 1, where a, b are con-

stants. When bo 0 (b 4 0), the equation satisfies the inhibition

(activation) conditions. Using such functions would not alter the

qualitative results of our work.

2.1.2 The one-way switch. Taking n o 0 in system (1)

transforms the toggle switch into a one-way switch: a biomole-

cular feedback system pertinent in cellular differentiation7 that

exhibits mutual activation (Fig. 1D) as opposed to mutual

inhibition. Under certain parameter sets, the one-way switch

is also bistable, but in this case the two stable nodes (black

circles in Fig. 1E) are characterized by both state variables being

at their maximal levels or completely extinct.7,12,17 The saddle

point (black triangle in Fig. 1E) is characterized by both state

variables coexisting somewhere in the middle. The stable

manifold, as in the toggle switch system, runs through the

saddle point and separates the basins of attraction of the stable

nodes. Linear stability analysis around the saddle point yields,

locally, a stable manifold equationWS
A = {(x,y)|y = K � x}, with

K E 1.36 when a = 2.15, n = �2.

2.2 Delayed negative feedback

A canonical example of a biomolecular feedback system is

a protein inhibiting its own production after some temporal

delay, t 4 0 (see Fig. 2A). Mathematically, this system can be

represented by the delay differential equation (DDE)

dx

dt
¼ a

1þ xðt� tÞn � x � af ðxðt� tÞÞ � x; (2)

where a is the maximal protein production rate and n 4 0

characterizes the sensitivity of the negative feedback. Initial

data for DDEs are prescribed by a history function x(t) = h(t) for

t A [�t,0].

Although this system is comprised of a single equation,

it contains limit cycles in its phase space that are generated

by the delay. The role delays play in the onset of oscillations in

delayed negative feedback systems is well-understood: the amount

of delay, t, in feedback determines the onset of oscillations via a

supercritical Hopf bifurcation.19–21 Furthermore, the frequency of

the delay-induced oscillation decreases as t is increased and the

amplitude scales as
ffiffiffi

t
p

near the bifurcation point. Linear stability

Fig. 1 Reaction network diagram, phase space, and time series for system

(1) when a = 10, n = 2 (A)–(C) and a = 2.15, n = �2 (D)–(F). Leftmost

column: schematics of biomolecular feedback structures studied. Middle

column: phase portrait of eqn (1) with sample trajectories (color). The

dashed lines are the separatricesWS
I (top) andW

S
A (bottom). Right column:

sample time series for the trajectories shown in the middle panels.

‡ All models presented and described in this manuscript are nondimen-

sionalized.

§ This is also referenced as a Langmuir function in some biochemical literature.
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analysis of eqn (2) about the steady state x = x* yields the following

conditions for a Hopf bifurcation:

o = �af0(x*)sin(ot) 1 = af0(x*)cos(ot) o = �tan(ot),

where o is the frequency of the resulting oscillation. Clearly,

the Hopf conditions cannot be satisfied in the absence of delay

(t = 0). Observe that taking t = 0 in eqn (2) renders it a gradient

system, which cannot have oscillations.

For t 4 0, however, there exist critical values (oc,tc) satisfy-

ing the bifurcation conditions. When t is increased past tc, a

pair of complex conjugate eigenvalues crosses the imaginary

axis. Although this is not sufficient to guarantee the emergence

of a stable periodic solution via a supercritical Hopf bifurcation

for t 4 tc, the existence of stable oscillations beyond the Hopf

bifurcation point can be verified numerically (see Fig. 2B and C).

We next discuss how the network motifs and dynamics

presented in this section produce pulsatility in delayed positive

feedback systems.

3 Delayed positive feedback

To investigate the role delay plays in producing oscillations in

the toggle switch and one-way switch systems, we implement

explicit delay, t, into both feedback terms of system (1). This

yields the set of DDEs

dx

dt
¼ a

1þ yðt� tÞn � x
dy

dt
¼ a

1þ xðt� tÞn � y; (3)

where all parameters are defined as in system (1). The coopera-

tivity parameter, n A Z can be adjusted to model delayed

mutual inhibition or delayed mutual activation by letting n 4

0 or n o 0, respectively. Importantly, the set of possible steady

states for system (3) is identical to system (1). In all simulations,

we use constant history functions for initial data.

In this section, we discuss dynamics of system (3) and how

they change with t and different history functions. In particu-

lar, we discuss how the presence of delay facilitates onset of

pulsatile dynamics. DDEs are infinite-dimensional structures,

so illustrating dynamics in their true phase space is not

possible. We therefore present results by projecting the phase

portrait into a two-dimensional subspace of the phase space.

3.1 Delayed mutual inhibition

We set n 4 0 in eqn (3) to model delayed mutual inhibition.

To see that oscillations are indeed present in the phase space

of this delayed positive feedback system, observe that taking

system (3) with initial data satisfying x(t) = y(t) = a A R for

t A [�t,0] constrains the dynamics to the stable manifold of the

saddle point, WS
I , which is the seperatrix partitioning the

basins of attraction of the two stable steady states in the system

without delay (eqn (1)). The resulting differential equation is

exactly eqn (2), which is a model for delayed negative feedback

and exhibits stable oscillations for sufficiently large values of t.

Thus, eqn (3) admits pulsatile dynamics along WS
I in the xy-

plane. Although this is a limiting circumstance, it illustrates

that limit cycles are indeed possible in delayed positive feed-

back systems. In more complicated mutual inhibition systems,

choosing history functions precisely on an invariant manifold

is very difficult. For that reason, we investigate dynamics of (3)

starting near, but not on,WS
I .

Numerical solutions suggest that limit cycles do not arise

with initial data offWS
I . However, the system exhibits transient

but long-lasting oscillations that eventually contract to a steady

state. Fig. 3B shows two sample trajectories of system (3)

starting on opposite sides of WS
I . Superimposed on top are

the trajectories of the ODE system (1) with the same initial

conditions. The ODE solutions (black) approach their respected

steady states without oscillatory dynamics. In contrast, the DDE

system trajectories (red and blue) oscillate for many cycles

before eventually reaching their respective steady states.

Because the trajectory initially oscillates near the stable

manifold of the ODE system, we refer to the long lasting oscilla-

tions as ‘‘remnants of the delayed negative feedback oscillator’’,

which is present exactly onWS
I . Numerical time series show that

the period, T, of the transient oscillations is related to the delay

by T E 2t. Thus, during the period of transient oscillations,

tE NTE N(2t) so time can be replaced byN � t

2t
, where N is the

oscillation number. The time series in Fig. 3C shows oscillations

in x graphed as a function of oscillation number. From a

biological viewpoint, it is possible that the transient oscillations

last longer than the lifespan of the cell or organism. In such a

case, there is little distinction between ‘‘long-lasting transient’’

oscillations and ‘‘stable limit cycle’’ oscillations.

There appear to be two main factors that contribute to the

duration of the transient oscillations in the delayed mutual

inhibition system: (1) the magnitude of the delay, t, and (2) the

distance of the initial conditions from WS
I . To quantify how

these factors affect oscillation duration, we simulated the

mutual inhibition system (3) and recorded the number of cycles

in the x variable. The results are given in Fig. 4A. The number of

oscillations increases super-linearly with t.

We next numerically investigated the delayed mutual inhibi-

tion system under varying initial conditions. To see how

Fig. 2 Delayed negative feedback. (A) Schematic of the delayed negative

feedback biomolecular system. (B) Oscillations emerge in system (2) as

the delay is increased from t = 1 (blue curve) to t = 3 (orange curve).

(C) Bifurcation diagram for eqn (2) when varying the delay t. Solid and

dashed black lines correspond to stable and unstable stationary steady

states, respectively. The red curve shows the minimum and maximum

values of x on the periodic branch, and the green circle is a supercritical

Hopf bifurcation point with tc E 1.7 and a = 10, n = 2.
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distance from WS
I influenced the number of oscillations pro-

duced, we extended a line orthogonal toWS
I and sampled pairs

of initial conditions for x and y on this normal line. We then

simulated the delay system with each initial condition pair. The

number of oscillations is shown as a function of the Euclidean

distance (D) to WS
I in Fig. 4B. This decreases monotonically

with distance from WS
I , suggesting that the transient oscilla-

tions are driven by flow nearWS
I .

3.2 Delayed mutual activation

We set n o 0 in system (3) to model delayed mutual activation

(Fig. 3D). Similar to the previous model, this system displays

bistability and sample trajectories on either side of WS
A are

shown in Fig. 3E. As in the delayed mutual inhibition case, we

superimposed the trajectories from the ODE system (1) with

identical parameters and initial conditions. The results show

that the trajectories without delay (black) approach the stable

steady states without oscillation, but the trajectories with delay

(color) oscillate roughly parallel to WS
A before eventually

approaching a steady state. A sample time series for the state

variable x is given in Fig. 3F and exhibits long-lasting oscilla-

tions before reaching a steady state.

As in the previous model, we simulated the delayed mutual

activation model for varying delay values t to explore how

oscillation duration changed. Results are summarized in Fig. 5A.

For small t the system displays a small number of transient

oscillations. However, increasing t to sufficiently large value leads

Fig. 3 Dynamics of eqn (3) for a = 10, n = 2, t = 6 (A)–(C) and a = 2.15, n = �2, t = 8 (D)–(F). Left column: schematics of the biomolecular feedback

system. Middle column: dynamics in the xy-plane with actual or approximate separatricesWS
I (top) andW

S
A (bottom) superimposed as dashed lines and

sample trajectories from eqn (3) plotted (color). Black trajectories are solutions of eqn (1) for the same initial conditions. Right column: sample time series.

The abscissa shows the oscillation number, using the fact that the period T E 2t to scale time.

Fig. 4 (A) Number of oscillations as a function of t for the delayed mutual

inhibition model. Initial data are x(t) = 4 and y(t) = 3 for t A [�t,0] in each

case. (B) Number of oscillations as a function of the distance from WS
I .

The delay t = 6 is each case. For both panels, a = 10 and n = 2.
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to a rapid rise in the number of oscillations, which continues to

increase for larger delays. To understand the origin of this rapid

increase in oscillation number, it is helpful to view the dynamics

in the xy-plane (Fig. 6A and B). The trajectory in Fig. 6A corre-

sponds to the parameters and delay value of the red point in

Fig. 5A.With these parameters, the trajectory oscillates as it moves

towards the upper steady state. However, when the delay is

increased from 4 to 6, as in Fig. 6B, the trajectory first moves

towards the upper steady state before changing direction to the

lower steady state. This flow reversal generates many more

oscillations, and there appears to be a critical delay value at which

this dynamic behavior occurs.

In addition to varying delay values, we simulated the delayed

mutual activation model with varying initial conditions. As with

the previous model, we extended a normal line from WS
A and

sampled initial condition pairs along that line. Next, we simu-

lated the system for each initial condition and recorded oscilla-

tion duration. The results for the number of oscillations as a

function of the distance (D) toWS
A are given in Fig. 5B. The plot

suggests that, initially, as you get farther away from WS
A, the

number of oscillations increases monotonically. However,

when D is sufficiently large there is a sharp downwards jump

and the number of oscillations monotonically decreases as D is

increased further. Looking again in the xy-plane (Fig. 6C and D)

we plot two trajectories with identical parameter values, but

starting at different distances fromWS
A. In one case (Fig. 6C),

the trajectory begins to travel toward the upper steady state, but

then turns around and crosses overWS
A to eventually end at the

origin. Initial conditions satisfying D o 0.07 in Fig. 5B show

similar dynamics in phase space to that of Fig. 6C. Taking an

initial condition a small distance farther away (green point)

yields a trajectory that oscillates directly towards the upper

steady state. Similarly, all starting points satisfying D 4 0.09 in

Fig. 5B show similar dynamics in phase space to that of Fig. 6D.

3.3 Asymmetric networks

Thus far, we assumed that the dynamics of both of the inter-

acting species are the same, described by eqn (3) with identical

parameter values for x and y. We now explore the effects of

breaking the symmetry, using the set of DDEs

dx

dt
¼ a

1þ y t� t1ð Þn1 � x
dy

dt
¼ a

1þ x t� t2ð Þn2 � y; (4)

where the parameters values are not necessarily equal between

species. Fig. 7 shows that long lasting oscillations can occur

when the time delays differ between species, or the Hill

coefficients differ, or both. Therefore, the phenomenon is not

the result of symmetry between the interacting species.

3.4 Single equation example

The long-lasting oscillations in Fig. 3 and 7 come from models

which describe the evolution of two species. However, we found

that long lasting transient oscillations can occur in models of a

single species. Consider the following DDE

dx

dt
¼ a

1þ xðt� tÞn � x; (5)

where a is the maximal production rate and n o 0 is the Hill

coefficient. This equation describes a species which positively

auto-regulates itself after some delay t. This system is capable

of producing long lasting oscillations over time (Fig. 8B),

similar to those produced by the model with two interacting

species (Fig. 3F).

4 Biological examples

Here we present two, more complicated biological models

of delayed mutual inhibition and delayed mutual activation.

Fig. 5 (A) Number of oscillations as a function of delay value t for the

delayed mutual activation model. Initial data are x(t) = 1.2 and y(t) = 0.5 for

t A [�t,0] in each case. (B) Number of oscillations as a function of the

distance to WS
A. The delay value is t = 6 for each case. For both panels,

a = 2.15 and n = �2.

Fig. 6 Dynamics of the mutual activation model depend critically on t

and D. (A) and (B) Two trajectories with the same starting points (black

stars), but with two different delays, t = 4 (A) and t = 6 (B) corresponding to

the red and green points in Fig. 5A. (C) and (D) Two trajectories with the

same delays (t = 6) but starting at two different distances from WS
A, D =

0.07 (C) and D = 0.09 (D), corresponding to the red or green points in

Fig. 5B.
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We show they are capable of displaying similar dynamics to

system (3).

4.1 The Cdc2-Cyclin B/Wee1 system

Cdc2 is one member of a class of enzymes coded by cell-

division-cycle (cdc) genes that is required to move through

the cell division cycle.22 In preparation for progressing into

the M phase of the cycle, cyclin B is synthesized and binds with

free Cdc2 to form an inactive M-phase promoting factor (MPF).

Only when this MPF is phosphorylated on threonine-167 by a

cyclin-dependent activating kinase (CAK) is it in an active state.

Once the concentration of active MPF is sufficiently high, the

cell can progress to the M phase.23 Wee1 is a protein that helps

mitigate this process by phosphorylating the MPF at the

tyrosine-15 site, rendering it inactive. Conversely, the MPF

phosphorylates Wee1, rendering Wee1 inactive. This is a clear

example of mutual inhibition, and mathematical models have

shown this system to be bistable (high MPF, low Wee1 or high

Wee1, low MPF).7,8,24 When Wee1 is high, the cell remains in

interphase.

We extend the equations in a previous model for this

system6 to include explicit delays in the relevant feedback

terms. The equations to model the interaction between the

active Cdc2-Cyclin B and active Wee1 molecules are given by the

dimensionless DDEs

dx

dt
¼ mð1� xÞ � b1xðn � yðt� tÞÞg

K1 þ ðn � yðt� tÞÞg

dy

dt
¼ mð1� yÞ � b2yxðt� tÞg

K2 þ xðt� tÞg;
(6)

where x denotes the active Cdc2-Cyclin B and y represents the

active Wee1. With the parameter values in Fig. 9, the system is

bistable.6 In the system without delay, the basins of attraction

of the two attractors are separated by the stable manifold of a

saddle point. The exact equation of the stable manifold is not

known for this system. As a proxy for it, we use a linear

approximation to this manifold at the saddle point and denote

it by WS
Cdc2. Fig. 9B displays a phase portrait of the system

projected onto the xy-plane with sample trajectories (color)

starting with initial conditions on either side of WS
Cdc2. The

black trajectories are the solutions to the system without delay

Fig. 7 Dynamics of eqn (4) when the symmetry between the two cells is broken. (A) Toggle switch with n1,2 4 0 and a = 10, and (B) one-way switch with

n1,2 o 0, a = 2.15. First column: schematics of the biomolecular feedback systems. Second column: time series of species xwhen |n1| = |n2| = 2, t1 = 8 and

t2 = 12. Third column: time series of x when |n1| = 3, |n2| = 5, and t1 = t2 = 8. Fourth column: time series of x when |n1| = 3, |n2| = 5, t1 = 8, and t2 = 12.

Fig. 8 Delayed positive autoregulation of a single species. (A) Schematic

of biomolecular feedback structure. (B) Long lasting transient oscillations

occur over time in system (5). Parameter values were a = 2.15, n = �2,

t = 14.
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starting at the same initial points. These trajectories exhibit

similar behavior to those in Fig. 3B, demonstrating that it is

possible to achieve transient oscillations in more complex

delayed mutual inhibition models for biological systems.

A sample scaled time series showing how active Cdc2-Cyclin B

evolves is shown in Fig. 9C, exhibiting over 30 oscillations before

reaching equilibrium, similar to system (3).

4.2 Genetic regulatory networks

Genetic regulatory networks (GRNs) illustrate the interaction

and relations of genes, proteins, and other molecules inside

cells and are an active area of study in mathematical biology

research.25–30 Here we consider a simple delayed mutual activa-

tion model between a gene and protein shown schematically in

Fig. 10A. A typical non-dimensional model for such a GRN, but

incorporating a time delay in the feedback terms, is

dG

dt
¼ rð1� GÞ þ ð1� GÞ Pðt� tÞn

kn þ Pðt� tÞn � sG

dP

dt
¼ lGðt� tÞ � dP;

(7)

where G represents the fraction of the gene in its activated state

and P represents the concentration of the gene product protein.

The parameters r, s, l, d, k, n represent the activation rate of

the gene, inactivation rate of the gene, the production rate of

the protein, the degradation rate of the protein, the half-max

protein response, and the cooperativity, respectively. Under

certain parameter sets, the system is bistable as shown in the

phase plane in Fig. 10B. As in earlier examples, the dashed line

is a linear approximation to the stable manifold (for the system

without delay) of the saddle point, referred to as WS
GRN. The

trajectories of the system with time delay have a behavior that is

similar to trajectories in Fig. 3E of the delayed one-way switch

model. This illustrates that very long transient oscillations

can occur in delayed mutual activation GRN models. A sample

time course of protein concentration is shown in Fig. 10C.

We observed long lasting oscillations in the protein concen-

tration up until the trajectory converged to steady state.

The major implication of this result for GRNs is that the

mechanism underlying protein production at the genetic level

may manifest as a delayed positive feedback system. Histori-

cally, oscillatory protein production has been interpreted as a

result of delayed negative feedback. With the sheer number of

oscillatory genes in biology, our findings suggest the likelyhood

that delayed positive feedback is an underlying mechanism in

many cases.

As an example, gene expression of over 1000 proteins during

development in C. elegans have been identified as undergoing

oscillatory dynamics. Cuticular collagen genes, hedgehog

receptors, and metallopeptidase, amongst many others, have

been observed to oscillate.31 Since only a few cycles are typically

observed, it is unclear whether these are true sustained

limit cycle oscillations or if they are simply long-lasting. In

the latter case, delayed positive feedback could be the driving

mechanism.

5 Discussion

We presented two canonical examples for positive feedback, the

toggle switch and the one-way switch, and explored their

dynamics when adding temporal delay to the feedback terms.

We showed that they are capable of generating long-lasting

oscillatory dynamics under certain conditions. We verified our

results using a two-dimensional projected phase space

for comparison against the model dynamics without a time

delay. Finally, we showed that qualitatively similar oscillatory

dynamics occur when applying temporal delay to previously

studied biological models of the toggle switch and one-way

switch. Because of the large number of cycles produced, the

transient oscillations in the delayed positive feedback systems

may be indistinguishable from true limit cycle oscillations.

Although our models used Hill function formulations for the

feedback, we found similar long-lasting oscillations when

either Boltzmann or hyperbolic tangent formulations were used

(not shown).

We found that two main factors contribute to the duration of

these transient oscillations: (1) the magnitude of the delay (t)

and (2) the Euclidean distance (D) of the initial conditions from

Fig. 9 (A) Schematic of the delayed Cdc2-Cyclin B/Wee1 biomolecular

system. (B) Phase space with approximate seperatixWS
Cdc2 superimposed

(dashed line) and sample trajectories from eqn (6) plotted (color). The black

trajectories are solutions to system (6) without delay under identical

starting conditions. (C) Sample time series exhibiting long-lasting transient

oscillations. Parameter values are m = 1, b1 = 200, b2 = 10, g = 4, K1 = 30,

K2 = 1, n = 1, and t = 8.

Fig. 10 (A) Schematic of the delayed gene/protein system. (B) Phase

space with seperatixWS
GRN superimposed (dashed line). Trajectories from

eqn (7) plotted (color) along with those starting at the same location but

without delay (black). (C) Sample time series showing extensive oscillations

before reaching steady state. The parameter values are r = 0.1, s = 2, l = 9,

d = 1, k = 2, n = 3, and t = 10.
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W
S
I orW

S
A. The delayed mutual inhibition system showed that

the oscillation duration increases super-linearly with delay and

decreases super-linearly with D. The delayed mutual activation

model showed oscillation duration increases with the delay

value, but a sharp jump occurs at some critical t value.

We showed in Fig. 6A and B the trajectories with t values on

either side of the jump approach different steady states.

We believe this may be due to a shift in the DDE seperatrix

when changing the delay value t. This would explain why the

trajectories approach different steady states even though the

initial conditions are the same. The oscillation duration as a

function of D shows initial increase in oscillation duration with

a sharp decrease in oscillation duration at some critical dis-

tance. Similarly, we hypothesize that the critical D value in

Fig. 5B could mark the location of the DDE seperatrix, and that

on the true seperatrix a limit cycle exists. Thus, as initial data is

taken further away from the critical D value, we observe fewer

oscillations. We hope to explore these phenomena in the future

to get a better idea of the shape of the true DDE seperatrix and

determine the mechanisms responsible for these interesting

transitions in the dynamics.

We observed that within parameter regimes which enable

bistability, the long lasting oscillations in models of delayed

positive feedback oscillated ‘‘orthogonally’’ to their equilibria.

For example, with delayed mutual inhibition the equilibria are

characterized by either x c y or x { y. However, xE y during

most of the transient oscillation. In the delayed mutual activa-

tion case, the opposite occurs. The equilibria are characterized

by both species completely extinct or maximally expressed.

However, in the oscillation, the trajectories flip between states

where x c y and x { y, which is reminiscent of mutual

inhibition. This is significant, especially to experimentalists,

because it gives an inference strategy for determining which

mechanism produced the oscillations (if they occur due to

delayed positive feedback). In-phase oscillations indicate

delayed mutual inhibition, while anti-phase oscillations indi-

cate delayed mutual activation.

Many previously studied biological systems have shown

oscillatory behavior.31–33 Models for these behaviors would

most likely contain a delayed negative feedback motif or a

combination of negative and positive feedback, as these two

systems are canonical generators of pulsatile dynamics. How-

ever, our results argue that the mechanism behind oscillations

in such systems can potentially be explained by delayed positive

feedback alone, as long as there is delay in the feedback and as

long as the system has strong non-linearity.

Finally, although the examples shown here were based on

biochemical or biological examples, the concept of oscillations

driven by delayed positive feedback is applicable in other areas as

well. Any mechanism that exhibits bistability must have an inher-

ent positive feedback loop; thus, any system exhibiting bistability

and strong non-linearity has the potential for long-lasting oscilla-

tory dynamics. Examples include optical bistability34 in condensed

matter physics, physical biogeochemistry of sediments and oceans

as a means to understand anoxic marine systems,35 and astro-

chemical bistability arising from autocalatyic oxygen chemistry.36

Author contributions

Christopher J. Ryzowicz: methodology, software, writing –

original draft. Richard Bertram: methodology, writing – review

& editing, funding acquisition. Bhargav R. Karamched: con-

ceptualization, methodology, writing – review & editing, fund-

ing acquisition.

Data availability

The code used to generate the figures in this manuscript are

available at https://cryzowicz.wixsite.com/chris-ryzowicz/general-5.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was partially supported by the National Science

Foundation, grant number DMS 2324926 to R. Bertram and by

the FSU Council on Research and Creativity SEED grant to B.

Karamched. C. Ryzowicz would like to thank his family and

fellow graduate student colleagues for their unending support

during the writing of this manuscript. B. Karamched would

like to thank his wife, Hajra Habib, for her love and unending

support.

Notes and references

1 K. A. Abdel-Sater, Physiological positive feedback mechan-

isms, Am. J. Biomed. Sci., 2011, 3, 145–155.

2 E. Beltrami and J. Jesty, Mathematical analysis of activation

thresholds in enzyme-catalyzed positive feedbacks: applica-

tion to the feedbacks of blood coagulation, Proc. Natl. Acad.

Sci. U. S. A., 1995, 92, 8744–8748.

3 J. Jesty and E. Beltrami, Positive feedbacks of coagulation:

their role in threshold regulation, Arterioscler., Thromb.,

Vasc. Biol., 2005, 25, 2463–2469.

4 K. Uvnäs-Moberg, A. Ekström-Bergström, M. Berg, S. Buckley,

Z. Pajalic, E. Hadjigeorgiou, A. Kotłowska, L. Lengler,

B. Kielbratowska and F. Leon-Larios, et al., Maternal plasma

levels of oxytocin during physiological childbirth-a systematic

review with implications for uterine contractions and central

actions of oxytocin, BMC Pregnancy Childbirth, 2019, 19, 1–17.

5 K. Uvnäs-Moberg, The physiology and pharmacology of

oxytocin in labor and in the peripartum period, Am.

J. Obstet. Gynecol., 2024, 230(3), S740–S758.

6 D. Angeli, J. E. Ferrell Jr and E. D. Sontag, Detection of

multistability, bifurcations, and hysteresis in a large class of

biological positive-feedback systems, Proc. Natl. Acad. Sci.

U. S. A., 2004, 101, 1822–1827.

7 J. J. Tyson, K. C. Chen and B. Novak, Sniffers, buzzers,

toggles and blinkers: dynamics of regulatory and signaling

pathways in the cell, Curr. Opin. Cell Biol., 2003, 15,

221–231.

Paper PCCP

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

1
 S

ep
te

m
b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 1

2
/5

/2
0
2
4
 4

:4
5
:2

2
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 24861–24869 |  24869

8 J. Keener and J. Sneyd, Mathematical Physiology 1: Cellular

Physiology, 2009.

9 B. Ron Mizrachi, A. Tendler, O. Karin, T. Milo, D. Haran,

A. Mayo and U. Alon, Major depressive disorder and bist-

ability in an HPA-CNS toggle switch, PLoS Comput. Biol.,

2023, 19, e1011645.

10 N. J. Lasikiewicz, PhD thesis, University of Leeds, 2006.

11 C. P. Bagowski and J. E. Ferrell, Bistability in the JNK

cascade, Curr. Biol., 2001, 11, 1176–1182.

12 U. Alon, An Introduction to Systems Biology: Design Principles

of Biological Circuits, Chapman and Hall/CRC, 2019.

13 R. Bertram, Mathematical modeling in neuroendocrinology,

Compr. Physiol., 2015, 5, 911–927.

14 T. S. Gardner, C. R. Cantor and J. J. Collins, Construction of

a genetic toggle switch in Escherichia coli, Nature, 2000, 403,

339–342.

15 I. Marinelli, B. M. Thompson, V. S. Parekh, P. A. Fletcher,

L. Gerardo-Giorda, A. S. Sherman, L. S. Satin and

R. Bertram, Oscillations in K (ATP) conductance drive slow

calcium oscillations in pancreatic b-cells, Biophys. J., 2022,

121, 1449–1464.

16 N. Bruce, I.-A. Wei, W. Leng, Y. Oh, Y.-C. Chiu, M. G. Roper

and R. Bertram, Coordination of pancreatic islet rhythmic

activity by delayed negative feedback, Am. J. Physiol.: Endo-

crinol. Metab., 2022, 323, E492–E502.

17 D. Del Vecchio and R. M. Murray, Biomolecular Feedback

Systems, Princeton University Press, Princeton, NJ, 2015.

18 T. Tian and K. Burrage, Stochastic models for regulatory

networks of the genetic toggle switch, Proc. Natl. Acad. Sci.

U. S. A., 2006, 103, 8372–8377.

19 F. Bai, R. Bertram and B. R. Karamched, A closed-loop

multi-scale model for intrinsic frequency-dependent regula-

tion of axonal growth, Math. Biosci., 2022, 344, 108768.

20 B. R. Karamched, G. Hripcsak, R. L. Leibel, D. Albers and

W. Ott, Delay-induced uncertainty in the glucose-insulin

system: Pathogenicity for obesity and type-2 diabetes melli-

tus, Front. Physiol., 2022, 13, 936101.

21 B. R. Karamched and C. E. Miles, Stochastic switching of

delayed feedback suppresses oscillations in genetic regula-

tory systems, J. R. Soc., Interface, 2023, 20, 20230059.

22 S. Dalton, Cell cycle regulation of the human cdc2 gene,

EMBO J., 1992, 11, 1797–1804.

23 T. R. Coleman and W. G. Dunphy, Cdc2 regulatory factors,

Curr. Opin. Cell Biol., 1994, 6, 877–882.

24 J. M. Raleigh and M. J. O’Connell, The G2 DNA damage

checkpoint targets both Wee1 and Cdc25, J. Cell Sci., 2000,

113, 1727–1736.

25 A. Y. Mitrophanov and E. A. Groisman, Positive feedback in

cellular control systems, BioEssays, 2008, 30, 542–555.

26 G. Karlebach and R. Shamir, Modelling and analysis of gene

regulatory networks, Nat. Rev. Mol. Cell Biol., 2008, 9,

770–780.

27 T. Schlitt and A. Brazma, Current approaches to gene

regulatory network modelling, BMC Bioinf., 2007, 8, 1–22.

28 A. Polynikis, S. Hogan and M. Di Bernardo, Comparing

different ODE modelling approaches for gene regulatory

networks, J. Theor. Biol., 2009, 261, 511–530.

29 M. J. Schilstra and H. Bolouri, Modelling the regulation of

gene expression in genetic regulatory networks, BioCompu-

tation group, University of Hertfordshire., Tech. Rep, 2002.

30 M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren and

R. Guthke, Gene regulatory network inference: data integra-

tion in dynamic models—a review, BioSystems, 2009, 96,

86–103.

31 G.-J. Hendriks, D. Gaidatzis, F. Aeschimann and

H. Großhans, Extensive oscillatory gene expression during C.

elegans larval development, Mol. Cell, 2014, 53, 380–392.

32 S. Zambrano, I. De Toma, A. Piffer, M. E. Bianchi and

A. Agresti, NF-kB oscillations translate into functionally

related patterns of gene expression, eLife, 2016, 5, e09100.

33 B. Zhu and S. Liu, Preservation of 12-h ultradian rhythms of

gene expression of mRNA and protein metabolism in the

absence of canonical circadian clock, Front. Physiol., 2023,

14, 1195001.

34 H. Gibbs, S. McCall, T. Venkatesan, A. Gossard, A. Passner

and W. Wiegmann, Optical bistability in semiconductors,

Appl. Phys. Lett., 1979, 35, 451–453.

35 S. J. van de Velde, C. T. Reinhard, A. Ridgwell and F. J.

Meysman, Bistability in the redox chemistry of sediments

and oceans, Proc. Natl. Acad. Sci. U. S. A., 2020, 117,

33043–33050.

36 G. Dufour and S. B. Charnley, Astrochemical Bistability:

Autocatalysis in Oxygen Chemistry, Astrophys. J., 2019,

887, 67.

PCCP Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

1
 S

ep
te

m
b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 1

2
/5

/2
0
2
4
 4

:4
5
:2

2
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online


