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Optimal acceptance of incompatible kidneys
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ABSTRACT

Incompatibility between patient and donor is a major barrier in kidney transplantation (KT).
The increasing shortage of kidney donors has driven the development of desensitization
techniques to overcome this immunological challenge. Compared with compatible KT,
patients undergoing incompatible KTs are more likely to experience rejection, infection,
malignancy, and graft loss. We study the optimal acceptance of possibly incompatible kid-
neys for individual end-stage kidney disease patients. To capture the effects of incompatibil-
ity, we propose a Markov Decision Process (MDP) model that explicitly includes compatibility
as a state variable. The resulting higher-dimensional model makes it more challenging to
analyze, but under suitable conditions, we derive structural properties including control
limit-type optimal policies that are easy to compute and implement. Numerical examples
illustrate the behavior of the optimal policy under different mismatch levels and highlight
the importance of explicitly incorporating the incompatibility level into the acceptance deci-
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sion when desensitization therapy is an option.

1. Introduction

Kidney transplantation is the organ transplantation
of a donated kidney into a patient with end-stage
kidney disease (ESKD). For most ESKD patients,
transplantation is their best option. Compared with
those undertaking dialysis treatment in their
remaining lifetime, patients who undergo transplant-
ation usually live longer and have better quality of
life (Aimaretti & Arze, 2016). To receive cadaveric
kidney offers, ESKD patients in the U.S. have to
join the waitlist of the United Network for Organ
Sharing (UNOS), which manages the Organ
Procurement and Transplantation Network (OPTN).
The OPTN kidney allocation system (KAS) works as
follows (OPTN, 2023). Once a kidney is available,
the UNOS will identify the matched candidates on
the waitlist and offer the kidney to the patient with
the highest priority, which is determined by the
medical and listing status of both patients and
donors (e.g., patient waiting time and the distance
between the patient and donor). The transplant sur-
geon responsible for the care of the patient has a
very short time to make a final decision on whether
or not to accept the kidney for transplantation. If
the kidney is declined, it will be offered to another
eligible patient in the descending order of priority.
Patients declining an offer will maintain their status
on the waitlist without being penalized, and may
even gain a higher priority on the waitlist in the
future due to increased waiting time. Although the

number of kidney donors has been increasing, it is
eclipsed by the number of newly-listed transplant-
ation candidates. According to the OPTN database
(OPTN, 2022e), there were 27,332 candidates receiv-
ing kidney transplantation during 2023, while
44,565 candidates were added to the waitlist. By the
end of 2023, there were 88,667 candidates on the
waitlist. Once added to the waiting list, candidates
usually have a lengthy wait, with an average waiting
time of 2.13years since the new OPTN allocation
policy was implemented in 2020 (OPTN, 2022a).
Fewer than half of candidates eventually receive
transplantation, and more than 5000 candidates die
on the waitlist every year.

To improve access to kidney transplantation,
modern desensitization techniques have been devel-
oped to overcome the human leukocyte antigen
(HLA) and the ABO blood-type incompatibility
(HLAi and ABOi), the major immunological bar-
riers to kidney transplantation (Konvalinka &
Tinckam, 2015; Rydberg et al., 2007). The HLA
antigens are polymorphic proteins, and the ABO
antigens consist of oligosaccharides expressed on
donor kidney allograft. They are potential targets for
the immune system of organ recipients. The extent
of sensitization to the HLA antigens is reflected by
the calculated panel reactive antibody (CPRA) value
of a patient, which is the proportion of donors
expected to have an HLA mismatch with that
patient. Patients with a CPRA value greater than 0
are called sensitized. About 40% of patients on the
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waitlist are sensitized (OPTN, 2022a). Compared
with insensitive patients, highly sensitized patients
have a much lower chance of finding a compatible
donor: it may take years without a compatible
donor being identified (Kuppachi & Axelrod, 2020).

To receive an incompatible kidney, a patient has
to undergo desensitization therapies that aim to
reduce or remove donor specific antibodies (DSA)
prior to and after the transplantation. With the
development of modern desensitization protocols,
satisfactory outcomes have been observed in both
HLAi and ABOi kidney transplantations. However,
HLAi and ABOi kidney recipients show lower graft
and patient survival rates compared to recipients of
compatible kidneys (Kim et al., 2021; Koo & Yang,
2015; Morath et al, 2017; OPTN, 2022e).
Incompatible kidney transplantation comes with
distinct drawbacks, as desensitization therapies
increase the risk of infection and malignancy
(Clayton & Coates, 2017). Moreover, recipients of
incompatible kidneys are more prone to experienc-
ing acute or chronic rejection and early graft loss,
in contrast to recipients with compatible kidneys
(Ko et al, 2017; Koo & Yang, 2015). Even so,
incompatible kidney transplantation still remains
the best therapeutic option for patients who are
highly sensitized and/or difficult to match, and in
recent years, HLAi transplantation has become
more common. According to the OPTN data from
2017 to 2021 (Lentine et al., 2023), more than 70%
of deceased donor kidney recipients, and more
than 40% of living donor kidney recipients had
four or more HLA mismatches. On the other hand,
ABOi kidney transplantation is less common: the
current OPTN Kkidney allocation policy allows
deceased donor ABOi transplantation only under
certain circumstances, e.g., when the HLA mis-
match level is zero (OPTN, 2023).

For patients with an incompatible directed living
donor, they have the option of joining the Kidney
Paired Donation (KPD) program to find a compat-
ible living donor. The OPTN tracks every incompat-
ible donor-recipient pair that registers in the KPD
program, and the UNOS works with transplant cen-
ters to identify all possible matches where the donor
in each pair is compatible with the recipient in
another pair (Ashlagi & Roth, 2021). By a chain of
exchanging donors through multiple pairs, a com-
patible match for all the recipients can be estab-
lished. KPD is an effective means for offering
better-matched organs to patients and thus reducing
the kidney shortage, and the proportion of paired
donations in living donor kidney transplantations
has grown from 12.0% to 18.6% in the past 5 years.
Furthermore, incompatible transplantation could be
incorporated into the KPD program to further

augment its benefits. For example, currently, ABOi
transplantation is not allowed in the KPD program
(OPTN, 2023), whereas by incorporating incompat-
ible transplantation into the KPD program, a more
flexible and adaptable matching/pairing system can
be established, potentially leading to a higher num-
ber of successful transplantations.

Although the kidney shortage is severe, it is
reported that most cadaveric donor kidney offers
are declined by at least one transplant surgeon
before being accepted for transplantation (Husain
et al., 2019), and 25% of offers are eventually dis-
carded by transplant surgeons (OPTN, 2022a).
Unsatisfactory organ quality accounts for most of
the declined offers. Meanwhile, the number of kid-
ney transplant recipients who experience graft fail-
ure and return on dialysis has been increasing
every year (Fiorentino et al., 2021). To improve
systemwide health outcomes, researchers have
taken the perspective of a policy maker and mod-
eled the organ allocation problem as a multi-class
queueing problem or a sequential allocation prob-
lem (Akan et al, 2012; Ata et al, 2017; Su &
Zenios, 2004, 2005, 2006; Tung et al., 2022), focus-
ing on the overall social welfare (e.g., the total
organ usage) and the trade-off between efficiency
and equity of the allocation system; as a result,
simplified models are used for acceptance decisions
at the patient level, for example, the multi-class
queueing models of Tung et al. (2022), Akan et al.
(2012) and Su and Zenios (2005, 2006) categorize
patients into different types based on their medical
conditions and listing statuses, but assume their
types unchanged over time and/or represent their
acceptance strategy by the probability of accept-
ance. While this static classification or simplified
strategy might be adequate for the purpose of kid-
ney allocation, from the perspective of an individ-
ual patient, whether or not to accept a kidney offer
is a critically important decision affecting their
quality of life, motivating our focus on the deci-
sion-making process at the patient level.

Thus, our research models the transplant
surgeon’s (the decision maker) decision-making pro-
cess to capture the dynamic nature of the patient
state, ensuring that the decision to accept a possibly
incompatible kidney offer aligns with the patient’s
specific circumstances. When a kidney offer arrives,
the decision maker has to decide whether to accept
it, depending on the current listing and medical
state of the patient and the characteristics of the
kidney offer, including both quality and compatibil-
ity. If the kidney is accepted, the patient will
undergo transplantation; otherwise, the patient will
wait for the next offered kidney and the current
offer is no longer available. Our research primarily



focuses on patients on the cadaveric organ waitlist,
but the same decision-making process extends to
individual donor-patient pairs in the KPD program.
Therefore, our research also applies to modeling
and analyzing the decision-making behavior of indi-
vidual pairs in the KPD program.

Current support tools for kidney transplant deci-
sion making, e.g., logistic regression models avail-
able at the website of the Scientific Registry of
Transplant Recipients (SRTR, 2023), and the
Transplant Models website developed by the Center
for Surgical & Transplant Applied Research (C-
STAR) at NYU Langone (Bae et al.,, 2019; C-STAR,
2013, 2018; Grams et al., 2012), only consider cur-
rent characteristics of a fixed donor-recipient pair
and predict outcomes of the transplant surgery,
without including various uncertainties that the
decision maker faces, including future patient state
and future availability of kidney offers. To model
the basic trade-off between waiting for a higher-
quality and/or more compatible kidney and the risk
of deterioration of health while waiting, we propose
a Markov decision process (MDP) model to study
this problem (Bertsekas, 2020).

Although similar problems have been studied in
the context of liver transplantation (Alagoz et al.,
2004, 2007a, 2007b, 2010; Batun et al., 2018;
Kaufman et al., 2017), there are several major differ-
ences between liver and kidney transplantation.
First, dialysis is an alternative option for ESKD
patients, so the urgency may not be as severe (hence
the patient’s remaining lifetime can be measured in
months or years rather than in days), while liver
transplantation is the only available therapy for end-
stage liver disease (ESLD) patients. Moreover, HLA
incompatibility is a major barrier in kidney trans-
plantation, but the effect of HLA incompatibility is
unclear in liver transplantation (Mahawar & Bal,
2004). ESLD patients under urgent medical condi-
tions (i.e., those having a high model for end-stage
liver disease (MELD) scores) are prioritized in the
liver allocation system, while the patient sensitivity
level and waiting time also play an important role
in kidney allocation.

In the setting of kidney transplantation, David
and Yechiali (1985); Ahn and Hornberger (1996);
Bendersky and David (2016); Ren et al. (2023a) pro-
pose MDP models for the optimal acceptance of
kidneys for individual ESKD patients, and a more
recent article (Fan et al., 2022) studies the optimal
timing to start dialysis treatment and accept a kid-
ney offer (see Ren et al.,, (2023b) for a more com-
prehensive review of MDP models on individual
patient organ acceptance decision making).
Although organ quality and compatibility are key
factors in kidney transplantation (Bae et al., 2019;
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Koo & Yang, 2015), previous work has modeled
them in an implicit manner and considered only
one or the other of the two factors—not both simul-
taneously—which can lead to decisions that are sub-
optimal. For example, an MDP model that takes
only the compatibility into consideration is likely to
reject an offer of low compatibility but high quality,
which could have been the best choice for the
patient, especially with the option of current desen-
sitization therapies. Moreover, previous research has
summarized all the short-term and long-term effects
of the transplantation in a terminal reward, i.,
treating transplantation as a terminal state. As men-
tioned previously, low-quality or incompatible kid-
ney recipients are more likely to encounter
transplantation failure due to infection, rejection,
and early graft loss, which would necessitate a
return to dialysis and a desire for retransplantation
shortly thereafter (e.g., within several months).
Therefore, an MDP model explicitly modeling the
retransplantation is desirable.

We propose an MDP model that incorporates the
option of incompatible kidney transplantation via
desensitization therapies. By including both the
quality and the mismatch level explicitly as state var-
iables in the kidney acceptance decision process, our
model captures cost-benefit trade-offs between the
quality and the compatibility of the kidney offer,
and between waiting for a compatible kidney versus
receiving an earlier transplantation but having to
undergo desensitization treatment. We also explicitly
model a patient who returns to being on dialysis
and rejoins the waitlist for a retransplantation after
experiencing an early graft loss, whereas previous
work simply terminates the decision process upon
organ acceptance. In particular, we model the prob-
ability of a transplantation failure to be a function
of the patient state and both quality and compatibil-
ity of the donor kidney. Consequently, the state vec-
tor has a more complex correlation structure and
the state dynamics are more complicated, which
makes it more challenging to characterize the form
of optimal policies and prove structural results.

In summary, our model takes into consideration
various uncertainties and trade-offs, such that the
long-term benefit of accepting or rejecting an
incompatible kidney offer can be quantified, which
not only provides transplant surgeons with a deci-
sion-support tool, but also promotes the utilization
of incompatible kidney transplantation, which may
further expand the donor pool. Moreover, our
research results can be integrated into the design of
both KAS and KPD policies (Ata et al., 2017; Su &
Zenios, 2004, 2005, 2006; Tung et al., 2022), where
the individual patient decision-making procedure is
an important component, e.g., in Tung et al. (2022),
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Su and Zenios (2004), individual patients are
assumed to adopt a control limit-type policy.

To summarize, the main contributions of this art-
icle include the following:

1. In terms of modeling, our model is the first to
incorporate both the quality and the compatibil-
ity of the kidney offer and to explicitly model
transplantation failure and retransplantation. As
a result, we are able to quantify the tradeoffs
between the opportunity to get off dialysis ear-
lier and having to undergo desensitization treat-
ment with a higher possibility of a poor
transplant outcome.

2. In terms of theory, we are able to prove desir-
able structural properties of the resulting more
complicated MDP model under realistic condi-
tions. In particular, we establish sufficient con-
ditions for the existence of control limit-type
optimal policies and identify situations where a
control limit-type optimal policy does not exist
if some condition is violated.

3. In terms of practice, preliminary numerical
experiments that quantify the improved health
outcomes illustrate the impact of incorporat-
ing both the quality and the compatibility of
the kidney offer and allowing the option of
incompatible kidney transplantation with
desensitization treatment. The results indicate
improvement in the order of an additional
year of life expectancy for elder ESKD
patients, representing a substantial gain since
their expected remaining lifetime is less than
five years without kidney transplantation.

The rest of the article is organized as follows: In
Section 2, we formulate the individual patient kid-
ney acceptance problem as an MDP model. In
Section 3, under some intuitive assumptions, we
derive structural properties including control limit-
type optimal policies. In Section 4, we conduct
numerical experiments to evaluate the behavior of
the optimal policy under different quality and mis-
match levels and illustrate the impact of incorporat-
ing compatibility and retransplantation. Section 5
concludes the article and points to future research
directions. Proofs and details of parameter selection
in the numerical experiments are included in
Appendices A and B, respectively.

2. Model formulation

We formulate the individual patient kidney accept-
ance problem as a discrete-time, infinite-horizon
MDP. The set of decision epochs is the natural
numbers N = {0,1,2,...}, where the unit could be

months (e.g., 1 month or 6 months). At each epoch
n € N, the patient state is updated and at most one
kidney offer may arrive. The decision to be made is
whether to accept the offer based on the current
patient state and both the quality and compatibility
of the offer. If the decision maker accepts the kidney
and the transplantation is a success, the decision
process terminates; otherwise, the patient waits for
the next offered kidney. The decision process termi-
nates when a successful transplantation happens or
the patient dies. The objective is to maximize the
total reward accumulated over the entire decision
process.

Remark 1. Patients typically receive their first kid-
ney offer in about 80 days, and kidneys continue to
become available approximately once a month
(Husain et al., 2019). Since half of these offers don’t
meet the transplant center’s criteria (King et al,
2022), a decision period of one to six months is rea-
sonable, though this varies by patient characteristics.
For example, unsensitized patients receive twenty
times more offers than highly sensitized ones, and
blood type O patients receive five times more offers
than those with blood type B (see Tables A.77 and
A.78 in OPTN, 2022a). Thus, decision periods
should consider factors like sensitivity level, blood
type, and other patient characteristics.

2.1. State of patient and kidney offer stochastic
processes

The state space is S:= Sy x Sk x Sy U {P}. At
each epoch n, the state s, is either a triple
(hy> ky, my), or the post-transplantation state P.

e {h,}: Patient state. h, is a scalar summarizing
patient listing and medical status and taking val-
ues in a finite set of positive integers Sy =
{1, ...,H,H + 1}, where a larger value implies a
worse patient state and H + 1 represents death.
For example, we can represent the patient’s state
by the estimated post-transplant survival (EPTS)
score (Bae et al., 2019; OPTN, 2022c), which
incorporates the patient’s age, diabetes status,
time on dialysis, etc., or other comprehensive
indices.

e {k,}: Kidney offer state. k, represents the qual-
ity (e.g., kidney donor profile index (KDPI) score
for deceased donors (OPTN, 2022d) and Live
Donor KDPI (LKDPI) score for living donors
(C-STAR, 2015; Massie et al., 2016), which incor-
porates the donor’s age, height, weight, diabetes
status, serum creatinine, etc.) of the donor kid-
ney available at the current decision epoch and
takes values in a finite set of positive integers
Sk ={1,...,K,K+1}, where a larger value



implies worse quality and K + 1 means that no
kidney offer is available.

o {m,}: Mismatch level. m, measures the com-
patibility between the patient and the kidney
donor (e.g., ABO and HLA mismatch level), and
takes values in a finite set Sy = {1, ..., M},
where a larger value implies a higher mismatch
level and 1 means perfect match.

e P: Post-transplantation state. The MDP will
transition into the absorbing state P if the patient
undergoes a successful transplantation. Without
loss of generality, we may take P € Z’\ {Sy x
Sk X Sm}, e.g., P =(0,0,0) so that S C Z°.

Remark 2. According to the current OPTN kidney
allocation policy (OPTN, 2023), an important factor
for allocating deceased-donor kidneys is the patient
waiting time. Though the waiting time is not expli-
citly modeled as a state variable, we can incorporate
it into the patient state. For example, the formula
for computing the EPTS score includes the time on
dialysis, which often coincides with the patient’s
waiting time (OPTN, 2022c, 2023).

Remark 3. The kidney offer state k, only describes
the donor status, while the mismatch level m,, is the
compatibility of the donor-recipient pair. The
patient needs to undergo desensitization treatment
to accept an incompatible offer.

2.2. Action and action space

Let {a,},cy be the decision maker’s actions. For
eachn €N, a, € A={W, T} where

o W: reject the current offer and wait for one
more period.
e T: accept the current offer for transplantation.

For any state (h,k,m) € Sy X Sk X Sy, the feas-
ible action set is

C[{W.T) k#£K+1,
A(h’k’m)‘_{{w} k=K+1,

ie., when a kidney offer is available, the decision
maker can either reject by choosing W or accept by
choosing T; the only choice is to wait if the kidney
offer is unavailable.

2.3. Dynamics

o H(jli) :==P(hy1 =jlhy = iya, = W), H(:|) : Sy x
Sy—10,1], is the probability that the patient
state is j at epoch n+ 1, given that the patient is
in state i and the decision maker chooses W at
epoch n. We set H(hlH+1)=0,h=1,...,H
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and H(H+1|H+1)=1, ie, “death states”
{(H+ 1,k,m),Vk,m} are absorbing.

o K(kylhy),K(:|") : Sk x Sy+—[0,1], is the prob-
ability that a kidney of state k, is offered to a
patient in state h,. We assume that the distribu-
tion of the kidney state is only a function of the
current patient state. We set K(K+1|H+1) =
1, i.e., the patient doesn’t receive any offer after
death.

o M(m,),M(-): Sy+—1[0,1], is the probability
that the mismatch level between the patient and
donor is m,. The distribution of the mismatch
level predominantly depends on the patient HLA
characteristics and ABO blood type. By categoriz-
ing patients according to their HLA characteris-
tics and blood type, we can assume that {m,},y
is an independent and identically distributed
(i.i.d.) sequence of random variables, also inde-
pendent of processes {h,},cy and {k,},cn-

o D(hy,kp,m,),D(-, -,-) : Sy X Sk X Sy+—1[0,1), is
the probability of transplantation failure for a
patient in state h, transplanted with a kidney of
state k, and mismatch level m,. When the deci-
sion maker chooses to transplant, there are two
possible outcomes: the transplantation is a suc-
cess or a failure (e.g., early graft loss). With
probability (w.p.) 1—D(hy,k,,m,), the trans-
plantation is a success, the state transitions to the
absorbing state P and the decision process termi-
nates. Otherwise, the patient returns to the wait-
list for a retransplantation. For the latter case,
the patient state is more likely to become worse
and will evolve according to the following transi-
tion law.

o 9O(jli) :==P(hy41 =j|h, =i,transplant fails at n),
O(+|"): Sy xSy —[0,1], is the probability that
the patient’s state is j at time n+1, given that
the patient is in state i and a transplantation fail-
ure happen at time n. We take the function Q as
different from the function H, considering that
desensitization treatment and transplantation
failure may have a negative impact on the
patient’s health.

Remark 4. Patient state h, is a comprehensive index
computed by the medical and listing status of the
patient, which also determines the priority ranking
of the patient on the waitlist. For example, as men-
tioned in Remark 2, we may define the patient state
by the EPTS score, which is strongly correlated with
the patient waiting time, an essential factor of the
priority ranking. Assuming the distribution of the
kidney state to be a function of the patient state
implies that the chance to get a kidney offer
depends on the priority ranking on the waitlist,
which implicitly models the effect of the kidney
allocation system.
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Remark 5. To justify the assumption that {m,}
is independent of {h,},. and {k,},cy,
tion, we take the HLA mismatch level (as the cur-
rent U.S. kidney allocation system matches only
ABO blood-type compatible pairs), which is based
solely on genetic differences between the donor and
recipient. Since a patient’s HLA antigen type is fixed
and unrelated to their health, it is reasonable to
assume that the mismatch level is independent of
the patient state transition.

When a donor organ becomes available in the
allocation system, for a specific patient, the distribu-
tion of mismatch level between the patient and
donor is determined solely by the population’s HLA
antigen distribution, independent of patient state or
organ quality. The allocation score, which considers

neN
for illustra-

factors like organ quality, patient state, and mis-
match level, prioritizes patients with the highest
scores. However, the score only considers HLA mis-
match levels of zero or one, ignoring mismatch lev-
els of two or higher (OPTN, 2023). With 95% of
U.S. transplantations having a mismatch level of two
or above (OPTN, 2022a), the mismatch level has a
negligible effect on both the likelihood of receiving
a kidney offer and the quality of the kidney offer in
most cases. Thus, assuming that “compatibility is
independent of the patient state and organ quality”
is a reasonable approximation.

To summarize, we provide the overall decision-
making procedure in Algorithm 1, and the general
transition probability as follows: for any n € N,

P(sy+1 = Plsp = s,a, = a)
1 if s=P,
=4 1=D(hk,m) if s=(hkm)a=T,
0 otherwise;
P(spt1 = (W, K, m')|s, = s,a, = a)
M(m (K |W)YH (K |h) if s=(hkm),a=W,
=< Dhk,m)M(mKK|H)Q(W |h) if s= (hkm),a=T,

0 otherwise.

Algorithm 1. Kidney transplantation decision-mak-
ing procedure.

Initial patient health h;;
for decision epoch n = 1,2, ... do
Receive a kidney offer (k,, m,) w.p.
K(kn|hn) M(m,);
Make a decision whether to accept the offer;
if the offer is accepted then
if transplantation is successful then
Receive terminal reward r(hy,, k,, m,);
The process terminates;
else
The transplantation fails;
Receive reward c(hy,);

The patient’s state transitions to h,
w.p. Q1 |hy);
if the offer is declined then
Receive reward c(hy,);
The patient state transitions to h,;
w.p. H(hyi1|hn);
if the patient dies, i.e. h,; = H + 1 then
The process terminates;

2.4. Reward functions

e ¢():Sy—R,, the intermediate reward func-
tion. If a patient in state h, does not undergo a
successful transplantation, ie., the decision
maker either chooses W or chooses T but the
transplantation fails, they get an intermediate
reward c(h,) for being alive for one period. We
set c(H+1) =0.

o r(s,+,): Sy xSk xSy—R,, the terminal
reward function. If a patient in state h, under-
goes a successful transplantation with a kidney of
quality k, and mismatch level m,, they receive a
terminal reward r(h,, k,, m,). Reward function r
measures the long-term effect of a successful
transplantation which terminates the decision
process. We set r(H+1,k,m)=0,Vk € Sg,m € Sp.

We assume that the reward accruing in the post-
transplantation state P is zero. For any feasible
state-action pair (s,a), if a=T, the one-stage
reward g(s,a) is given by

r(h,k,m) w.p. (1="D(h,k,m)),
g((hk,m), T) =
c(h) w.p. D(h,k,m).
If a = W, the one-stage reward g(s, W) = c(h) is
a constant.

Remark 6. The death of the patient also terminates
the decision process, since death states are absorbing
and the patient receives zero reward upon death.

2.5. Objective function

The goal is to find a policy n:S+— A that maxi-
mizes the expected total discounted reward

i=0

fr(hk,m) :=E <i 2g(sim(s;))|so = (hs k,m))

for any initial state so = (h,k, k) € Sy X Sk X Su,
where 4 € [0,1] is the discount factor. We only con-
sider stationary policies (i.e., policies that don’t
depend explicitly on time) in this article. Denote the
maximum expected total discounted reward (also
known as the value function) by V(hk,m):=
maxgenfz(h, k, m),Vh, k, and m, where II is the set
of stationary policies.



3. Structural results

In this section, we present two types of structural
results: monotonicity of the value function V(h, k, m),
and the existence of control limit-type optimal poli-
cies, which will be formally defined. First, we present
Theorem 1 on the Bellman equation and conver-
gence of the value iteration algorithm, which are
standard MDP results and useful for computing the
optimal policy and proving other structural results.
As the MDP model has finite state and action spaces
and is time-homogeneous, Theorem 1 follows from
Proposition 5.4.1 in Bertsekas (2020).

Theorem 1. The value function V
Vh € Sy,m € Sy, and k < K+ 1,

satisfies:

V(h, k, m)
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Theorem 2 provides sufficient conditions to guaran-
tee that the value function V(h, k,m) is nonincreasing
in both h and k. Theorem 2 is intuitive: the patient
overall benefit won’t increase if the quality of the kid-
ney offered or the patient’s state gets worse. First, we
provide several intuitive assumptions and a preliminary
result that are needed to establish Theorem 2.

Assumption 1. r(h,k,m) is nonincreasing in any
component with the other two fixed.

Throughout the article, we say that a multivari-
able function is monotone in some component if
the function is monotone in that component with
other components fixed. For example, r(h,k,m) is
nonincreasing in h, k, and m. Assumption 1 has an

(1 ="D(h, k, m))r(h, k,m) + D(h, k, m)(c(h) + 4> pes, V() Q(H|h)),

= max

c(h) + 7 2 pes, v(K)YH(H'|h)

V(K +1,m) =c(h) + 4 Y v(hYH(H|h),

WeSy

where
=Y (> M(m)V(hkm)\K(klh),h € S.
keSx \meSyu
Note that V(H+ 1,k,m)=0,Vk € Sk, m € Sy.

Moreover, the sequence of functions {Vy},-, recur-
sively defined by the wvalue iteration procedure
given by

Vn+1 (h’ k’ m)

intuitive explanation that the reward for a successful
transplantation does not increase if the patient state
deteriorates and/or the kidney quality gets worse
and/or the mismatch level increases.

Assumption 2. c¢(h) is nonincreasing in h.

Assumption 2 is also intuitive: the intermediate
reward for waiting does not increase if the patient
state deteriorates.

(1 =D(h,k,m))r(h,k,m) + D(h, k, m)(c(h) + L s, va(H)Q(H'|h))

c(h) + 22 wes, va(HYH(H'|h)

Vir1(h K+ 1,m) =c(h

—I—AZvn

h/ESH

Vh € Sgy,m € Sy k < K+ 1, converges pointwise

to V, starting from any bounded function V,, where
=>" (> M@m)Va(hk,m)\K(k|h), h € Sy.
kESK mESM

v(h) can be interpreted as the expected total discounted

reward when the patient state is h. Note that the optimal

policy may not be unique, and denote A*(h, k, m) the set

of optimal actions at the state (h,k,m).

’ 2)

H(H |h),

Assumption 3. D(h,k,m) is nondecreasing in any
component with the other two fixed.

Assumption 3 can be interpreted as meaning that
the probability of transplantation failure does not
decrease if the patient state deteriorates and/or the
kidney quality gets worse and/or the mismatch level
increases.

Definition 1. For a time-homogeneous discrete-time
Markov chain with state space S={I,..,n}, ifs
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transition probability function P(-|-) : S x S+ [0, 1]
is stochastically increasing (Smith & McCardle, 2002)
if the sequence of random variables with distribution
functions {P(-|k)},_, ., is in increasing stochastic
order, which is defined as follows (Ross, 1996): for
random variables X and Y, we say that X>4Y
ifP(X >1t) >P(Y >t),Vt.

Specifically, P(-|-) is stochastically increasing if
>« P(jli) is nondecreasing in i for any k =1,...,n,
where P(j|i) is the transition probability from state i
to j.

Assumption 4. Transition probability functions H
and Q are stochastically increasing.

Some papers, e.g., Alagoz et al. (2004, 2007a,
2007b), refer to the stochastically increasing prop-
erty as increasing failure rate (IFR). The stochastic-
ally increasing property has an intuitive explanation
in the context of disease progression: the worse the
patient state, the more likely the patient state is to
become even worse.

Definition 2. For a time-homogeneous discrete-time
Markov chain with state space S = {1,...,n}, we say
that transition probability function P(-|-): S x
S+ [0, 1] is  stochastically  greater  than
Q(+]*) : § x §+ [0, 1], denoted by P=4Q, if

P(jli) > Y Q(jli), Vik € 8.
j=k j=k

J J

Assumption 5. Q> H.

Note that larger patient state represents worse sta-
tus. Assumption 5 implies that the patient state is less
likely to become worse under transition function H,
compared with transition function Q. Assumption 5
captures the negative impact of the transplantation
fajlure: the patient state is more likely to become
worse if they experience a failed transplantation.

Assumption 6. For k=1,...,.K,h=1,...,H,
K(klh + 1) < K(k|h). (3)

Assumption 6 posits that patients in better states
are more likely to receive an offer, aligned with the
current kidney allocation rule. For instance, patients
with top 20% EPTS scores are favored in the alloca-
tion of high-quality kidneys (i.e., those with KDPI
less than 35.), and prioritization is given to patients
who have longer waiting time. For more details,
refer to Tables 7 and 8 and Sections 8.2-8.4 in
OPTN (2023). This differs from liver allocation,
where patients in critical medical condition (i.e.,
those having high model for end-stage liver disease
(MELD) scores) are prioritized.

Theorem 2. Under Assumptions 1 through 6, the fol-
lowing hold:

1. v(h) is nonincreasing in h;
2. V(h,k,m) is nonincreasing in k;
3. V(h,k,m) is nonincreasing in h.

Remark 7. Smith and McCardle (2002) proves that
the value function is decreasing when the one-stage
reward function is decreasing for each action and
the overall transition probability of the MDP is sto-
chastically increasing (suitably defined for the par-
tially ordered state space), for which Assumptions 3
through 6 are neither necessary nor sufficient.

Next, we will establish sufficient conditions to guar-
antee the existence of control limit-type optimal poli-
cies. First, we formally define a control limit policy.

Definition 3. Consider an MDP model with one-
dimensional state space S C R and an action space
A. A policy n: S— A is called a control limit policy
if there exists a finite collection of intervals {I;}}_,
partitioning R and satisfying

1. For any a € A, there exists at most one interval
I; satisfying n(s) = a,Vs € [N S;
2. For any interval I;, there exists a€ A such
that n(s) = a,Vs € ; N S.
Endpoints of intervals {I;};_, are called control
limits.

The simplest form of control limit policy is the fol-
lowing, which partitions the state space into two
regions:

s < s%,
s> 5" (4)

a; if
TE(S) - {az if
The action to take depends only on whether the
state s is greater than or less than the control limit s*,
and solving the MDP problem boils down to finding
the optimal threshold. Our setting necessitates a
three-dimensional state vector, which requires an
adjustment to Definition 3. Under suitable condi-
tions, by fixing values of two state variables and pro-
jecting the state space onto the other dimension, we
can establish optimal policies that take the form of a
control limit policy (in one-dimension).

Definition 4. A policy m:Sy X Sk x Sy— A s
called a patient-based control limit policy if there
exists a control limit function H(k,m) such that for
each k € Sg,m € Sy, n(h,k,m) =T if and only if
the patient state h > H(k,m) (or h < H(k,m)).

Definition 5. A policy m:Sy X Sk X Sy— A s
called a kidney-based control limit policy if there
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Figure 1. For an MDP with state space Sy x Sk, an optimal
policy such that states for which optimal actions are W and
T are contained in two disjoint connected subsets.

exists a control limit function K(h,m) such that for
each h € Sy,m € Sy, n(h,k,m) =T if and only if
the kidney state k < K(h,m) (or k > K(h,m)).

Definition 6. A policy ©:Sy X Sk X Sy— A s
called a match-based control limit policy if there
exists a control limit function M(h,k) such that for
each h € Sy, k € Sk, n(h,k,m) = T if and only if the
mismatch level m < M(h, k) (or m > M(h,k)).

Remark 8. For an MDP model with a two-dimen-
sional state space Sy x Sk, if both patient-based and
kidney-based control limit optimal policies exist, it
is easy to show that there exists an optimal policy
such that states for which optimal actions are W
and T, respectively, are contained in two disjoint
connected subsets of R?, as illustrated in Figure 1.
There is only one decision boundary to determine.
However, our MDP model has a three-dimensional
state space. Existence of all three types of control
limit policies does not guarantee that there exists an
optimal policy that allows R> to be partitioned into
two connected decision regions. There are additional
decision boundaries to identify, making both the
computation and implementation of the policy more
complicated. A counterexample is provided in
Figure 2. Ren et al. (2023b) provide an example
showing that the expansion of the action space has
a similar effect. In general, the optimal policies may
take a more complicated form if the size of either
the state space or the action space or both increase.

We shall see later that all three types of control
limit optimal policies are equivalent if all of them
exist, i.e., once we derive one control limit function,
the other two can be obtained by taking the inverse
of the derived one.
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Figure 2. For an MDP with state space Sy x S X Sy, sup-
pose that its unique optimal policy partitions R* into four
disjoint decision regions by a vertical plane and a horizontal
plane. Both actions W and T are optimal over two discon-
nected regions. However, all three types of control limit
optimal policies exist.

The control limit-type policy is a specific case of
a monotone policy. In their work, Serfozo (1976)
establishes sufficient conditions for the existence of
a monotone optimal policy within the context of a
discrete-time MDP, where the state space S is
assumed to be partially ordered, and the action
space A is assumed to be a compact subset of the
real line. Define the Q-function

Q(h,k,m,a)
(1 =D(h,k,m))r(h,k,m)

= +D(hk,m)(c(h) + A3 s, vIW)QH|h)) if a=T,
c(h) + A s, V(W )YH(W |h) if a=w,

(5)

Serfozo (1976) proves the existence of a mono-
tone optimal policy when the Q-function is sub-
modular on § x A, where submodularity is defined
as follows.

Definition 7. Let X and Y be partially ordered sets
and f(x,y) be a real-valued function on X x Y. We
say that f is submodular if for x; > x, in X and y; >
y2in 'Y,

Fxuy) +f(x2,y2) < f(x1,p2) + f(x2, 1)

Applying the result of Serfozo (1976), it is evi-
dent that by selecting any state variable and fixing
the other two, if the Q-function is submodular as a
function of that variable and the action, a control
limit-type optimal policy for that variable can be
established (although the action space is unordered,
we could artificially assign an order to it, such as
T > W or T < W). Specifically,

e The patient-based control limit optimal policy
exists if Q(h+1Lkm,T)—Q(hkm,T)>Q(h+1,

k,m,W)—Q(h,k,m,W),Vh.
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e The kidney-based control limit optimal policy
exists if Q(hk+1,m,T)—Q(hkm,T)<Q(hk+1,
m,W)—Q(h,k,m,W),Vk.

e The match-based control limit optimal policy

exists if Q(hk,m+1,T)—Q(hk,m,T) < Q(hk,
m+1,W)=Q(h,k,m,W),Vm.

The first condition implies that for a patient-
based control limit policy to be optimal, as a
patient’s health deteriorates (i.e., as h increases), the
reduction in benefit from waiting must exceed the
reduction in benefit from immediate transplant-
ation. In practice, this situation may arise when a
patient is in poor health, where the decline in qual-
ity of life on dialysis or the increased risk of death
during waiting makes immediate transplantation
more preferable as the patient state worsens. The
other two conditions can be explained in a similar
manner. Theorems 3 through 5 will provide suffi-
cient conditions to establish the aforementioned
conditions, respectively.

With Assumptions 1 through 6, we are able to
prove Theorems 3 and 4, which establish match-
based and kidney-based control limit optimal poli-
cies, respectively.

Theorem 3. Under Assumptions 1 through 6, there
exists a match-based control limit optimal policy, i.e.,
there exists a control limit function M*(h,k), such
that for any fixed h and k, it is optimal to accept the
kidney offer if and only if the mismatch
level m < M*(h, k)

Theorem 4. Under Assumptions 1 through 6, there
exists a kidney-based control limit optimal policy, i.e.,
there exists a control limit function K*(h,m), such
that for any fixed h and m, it is optimal to accept
the kidney offer if and only if the kidney
state k < K*(h, m).

Remark 9. Although the optimal policy may not be
unique, “if and only if” in the theorem guarantees
that there exists a unique match-based (and kidney-
based) control limit optimal policy.

Using Theorem 3, it can be easily shown that
V(h, k, m) is nonincreasing in m, i.e., the value func-
tion doesn’t increase if the mismatch level increases.

Corollary 1. Under Assumptions I
V(h, k,m) is nonincreasing in m.

Both Theorems 3 and 4 are intuitive: the decision
maker should accept kidney offers that are of suffi-
ciently good quality and/or low mismatch level.
Once we establish both control limit optimal poli-
cies, we can easily show the (partial) monotonicity,
as well as invertibility of control limit functions.

through 6,

Corollary 2. Under Assumptions 1 through 6, the
following hold:

1. K*(h,m) is nonincreasing in m.

2. M*(h,k) is nonincreasing in k.

3. Define K™M(h,k):=min{meSy | k>K*(h,m)}.
Then, M*(h,k) =K (h,k).

4. Define M~X(h,m):=min{keSx | m>M*(hk)}.
Then, K*(h,m)=M"X(h,m).

To show Theorem 5, the existence of a patient-
based control limit optimal policy, we need several
additional assumptions.

Assumption 7. For h=1,..,H and hy=h+1,....H,
H H
S HE R <Y HH | +1). (6)
H=ho W =h,

The interpretation of Assumption 7 is similar to
the stochastically increasing  property, but
Assumption 7 is neither a sufficient nor a necessary
condition for the stochastically increasing property

of H.

Assumption 8. For h=1,...H—-1, k< K,m € Sy

Eg((h,k,m), T) —Eg((h+ 1,k,m),T)
Eg((h+ 1,k,m), T)
< (1 =D(h,k,m))A(H(H + 1|h 4+ 1) — H(H + 1]h)).
7)

Assumption 8 has an intuitive explanation that,
as the patient state becomes worse, the increment of
the probability of death during waiting is greater
than the marginal reduction in the expectation of
the one-step reward for choosing T. Conditions
similar to Assumption 8 have been verified using
real data in liver transplant studies (Alagoz et al.,
2004, 2007b).

Assumption 9. Q —H is stochastically decreasing,
ie, forh=1,..,H+1land h=1,..,H,

H+1
ST O |h+ 1) = H(H|h + 1)
W =h,
H+1
< > QH|h) = H(H|h). ®)
W=h,

Assumption 9 states that as patient state h
increases, the “distance” between distributions
H(-|h) and QO(-|h) decreases. In

Assumption 9 implies that transplantation failure

particular,

has a larger impact on a healthier patient, e.g., an
unsuccessful transplant will result in a substantial
increase in EPTS score for a low-EPTS patient, as
shown in Tables B1 and B2.



Theorem 5. Under Assumptions 1 through 9, there
exists a patient-based control limit optimal policy,
i.e., there exists an optimal control limit function
H*(k,m), such that for any fixed k and m, it is opti-
mal to accept the kidney offer if and only if the
patient state h > H*(k, m).

Theorem 5 has an intuitive explanation: the deci-
sion maker should accept a kidney offer if the
patient state is worse than some threshold. With
Theorem 5, we are able to derive more monoton-
icity and invertibility results of control limit func-
tions similar to Corollary 2.

Remark 10. Under appropriate conditions, the exist-
ence of a monotone optimal policy has been estab-
lished for various MDP types, including regular MDPs
(Flores-Hernandez & Montes-de Oca, 2007; Puterman,
2014; Serfozo, 1976), risk-sensitive MDPs (Avila-
Godoy & Fernandez-Gaucherand, 1998), and partially
observed MDPs (Lovejoy, 1987; Miehling &
Teneketzis, 2020). These conditions typically involve
assumptions about the stochastic monotonicity of the
overall transition probability and the submodularity of
the one-period reward function. In contrast, Theorems
3 through 5 require only stochastic monotonicity in
each of the individual dimensions of the state transi-
tion, aligning with the metatheorems in Oh and Ozer
(2016), which provide a framework for establishing
threshold policies in optimal stopping problems with
partially monotone state transitions.

Corollary 3. Under Assumptions 1 through 9, the
following hold:

K*(h, m) is nondecreasing in h.

M*(h, k) is nondecreasing in h.

H*(k, m) is nondecreasing in k and m.

Define K~H(k,m):=max{heSy | k>K*(h,m)}.

Then, H* (k,m) =K~ (k,m).

5. Define M~ (k,m):=max{heSy | m>M*(hk)}.
Then, H*(k,m)=M"H (k,m).

6. Define HM(h,k):=min{me Sy | h<H*(k,m)}.
Then, M*(h,k)=H M (h,k).

7. Define HX(h,m):=min{k€Sx | h<H*(k,m)}.
Then, K*(h,m)=HX(h,m).

The proof of Corollary 3 is omitted, as it is
straightforward and exactly the same as that of
Corollary 2. Corollary 3 together with Corollary 2
shows that the three types of control limit optimal
policies are equivalent to each other: if all three
types of control limit optimal policies exist, once we
obtain any one of them, we can easily obtain the
other two by invertibility.

Theorem 6 considers two patients with identical
state transition probability functions but different
probabilities for kidney offers. For example, compared
with insensitive patients, it is much harder for highly

Ll e
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sensitized patients to find a compatible donor. If
patient 1 has a higher chance to receive a kidney offer
than patient 2, then the value function of patient 1
dominates the value function of patient 2. Recall that
a larger value of k indicates worse quality and k =
K + 1 means no kidney offer is available.

Theorem 6. Let I1; and I1, be two MDPs, where the
distributions of the kidney state are K, and K,
respectively. Suppose that K,>4K,. Let V' and V?
be the value functions of I1; and IL,, respectively. If
Iy and I1, have the same reward functions ¢ and t,
probability function of transplantation failure D, pmf
of mismatch level M, and patient state transition
probability functions H and Q, then V'(h,k,m) >
V2(h,k,m) for all h € Sy, k € Sk, m € S

Theorem 7 provides a similar result, which con-
siders two patients with identical probabilities for
kidney offers but different patient state transition
probability functions. If the health of patient 1 is
less likely to become worse, then the value function
of patient 1 dominates the value function of patient
2. Recall that a larger value of h implies worse
patient state and h = H + 1 represents death.

Theorem 7. Let Il and II, be two MDPs with
patient state transition probability functions (Hy, Q1)
and (Ha, Q;), respectively. Suppose that H,>4H;,
9,>40Q;. Let V! and V?* be value functions of I,
and I, respectively. If I1; and I1, have the same
reward functions ¢ and r, probability function of
transplantation failure D, pmf of mismatch level M,
and distribution of kidney state K, then V'(h,k,m)>
V2(h,k,m) for all h€ Sy, k€ Sk, me Sy

4. Numerical experiments

In this section, we use numerical experiments to dem-
onstrate the importance of modeling both kidney
quality and compatibility and the impact of allowing
the desensitization therapy option. We set parameters
based on a recent OPTN data report (OPTN, 2022a).
Next, we compute the optimal policy derived in
Section 3 and show how its behavior and perform-
ance vary under different kidney quality and mis-
match levels. Then, we compare the optimal policy
with another policy that doesn’t include compatibility
as a state variable or retransplantation. In particular,
the optimal policy performs much better at low mis-
match levels. Moreover, we provide an example where
Assumption 8, part of the sufficient condition for
Theorem 5 to hold, is violated and the patient-based
control limit optimal policy doesn’t exist. We observe
that retransplantation is rare under these parameter
settings due to the low likelihood of receiving a kid-
ney offer and transplantation failure. To evaluate the
effects of compatibility and retransplantation
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separately, we increase the chances of receiving a kid-
ney offer and transplantation failure, and conduct an
additional experiment where the mismatch level is
hidden, but retransplantation is included.

We consider a 70-year old patient who starts dialysis
at the beginning of the decision process and doesn’t
have diabetes or a prior organ transplant. We begin by
describing how state variables, state space and reward
functions are defined. The decision period is six months.
The patient state h, taking values in Sy = {1, ...,17}, is
defined based on the EPTS score (C-STAR, 2018;
OPTN, 2022c), one of the most commonly used meas-
ures in evaluating the patient expected post-transplant-
ation survival time. The patient state transition law is
straightforward, because the EPTS score is a function of
age once the patient’s diabetes state, time to start dialy-
sis, and number of prior organ transplantations are
specified. We only consider deceased kidney donors
and use the KDPI score to represent the kidney state k.
Both EPTS and KDPI scores are used in the current kid-
ney allocation system. Since a recent OPTN data report
(OPTN, 2022a) categorizes kidneys into four groups
based on their KDPI ranges, we define four types of kid-
neys, ie, S = {1,...,5} where k =5 represents that
the kidney offer is not available. We use the degree of
HLA mismatch to represent the mismatch level m. The
number of HLA antigen mismatches of a donor-recipi-
ent pair ranges from 0 to 6, so we set Sy = {1,...,7}.
We assume that kidney states {k,},., form an iid.
sequence of random variables, independent of both
patient state and mismatch level. If the decision maker
chooses to wait, the patient accrues an intermediate
reward for being alive for half a year (the decision
period), i.e., c¢(h) = 0.5,Vh. If the patient undergoes a
successful transplantation, they receive terminal reward
r(h, k, m) equal to the expected post-transplant lifetime.

We consider three experiments. The first setting
models many of the parameter values for a typical
70-year old patient with ESKD. The second setting
is similar, with the exception that H(H + 1|h), the
probability of death in state h, is perturbed such
that Assumption 8 is no longer satisfied, so that
Theorem 5 no longer applies. The third setting
increases the likelihood of receiving kidney offers to
better assess the impact of retransplantation. Value
iteration is used to solved MDPs.

We now describe some of the model parameters,
with full details of the remaining parameter settings
provided in Appendix B. As mentioned earlier, the
patient state h is defined based on the EPTS score, a
deterministic function of age (or equivalently, the
decision period) in this case. If the patient is in state
h,h < H and chooses W, they either die or transi-
tion to state h+ 1 at the next epoch. We further
assume that H(H 4+ 1|h) is an increasing affine
function of h. Consequently, for h < H,

a+bh-1) if W =H+1,
HH|h) =< 1—=(a+bh-1)) if ¥=h+1,
0 otherwise,
a+b(H-1) if W=H+1,
HW|H) = 1-(a+bH-1)) if H=H,
0 otherwise,

)

where a = 0.01 in both experiments, b = 0.007 in
Experiment 1 and 3, and 0.006 in Experiment 2.
The definition of the transition function Q is
similar. Other parameters are the same in all the
experiments, unless specified otherwise. We set the
discount factor 4= 0.99. The following parameters
are assigned according to OPTN (2022a). The pmf
of the kidney state k, from k=1 to 5, is
(0.0491, 0.0323, 0.1206, 0.0347,0.7653). The pmf of
the mismatch level m, from m=1 to 7, is
(0.0492,0.0104, 0.0192, 0.1437, 0.2806, 0.3254,0.1414).
Because patients of age 70 and older have EPTS
scores greater than 20 and OPTN (2022a) doesn’t dis-
tinguish patients with EPTS scores greater than 20,
we assume in this section that the probability of a
transplantation failure depends only on k and m, not
on h, and denote it by D(k,m). The values of
D(k,m) are summarized in Table 1.

The values of the post-transplant reward
r(h,k,m) are calculated according to Bae et al.
(2019) and provided in Equation (10) for m =1
and 7, with the rest provided in Appendix B.

[12 11 10 8.5] [6 59 58 5.5]
11 11 95 82 59 59 58 55
9.9 97 9 79 58 58 57 54
9.6 9.4 88 7.7 58 57 56 5.3
93 91 85 7.6 57 57 56 53
89 88 83 74 56 56 55 5.2
87 85 8 72 56 56 54 5.1
k1) = 85 84 78 71| ok 7) = 55 55 53 51|
83 81 7.7 69 55 54 53 5
81 8 75 68 54 54 53 5
81 8 75 68 54 54 53 5
8 79 74 67 54 54 52 49
78 77 73 6.6 54 53 52 49
77 76 72 6.6 53 53 51 4.8
77 7.6 7. 65 53 52 51 48
7.6 7.5 7.1 6.5] 53 52 51 48]
(10)
Table 1. The probability of a transplantation fail-
ure D(k,m).
D(k,m) m=1 m>1
k=1 0.017 0.041
k=2 0.037 0.061
k=3 0.047 0.071
k=4 0.073 0.095
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(a) Given (h, k), the optimal action is to wait (W) if
and only if the mismatch level m is above the surface.

Figure 3. The optimal policy d;.

Experiment 1

The optimal policy d; is given in Figure 3. All three
types of control limit optimal policies exist. For
each mismatch level, we plot the projection of the
optimal policy on the h — k plane.

The Q-function is the expected total discounted
reward starting from a given state, taking a given
action, and following the optimal policy thereafter.
We plot in Figure 4 the Q-function, given by
Equation (5).

Note that the value of the Q-function depends
only on the patient state h if the action is to wait.
When the mismatch level is low, it is more benefi-
cial to accept an offer unless it is of very low qual-
ity. As the mismatch level increases, the optimal
action is to wait and then switch to transplant if the
patient state h is below some control limit (i.e., the
patient health is worse than some threshold). For
fixed mismatch level, as the patient state h worsens,
the optimal policy tends to accept low-quality kid-
neys (i.e., those with high KDPI) that are rejected at
lower h’s. At high mismatch levels, the decision
maker should choose transplant only when the
patient is in severe health status (i.e., h is sufficiently
large).

Next, we compare with an optimal policy derived
for an MDP model that does not include the mis-
match level as a state variable, i.e., the acceptance
decision making depends only on the patient and
kidney states, and does not explicitly model trans-
plantation failure or retransplantation. In the case of
the latter, there is a terminal reward that is the
mean over the mismatch distribution. We compute
its optimal policy ¢;, shown in Figure 5. Both
patient-based and kidney-based control limit opti-
mal policies exist. The control limit curve of policy
q1 lies between curves of policy d; for mismatch
level m =4 and 5.

O =
R
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(b) Given patient state h, the optimal
action is to wait (W) if and only if the
kidney state k is above the correspond-
ing curve.

To evaluate the policy g; (h, k) in the original MDP
with a state vector (h, k,m), we define and implement
a new policy al(h, k,m) := q,(h,k),Vh,k,m. ie,
d, (h, k,m) does not account for the mismatch level m
and produces the same action as g;(h, k). We
compare its value function Vj (h,k,m) with the
optimal one Vj (h,k,m) in Figure 6. Compared
with policy d;, when h is low (i.e., the patient is
healthy), policy dy rejects offers with low mis-
match level, which would have been very benefi-
cial to patients. As a result, policy d; significantly
outperforms d, when the mismatch level m is low,
e.g., m < 3. At intermediate mismatch levels, the
two policies behave similarly. When the mismatch
level is high, e.g., m > 6, the two policies behave
differently only when A is high (i.e., the patient is
in poor health state), where the difference of the
Q-functions (i.e., the expected overall benefit)
between accepting and rejecting an offer is small,
as shown in Figure 4. Thus, the performances of
the two policies are close when the mismatch level
is intermediate to high.

Experiment 2

The optimal policy d, is shown in Figure 7. The
kidney-based and match-based control limit optimal
policies still exist, but the patient-based optimal pol-
icy for mismatch level equal to 7 is not a control
limit policy.

Experiment 3

In Experiment 1, the probability of receiving a kidney
per period is below 25%, while the chance of trans-
plantation failure is below 10%. Even if the decision
maker always chooses transplantation when a kidney
is available, the probability of transplantation failure
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remains below 1/40 per period, indicating that
retransplantation is rare. Notably, even assuming
every transplantation is successful, the optimal policy
would remain unchanged. Thus, in Experiment I,
policy d; outperforms dy primarily because d;
accounts for the mismatch level, while the impact of
retransplantation is relatively minor.

To assess the impact of retransplantation separ-
ately from the mismatch level, we consider an MDP
model where transplantation failure occurs, but the
mismatch level is hidden—similar to the derivation
procedure of policy g; which hides both factors.
The transplantation reward and the probability of
transplantation failure when the mismatch level is
hidden are calculated by taking the expectation over
the distribution of the mismatch level. To highlight
the effect of transplantation failure, we double both
the probability of receiving a kidney offer and the
probability of failure, leaving other parameters
unchanged. We compute the optimal policy g3 and
compare it with policy g;, as shown in Figure 8.
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Figure 6. Value functions Vg, (h,k,m) and V; (h,k,m) for different mismatch levels, with Vg, represented by solid lines and
V;, by dashed lines. For policy d1, fixing m, curves for different values of k overlap with each other when h < 3 because d,
is always W for h < 3, independent of m. Since both d; and d; are control limit policies, fixing k and m, if h is greater than
control limits of both policies, both policies choose transplant. Moreover, Equation (9) implies that the patient state h; is a
nondecreasing function of time, i.e.,, the patient health never improves. So, fixing k and m, curves for both policies overlap
when h is greater than the maximum of control limits of both (patient-based) policies, which is a function of both k and m.

The control limit curve of policy g5 falls below
that of policy g; for h <5, and lies above it for h =
12 and 13. This aligns with Assumption 9 and the
trends in terminal transplantation rewards shown in
Equation (10). Specifically, Assumption 9 suggests
that transplantation failure has a more significant
impact on healthier patients, while Equation (10)
indicates that the transplantation reward decline
rapidly as the patient state worsens when h < 5.
These observations imply that the penalty for trans-
plantation failure is more substantial for patients in
better state, leading to a stricter acceptance criterion
(i.e., a lower control limit curve). For h > 6, the
transplantation reward decreases only slightly as
patient state deteriorates. Specifically, for patients in
intermediate or worse states, even if they experience
a transplantation failure and their state worsens, the
decline in transplantation reward is small. Rather

than imposing a penalty, explicitly modeling the
transplantation failure event essentially provides
patients in poor states with more opportunities for
retransplantation, making them more inclined to
accept a kidney.

5. Conclusions and future research

We consider the problem of sequentially accepting
or declining possibly incompatible kidney offers by
undergoing desensitization therapies through the
use of an MDP model that captures the effect of
both quality and compatibility by explicitly includ-
ing them as state variables. We derive structural
properties of the model, specifically, characterizing
control limit-type policies, including patient-based,
kidney-based and match-based control limit optimal
policies, by providing reasonable sufficient
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Figure 8. Policies g5 (solid line) and g, (dashed line). The control limit curve of policy gs falls below that of policy g; for h <

5, and lies above it for h = 12 and 13.

conditions to guarantee their existence. Numerical
experiments on a stylized example based on realistic
data (OPTN, 2022a) illustrate that the potential
gains from taking both quality and compatibility
into consideration and allowing the option of
accepting a mismatched kidney can be on the order
of an additional year of life expectancy for a 70-year
old, whose expected remaining lifetime is less than 5
years without kidney transplantation.

Our results have concrete applications in clinical
decision-making and policy design. By explicitly
accounting for patient state, kidney quality, and
compatibility, our model could be integrated into
decision-support tools that personalize decision-
making based on patient conditions, offering simple
acceptance thresholds as references for surgeons.

The model’s value function and Q-function quantify
the gains of accepting a transplant versus waiting,
providing clear measures of “good quality” and “low
mismatch level.” This information aids surgeons in
making informed decisions and enhances transpar-
ency by enabling physicians to clearly explain trade-
offs to patients, improving shared decision-making.
Beyond clinical use, the acceptance criteria and
quantified gains from our model could refine kidney
allocation policies. These measures could enhance
allocation scoring models to improve the overall
transplant outcomes while balancing equity, particu-
larly for patients with rare HLA types or blood
types. The patient-specific acceptance thresholds
could guide kidney match policies by estimating the
likelihood of acceptance, reducing organ rejection



and wastage, and ensuring more effective kidney
utilization.

Our model uses aggregated scores like EPTS and
KDPI to model the state of patients and donor kid-
neys, making it feasible to compute the optimal pol-
icy and providing a straightforward reference tool
for deciding whether to accept or decline marginal
kidney offers. However, transplant surgeons con-
sider a broader range of factors, including demo-
graphic details and additional lab results not
covered by EPTS and KDPI. These factors signifi-
cantly influence transplant outcomes and patient
priority rankings in KAS or KPD, affecting kidney
offer availability. Additionally, these features may
have complex correlations that aggregated scores
cannot fully capture. While an MDP model with a
state vector incorporating these features would be
more accurate and realistic, it would also increase
the dimension of the state space, making computa-
tion intractable. Exploring the impact of these add-
itional factors and balancing computational
feasibility with model accuracy is a promising area
for future research. Based on our research, it is evi-
dent that the patient’s decision can significantly dif-
fer depending on the level of mismatch. Therefore,
from the standpoint of policy makers, integrating
our model—which explicitly accounts for the possi-
bility of accepting an incompatible kidney—into the
the kidney allocation problem could potentially help
further reduce organ shortages and enhance overall
social welfare.
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Appendix A. Proofs

Define
=" M(m)V(hkm),h € S,k € S,
meSy
=Y K(k|h)V(hk,m),h € S, m € Sy,
keSk

(A1)
which will be used in the proofs. Note that U(h,k) and
W (h,m) have similar interpretations as v(h), which can
be interpreted as the expected total discounted reward
when the patient state is h. Correspondingly, we define
the following quantities associated with each iteration of
the value iteration algorithm:

ZM

meSy

= K(kln)V,

kESk

Vu(h, k,m),h € Sy, k € Sk,

hkm)heSH,mGSM

(A2)

We begin with Lemmas 1 and 2, which are useful for
proving Lemma 3, an important intermediate result for
proving Theorem 2.

Lemma 1. (Puterman, 2014) Let {x;};cy, {x;};cy be real-
valued nonnegative sequences satisfying
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for all k, with equality holding for k=0. Suppose
Vir1 > v}, Vj, then

Lemma 2 immediately follows from Lemma 1.

Lemma 2. If H is stochastically increasing and f : R — R
is nondecreasing, then
> f(hyH(hlh,)

> f(WyH(hlhy)

heSy heSy

for any hy > h,.

Lemma 3. If Assumptions 1 through 6 hold, and if
V(h, k, m) is nonincreasing in h and k, then v(h) is nonin-
creasing in h.

Proof of Lemma 3. Recall the Bellman equation
Theorem 1 where the second equation follows by noticing
that rejecting an offer is equivalent to the offer being
unavailable, and that A*(h,k,m) is the set of optimal
actions at state (h, k, m).

Fix h < H and m € Sy;. Define

Ky := {k € S¢|T € A*(h+ 1,k,m)}.

Note that if k € Ky, then k <K, i.e., the kidney offer
is available. Then, Assumption 6 implies that KC(k|h + 1)
< K(k|h).

For k € Kr, since V(h,k,m) is nonincreasing in h

and k,
V(h, k, m)K(k|h) — V(h+ 1,k,m)K(klh + 1)
> V(h+1,km)(K(klh) — K(klh+ 1))
> V(h+1,K+ 1,m)(K(klh) — K(k|h + 1)).

For k¢Kr, V(h+1L,km)=V(h+1,K+1,m).
Hence,

Vil k,m)K(k|h) = V(h + 1,k m)K(k|h + 1)
> V(K + 1,m)K(klh) = V(h+ LK + 1, m)K(k|h + 1)

> V(h+1,K+ 1,m)(K(klh) — K(k|h + 1)).
Therefore,
W(hm) = W(h+ Lm) = S (V(h km)K(k|R) = V(h + 1,k m)K(klh + 1))

keKr

+ > (Vi km)K(k) = V(h+ 1,k m)K (k| + 1))
kgKr

> > (K(klh) -

keSk
=0,

because Y s (K(k|h) — KC(k|h + 1)) = 0. It follows that
v(h) = v(h+1) = > M(m)(W(h,m) = W(h+ 1,m))

meSy

> 0. |

K(klh + 1)V (h+ 1K + 1,m)

Proof of Theorem 2. Prove by induction. Consider the
value iteration algorithm Equation (2) starting at
Vo(h, k, m) = 0,Vh, k, and m. Outline of the proof: at each
step n, we show:
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1. V,(h,k,m) is nonincreasing in k. Define
K (h,m) = max{k € Sg | V,(h,k,m)
= (1 —-"D(h,k,m))r(h,k,m) + D(h, k, m)(c(h)
+2 " vaa (H)Q(H )},

WeSy

where we assume without loss of generality (as we show
below) that
{k € Sk | Vu(h,k,m) = (1 — D(h,k,m))r(h,k, m)
+D(h, k, m)(c(h)
+ 4y va(W)QH M)} # ¢.
heSy
(A3)
We show that for fixed h and m, if k < K} (h, m),

Vu(h, k,m) = (1 = D(h,k, m))r(h, k,m) + D(h, k, m)(c(h)
2.3 va (W) Q(H|h)),

WeSy

and Va(hk,m) = c(h) + 23 s, Va1 (W)H(H |h) if
k> K (h,m). Then, we show that V,(h,k,m) is nonin-
creasing in k on both pieces. Note that the proof of
V.u(h,k,m) being nonincreasing is trivial if Equation
(A3) does not hold, because V,(hk,m)=c(h)+
2y pes, V(W )YH(W'|h),Yk € Sk, which does not depend
on k. From now on, we use the abbreviation K
for K (h,m).

2. V,(h,k,m) and v,(h) are nonincreasing in h, where
we will use Lemma 3.

Finally, the value function V, as the limit of the
sequence {V,}, is nonincreasing in both 4 and k.
Initial step: by Equation (2), for any & and m, we

have
Vi(h, k,m)
| max((1 = D(h,k,m))r(h, k,m) + D(h,k, m)c(h),c(h)) if k=0,..K
" e(h) if k=K+1.
Then,
(1 =D(h,K;,m))r(h,K;,m) + D(h, K}, m)c(h) > c(h),

= (1=D(h,K},m))(r(h, K},
= r(h,Kj,m) — c(h) > 0,
= r(h,k,m) — c(h) > 0,Vk < K7,

m) —c(h)) >0,

where the last step follows from Assumption 1 that
r(h,k,m) is nonincreasing in k. Therefore, (1-—
D(h,k,m))(r(h,k,m) — c(h)) > 0,Vk < KT, ie,

(1 = D(h,k,m))r(h,k,m) + D(h, k,m)c(h) > c(h),k < KJ.

Thus,

Vv (hk B (1 = D(h, k, m))r(h,k,m) + D(h,k,m)c(h) if k<Kj,
km) =9 ) it k> K.

For k < K7, Vi(h,k,m) = (1 — D(h,k,m))(r(h,k,m) —
c(h)) + c(h). Since both (1 — D(h,k,m)) and (r(h, k,m) —
c(h)) are positive and nonincreasing in k for k < K7,
Vi(h,k,m) is nonincreasing in k for k < Kj. Moreover,
Vi(h,k,m) > c(h) for k < Kj. Therefore, Vy(h,k,m) is
nonincreasing in k.

From Equation (2), we see that V;(h,k,m) takes the
value of either term in the maximization. Therefore, to
show Vi(h,k,m) > Vi(h+ 1,k,m) for any k and m, it
suffices to consider the following four cases:

1. Vi(hk,m)=c(h),Vi(h+ 1L,k,m) =c(h+1).
Proving Vi(h,k,m) > Vi(h+ 1,k,m) is trivial, as
c(h) > ¢(h+ 1) by Assumption 2.

2. Vi(hkm)=(1-D(h,k,m))r(hk,m)+D(hkm)c(h),
Vi(h+1,km)=c(h+1). Then,

Vi(hk,m) = (1—"D(h,k,m))r(h,k,m)+D(h,k,m)c(h)
>c(h)>c(h+1)
= Vl (l’l+ l,k,l’}’l).

3. Vi(hkm)=(1-D(hk,m))r(hk,m)+D(h,k,m)c(h),
Vi(h+Lkm)=(1-D(h+1,k,m))r(h+1,k,m)+
D(h+ 1,k,m)c(h+1). Note that

(1=D(h,k,m))r(h,k,m)+D(h,k,m)c(h) > c(h).
Then,
(1 = D(h,k,m))(r(h, k,m) — c(h)) > 0 = r(h,k,m) — c(h)
> 0.

Therefore,
Vi(hkom) — Vi(h+ 1, k,m)
= (1= D(h,k, m))r(h k,m) + Db,k m)e(h) — (1 — D(h + 1,k m))r(h + 1,k m)
~D(h+ Lk m)e(h + 1)
= (1= D(h, k, m))r(h, k, m) + D(h, k, m)c(h) — (1
— Dk, m)e(h + 1) + (D(h, km) —

) Db+ 1,k m))r(h + 1,k m)
(

> (1= D(h, k, m))r(h, k, m) + D(h, k, m)c(h) — (1 -
(

D(h+ 1,k m))c(h + 1)
Db+ 1,k m))r(h + 1,k m)
— Dk, m)c(h + 1) + (D(h, k,m) —
= (1= D(h+ 1,k m))(r(h, k,m) = r(h + 1,k m)) + D(h, k, m)(c(h) — c(h + 1))

D(h+ 1,k,m))r(h, k, m)

>0,

(A4)

where the first inequality follows from the fact that
D(h,k,m) <D(h+1,k,m) and r(h km) > c(h) >

c(h+1), and the last inequality follows from
Assumptions 1 and 2.
4. Vi(hkm)=c(h),Vi(h+1,k,m)=(1-D(h+ 1,k,m))

c(h)
r(h+1,k,m)+D(h+ 1,k,m)c(h+1). Note that
(1-D(h+ 1,k,m))r(h+ 1,k,m)
+D(h+ 1,k,m)c(h+1)

>c(h+1).
Then,

(1=Dh+1,km))(r(h+ 1,km)—c(h+1)) >0
=rh+ Lkm)—ch+1)>0
= c(h+1) <r(h k m).

Notice that Vi(h,k,m)> (1—D(h k,m))r(h k,m)+
D(h,k, m)c(h). Using the same argument as Equation
(A4), we have Vy(h,k,m) > Vi(h+ 1,k,m).

Thus, Vi(h,k,m) is nonincreasing in h. Lemma 3
implies that v;(h) is nonincreasing in h.

Induction step: suppose that V,(h, k, m) is nonincreas-
ing in both h and k, and v,(h) is nonincreasing in h. By
Equation (2),



Vn+l<h> k, m)

i ( (1= D(h, k,m))r(h, k,m) + D(h,k,m)(c(h) + 23 s, va(H) QK |)) )

(1) + 23 wes, va(W)H(H |1)
Vit (B K+ 1,m) = c(h) + 1Y va(HYH(H|h),

HeSy

Vh € Sy,m € Sy, k < K+ 1. Then, for any h and m,
(1 = D(h,K;,m))r(h,K;,m) + D(h, K}, m)(c(h)
+4Y 7 va(H)Q(H |))
WeSy

=1 -D(h,K;,m))(r(h,K;, —c(h) =2 va(l)Q

Q(K|h)
heSy

)+ 7Y va(H)Q(H |h)

heSy

c(h) + 2 ) va(WYH(H |h).

WeSy
It follows that
(1 —D(h,K;,m))( r(hKpym) = c(h) = 2y va(H)Q h/|h))
WeSy

> 237 v (H(H |h)
W eSy
>0,

- Q(K'|h))

where the last inequality follows from Assumption 5 that
Q>yH and Lemma 2. Since r(h, k, m) is nonincreasing in k,

r(h,k,m) — c(h —sznh/

WeSy

(W|h) > 0,%k < K.

Since D(h, k, m) is nondecreasing in k, Vk < K,
(1-D(hk, m))(r(h ko) —c(h) = 2> va(h h’|h)>
h €Sy
> 7 va(W)(H(H|h) — Q(H|h)),

=
(1 = D(h, k, m))r(h, k,m) + D(h, k,m)(c(h)

+4> " va(W)Q(H|h))

K eSy

)+ A Z va(WYH (K |h).

HeSy

Therefore,

Viir (b kym) = (1= D(h,k,m))r(h, k,m)
{+Dmkmm>+&haww><m> if k<K,
Via (ke m) = c(h) + 75 e, va (B VR |R) i k> K.

Moreover, when k < K,

(1 =D(h, k, m))r(h, k,m) + D(h,k,m)(c(h) + 1Y vu(H)Q(H|h))

WeSy
= (1 =D(hk,m)) (r(hh,m) —c(h) = 4> va(H)Q(H|h)
WeSy
h)+ 2> va(H)Q(H |h),
neSy

where both (1-D(h,k,m)) and (r(hk,m)—c(h) -
2> wes,Va(h')Q(H'|h)) are positive and nonincreasing
in k so (1-D(hkm))r(hkm)+ Dk m)(c(h)+
AY pes, va(H)Q(H'|R)) is nonincreasing in k for k < K.
Moreover, (1 —D(h,k,m))r(h,k,m) + D(h,k,m)(c(h) +
I3 sy () x QUHR)) = clh) + 75, vl YLK )

for k < K. Therefore, V,,11(h, k,m) is nonincreasing in k.
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To show V,ii(h k,m) > Vi (h+ 1,k,m) for any k
and m, as above, it suffices to consider the following four
cases:

L Vaa(hkm)=c(h)+ 23 e, va(W)H(H |h), Vi (h+
Lkm)=c(h+1)+ 1) e, V(W) x H(W|h+1). By
Assumption 2, c(h)>c(h+1). By Assumption 4,
Lemma 2 and v,(h) being nonincreasing, >,
(W) h) =3 yes, va(H)H (P R +-1).

So, Vuri(hkm) > Vi (h+1,k,m).

2. Vyu(hk,m) = (1-D(h km))r(h k,m)+ D(h k m)
(6(h) + 25y () QU T)), Viey(h+ 1, k) —
c(h+ 1)+ A3 _yes, Va(W)H(H |h +1)). Then,

)+ 2> va(W)H(H|R)

WesSy
>c(h+1)+4 Y va(W)H(H |+ 1)
WeSy
= n+1(h + Lk, m),

esyVn

Vis1(h, k,m) > c(h

where the second inequality follows from the
same argument as the first case.

3. Vun(hkm)=(1-D(h, k,m))r(h,k,m)+D(h,k,
m)(c(h) + 22 pes, va(W)QH[R)), Vi (h+ 1,k,m) =
(1-D(h+1,k,m))r(h+1,k,m) + D(h+ 1,k,m)(c(h+
1) 4+ yes, va(h') x Q(W'|h+1)). Note that Eg((h,
k,m),T)=(1-D(h,k;m)) r(h,k,m)+D(h,k,m)c(h),Vh,
k, and m. Then,

Vn+1 (h,k,m) - Vn+1 (h+ l,k,m)
=Eg((hkm), T)+D(hk;m)2 > va(H')Q(H'|h)

WeSy

—Eg((h+1km),T)=D(h+1,km)i» " va(h

K eSy

=Eg((h,k,m),T)-Eg((h+1,km),T)

Q(H|h+1)

+(D(hkm)=D(h+1,km)) A > vy (W) Q(H |h)

WeSy

+D(h+1km)i > va(H)(Q(H k)= Q(H [h+1))
WeSy

>Eg((hk,m),T)-Eg((h+1,km),T)

+(D(hkm)=D(h+1,km)) Ay va(h
WeSy

)Q(H'|h),

(A5)

where the last inequality follows from Lemma 2,
Assumption 4 and v,(h) being nonincreasing. Note
that Vi1 (B k,m) > c(h) + A3 e, va(W)H(H |h),

ie.,
(I—D(h,k,m))( r(h, k,m) — c(h
>0 va(W)(H(H |h) -

h €Sy
>0,

=7 va(H)Q(H'|h)
neSy
Q(H'|h))

where the last inequality follows from Lemma 2 and
Assumption 5. So,

r(hk,m) —c(h) > 4 Y va(H)Q(H|h).

h €Sy

Since D(h, k,m) — D(h + 1,k, m) < 0, by Equation (A5),
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Va1 (b k,m) = Vi (h+ 1,k m)
> Eg((hkm), T)—Eg((h+1,k,m),T)
+ (D(h,k,m) — D(h+ 1,k,m))(r(h, k,m) — c(h))
= (1= "D(h,k,m))r(h,k,m) + D(h, k, m)c(h)
—(1=D(h+1,k,m))r(h+ 1,k,m) = D(h + 1,k,m)c(h+ 1)
+ (D(h,k,m) — D(h + 1,k, m))(r(h, k,m) — c(h))
= (1=-D(h+ Lk m))(r(h,k,m) —r(h+ 1,k,m))
+D(h+ 1,k,m)(c(h) — c(h + 1))
>0,

where the last inequality follows from Assumptions 1
and 2.

4 Vi (hkom) = c(h) + A yes, va (B YH(H |B), Vit (h+
Lkm)=(1-D(h+1,km)) x r(h+1,k,;m) +D(h+
Lkm) (c(h+1)+2> yes, va(h)Q(H[h+1)). Note
that

(1=D(h+ Lkm))r(h+ 1L, k,m)+D(h+ Lk,m)(c(h+1)
+4) () Q(H|h+1))
WeSy

>c(h+1)+4 Y va(WYH(H |h+1)).

heSy
Then,
(1-D(h+ 1,k m))(r(th Lkm) —c(h+1) =23 va(H)Q(H |1+ 1)>

HeSy

>0 vl )(H(W |k + 1) -
heSy
>0,

Q(H|h+1))

where the last inequality follows from Lemma 2,
Assumption 5 and v, being nonincreasing. So,

c(h+1)+ 2> va(W)QH |k +1) < r(h+ 1,k m).

WesSy
(A6)
Then,

Vi1 (hkym) = Vi (h+ 1, k,m)
= Eg((hk,m), T) + D(hk,m)i. > v, (H)Q(H|h)
WesSy
= D(h+1,km)2 Y vy(H)Q(H |k +1)
heSy

—Eg((h+1,k,m),T)

—Eg((h+1,k,m), T)

= Eg((h,k,m), T)

+D(hk,m)2 Y va(H)(Q(H|h) — Q(H |h + 1))
WeSy
—(D(h+ Lkm) = D(h,km) 2 Y va(H)Q(H | +1)
Wesy
> Eg((h,k,m), T) —Eg((h+ 1,k,m),T)
= (D(h+ 1L,km) = D(hkm)i Y va(H)Q(K |k +1)
Hesy
> Bg((h k,m), T) —Eg((h+ 1,k,m), T)
+ (D(h,k,m) = D(h+ 1, k,m)))(r(h+ Lk,m) — c(h + 1))
= (1 = D(h, k,m))r(h, k,m) + D(h, k, m)c(h)
—(1=D(h+ 1,k,m))r(h+1,k,m) — D(h+ 1,k,m)c(h + 1)
+ (D(h,k,m) = D(h+ L,k,m))(r(h+ 1,k,m) — c(h + 1))
= (1 = D(h,k,m))(r(h,k,m) — r(h + 1,k,m)) + D(h, k, m)(c(h) — c(h + 1))
>0,

where the first inequality follows from Lemma 2,
Assumption 5 and v, being nonincreasing, and the
second inequality follows from Equation (A6).

Therefore, V,.11(h, k, m) is nonincreasing in h. Lemma 3
implies that v, is nonincreasing in h. Finally, function V,
as the limit of sequence {V,}, is nonincreasing in both h
and k, and Lemma 3 implies that v is nonincreasing in . W

Proof of Theorems 3 and 4. To show the existence of
the match-based control limit policy, it is equivalent to
show that T € A*(h,k,m + 1) implies T € A*(h,k,m) for
any h, k, m, where A*(h,k,m) is the set of optimal
actions at state (h,k,m). Assume that T € A*(h,k,m + 1),
then

V(hk,m+1) = ( D(h,k,m+1))r(hk,m+ 1)

+D(h,k,m + 1)(c(h)+ 2 Y v(H)Q(H |))
WeSy
Z (W YH(H |h),
€Sy
ie.,
(1 =D(hk,m + 1) (r(hk,m 4 1) = c(h))
> (1=D(hk,m+1))7 > v(H)H(K|h))
heSy
+ D(hkym +1)0 > (W) (H(K|h) — Q(H|R)),
WeSy
ie.,
(1= D(hk,m + 1) (r(hk,m + 1) = c(h) = 2> v( YH(H |R))
WesSy
> D(hkm+ 1)1 > v(W)(H(K k) — Q(|h))

HeSy
>0,

where the last inequality follows from Lemma 2,
Assumption 5 and v being nonincreasing. So, if T € A*
(hk,m+1),

r(hkom+1) = c(h) = 2 Y v(K)H(K|h) > 0. (A7)

WeSy
Since D(h, k,m) is nondecreasing in m and r(h,k, m)
is nonincreasing in m, we have
)= 2> v(K)H(H|h))

(1 =D(h, k,m)(r(h,k,m) — c(h
Wesy

D(h,k,m)2 Y v(l)(H(H k) = Q(H'|h)),

WesSy
ie.,

V(hk,m) = (1— ik m)) (h,k,m) + D(h, k, m)(c(h)
+ 4 () Q(K'|h))
WeSy
)+ 2> (W YH(H|h).

WesSy

Therefore, T € A*(h,k,m). The proof of Theorem 4 is
exactly the same (by showing T € A*(h,k+1,m)
= T € A*(h,k,m)) and is omitted. |

Proof of Corollary 1. If m > M*(h,k), it is optimal to
choose W, and V(h,k,m) = c(h) + A3, q v(W)H(H |h),
as a function of m, is constant.

If m < M*(h,k), T € A*(h,k,m) and

V(h, k,m) = (1 = D(h,k,m))r(h, k,m) + D(h, k, m)(c(h)

+ 2 v(h)Q(H |h))

heSy

h) + 2 v(H YH(H |h).
HeSy

In particular, V(h,k, M*(h, k) — 1) > V(h,k, M*(h,k)).
From Equation (A7), we know that r(h,k,m)—c(h)—
2 wes, VIW)YH(W k) > 0 for m < M*(h, k).

Since D e, VIW)VH(H' ) > > s, v(H)Q(H|h)  (fol-
lows from Lemma 2, Assumption 5 and v being nonin-
creasing), we have r(hk,m) —c(h) = 2y,
v(h)Q(W|h) > 0 for m < M*(h,k). Rewrite



(hkm)—( - (hkm))( (h, k,m) — c(h)

23" vk (h)+2 > v(h)Q h’|h)

(i |h))
heSy WeSy

Since D(h, k, m) is nondecreasing in m and r(h, k,m) is
nonincreasing in m, V(h,k, m) is nonincreasing in m for
m < M*(h, k). Thus, V(h, k, m) is nonincreasing inm. W

Proof of Corollary 2. When proving Theorem 3, we
showed that for any k, h, T € a(h,k,m + 1) implies that
T € a(h,k,m), ie, k<K*(h,m+1) implies that k<
K*(h,m). Hence, K*(h,m + 1) < K*(h,m). Similarly, we
can argue that M*(h,k+ 1) < M*(h,k). The last two
statements follow from monotonicity. |

Lemma 4 is provided in Alagoz et al. (2007b).

Lemma 4. Suppose transition probability function P(-|-) :
S x §—1[0,1] on state space S = {1,...,n} is stochastically
increasing. If function f : R — R is nonincreasing, the fol-
lowing inequalities hold: for i=1,...,n,j=1,..,n—1,

* Z">f( ,("J) = P(ilj+ 1)f (i) > 32, (P(ilj) = P(ilj + 1))
fG+1).

Proof of Theorem 5. 1t is equivalent to show that T €
A*(h, k, m) implies that T € A*(h + 1,k, m) for any h, k, and
m. Fix h < H,k < K. Prove by contradiction: suppose that
T € A*(h,k,m) but A*(h+1,k,m)=W. Since T¢€
A*(h,m, k), we have

V(hk,m) =Eg((hkm),T)+D(hkm)i > v(h')Q(H k)

S
A8
c(h)+ 2y v(W)YH(H|h). (48)
HesSy
Since A*(h+1,mk)=W, the
inequality holds:

following  strict

Eg((h+1,km), T) + D(h+ Lk,m)i. > v(l)Q(K|h+1)

Hes,
5 (A9)
clh+1)+ 2> v YH(H|h +1).

HeSy

Subtracting Equation (A9) from Equation (A8),
Eg((h,k,m), T) + D(h,k,m)i y " v(H)Q(H |h)

heSy
D(h+ 1,k m)i y_ v(h)Q(H|h+1)
WeSy
>c(h)=c(h+1)+2 > v YH(H|h) =2 v(K)H(K |+ 1).

Wesy Hesy

—-Eg((h+1,k,m), T) —

Since D(h + 1,k,m) > D(h, k,m) (Assumption 3),
Eg((h,k,m), T) —Eg((h + 1,k,m), T)
> c(h) = c(h+ 1)+ D(hk,m) A Y v(H)(QUH |+ 1) — Q(H'|h))

WeSy

+23 vl (H(H k) = H(K |k + 1))

WeSy

D(hk,m)’ Y v(k

WeSy

+23 vl (MK |h)

WesSy

=D(hkm)2 > vl )(QH|h+1) =

ey

QUK |k +1) - Q(K'|)

- H(H |h+ 1))

H(K |k +1) = (QK |h) = H(K|R)))

+ (1= D(hk,m)) S v(l') (H(H|h) - H(H |h + 1))

WeSy

> 31 =D(hk,m)) > v(l) (H(H k) = H(H | + 1)),

WeSy

(A10)

where the second inequality follows from Assumption 2
that c¢(h) > c(h+1); to prove the last inequality, it is
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enough to notice that

D v (QUH Il + 1) = H(K |k + 1) = (Q(H|h) = H(H'|))

HeSy

=" v(W)(QUH |k + 1) + H(H |h) — (H(K |k + 1) + Q(H|h)))
WesSy

>0

because of Lemma 1,
nonincreasing.
From Equation (A10), it follows that

Eg((h,k,m), T) —Eg((h+ 1,k,m), T)

Assumption 9 and v being

> A(1=D(hk,m)) > v(h)(H(K|h) = H(H |k + 1))
h'eSH
= (1 = D(h, k,m)) Zv H(H |h) — H(H |h+1))
+Z (W) (H(K |h) = H(K |h+ 1))
=h+1
(Al1)

(note that v(H + 1) = 0). Since v is nonincreasing, by
applying both parts of Lemma 4 to each of the sums in
Equation (A11), respectively, we have
Eg((h,k,m), T) —Eg((h+ 1,k,m),T)
h

> (1 — D(h, k,m)) (v(h)Z(H(h’\h) -

=1

H(H|h+ 1))

+v(h+1) i H(K|h) = H(H|h+ 1))> = (1 —"D(h,k,m))v(h)
Hh:h+1
x (1 = ) H(H|h) = H(H + 1]h)
h'=h+1
H
—(1— > H(h’|h+1)—H(H+1\h+1))>
h=h+1
+ (1= D(hk,m))v(h + 1) Z (Wh) = HH|h+1))
W=h+1 .
= J(1=D(hk,m))(v(h) = v(h+1)) Y (H(K|h+1) = H(K|h))
W=h+1
+ (1 = D(h,kym))v(h)(H(H + 1|h + 1) — H(H + 1|h)).

By Assumption 7, Zi{,:hH(H(Mh +1)
0. Therefore,

Eg((h,k,m),T) —Eg((h+ 1,k,m), T)
> (1 =D(h,k,m))v(h)(H(H + 1|h + 1) — H(H + 1|h))
(A12)
From Assumption 8 and Equation (A12), we have
v(h) <Eg((h+ 1,k,m),T).

Since Eg((h+ 1,k,m),T) < V(h+ 1,k,m), we obtain
v(h) < V(h+ 1,k,m). By Equation (A9),

V(h+Lkm)=c(h+1)+ 2> pyes, va(W)YH(H |h + 1)
=V(h+1,K+1,m). Then, by the monotonicity of
V(h,k,m) in both h and k,

v(h) < V(h+1L,km)=V(h+1,K+1,m)
< V(h,K+1,m) <v(h),

—H(H|h) =

where the last inequality follows from the fact that
V(h,K +1,m) < V(h,k,m),Vk,m, which is a contradic-
tion.  Therefore, T € A*(h,k,m)  implies  that
T e A*(h+ 1,k,m). |

Proof of Theorem 6. Prove by induction. Suppose that
we solve Iy and II, simultaneously using value iteration
Equation (2) with Vi (h,k,m) = V3 (h,k,m) = 0,Vh,k, and
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m. Let VJ’ be the value function of Il;,i = 1,2 at the j*
iteration.
Initial step: at the first iteration,

Vi(h k,m) = V(hk,m)
| max((1 = D(h,k,m))r(h, k,m) + D(h,k,m)c(h),c(h)) if k <K,
) k) if k=K.

Thus, we have Ul(h, k) = U?(h,k),Vh,k. As shown in
the proof of Theorem 2, V! (h,k,m) and VZ(h,k,m) are
nonincreasing in h and k. Hence, U} (h,k) and U}(h,k)
are nonincreasing in h and k as well.

Since K=Ky, by Lemma 1,

> (Ul (h k)K (klh) = U} (h, k) K (k| h))
keSk
= > Ul K)(K1 (klh) = Ks(Klh) = 0,¥h € Su,

keSk

ie, vi(h) > v}(h),Vh € Sy.

Induction step: now assume that v}(h) > v(h) and
V1(h,k,m) > V2(h,k,m) for all h, k, and m. We want to
show V1. (hkm) >V} (hkm) for all h, k, and m.
By inspecting Equation (2), we note that it suffices to

show

hZS: v (W YH(K k) > hZS: VE(WYH(K |h), (A13)
D> vi(H)QH|h) = > Vi(H)Q(H |h). (A14)

W €Su W €Su
We will show Equation (A13), and Equation (A14) can
be proved in the same way. We write v (h) =
> kes, Un(h k) x Ki(k|h),i =1,2.  Since  V)(hk,m) >
V2(h,k,m) for all b, k, and m, U (h,k) > U?(h,k) for all h
and k. Then,

S v YH(E R = > Vi YH(H|R)

W eSy h’eSH

=> (ZU (1 k k|h>)H<h/\h)
WeSy \ keSk
-3 (Z U2 (W, k k|h’)>H(h’|h)
WeSy \ keSk

= > HH|R) D (UMK, KK (kW) = Us (K, k) Ko (k)

HeSy keSk

> " H(H )Y (VAR K (Kl) = U2(H, k) Ky (KH)).

heSy keSk

As shown in the proof of Theorem 2, both V! (h,k,m)
and V2(h,k,m) are nonincreasing in k for any n. Thus,
both Ul(h, k) and U2(h, k) are nonincreasing in k. Since
K, =4y, by Lemma 1,
> (U, K (kIH ) = U (W, k) Ko (KIH)) > 0,VH € Su.
kESK

Therefore,
SwesyVa(WYH(H |h) = 3 cs, va (W YH(H |h).
It follows that V), (h,k,m) > Vi, (h,k,m),Vh,k, and

m. Then, U}, (h,k) > U;,,(h,k) for all h and k, and
Vi+1(h) Vﬁ+1(h)
=Y (Us (I K)K\ (K[h) = U2, (h, k)KCa (K| )
keSk
> > (Ur (h kK (k) = UL, (B KK (K[ ))
keSk
> 0,Vh € SH,

where the second inequality follows from Lemma 1 and

Ky>4K,. Therefore, v.(h) >+v2(h) and V!(hk, m) >
VZ(h,k,m),Vn. Taking n — oo, we have v!'(h) > *(h)
and V(h,k,m) > V2(h,k,m),Vh, k, and m. ]

To prove Theorem 7, we need the following lemma
from Alagoz et al. (2007b).

Lemma 5. Suppose transition probability functions
P(:]),Q(:|") on state space S = {1, ...,n} satisfying Q>P.
Then the following inequalities hold for any function non-
increasing f : R—Ry: fori,j=1,..,n

L (PG — QUIDFG) = Yy (PG — QUIENFG).
2 Y (PGl = QUINFG) > X (PGlE) — QUi+ 1):

Proof of Theorem 7. Prove by induction. Suppose that
we solve Iy and II, simultaneously using value iteration
Equation (2) with V{§(h,k,m) = V3 (h,k,m) = 0,Vh,k, and
m. Let Vj be the value function of I;,i = 1,2 at the j*
iteration.

Initial step: at the first iteration,

Vi(h k,m) = V*(h,k,m)
[ max((1 = D(h,k,m))r(h,k,m) + D(h, k,m)c(h), c(h)) if k<K,
] e(h) if k=K

Thus, vi(h) = v2(h),Vh.
Induction step: assume  that  V!(hkm) >
VZ(h,k,m),v}(h) > v2(h),Vh, k, and m. We want to show
n+1(h k I’}’l) n+1(h k m) n+l(h) = n+1(h) Vh k
and m. By inspecting Equation (2), we note that it suffices
to show

h; v (K)o (H |h) > h%; v, (W) Ha (W |R), (A15)
h; v, (W) Qi (H'|h) > h; v, () Qa(H'|h). (A16)

We will show Equation (A15), and Equation (A16) can
be proved in the same way. We have

D v W)YHi(H|h) = > vE(H ) Ha(H |)
WeSy WeSy
>N R HA(H|R) + > VA (K YH ()
W<h W'>h
—ZVZ (W)Ha(H k) = > vA(H'YHa(H' )
W<h h'>h
= 2 (Ha(H ) = Ha(W ) + > v2 (") (Ha (' |h) = Ha(H'|R))
W<h h'>h
> v2(h) > (Ha(W ) = Ha(H 1)) + vi(h+1) > (Ha (k) = Ha (K" |))
W<h h'>h
() = vi(h 1)) S (Ha (') = Ha(H|h)
W<h
>0
(A17)

where the first inequality follows from the induction
assumption that v} (k') > v3('),VH', the second inequality
follows from Lemma 5 and 1 being nonincreasing
(shown in the proof of Theorem 2), and the second

equality follows from the fact that

> (Hall'|) = Ha(W ) + > (H

W<h h'>h
=0.

1(H'|h) = Ha(H"| 1))

The last equality holds because v(h) > v2(h+ 1) and
Sw<n(Hi(W|[h) = Hy(W|h)) > 0, which follows from
Ho=4Hy. Therefore, V) (hk,m)>V2  (hkm)Yhkm.



Since IT; and IT, have the same K and M, v, (h)>

va,i(h). Taking n—oo, we have v'(h)>v*(h) and
Vi(h,k,m)>V?(h,k,m),Vh,k, and m. [ ]

Appendix B. Selection of parameters in
numerical experiments

B.1. Definition of states and transition law

The raw EPTS score is computed by the following for-
mula (OPTN, 2022c¢):

raw EPTS = (0.047 — 0.015 x 1{diabetes}) x (age — 25)"
+(0.398 — 0.237 x 1{diabetes})
x number of prior organ transplantations
+(0.315 — 0.099 x 1{diabetes})
x log (years on dialysis + 1)
+(0.130 — 0.348 x 1{diabetes}) x 1{no dialysis}
+1.262 x 1{diabetes}

where 1{-} is the indicator function of an event and x* :
= max(x,0). Patients with lower EPTS scores are expected
to have longer time of graft function from high-longevity kid-
neys, compared to patients with higher EPTS scores. The raw
EPTS is converted to an EPTS score (ranging from 0 to 100)
using the EPTS mapping table. An online calculator can be
found at the OPTN website (OPTN, 2022b).

To define the probability of death, i.e., H(H + 1|h), at
each patient state, we find in the latest OPTN data report
(OPTN, 2022a) that deaths per 100 patient years for kid-
ney registrations during waiting is 6.91 for patients over
65, thus, the probability of death in a year is roughly
0.0691, and therefore, we use 0.035 as the probability of
death for each epoch. We want to choose H(H + 1|h),Vh
to keep the arithmetic average of H(H + 1|h) over Sy
close to 0.035. Since older patients are more likely to die,
we take H(H + 1]h) to be increasing in h.

If the patient chooses to wait and is alive, their state
transition law is deterministic as shown in Table Bl (tran-
sition probability function H can be defined accordingly).
If the patient experiences a transplantation failure, we
define the state transition law according to the change in
their EPTS score, as shown in Table B2 (transition prob-
ability function Q can be defined accordingly). It is easy to
check that Assumptions 4, 5 and 7, but not Assumption 9,
are satisfied. However, Assumption 9 would hold if we dir-
ectly define patient state by EPTS score, as Table B2

Table B1. Definition of patient state h and corresponding
EPTS scores.

Patient state h EPTS score
1 53

2 60

3 67

4 72

5 76

6 80

7 83

8 86

9 89

10 91

1 93

12 94

13 96

14 97

15 98

16 99 or greater
17 death
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Table B2. Patient state transition law after a transplantation
failure.

Pre-transplant Patient Post-transplant Patient
EPTS score state h EPTS score state h
53 1 79 6
60 2 85 8
67 3 89 9
72 4 92 10
76 5 95 12
80 6 97 13
83 7 98 14
86 or greater 8 or greater 99 or greater 16

Table B3. The distribution of kidney state.

KDPI range Kidney state k Probability (%)
0-20 1 491
21-34 2 3.23
35-85 3 12.06
86-100 4 3.47

Not available 5 76.53
Table B4. The distribution of mismatch level M.

Mismatch level m Probability (%)
1 4.92

2 1.04

3 1.92

4 14.37

5 28.06

6 3254

7 14.14

indicates that there is a larger drop in EPTS score when
patients with lower EPTS scores experience a transplant
failure, compared with patients with higher EPTS scores.

We use the kidney donor profile index (KDPI) score to
represent the kidney state k and assume that kidney state
{k,},2, form an iid. sequence of random variables, inde-
pendent of both patient state and mismatch level. KDPI, a
scalar that combines ten donor factors including clinical
parameters and demographics, is used in the kidney alloca-
tion system to measure the quality of deceased donor kid-
neys (OPTN, 2022d). KDPI score ranges from 0 to 100.
The average waiting time for a kidney offer is 2.13 years
according to the latest OPTN report (OPTN, 2022a), so we
assume that the patient’s waiting time is a geometric ran-
dom variable with mean 2.13 years. Therefore, the probabil-
ity that a patient gets an offer is 0.2347 for each epoch (six
months). We define four types of kidney state by their
KDPI ranges. K, the distribution of the kidney state, is
obtained from OPTN (2022a) and shown in Table B3.
Assumption 6 holds, because we assume that the distribu-
tion of kidney state is independent of patient state.

The distribution of mismatch level M in deceased
donor kidney transplantation, also obtained from OPTN
(2022a), is given in Table B4.

We assume in Section 4 that the probability of a
transplantation failure depends only on k and m, not on
h, and we denote it by D(k,m). We use the six-month
post-transplantation  graft failure rate to represent
D(k,m). For deceased donor kidney transplantation, the
six-month post-transplantation graft survival rate is
97.1% for perfect match, and 94.7% for non-perfect
match (OPTN, 2022a).

For deceased donor kidney transplantation, the six-
month post-transplantation graft survival rate for differ-
ent KDPI ranges is given in Table B6.
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Table B5. Six-month post-transplantation graft survival rate
for zero and nonzero mismatch levels (OPTN, 2022a).
Mismatch level m Six-month graft survival probability (%)

m=1 97.1
m>1 94.7

Table B6. Six-month post-transplantation graft survival rate
for different KDPI ranges (OPTN, 2022a).

KDPI range Kidney state k Graft survival probability (%)
0-20 1 97.1
21-34 2 95.1
35-85 3 94.1
86-100 4 91.6

Table B7. The probability (%) of a transplantation fail-
ure D(k, m).

D(k,m) m=1 m>1
k=1 1.7 4.1
k=2 3.7 6.1
k=3 47 7.1
k=14 7.3 9.5

Table B8. The 5-year post-transplantation patient survival
rate (%).

EpTS ——KDPI 0-20 21-34 35-85 86-100
53-54 87.5 86.8 83.85 76.55
59-60 86 853 822 74.65
67-68 83.75 83.05 79.75 72
71-72 824 81.75 7835 70.5
75-76 80.95 803 76.8 68.85
79-80 793 786 75.05 67.05
83-84 776 76.8 73.05 65.15
85-86 76.65 75.85 71.05 64.05
89-90 74.45 738 69.85 61.95
91-92 73.65 727 68.7 60.8
93-94 726 716 67.45 596
95-96 715 70.4 66.15 584
97 70.6 69.5 65.2 575
98 70 68.8 64.5 56.8
99 or greater 69.4 68.2 63.8 56.2

For each KDPI range, we assume that the six-month
post-transplantation graft survival rate for m =1 and
m > 1 have the same ratio as Table B5, and the six-
month graft survival rate for each KDPI range in Table
B6 is equal to the arithmetic average of the survival rate
for m =1 and m > 1. Then, the probability of a trans-
plantation failure D(k,m) is given in Table B7. We ver-
ify that Assumption 3 holds for D specified in Table B7.

B.2. Rewards

We set the intermediate reward to be 0.5years, ie,
c(h) = 0.5,Yh. We use the expected post-transplantation
survival time to represent the post-transplantation
reward r(h,k,m). We assume that the patient post-trans-
plantation survival time is a Poisson random variable
(with unit to be a year). If we know the five-year post-
transplantation patient survival rate, we can approximate
the expected post-transplantation survival time with the
mean of the corresponding Poisson random variable. For
each EPTS-KDPI pair, the five-year post-transplantation
patient survival rate can be found in Bae et al, (2019).
For each EPTS-KDPI range in Table B8, the five-year
post-transplantation survival rate is approximated by the
arithmetic average of survival rate at endpoints of

Table B9. Relative risk for different HLA-mismatch levels.

Mismatch level m Relative risk
1 0.9

2 1

3 1.1

4 1.2

5 1.3

6 1.4

7 1.6

Table B10. Expected post-transplantation patient survival
time form = 1.

EpTs ——KOP! 0-20 21-34 35-85 86-100
53-54 12 1 10 85
59-60 1 1 9.5 8.2
67-68 9.9 9.7 9 79
71-72 9.6 9.4 8.8 7.7
75-76 9.3 9.1 8.5 7.6
79-80 8.9 8.8 83 7.4
83-84 8.7 8.5 8 7.2
85-86 85 8.4 7.8 7.1
89-90 8.3 8.1 7.7 6.9
91-92 8.1 8 75 6.8
93-94 8 7.9 74 6.7
95-96 7.8 7.7 73 6.6
97 7.7 7.6 7.2 6.6
98 7.7 7.6 7.1 6.5
99 or greater 7.6 7.5 7.1 6.5

Table B11. Expected post-transplantation patient survival
time form =7.

EpTS ——KDPI 0-20 21-34 35-85 86-100
53-54 6 59 58 55
59-60 59 59 58 55
67-68 58 5.8 57 54
71-72 58 57 56 53
75-76 57 57 56 53
79-80 56 56 55 52
83-84 56 56 54 5.1
85-86 55 55 53 5.1
89-90 55 54 53 5
91-92 54 54 53 5
93-94 54 54 52 49
95-96 54 53 52 49
97 53 53 5.1 48
98 53 52 5.1 48
99 or greater 53 5.2 5.1 4.8

the EPTS range with KDPI score to be the median of the
KDPI range.

To compute the post-transplantation reward, we also
need to take into consideration the effect of mismatch
level. We use the relative risk (Opelz and Dohler, 2007)
to measure relative contribution of HLA to the five-year
patient survival rate.

We set mismatch level m =5 to be the reference and
use the relative risk measure shown in Table B9. Given
EPTS score, KDPI score, and mismatch level, the five-
year patient survival rate is obtained by the corresponding
probability in Table B8 divided by the relative risk in
Table B9.

Table B10 and Table Bll show the expected post-
transplantation patient survival time for m =1 and
m =7, respectively. When the EPTS or KDPI score is
low, the expected post-transplantation survival time is
much longer for m = 1, compared with m = 7. When the
EPTS or KDPI score is high, the effect of mismatch level
is less obvious. Assumptions 1 and 2 hold with the
reward functions we used.
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