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Abstract

The pulsatile activity of gonadotropin-releasing hormone neurons (GnRH neurons) is a key
factor in the regulation of reproductive hormones. This pulsatility is orchestrated by a net-
work of neurons that release the neurotransmitters kisspeptin, neurokinin B, and dynorphin
(KNDy neurons), and produce episodic bursts of activity driving the GnRH neurons. We
show in this computational study that the features of coordinated KNDy neuron activity can
be explained by a neural network in which connectivity among neurons is modular. That is, a
network structure consisting of clusters of highly-connected neurons with sparse coupling
among the clusters. This modular structure, with distinct parameters for intracluster and
intercluster coupling, also yields predictions for the differential effects on synchronization of
changes in the coupling strength within clusters versus between clusters.

Author summary

Since the discovery of a small population of hypothalamic neurons that secrete kisspeptin,
neurokinin B, and dynorphin (KNDy neurons), there has been interest in their role as a
pacemaker for the pulsatile release of key reproductive hormones. A fundamental ques-
tion is what mechanism coordinates KNDy neuron activity to generate population bursts.
Optical imaging of the KNDy network at single-neuron resolution has revealed that indi-
vidual KNDy neurons participate in many, but not all, population bursts. It has also
shown that the order in which the neurons are recruited in each burst could be highly
determined in some animals but not in others. We demonstrate here that these observa-
tions can be explained by a neural network with a modular structure, and that one benefit
of the structure is the ability to differentially modulate the level of synchronization by
changes in key coupling parameters.
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Introduction

The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) play
key roles in fertility through their actions on other hormones and gamete development [1].
The gonadotropins are secreted by gonadotrophs located in the anterior portion of the pitui-
tary gland. Secretion of these key reproductive hormones is controlled by hypothalamic
gonadotropin-releasing hormone (GnRH) neurons (2, 3], which release GnRH into the hypo-
physeal portal bloodstream in males and females in pulses [4, 5], driven by bursts of electrical
activity [6, 7]. GnRH must be delivered in a pulsatile manner since continuous delivery desen-
sitizes gonadotropin release [8, 9]. The mechanism for the synchronous release of GnRH from
the GnRH neurons has been a matter of investigation for many years, pushed forward by the
discovery in 2003 that mutations in the gene encoding the G protein-coupled receptor for kis-
speptin led to hypogonadotropic hypogonadism [10, 11]. We now know that pulsatile GnRH
activity is coordinated by a small population of kisspeptin (Kiss)-releasing neurons in the arcu-
ate nucleus of the hypothalamus that also release neurokinin B (NKB), and dynorphin (Dyn),
and are known as KNDy neurons [12-18]. In short, the pulsatility of GnRH neuron activity
reflects pulsatility in KNDy neuron activity, with kisspeptin serving as the output of the KNDy
network to the GnRH neurons [17]. The obvious next question is what mediates the synchro-
nous episodic activity in the population of KNDy neurons? These neurons are interconnected,
and the “KNDy hypothesis” suggests that release of the stimulatory neurotransmitter NKB
from KNDy neurons to neighboring KNDy neurons starts an episode of electrical activity,
while a delayed action by Dyn terminates an episode [19-21]. There is substantial evidence
supporting this hypothesis, reviewed in [17, 19], but recent data supports an alternate hypothe-
sis in which coupling among KNDy neurons through glutamate is the essential ingredient for
the coordinated rhythmic activity of the neurons [22, 23]. According to this hypothesis, gluta-
mate provides the excitation responsible for initiating each episode of electrical activity
through actions on AMPA receptors, while either synaptic depression or the buildup of intra-
cellular Ca®" acting on Ca**-activated K* channels within the cells ends each episode. NKB
and Dyn then serve as modulators of the rhythmic activity of the population of neurons [22],
with NKB being particularly important in brain slice studies from female mice [23]. In addi-
tion to receptors for NKB and Dyn, KNDy neurons have been shown to express AMPA recep-
tors [24], and to release glutamate onto KNDy neurons [25], which are essential elements of
this “glutamate hypothesis”.

The goal of this article is not to weigh in on the validity of either the KNDy or glutamate
hypothesis. Instead, through mathematical modeling, it aims to demonstrate how an imple-
mentation of the glutamate hypothesis along with a modular network structure can account
for experimental findings reported in two recent studies [22, 26]. In so doing, we also show
how apparent discrepancies in some results of these studies can be explained by heterogeneity
in the modular network. The experimental findings were obtained using GCaMP transfection
to measure Ca”* fluorescence in individual KNDy neurons either in vivo [22, 26] or in brain
slices containing a portion of the arcuate nucleus [22, 23]. With these measurements, it was
possible to examine the activity of many KNDy neurons simultaneously. The findings we wish
to explain with the model are the following:

1. Why do many neurons participate in some episodes of activity, called “synchronization
events” (SEs), but not all [22, 26]?

2. Are there “leader cells” that consistently fire first during SEs [26], or is the temporal order
more random [22]?

3. How do changes in the structure of the network impact the frequency of SEs?
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Modular networks are characterized by clusters of highly-connected nodes with sparse cou-
pling among the clusters. In the context of neural networks in which coupling is through excit-
atory glutamatergic synapses, this structure leads to a high degree of coordinated activity
among cells in a cluster, and some weaker coordination among the clusters. This structure
gives rise to two qualitatively different types of connections: the intracluster connections
(intraCC) and the intercluster connections (interCC). While the two are implemented in the
same way in the model, we show that their roles on the synchronisation behavior of the popu-
lation of neurons are different. This characteristic of modular networks provides simple
answers to the three questions above.

Methods

We do not assume any special properties (such as rhythmic bursting) for the KNDy neurons,
so we model them using a reduced Hodgkin-Huxley model, as we used in previous studies
[27-30]. In Ca®* measurements from intact animals, SEs occur once every 5-20 min [15, 22,
26]. Since the time scale for electrical impulses is in milliseconds, replicating the long intervals
between SEs would require very long computations. Our focus is on the impact of a modular
network structure, and not on accurately reproducing the time scale of KNDy network behav-
ior, so we simulate SEs with a much smaller inter-SE interval of approximately 1 s. We first
describe the single-cell model, then the way that the network is implemented. All parameter
values are given in Table 1.

The single-cell model

The intrinsic behavior of cell j is described by two differential equations, one for the cell’s
membrane potential (V;) and one for the activation variable of a delayed rectifying K* current
("j)i

av.

j_
CE = _[INuj +IKj +Ilj +Isyﬂj _Ihkgj] (1)

Table 1. Parameters of the network model.

Parameter Description Value

g Leak conductance 0.1 mS/cm®
Vi Leak reversal potential -49.4 mV
e Sodium conductance 36 mS/cm’
VNa Sodium reversal potential 55mV

I Potassium conductance 12 mS/cm?
Vi Potassium reversal potential -72 mV
&on Max. synaptic conductance 3.6 mS/cm*
Vexe Excitatory reversal potential 10 mV

Toig Constant background current -10to 5 yA/cm®
o, Synaptic activation rate 1ms™’

Ba Synaptic decay rate 0.1 ms™"

o Synaptic recovery rate 0.0015 ms™*
Bs Synaptic depression rate 0.12ms ™"
Vin Threshold for activation -20 mV

Parameter values used in model simulations.

https://doi.org/10.1371/journal.pcbi.1011820.t001
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V)=~ BV, o

The Na™ current is simplified to assume instantaneous activation and utilizes the almost-linear
relationship between its inactivation variable and the activation variable for K, as described in
[31]:

INaj :gNamio(‘/])(OB - nj)(Vi - VNa) . (3)
The K" and leak currents are, respectively:

I, = gKn;'l(‘/j_VK) (4)

7

I, = gz(V;_Vz)- (5)

J
Each model neuron receives excitatory synaptic input from one or more other neurons:
Isynj - gsynj (‘/J - Vexc) (6)

where V., is the excitatory reversal potential. The synaptic conductance is the sum of input
from all neurons innervating neuron j. Finally, the synaptic conductance onto neuron j is

Zm
gsynj = Wy Zaksk (7)

where the summation is over all neurons innervating neuron j, g, is the synaptic conductance
strength parameter, and N is the total number of neurons in a cluster (N = 50). Each of these
neurons has an activity level, a; € [0, 1], and a synaptic efficacy s; € [0, 1]. The activity level
increases with each presynaptic spike and represents the “synaptic drive” from neuron k to
other neurons. The synaptic efficacy reflects synaptic depression, so it declines with frequent
presynaptic activity. The differential equations are:

day

a (Ve (1 —a,) — B.a, (8)
% = ol —s) - I(V)Bs. (9)

The increasing sigmoidal function TI(V,) = 1/(1 + e!Y#~"&/k%) reflects the synaptic release
process that occurs when the presynaptic voltage V. goes past a threshold V;, during an action
potential. When this happens, I1(V}) increases from a value ~ 0 to a value = 1 for a short
period of time, before returning to ~ 0. The @ and § parameters are rate constants.

The final current in the voltage equation is a constant background current, I, that sets the
excitability of the cell. For each cell, this is drawn once randomly from a uniform distribution
over the range -10 to 5 yA/cm?, ensuring the heterogeneous activity of the network (on aver-
age, 10% of the cells spike in the absence of synaptic input).

The modular network

For all simulations, we use a population of 250 model neurons. We form 5 cell clusters of 50
neurons with a high degree of interconnectivity within each cluster (Fig 1A). Cells within these
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Fig 1. Cluster events and synchronization events in the modular network. The model neural network has 5 highly
connected cell clusters (left). Each of these is capable of producing population bursts of activity or “cluster events” (CE),
as seen in the raster plots (right), color-coded to indicate the cluster that the cells are part of. The bottom black curve is
the activity averaged (a) over all 250 cells in the population. When overlapping events occur in 3 or more clusters, (a) is
above the threshold for what we refer to as a synchronization event (illustrated with gray shading) A: Without
interconnections among the clusters (intraCC = 100%, interCC = 0%). B: Interconnections among the clusters, though
sparse, can synchronize the cluster events (intraCC = 100%, interCC = 0.1%). We have sped up the synaptic efficacy
variable to decrease the simulation time scale for producing synchronized events from hours to seconds.

https://doi.org/10.1371/journal.pcbi.1011820.9001

clusters are connected to cells in other clusters with many fewer links (Fig 1B). To generate a
cluster, we first set the coupling parameter for the fraction of cells within the cluster that a neu-
ron should connect to (called “intraCC” for intracluster coupling). The same value is used for
all 5 clusters. Then pseudo-random numbers are generated to determine which connections
are actually made. A similar process is done for intercluster coupling. The coupling parameter
“interCC” is then the fraction of all possible connections between clusters that are actually
made. The extent of coupling within each cluster is large in our model, but the coupling
strength of each connection is small, so that stimulation of any one neuron so that it fires toni-
cally is typically insufficient to evoke firing in neurons that it synapses onto. This is consistent
with the brain slice experiments of Han et al., in which they found that stimulating one neuron
rarely had an effect on the behavior of the other neurons that they were examining [22].

The network activity (denoted as (a)) is calculated by averaging over all cell activities a;
(Fig 1, black traces). When all clusters fire together, (a) rises to = 0.6, and we define a synchro-
nization event to occur when 3 of the 5 clusters are simultaneously active, so when {a) > (0.6)
(0.6) = 0.36 (Fig 1, gray shading).

The model and simulations were implemented using the Eclipse IDE for C and C++ with
the MinGW gcc v12.2.0 compiler. Ordinary Differential Equations (ODEs) were solved using
the Runge-Kutta fourth-order (RK4) method with time step 0.01 ms. The output .txt files were
processed using Python (v3.10.9) and Matplotlib (v3.7.0) to generate the figures. The graph in
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Fig 1 was created using Gephi [32]. Source code can be downloaded from www.math.fsu.
edu/~bertram/papers/neuron.

Results

The modular network exhibits a mix of partially and fully synchronized
events

The model modular network consists of 5 cell clusters with extensive intracluster coupling (Fig
1A left) quantified by the coupling percentage “intraCC”, and much less extensive intercluster
coupling (Fig 1B left) quantified by the coupling percentage “interCC”. Each cluster contains
50 neurons described by Hodgkin-Huxley-like models. Although the clusters have the same
intraCG, the intracluster network structure is determined randomly, so will differ from cluster
to cluster. In addition, the background currents in the model neurons are determined ran-
domly from a uniform distribution (see Methods), so neurons in the network have different
excitability. For these reasons, some clusters are more active than others. The raster plots in
Fig 1A, where there is no intercluster coupling, illustrate this. The top (pink) cluster has cells
that are tonically active, and those that are inactive. However, there are three instances when
the entire cluster is active, i.e., there is a population burst that we refer to as a “cluster event”
(CE). The onset is triggered by a few initiating cells that spike and, due to the extensive cou-
pling, cause others in the cluster to spike [28]. An episode terminates due to the buildup of
synaptic depression that reduces the coupling between the cells to a level that is eventually too
low to continue the regenerative activity [28, 33].

The second (cyan) cluster exhibits a quite different activity pattern. Although there are
some tonically active cells, at no point during the 2 s simulation is there a CE. The fourth
(green) and fifth (red) clusters, on the other hand, exhibit 5 CEs over the 2 s simulation time.
Clearly then, with the randomness in the coupling and distribution of background currents,
the cluster activity is very heterogeneous.

The bottom panel shows the activity variable, a, averaged over the population of 250 cells,
denoted as (a). The time course of (a) shows the timing of bursts within a cluster, and when
bursts occur in two or more clusters simultaneously this is reflected in the amplitude of the (a)
deflection. Thus, (a) can be used as a metric to determine whether the bursts in the clusters are
synchronized. There were several occasions in which bursts in two clusters overlapped in Fig
1A, even though the clusters are not coupled, and this is reflected in larger deflections in (a).

When a low level of intercellular coupling is added (interCC = 0.1%) there are, not surpris-
ingly, more instances of coordinated bursting. In the 2 s simulation shown in Fig 1B, there are
instances of coordinated bursting in 3, 4, or all 5 clusters. When three or more clusters exhibit
overlapping bursting we call this a “synchronization event” (SE), since the majority of cells in
the population are spiking simultaneously. These SEs are highlighted in gray in the time course
for (a). In this case, a cell is receiving, on average, 0.001*200 = 0.2 synapses from clusters other
than the one it belongs to, so a cluster receives about 10 connections from the four other clus-
ters—this is enough to produce synchronized cluster events.

An observation made in [22, 26] in Ca** imaging studies of KNDy neurons in vivo is that
many of the neurons participated in some, but not all, of the synchronization events. We
examine this in the modular network in Fig 2, which shows activity traces (the variable a) for 3
randomly-chosen neurons from each of the 5 clusters. In this network, there is complete cou-
pling within each cluster (intraCC = 100%) and weak coupling among clusters
(interCC = 0.4%). Over a period of 5 sec, this network produces 9 SEs. All 15 cells participated
in the first SE. However, only 12 participated in the fifth SE; cells in the blue cluster did not
exhibit a CE, and so remained inactive (indicated by a red X). In the seventh and eighth SEs,
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Fig 2. Synchronization events and miniature synchronization events in the modular network. The activity time
courses (the variable a) for 3 model neurons selected randomly from each of the 5 clusters. Most cells participate in
some, but not all, of the synchronization events. A red X highlights an instance in which a cell did not participate, and
an orange circle highlights an instance in which a cell did participate, but other cells in its cluster did not. The bottom
panel shows the average activity across the network, with SEs indicated by gray bars. Arrows in the bottom panel
highlight a few (but not all) instances of mini-SEs, where one cluster (light orange arrow) or two clusters (dark orange
arrow) produced bursts of activity. IntraCC = 100%, interCC = 0.4%.

https://doi.org/10.1371/journal.pcbi.1011820.g002

different clusters of cells did not participate, from the magenta and cyan clusters. An interest-
ing case is SE 6, where cells in the green cluster had a burst immediately before, but not during,
the SE. These likely contributed to the SE initiation. Also, one of the cells in the cyan cluster
was active during the SE (orange circle), while the other two from the same cluster were inac-
tive. This illustrates that cells sometimes participate in SEs even though their cluster does not
produce a CE. Overall, the figure shows that many cells in the modular network participate in
some, but not all, of the SEs, as reported in [22, 26].

Another phenomenon shown in Fig 2 is that the averaged activity of the population has a
mix of large increases, the SEs, and smaller ones (marked with orange arrows). These smaller
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events reflect burst activity of only one or two clusters. Smaller events in the population activity
were referred to as “miniature synchronization events” in [22], and we use this nomenclature
for the smaller events that occur in the modular network.

Leader cells are possible, but not guaranteed

Are there leader cells that consistently fire near the beginning of SEs and therefore serve as
triggers for the SEs? This question was addressed in vivo by both Moore et al. [26] and Han
etal. [22]. The former found that there was indeed a set of KNDy neurons for which the Ca®t
level consistently reached its peak at the beginning of an SE in which it participated. Other
KNDy neurons consistently fired in the middle of an SE, and others consistently fired at the
end, indicating that they were recruited to fire by other neurons (Fig 4 of [26]). The latter
study showed much more flexibility in the firing order of KNDy neurons. In some animals
there appeared to be a similar preferred firing order of KNDy neurons as in [26], while in
other animals there was no consistent temporal ordering (Fig 1 of [22]). Similar results were
shown for SEs that occurred in vitro in brain slices (Fig 2 of [22]). How can these conflicting
data be reconciled?

We examined this question in the modular network using different combinations of the
connectivity parameters. Fig 3A shows one example with intraCC = 55% and interCC = 0.6%.

R: 0.84 B !

12345678 9101112131415
Order of peak

R: 0.5 . -

12345678 9101112131415
Order of peak

Fig 3. Network connectivity parameters determines whether there are leader cells. A: Activity time courses of 15 neurons selected
from all 5 clusters during two SEs (left, SEO1 and SE02). The left table shows the temporal order of firing of the 15 neurons in 8 SEs; light
shading indicates that the cell fired early in an SE. The right table is a reorganization of the left table so that cells that typically fire early
are placed in the top rows. The scatter plot indicates spike timing with those cells spiking early in the SEs placed on the bottom. There is
a strong correlation (R = 0.84), indicating the presence of leader cells. The data points are color-coded according to the cluster that the
corresponding neurons are part of. IntraCC = 55%, interCC = 0.6%. B: With a different value of the intracluster coupling parameter
there is much less consistency in the temporal order of spiking during SEs (R = 0.5). IntraCC = 75%, interCC = 0.6%.

https://doi.org/10.1371/journal.pcbi.1011820.9003
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We examined the activity of 15 neurons (3 from each cluster) as this is a typical number of
neurons recorded simultaneously [22, 26]. Activity traces for the 15 neurons were analyzed,
starting with time courses of the neurons during two SEs. From these, it is apparent that cells
in the green cluster began firing first in the two SEs, while those in the blue or magenta cluster
began last. The firing order for 8 SEs is shown in the left table. Each entry of this table gives the
order that firing began, and the boxes with light coloring represent firing near the beginning
of an SE and dark coloring represents firing late in the SE. From this, we see that the cells in
the green cluster consistently began firing first, they are leader cells, while those in the blue
and magenta clusters mostly began near the end of the SEs. To bring out the temporal ordering
more clearly, the table was reorganized so that the ordering of the rows is based on the typical
order when firing began during SEs; cells that typically began firing first are placed in the top
row, and those that typically began last are placed in the bottom. In this rightmost table, the
shading variation from top to bottom clearly demonstrates consistency in the temporal order
of spiking during SEs. Finally, the data are shown as scatter plots, with the order in which spik-
ing began on one axis and the cell ID on the other, with cells that typically began first placed
on the bottom and those that typically began last placed on the top. The data are color-coded
to correspond to the cluster that the corresponding neuron is part of. When organized this
way (as was also done in [22] and [26]), the consistency of the temporal order of firing can be
quantified with the Spearman’s rank correlation coefficient (R). The large value of the R (0.85)
demonstrates that there is consistency in the temporal order in which spiking began during
SEs in this example network. Also, with the color coding, it is clear that neurons in the green
cluster consistently fired first, they are leader cells, while those in the magenta and blue clusters
consistently fired last and so are follower cells. This ordering reflects the level of activity pro-
duced by the clusters without intercluster connections. That is, without any intercluster con-
nectivity the neurons in the green cluster produce the most frequent bursts of activity,
followed by neurons in the red cluster, with neurons in the magenta and cyan clusters not
active at all without intercluster coupling.

Another example network, with a larger value of intraCC, produced different results (Fig
3B). While neurons in the red cluster often began to fire early in an SE, they also sometimes
began much later. Cells in the magenta cluster most often began to fire toward the end of an
SE, but sometimes began at the start of an SE. The lack of consistency in the temporal order of
spiking is seen most clearly in the scatter plot, where the R (0.5), is much lower than in the pre-
vious example. This value is very similar to what was reported in most of the data from [22]. In
addition, it is evident from the color coding that there are no clusters that consistently fired
first. This likely reflects the fact that when intraCC is increased all the clusters produce bursts
of activity, even without intercluster coupling, making it more likely that any cluster can start
an SE by recruiting other clusters to fire.

The last figure raises the question of whether consistent temporal firing is more likely with
some network coupling parameters than others. To investigate this, we examined the temporal
order R for a grid of coupling values (intraCC € [50, 100]% and interCC €[0.2, 2]%) using
heat maps in Fig 4. The top, left panel of Fig 4A shows, in each element, the average R value
over 6 different simulations using fixed values for the coupling parameters. The coupling pat-
tern among neurons is different in each simulation, but intraCC and interCC values are the
same. The sampling is from 15 neurons, chosen randomly from the network. Light colors cor-
respond to high temporal order values. The panels labeled Samplel through Sample4 show
similar information, but with different samplings of neurons. The final panel shows the means
of these five grids of simulations. All simulation grids show a trend in which R is highest for
small values of intraCC and large values of interCC. This result is consistent with the simula-
tion of single networks in Fig 3.
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Fig 4. Changes in coupling parameters and cell sampling can alter the consistency of temporal recruitment order.
Each element of the heat map corresponds to a specific choice of the intraCC and interCC parameters. The element
value is the average of the temporal order correlation coefficient (R) for six instances of a network. Light colors
indicate high R (see scale bar). A: Each panel corresponds to a different sampling of 15 cells, chosen randomly from the
network. The last heat map is the average of the 5 grids of simulations. B: In this case, in each panel all 15 cells are
chosen from a single cluster. The last panel is the mean of these.

https://doi.org/10.1371/journal.pcbi.1011820.9004

What happens to the temporal order if all 15 neurons examined are selected from the same
cluster? This is shown in Fig 4B, where each heat map corresponds to neuron sampling from
one of the five clusters. In each simulation, 15 neurons were chosen randomly from a single
cluster and the temporal order R was calculated. The networks used in all simulations were
identical to those used in panel A; only the neurons used in the sampling differed. In all of
these cases, the temporal order R is high, with much less variation across coupling parameters
than was seen when neuron sampling came from all clusters in the network.

Differential effects of changes in the coupling parameters

In [22], small “miniature SEs” (mSEs) were distinguished from SEs as being significantly
smaller and therefore reflecting a smaller degree of synchronous neural activity. Following this
nomenclature, in the simulations it is natural to categorize events in which a majority of the
clusters (3 or more) fire together as SEs, and events in which one or two clusters fire together
as mSEs. Hence, if we define NCE, as the number of events in which k clusters were simulta-
neously active (i.e., in which there were k “cluster events”), then the number of mSEs through-
out a simulation is NCE;+NCE, and the number of SEs (which we refer to as NSE) is

NSE = NCE;+NCE4+NCEs. Fig 5 A shows the number of cluster events for different values of
the interCC parameter in simulations of 40 s duration. For example, with interCC = 0.25%
(top left histogram, with tan shading), 62 events were single-cluster events (NCE,), while all
clusters fired together in only 22 events (NCEs). The number of synchronization events is
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Fig 5. The number of cluster events and the degree of synchronization increases with an increase in the
intercluster coupling. A: Histograms showing the number of events in which 1,2, .. ., 5 clusters fired together during
simulations with 40 s duration. The interCC is increased moving from top to bottom. B: Average activity time courses
of the 5 clusters during 5 s of simulation time, corresponding to the histograms with tan shading in the previous panel.
The number of CEs is shown on the right. C: (left) Mean number of CEs, along with standard deviation, for the range
of interCC values explored in the histograms and over simulations with 40 s duration. (right) The mean fraction of
synchronization events (events with 3 or more clusters active) in which all 5 clusters are active, NCEs/NSE, along with
standard deviation. IntraCC = 60%.

https://doi.org/10.1371/journal.pchi.1011820.g005

NSE =39 (3+14+22). The top panel of Fig 5B shows the average activity of each cluster during
5 s of the simulation corresponding to this same coupling parameter value. The number of
CEs is shown on the right. Several CEs do not recruit all the other clusters into full-blown SEs.

When the intercluster coupling is increased there is a clear shift in the histogram, so that by
interCC = 0.35% the vast majority of events are SEs, and most of these have all clusters firing
in synchrony. With interCC = 0.60% almost all CEs are in SEs with all clusters firing together.
This increase in the degree of synchrony is also evident in the average activity time courses in
panel B. Increasing interCC is therefore a very effective way of increasing the number of CEs
that are part of SEs. As network synchronization increased with higher interCC values, the
number of CEs also increased, as illustrated in the left panel of Fig 5C. In addition, the stan-
dard deviation in the number of CEs among the clusters decreased with an increase in
interCC, again indicating that the cluster activity became more uniform when interCC was
increased. Finally, the mean fraction of synchronization events in which all 5 clusters partici-
pated (frequency of NCEs) increases and the standard deviation decreases with increases in
the interCC (right panel of Fig 5C), again demonstrating the tendency of intercluster coupling
to increase the degree of synchronization between clusters.

We next followed the same procedure, but this time keeping the intercluster coupling
parameter fixed and varying the intracluster coupling. Fig 6A shows histograms of the number
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Fig 6. Increasing intracluster coupling has a weak effect on the number of cluster events, and weakly decreases
cluster synchronization during SEs. A: Histograms showing the number of events in which 1, 2, .. ., 5 clusters fire
together during simulations with 40 s duration. The intraCC is increased moving from top to bottom. B: Average
activity time courses of the 5 clusters during 5 s of simulation time, corresponding to the histograms with tan shading
in the previous panel. C: (left) Mean number of CEs, along with standard deviation, for the range of intraCC values
explored in the histograms. (right) The mean fraction of SEs in which all five clusters participate, NCEs/NSE, and
standard deviation. InterCC = 0.2%.

https://doi.org/10.1371/journal.pchi.1011820.9006

of clusters participating in events during 40 s simulations, with intraCC from 60% (top) to
95% (bottom). As intraCC is increased, there are more events with some level of synchronized
activity. However, for all values of the parameter investigated, there were more mSEs than SEs.
Panel B shows average activity time courses over 5 s for three cases (tan shading in the histo-
grams) that show that while synchronous events occur, there are many instances in which sin-
gle clusters fire alone. Increasing intraCC does increase the number of CEs, but the standard
deviation across the clusters changes little (Fig 6C, left), again indicating that increasing
intraCC is not particularly effective at bringing all clusters into synchrony. Interestingly,
increasing the intraCC led to a reduction in the mean fraction of SEs in which all 5 clusters
participated, with little change in the standard deviation (Fig 6C, right). That is, increasing the
intracluster coupling lowers the degree of synchrony among the SEs.

Discussion

This study was motivated by recent data describing neuronal activity within the arcuate
nucleus KNDy neuron network in vivo, at single-cell resolution [22, 26]. The data described
how single neurons coordinate to generate the synchronized network events that drive pulsa-
tile LH release. It led Han et al (2023) to propose a new paradigm for the synchronization
events, where glutamate transmission provides the main synchronization drive, and Dyn and
NKB play supporting roles, amplifying the synchronization. The single-cell resolution also
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enabled the observation of leader cells that activate first during synchronization events, with a
consistent order of recruitment over synchronization events [26]. At the same time, some net-
works exhibited more variability in the order of firing. We have demonstrated here that these
experimental findings can be explained by a network of neurons that has a modular structure
consisting of clusters of highly connected neurons with sparse intercluster coupling.

We provide an explanation for why temporal ordering could be seen as fixed or variable in
different studies, or different animals. The findings of Moore et al. suggest that there are dis-
tinct leader and follower cell populations [26]. The consistency of firing order between groups
of cells suggests a cluster organization in the KNDy network, like the one we have adopted.
This experimental study, and our simulations that exhibit a high correlation between cell ID
and firing order, show “blockiness” in the ID versus order scatter plot (Fig 4Bii in [26] and our
Fig 3A). This suggests that the same groups of cells are consistently activated around the same
time relative to the start of a synchronization event. In our simulations, this is due to the con-
sistent recruitment of clusters to an active state occurring during each synchronization event.
This happens when intercluster connectivity is high and intracluster connectivity is low. In
other words, we get a consistent order of firing between cells when the coupling between clus-
ters is sufficiently strong that the most active cluster can consistently evoke episodes of activity
in less-active clusters, establishing a leader-follower hierarchy. Also, the coupling within a clus-
ter is sufficiently weak so that while some clusters are active even without intercluster coupling,
other clusters are silent without the influence of other clusters. Paradoxically, this reveals the
cluster organization.

On the other hand, when the network is more modular (high intracluster connectivity and
low intercluster connectivity), the consistency in the order of cell activations is lower. This is
because the clusters are more independent and any cluster can generate a CE that then may
trigger a more global SE. Because each cluster is as likely as another to trigger a synchroniza-
tion event, the ordering of cell activations is variable. This more variable temporal ordering is
consistent with results from Han et al. [22]. We point out, however, that relatively small con-
nectivity parameter manipulations were sufficient to go from consistent to variable temporal
ordering, suggesting that minor connectivity differences in the experiments from Han et al.
versus Moore et al. can explain the difference in their results. Such differences could reflect the
sex difference between animals used in the experiments. Male mice were used in Han et al.
and ovariectomized female mice were used in Moore et al. In a subsequent study of KNDy
neurons in brain slices from female mice, there was little consistency in the order of spiking
during mSEs [23], consistent with the findings from male mice by the same lab [22].

Our final finding is that increasing the inter-cluster connectivity increased the level of syn-
chronization among the clusters, while increasing the intra-cluster connectivity had the oppo-
site effect (Figs 5 and 6). This has similarities to the finding reported in [22] that blocking
receptors for either NKB or Dyn reduced the size of the SEs, indicating that these neurotrans-
mitters both act to increase synchrony among KNDy neurons, even though one is excitatory
and the other inhibitory [34]. This experimental finding could be explained with our modular
model if one effect of NKB is to increase intercluster coupling and one effect of Dyn is to
decrease intracluster coupling. The neurotransmitters Kiss, Dyn, and NKB are packaged into
separate vesicles [35], so the proportion of neurotransmitter type released at synapses could
vary from synapse to synapse. It is possible that NKB is preferentially secreted at intercluster
connections and Dyn at intracluster connections. To date, however, there is no experimental
evidence that this is the case.

One notable difference between the SEs produced by our model network and those
observed in actual KNDy neuron populations [22, 26] is the much shorter time between SEs
and SE duration in the simulations. Replicating the much slower SEs reported in the
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experiments would greatly increase the time required for computer simulations, without
changing the results of interest to us, such as the order of spiking during SEs and participation
of neurons in some, but not all SEs. Indeed, as reported in [22], the SEs recorded in brain slices
had much shorter inter-SE intervals than those recorded in vivo, but the basic properties of the
SEs were the same.

The simulations were performed with a version of the Hodgkin-Huxley model, with only two
voltage-dependent ion channel types. The actual KNDy neurons are almost certainly more com-
plicated, but to date no biophysical model of KNDy neurons based on single-cell data has been
published. We do not believe, however, that the use of more complete single-cell models would
impact the findings of this study, which are determined primarily by the network structure.

A more fundamental assumption that we made is that the coupling between neurons is
through glutamate. This is consistent with recent results from [22], but is contrary to the pro-
posal that the episodes of activity are started by the actions of NKB and terminated by the
actions of Dyn [17]. In our model, the excitatory action of glutamate declines over time due
to synaptic depression, which is responsible for terminating each activity episode, as in
developing networks [27]. Another possibility is that the buildup of some intrinsic hyperpo-
larizing current or currents could cause episode termination [27]. Indeed, [22] found evi-
dence for Ca*"-activated K* current in KNDy neurons that could play such a role. The
presence of these currents does not, however, discount the potential role of synaptic depres-
sion in episode termination.

The key property of the networks used in our study is that they are modular, consisting of
clusters of highly-coupled neurons with sparse coupling between clusters. Our key findings
cannot be replicated in a non-modular network. When looking at a homogeneous network
(i.e., a single cluster), we found that all neurons consistently participate, or not, in synchroniza-
tion events. This is contrary to the finding that KNDy neurons participate in some, but not all,
SEs [22]. We also found that the temporal order of spiking during a CE is similar from one
event to the other; there are definite leader cells and follower cells (Fig 4C). This order is set by
the background current in each cell, i.e., their level of excitability. Thus, with a single cluster
we do not capture the variable order of spiking during SEs reported by [22].

In homogeneous networks the order of recruitment is mostly determined by cell excitabil-
ity: the more excitable cells fire before the least excitable cells. In the modular network, the
cells that consistently fire first are the ones that belong to the most excitable clusters. So
recruitment order does not depend on cell excitability, it depends on cluster identity. That is,
for neurons in a modular network, it is not “who they are” that determines recruitment order,
but “who they know”. Thus we predict that in networks with consistent recruitment order, the
cells that are recruited first are not necessarily the most excitable cells.

Conclusion

A mathematical model of the KNDy network with a modular structure elegantly explains key
features of KNDy population activity observed experimentally. In particular, individual neurons
participate in some SEs, but not all, since different SEs are generated by different combinations
of neuron clusters. In addition, the balance between intra- and inter-cluster connectivity deter-
mines whether the recruitment order of cells during SEs is consistent or not. When recruitment
is consistent across SEs, this is because the order of cluster recruitment is consistent.
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