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Positive feedback loops exist in many biological circuits important for organismal function. In this work,
we investigate how temporal delay affects the dynamics of two canonical positive feedback models.
We consider models of a genetic toggle switch and a one-way switch with delay added to the feedback

terms. We show that long-lasting transient oscillations exist in both models under general conditions

and that the duration depends strongly on the magnitude of the delay and initial conditions. We then
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show the existence of long-lasting oscillations in specific biological examples: the Cdc2-Cyclin B/Weel
system and a genetic regulatory network. Our results challenge fundamental assumptions underlying
oscillatory behavior in biological systems. While generally delayed negative feedback systems are

canonical in generating oscillations, we show that delayed positive feedback systems are a mechanism
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1 Introduction

Positive feedback loops are a prominent network motif in many
biophysical and biochemical circuits. They appear at multiple
different scales ranging from gene regulatory networks through
hormone secretion. Well-known examples of this motif include
platelet activation during blood coagulation,'” the Ferguson
reflex during human child birth,*” the Cdc2-Cyclin B/Weel
network for cell cycle regulation,®® the interaction between the
central nervous system and hypothalamus-pituitary-adrenal
axis,”'® and the Mos/MEK/p42 MAPK cascade.®!*

Models of positive feedback systems have been studied
extensively and many display bistability, a feature where two stable
steady states exist simultaneously.”>™* Beyond bistability, models
of positive feedback often do not exhibit more complicated
dynamics such as oscillations. A very common motif for the
generation of oscillations is delayed negative feedback, which is
a control motif used in homeostatic systems such as the pancreas
and its regulation of blood sugar.">'® Models of delayed negative
feedback are well-known to generate limit cycles emerging from a
delay-dependent supercritical Hopf bifurcation. The effect of
temporal delay on positive feedback systems has received much
less attention. This article is a first step in delineating the effect of
delay on positive feedback systems.
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for generating oscillations as well.

We study the effect of delays on positive feedback models
by incorporating explicit delay into feedback terms of two well-
known models: a genetic toggle switch and a one-way switch.”'*>"”
Both models describe two proteins that undergo production
governed by a Hill function and linear degradation. In parameter
regimes that facilitate bistability, we show that these models
exhibit long-lasting transient oscillations before reaching a steady
state. These findings suggest a mostly unexplored mechanism for
generating oscillatory behavior in a biological system. Under
certain conditions, the duration of these oscillations is so long
as to be indistinguishable from true limit cycle oscillations. From
the viewpoint of biology, the transient oscillations could last longer
than the lifespan of the cell or organism that generates them.

Our findings challenge fundamental understanding of mechan-
isms that drive oscillations in biological and biochemical systems.
Historically, when oscillations were observed in an experimental
setting, it was assumed that they were most likely caused by delayed
negative feedback. We argue against this assumption.

We begin by giving a preliminary overview of the positive
feedback systems that we investigate. For completeness, we also
describe how delays facilitate pulsatile dynamics in delayed
negative feedback systems. Thereafter, we incorporate explicit
delay in positive feedback systems and describe the means by
which long-lasting but transient oscillations emerge.

2 Preliminaries
2.1 Genetic toggle switch, one-way switch, and bistability

We begin with a review of minimal models of canonical positive
feedback systems that exhibit bistability. The dynamics of these
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Fig. 1 Reaction network diagram, phase space, and time series for system
(1) when o = 10, n = 2 (A)=(C) and o = 2.15, n = —2 (D)-(F). Leftmost
column: schematics of biomolecular feedback structures studied. Middle
column: phase portrait of egn (1) with sample trajectories (color). The
dashed lines are the separatrices #7 (top) and # 3 (bottom). Right column:
sample time series for the trajectories shown in the middle panels.

models with time delay in the feedback are analyzed later in the
manuscript.

2.1.1 The toggle switch. The toggle switch is a canonical
system describing mutual inhibition between biochemical spe-
cies such as proteins'>'*'”'® (Fig. 1A). This system can be
described by the ordinary differential equations (ODE)i

dx  «
dr 14

_x Y__a

dr 14+x"

- (1)

where x(t), y(¢) are concentrations of transcription repressors
and « > 0 is the maximal protein production rate for both
species (assumed here to be equal). The parameter n € Z
measures the cooperativity between the repressors™ and is
positive for the mutual inhibition case. Because each molecule
inhibits the production of its inhibitor, the feedback provides
positive feedback of x onto x and y onto y. That is, x inhibits its
inhibitor y (and vice versa), so the cumulative effect is positive
feedback of x onto x and y onto y. For n > 2 the system admits
three real steady states (x*,y*): two stable nodes and one saddle
point. The existence of two stable steady states classifies system
(1) as bistable, a feature that can emerge in positive feedback
systems.”'? Fig. 1A-C depicts dynamics of this system. The
two stable nodes in Fig. 1B (black circles) are characterized by
the dominance of one protein over the other (x* > y*) and the
saddle point (black triangle) describes coexistence (x* =y*). The
basins of attraction of each stable steady state are separated by
the stable manifold of the saddle point, which for this system is
WY ={&y)ly ="

The Hill function§ used for the feedback is a modeling
choice but is not necessary for the results in this work, which
hold for more general functional choices for the feedback. With

i All models presented and described in this manuscript are nondimen-
sionalized.
§ This is also referenced as a Langmuir function in some biochemical literature.
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a feedback function g(u) that describes inhibition, we require
that g(u) > 0 for all u, g should be monotonically decreasing,
and g — 0 as u — oo. Similarly, if g describes activation, we
require g(x) > 0 for all , g should be monotonically increasing,
andg — A € R®=%asu — oo, for some constant A. For n > 0, it
is straightforward to see that g(u) = (1 + ©”)”" satisfies the
inhibition conditions. Similarly, for n < 0, g(u) = (1 + &))"
satisfies the activation conditions.

One alternative popular function used for modeling biochemical

_ -1
systems is the Boltzmann function, g(u) = (1 +exp (X b “)) ’

where a,b are constants. For b > 0, this equation satisfies the
inhibition conditions. Similarly, for » < 0, the equation satisfies
the activation conditions. Another example is the hyperbolic

tangent function, g(u) = tanh (%) + 1, where a, b are con-

stants. When b < 0 (b > 0), the equation satisfies the inhibition
(activation) conditions. Using such functions would not alter the
qualitative results of our work.

2.1.2 The one-way switch. Taking n < 0 in system (1)
transforms the toggle switch into a one-way switch: a biomole-
cular feedback system pertinent in cellular differentiation” that
exhibits mutual activation (Fig. 1D) as opposed to mutual
inhibition. Under certain parameter sets, the one-way switch
is also bistable, but in this case the two stable nodes (black
circles in Fig. 1E) are characterized by both state variables being
at their maximal levels or completely extinct.”'>'” The saddle
point (black triangle in Fig. 1E) is characterized by both state
variables coexisting somewhere in the middle. The stable
manifold, as in the toggle switch system, runs through the
saddle point and separates the basins of attraction of the stable
nodes. Linear stability analysis around the saddle point yields,
locally, a stable manifold equation %% = {(x,y)|y = K — x}, with
K ~ 1.36 when o = 2.15, n = —2.

2.2 Delayed negative feedback

A canonical example of a biomolecular feedback system is
a protein inhibiting its own production after some temporal
delay, © > 0 (see Fig. 2A). Mathematically, this system can be
represented by the delay differential equation (DDE)

%:ﬁ—XEaf(X(t—f))—xv (2)

where o is the maximal protein production rate and n > 0
characterizes the sensitivity of the negative feedback. Initial
data for DDEs are prescribed by a history function x(¢) = A(¢) for
t € [-1,0].

Although this system is comprised of a single equation,
it contains limit cycles in its phase space that are generated
by the delay. The role delays play in the onset of oscillations in
delayed negative feedback systems is well-understood: the amount
of delay, 7, in feedback determines the onset of oscillations via a
supercritical Hopf bifurcation."” " Furthermore, the frequency of
the delay-induced oscillation decreases as 7 is increased and the
amplitude scales as /7 near the bifurcation point. Linear stability

This journal is © the Owner Societies 2024
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Fig. 2 Delayed negative feedback. (A) Schematic of the delayed negative
feedback biomolecular system. (B) Oscillations emerge in system (2) as
the delay is increased from t = 1 (blue curve) to t = 3 (orange curve).
(C) Bifurcation diagram for eqn (2) when varying the delay . Solid and
dashed black lines correspond to stable and unstable stationary steady
states, respectively. The red curve shows the minimum and maximum
values of x on the periodic branch, and the green circle is a supercritical
Hopf bifurcation point with 7. ~ 1.7 and o = 10, n = 2.

analysis of eqn (2) about the steady state x = x* yields the following
conditions for a Hopf bifurcation:

o = —af (x¥)sin(wt) 1 = af (x*)cos(wt) o = —tan(w1),

where w is the frequency of the resulting oscillation. Clearly,
the Hopf conditions cannot be satisfied in the absence of delay
(r = 0). Observe that taking 7 = 0 in eqn (2) renders it a gradient
system, which cannot have oscillations.

For © > 0, however, there exist critical values (w,,t.) satisfy-
ing the bifurcation conditions. When t is increased past 7., a
pair of complex conjugate eigenvalues crosses the imaginary
axis. Although this is not sufficient to guarantee the emergence
of a stable periodic solution via a supercritical Hopf bifurcation
for T > 1., the existence of stable oscillations beyond the Hopf
bifurcation point can be verified numerically (see Fig. 2B and C).

We next discuss how the network motifs and dynamics
presented in this section produce pulsatility in delayed positive
feedback systems.

3 Delayed positive feedback

To investigate the role delay plays in producing oscillations in
the toggle switch and one-way switch systems, we implement
explicit delay, 7, into both feedback terms of system (1). This
yields the set of DDEs

&x _« o«
dar 14o(i—or " A Taxi—or P

3)

where all parameters are defined as in system (1). The coopera-
tivity parameter, n € Z can be adjusted to model delayed
mutual inhibition or delayed mutual activation by letting n >
0 or n < 0, respectively. Importantly, the set of possible steady
states for system (3) is identical to system (1). In all simulations,
we use constant history functions for initial data.

In this section, we discuss dynamics of system (3) and how
they change with 7 and different history functions. In particu-
lar, we discuss how the presence of delay facilitates onset of
pulsatile dynamics. DDEs are infinite-dimensional structures,
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so illustrating dynamics in their true phase space is not
possible. We therefore present results by projecting the phase
portrait into a two-dimensional subspace of the phase space.

3.1 Delayed mutual inhibition

We set n > 0 in eqn (3) to model delayed mutual inhibition.
To see that oscillations are indeed present in the phase space
of this delayed positive feedback system, observe that taking
system (3) with initial data satisfying x(t) = y(t) = @ € R for
t € [—7,0] constrains the dynamics to the stable manifold of the
saddle point, %7, which is the seperatrix partitioning the
basins of attraction of the two stable steady states in the system
without delay (eqn (1)). The resulting differential equation is
exactly eqn (2), which is a model for delayed negative feedback
and exhibits stable oscillations for sufficiently large values of 7.
Thus, eqn (3) admits pulsatile dynamics along #7 in the xy-
plane. Although this is a limiting circumstance, it illustrates
that limit cycles are indeed possible in delayed positive feed-
back systems. In more complicated mutual inhibition systems,
choosing history functions precisely on an invariant manifold
is very difficult. For that reason, we investigate dynamics of (3)
starting near, but not on, #%.

Numerical solutions suggest that limit cycles do not arise
with initial data off #$. However, the system exhibits transient
but long-lasting oscillations that eventually contract to a steady
state. Fig. 3B shows two sample trajectories of system (3)
starting on opposite sides of #{. Superimposed on top are
the trajectories of the ODE system (1) with the same initial
conditions. The ODE solutions (black) approach their respected
steady states without oscillatory dynamics. In contrast, the DDE
system trajectories (red and blue) oscillate for many cycles
before eventually reaching their respective steady states.

Because the trajectory initially oscillates near the stable
manifold of the ODE system, we refer to the long lasting oscilla-
tions as “remnants of the delayed negative feedback oscillator”,
which is present exactly on #. Numerical time series show that
the period, 7, of the transient oscillations is related to the delay
by T = 2t. Thus, during the period of transient oscillations,

. ! .
t ~ NT =~ N(21) so time can be replaced by N = 7 where N is the
T

oscillation number. The time series in Fig. 3C shows oscillations
in x graphed as a function of oscillation number. From a
biological viewpoint, it is possible that the transient oscillations
last longer than the lifespan of the cell or organism. In such a
case, there is little distinction between “long-lasting transient”
oscillations and “stable limit cycle” oscillations.

There appear to be two main factors that contribute to the
duration of the transient oscillations in the delayed mutual
inhibition system: (1) the magnitude of the delay, 7, and (2) the
distance of the initial conditions from #7. To quantify how
these factors affect oscillation duration, we simulated the
mutual inhibition system (3) and recorded the number of cycles
in the x variable. The results are given in Fig. 4A. The number of
oscillations increases super-linearly with .

We next numerically investigated the delayed mutual inhibi-
tion system under varying initial conditions. To see how

Phys. Chem. Chem. Phys., 2024, 26, 24861-24869 | 24863
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Fig. 3 Dynamics of eqgn (3) for o =10, n =2, 7 = 6 (A)-(C) and « = 2.15, n = -2, = = 8 (D)—(F). Left column: schematics of the biomolecular feedback
system. Middle column: dynamics in the xy-plane with actual or approximate separatrices %7 (top) and #3 (bottom) superimposed as dashed lines and
sample trajectories from eqgn (3) plotted (color). Black trajectories are solutions of eqn (1) for the same initial conditions. Right column: sample time series.
The abscissa shows the oscillation number, using the fact that the period T ~ 2t to scale time.
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Fig. 4 (A) Number of oscillations as a function of t for the delayed mutual

inhibition model. Initial data are x(t) = 4 and y(t) = 3 for t € [—7,0] in each
case. (B) Number of oscillations as a function of the distance from #7.
The delay t = 6 is each case. For both panels, « = 10 and n = 2.

distance from #7 influenced the number of oscillations pro-
duced, we extended a line orthogonal to %7 and sampled pairs
of initial conditions for x and y on this normal line. We then
simulated the delay system with each initial condition pair. The
number of oscillations is shown as a function of the Euclidean
distance (4) to #7 in Fig. 4B. This decreases monotonically

24864 | Phys. Chem. Chem. Phys., 2024, 26, 24861-24869

with distance from ¥, suggesting that the transient oscilla-
tions are driven by flow near #7.

3.2 Delayed mutual activation

We set n < 0 in system (3) to model delayed mutual activation
(Fig. 3D). Similar to the previous model, this system displays
bistability and sample trajectories on either side of # are
shown in Fig. 3E. As in the delayed mutual inhibition case, we
superimposed the trajectories from the ODE system (1) with
identical parameters and initial conditions. The results show
that the trajectories without delay (black) approach the stable
steady states without oscillation, but the trajectories with delay
(color) oscillate roughly parallel to #7% before eventually
approaching a steady state. A sample time series for the state
variable x is given in Fig. 3F and exhibits long-lasting oscilla-
tions before reaching a steady state.

As in the previous model, we simulated the delayed mutual
activation model for varying delay values 7 to explore how
oscillation duration changed. Results are summarized in Fig. 5A.
For small 7 the system displays a small number of transient
oscillations. However, increasing t to sufficiently large value leads

This journal is © the Owner Societies 2024
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Fig. 5 (A) Number of oscillations as a function of delay value t for the

delayed mutual activation model. Initial data are x(t) = 1.2 and y(t) = 0.5 for
t € [-1,0] in each case. (B) Number of oscillations as a function of the
distance to #. The delay value is T = 6 for each case. For both panels,
a=215andn = -2.

to a rapid rise in the number of oscillations, which continues to
increase for larger delays. To understand the origin of this rapid
increase in oscillation number, it is helpful to view the dynamics
in the xy-plane (Fig. 6A and B). The trajectory in Fig. 6A corre-
sponds to the parameters and delay value of the red point in
Fig. 5A. With these parameters, the trajectory oscillates as it moves
towards the upper steady state. However, when the delay is
increased from 4 to 6, as in Fig. 6B, the trajectory first moves
towards the upper steady state before changing direction to the
lower steady state. This flow reversal generates many more
oscillations, and there appears to be a critical delay value at which
this dynamic behavior occurs.
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Fig. 6 Dynamics of the mutual activation model depend critically on t
and 4. (A) and (B) Two trajectories with the same starting points (black
stars), but with two different delays, © = 4 (A) and = = 6 (B) corresponding to
the red and green points in Fig. 5A. (C) and (D) Two trajectories with the
same delays (z = 6) but starting at two different distances from #3, 4 =
0.07 (C) and 4 = 0.09 (D), corresponding to the red or green points in
Fig. 5B.
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In addition to varying delay values, we simulated the delayed
mutual activation model with varying initial conditions. As with
the previous model, we extended a normal line from % and
sampled initial condition pairs along that line. Next, we simu-
lated the system for each initial condition and recorded oscilla-
tion duration. The results for the number of oscillations as a
function of the distance (4) to #73 are given in Fig. 5B. The plot
suggests that, initially, as you get farther away from %%, the
number of oscillations increases monotonically. However,
when 4 is sufficiently large there is a sharp downwards jump
and the number of oscillations monotonically decreases as 4 is
increased further. Looking again in the xy-plane (Fig. 6C and D)
we plot two trajectories with identical parameter values, but
starting at different distances from #%73. In one case (Fig. 6C),
the trajectory begins to travel toward the upper steady state, but
then turns around and crosses over # " to eventually end at the
origin. Initial conditions satisfying 4 < 0.07 in Fig. 5B show
similar dynamics in phase space to that of Fig. 6C. Taking an
initial condition a small distance farther away (green point)
yields a trajectory that oscillates directly towards the upper
steady state. Similarly, all starting points satisfying 4 > 0.09 in
Fig. 5B show similar dynamics in phase space to that of Fig. 6D.

3.3 Asymmetric networks

Thus far, we assumed that the dynamics of both of the inter-
acting species are the same, described by eqn (3) with identical
parameter values for x and y. We now explore the effects of
breaking the symmetry, using the set of DDEs

dx o

dy o
—_— X — = — 4
e 1+y(—o)" (4

dt  1+x(t—1)"
where the parameters values are not necessarily equal between
species. Fig. 7 shows that long lasting oscillations can occur
when the time delays differ between species, or the Hill
coefficients differ, or both. Therefore, the phenomenon is not
the result of symmetry between the interacting species.

3.4 Single equation example

The long-lasting oscillations in Fig. 3 and 7 come from models
which describe the evolution of two species. However, we found
that long lasting transient oscillations can occur in models of a
single species. Consider the following DDE

X, (5)

dx =
dt  1+x(t—1)

where o is the maximal production rate and n < 0 is the Hill
coefficient. This equation describes a species which positively
auto-regulates itself after some delay t. This system is capable
of producing long lasting oscillations over time (Fig. 8B),
similar to those produced by the model with two interacting
species (Fig. 3F).

4 Biological examples

Here we present two, more complicated biological models
of delayed mutual inhibition and delayed mutual activation.

Phys. Chem. Chem. Phys., 2024, 26, 24861-24869 | 24865
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Fig. 7 Dynamics of egn (4) when the symmetry between the two cells is broken. (A) Toggle switch with n; > > 0 and « = 10, and (B) one-way switch with
nis < 0, o = 2.15. First column: schematics of the biomolecular feedback systems. Second column: time series of species x when |n4| = |n,| = 2, 7; = 8 and
15 = 12. Third column: time series of x when |n;| = 3, |n,| = 5, and 1, = 7, = 8. Fourth column: time series of x when |n{| = 3, |n,| =5, 7, = 8, and 1, = 12.

We show they are capable of displaying similar dynamics to
system (3).

4.1 The Cdc2-Cyclin B/Weel system

Cdc2 is one member of a class of enzymes coded by cell-
division-cycle (cdc) genes that is required to move through
the cell division cycle.”” In preparation for progressing into
the M phase of the cycle, cyclin B is synthesized and binds with
free Cdc2 to form an inactive M-phase promoting factor (MPF).
Only when this MPF is phosphorylated on threonine-167 by a
cyclin-dependent activating kinase (CAK) is it in an active state.

A B
155
1
0.5
x
0
-0.5
_‘] L
0 300 600 900 1200
time

Fig. 8 Delayed positive autoregulation of a single species. (A) Schematic
of biomolecular feedback structure. (B) Long lasting transient oscillations
occur over time in system (5). Parameter values were o = 2.15, n = -2,
T =14
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Once the concentration of active MPF is sufficiently high, the
cell can progress to the M phase.”® Weet is a protein that helps
mitigate this process by phosphorylating the MPF at the
tyrosine-15 site, rendering it inactive. Conversely, the MPF
phosphorylates Wee1, rendering Weel inactive. This is a clear
example of mutual inhibition, and mathematical models have
shown this system to be bistable (high MPF, low Wee1 or high
Weel, low MPF).”®>* When Wee1 is high, the cell remains in
interphase.

We extend the equations in a previous model for this
system® to include explicit delays in the relevant feedback
terms. The equations to model the interaction between the
active Cdc2-Cyclin B and active Weel molecules are given by the
dimensionless DDEs

& Bes—o)

a _:u(l ) K1+(1/-y(l—f))7 (6)
IR NECIE

a Ky +x(t =)’

where x denotes the active Cdc2-Cyclin B and y represents the
active Weel. With the parameter values in Fig. 9, the system is
bistable.® In the system without delay, the basins of attraction
of the two attractors are separated by the stable manifold of a
saddle point. The exact equation of the stable manifold is not
known for this system. As a proxy for it, we use a linear
approximation to this manifold at the saddle point and denote
it by # 2qco. Fig. 9B displays a phase portrait of the system
projected onto the xy-plane with sample trajectories (color)
starting with initial conditions on either side of #~ 8 4e2. The
black trajectories are the solutions to the system without delay

This journal is © the Owner Societies 2024
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Fig. 9 (A) Schematic of the delayed Cdc2-Cyclin B/Weel biomolecular
system. (B) Phase space with approximate seperatix # &qc» superimposed
(dashed line) and sample trajectories from egn (6) plotted (color). The black
trajectories are solutions to system (6) without delay under identical
starting conditions. (C) Sample time series exhibiting long-lasting transient
oscillations. Parameter values are u = 1, ; = 200, f, = 10, y = 4, K; = 30,
K=1rv=1andt = 8.

starting at the same initial points. These trajectories exhibit
similar behavior to those in Fig. 3B, demonstrating that it is
possible to achieve transient oscillations in more complex
delayed mutual inhibition models for biological systems.
A sample scaled time series showing how active Cdc2-Cyclin B
evolves is shown in Fig. 9C, exhibiting over 30 oscillations before
reaching equilibrium, similar to system (3).

4.2 Genetic regulatory networks

Genetic regulatory networks (GRNs) illustrate the interaction
and relations of genes, proteins, and other molecules inside
cells and are an active area of study in mathematical biology
research.”>° Here we consider a simple delayed mutual activa-
tion model between a gene and protein shown schematically in
Fig. 10A. A typical non-dimensional model for such a GRN, but

incorporating a time delay in the feedback terms, is

dG Pt — 7y
F TR Sy e T
Wp )

where G represents the fraction of the gene in its activated state
and P represents the concentration of the gene product protein.
The parameters p, g, 4, J, k, n represent the activation rate of
the gene, inactivation rate of the gene, the production rate of
the protein, the degradation rate of the protein, the half-max
protein response, and the cooperativity, respectively. Under
certain parameter sets, the system is bistable as shown in the
phase plane in Fig. 10B. As in earlier examples, the dashed line
is a linear approximation to the stable manifold (for the system
without delay) of the saddle point, referred to as # ¢rn. The
trajectories of the system with time delay have a behavior that is
similar to trajectories in Fig. 3E of the delayed one-way switch
model. This illustrates that very long transient oscillations
can occur in delayed mutual activation GRN models. A sample
time course of protein concentration is shown in Fig. 10C.
We observed long lasting oscillations in the protein concen-
tration up until the trajectory converged to steady state.
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Fig. 10 (A) Schematic of the delayed gene/protein system. (B) Phase

space with seperatix # &rn superimposed (dashed line). Trajectories from
egn (7) plotted (color) along with those starting at the same location but
without delay (black). (C) Sample time series showing extensive oscillations
before reaching steady state. The parameter valuesarep=0.1, 06 =2,1=9,
0=1x=2n=3 and 7= 10.

The major implication of this result for GRNs is that the
mechanism underlying protein production at the genetic level
may manifest as a delayed positive feedback system. Histori-
cally, oscillatory protein production has been interpreted as a
result of delayed negative feedback. With the sheer number of
oscillatory genes in biology, our findings suggest the likelyhood
that delayed positive feedback is an underlying mechanism in
many cases.

As an example, gene expression of over 1000 proteins during
development in C. elegans have been identified as undergoing
oscillatory dynamics. Cuticular collagen genes, hedgehog
receptors, and metallopeptidase, amongst many others, have
been observed to oscillate. Since only a few cycles are typically
observed, it is unclear whether these are true sustained
limit cycle oscillations or if they are simply long-lasting. In
the latter case, delayed positive feedback could be the driving
mechanism.

5 Discussion

We presented two canonical examples for positive feedback, the
toggle switch and the one-way switch, and explored their
dynamics when adding temporal delay to the feedback terms.
We showed that they are capable of generating long-lasting
oscillatory dynamics under certain conditions. We verified our
results using a two-dimensional projected phase space
for comparison against the model dynamics without a time
delay. Finally, we showed that qualitatively similar oscillatory
dynamics occur when applying temporal delay to previously
studied biological models of the toggle switch and one-way
switch. Because of the large number of cycles produced, the
transient oscillations in the delayed positive feedback systems
may be indistinguishable from true limit cycle oscillations.
Although our models used Hill function formulations for the
feedback, we found similar long-lasting oscillations when
either Boltzmann or hyperbolic tangent formulations were used
(not shown).

We found that two main factors contribute to the duration of
these transient oscillations: (1) the magnitude of the delay (7)
and (2) the Euclidean distance (4) of the initial conditions from
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W% or #3. The delayed mutual inhibition system showed that
the oscillation duration increases super-linearly with delay and
decreases super-linearly with 4. The delayed mutual activation
model showed oscillation duration increases with the delay
value, but a sharp jump occurs at some critical 7 value.
We showed in Fig. 6A and B the trajectories with t values on
either side of the jump approach different steady states.
We believe this may be due to a shift in the DDE seperatrix
when changing the delay value 7. This would explain why the
trajectories approach different steady states even though the
initial conditions are the same. The oscillation duration as a
function of 4 shows initial increase in oscillation duration with
a sharp decrease in oscillation duration at some critical dis-
tance. Similarly, we hypothesize that the critical 4 value in
Fig. 5B could mark the location of the DDE seperatrix, and that
on the true seperatrix a limit cycle exists. Thus, as initial data is
taken further away from the critical 4 value, we observe fewer
oscillations. We hope to explore these phenomena in the future
to get a better idea of the shape of the true DDE seperatrix and
determine the mechanisms responsible for these interesting
transitions in the dynamics.

We observed that within parameter regimes which enable
bistability, the long lasting oscillations in models of delayed
positive feedback oscillated “orthogonally” to their equilibria.
For example, with delayed mutual inhibition the equilibria are
characterized by either x » y or x « y. However, x & y during
most of the transient oscillation. In the delayed mutual activa-
tion case, the opposite occurs. The equilibria are characterized
by both species completely extinct or maximally expressed.
However, in the oscillation, the trajectories flip between states
where x » y and x « y, which is reminiscent of mutual
inhibition. This is significant, especially to experimentalists,
because it gives an inference strategy for determining which
mechanism produced the oscillations (if they occur due to
delayed positive feedback). In-phase oscillations indicate
delayed mutual inhibition, while anti-phase oscillations indi-
cate delayed mutual activation.

Many previously studied biological systems have shown
oscillatory behavior.?'* Models for these behaviors would
most likely contain a delayed negative feedback motif or a
combination of negative and positive feedback, as these two
systems are canonical generators of pulsatile dynamics. How-
ever, our results argue that the mechanism behind oscillations
in such systems can potentially be explained by delayed positive
feedback alone, as long as there is delay in the feedback and as
long as the system has strong non-linearity.

Finally, although the examples shown here were based on
biochemical or biological examples, the concept of oscillations
driven by delayed positive feedback is applicable in other areas as
well. Any mechanism that exhibits bistability must have an inher-
ent positive feedback loop; thus, any system exhibiting bistability
and strong non-linearity has the potential for long-lasting oscilla-
tory dynamics. Examples include optical bistability®* in condensed
matter physics, physical biogeochemistry of sediments and oceans
as a means to understand anoxic marine systems,* and astro-
chemical bistability arising from autocalatyic oxygen chemistry.*®
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