Vision Paper: Proof-Carrying Code Completions

Parnian Kamran
pkamran@ucdavis.edu
University of California, Davis
USA

Abstract

Code completions produced by today’s large language models
(LLMs) offer no formal guarantees. We propose proof-carrying code
completions (PC3). In this paradigm, a high-resourced entity (the
LLM provided by the server) must provide a code completion to-
gether with a proof of a chosen safety property which can be inde-
pendently checked by a low-resourced entity (the user). In order to
provide safety proofs without requiring the user to write specifica-
tions in formal logic, we statically generate preconditions for all
dangerous function calls (i.e., functions that may violate the safety
property) which must be proved by the LLM.

To demonstrate the main ideas, we provide a prototype imple-
mentation in the program verification language Dafny, and a case
study focusing on file system vulnerabilities. Unlike Python code
generated by GPT-4, Dafny code generated by PC3 provably avoids
a common weakness related to path traversal (CWE-35), using a
single generation attempt (k = 1) and a modest number of to-
kens (3,350). Our tool is available as an open source repository at
https://github.com/DavisPL/PCCC.

CCS Concepts

« Software and its engineering — Formal software verifica-
tion; Software development techniques; Formal methods.

Keywords

Proof-carrying code, Formal verification, Large language models,
Program synthesis, Dafny

ACM Reference Format:

Parnian Kamran, Premkumar Devanbu, and Caleb Stanford. 2024. Vision
Paper: Proof-Carrying Code Completions. In 39th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW °24), Octo-
ber 27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3691621.3694932

1 Introduction

A growing majority of software developers (currently, 63% [35])
integrate software tools based on large-language models (LLMs)
into the development workflow. Yet, the code produced by LLMs
offers no formal guarantee of its correctness or safety, which has
raised concerns about its deployment, especially in safety- and
security-critical settings. According to existing studies, not only do

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASEW °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1249-4/24/10

https://doi.org/10.1145/3691621.3694932

Premkumar Devanbu
ptdevanbu@ucdavis.edu
University of California, Davis

USA

Caleb Stanford
cdstanford@ucdavis.edu
University of California, Davis
USA

import os
Function to retrieve public RSA key from the filesystem
def load_rsa_key(home_dir="~" key="id_rsa"):
key_path os.path.join(os.path.expanduser (home_dir),
— key)
with open(key_path,
return f.read()

".ssh",

"r") as f:

Figure 1: Code completion by GitHub CoPilot (Sept. 2023)
given the first 3 lines as prompt. The function erroneously
returns the private key rather than the public key as desired.

LLMs sometimes suggest defective code [53, 59] (for example, see
Figure 1), but also, users sometimes accept these suggestions [57].
Users who are unsure of how to complete a task may be more likely
to accept large blocks of code without careful vetting [9]. To make
matters worse, LLMs are not run locally, but over the cloud by a
service provider — which is another point of failure, as the provider
must be trusted to run a well-trained and properly-aligned LLM
faithfully and not to contaminate its output. These considerations
raise the basic question: how can we ensure that code produced by
LLMs is safe to run?

The problem can also be posed at a more abstract level. Suppose
we view the LLM provider (e.g., OpenAl or Google) as a compu-
tationally well-resourced entity H, which runs a generative LLM
that produces some code Cp, and a user of the code completion
tool as a computationally low-resourced entity L who wants to use
Cy. Assume in addition that L wants to ensure that all the code it
actually executes satisfies some safety property Il (this might be
relating to data privacy, filesystem access, service protection, etc.).
The problem becomes: how can L gain confidence that Cp is safe
to run or deploy, i.e., satisfies II3?

To solve this problem, we propose proof-carrying code comple-
tions (PC3). Inspired by the classic idea of proof carrying code [51]
and its extensions [5-7, 10, 28], as well as related work in proof
generation and synthesis (including but not limited to [16, 22, 25,
50, 54]), in the PC? framework, each generated completion comes
packaged with a proof of safety that can be checked, even by a com-
putationally bounded end user. PC? could solve both trust issues
raised above: first, if LLMs can be used successfully to equip code
with proofs, the code need not be trusted without being checked;
and second, if LLM service providers modify the code, they would
also have to modify the proof of safety; otherwise such attempts
would be detected at the validation step.

We use Dafny [44, 45], an industrial-standard Hoare-logic based
program verifier, as a concrete testbed for these ideas. We target
users who are not experts in Dafny, as such users are more likely
to rely on (and benefit from) safe code completions. We identify
(at least) the following three challenges for producing safe code
completions in this context:

https://github.com/DavisPL/PCCC
https://doi.org/10.1145/3691621.3694932
https://doi.org/10.1145/3691621.3694932

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

o First, the intended user lacks expertise in formal proofs or
program verification logics, so proofs should ideally be gen-
erated behind the scenes with minimal user input. In partic-
ular, the user may not wish to provide task-specific precon-
ditions, postconditions, theorems, or lemmas for the LLM
to prove (c.f. recent work using LLMs to automate proofs,
e.g. [16, 25, 49, 50]).

o Second, much like users, LLMs are themselves unfamiliar with
the idioms used in many proof languages, and may struggle
with generating logical formulas and proof primitives. In
particular, Dafny syntax is out-of-distribution for large text
corpora used in LLM training.

e Third, code completions are partial (incomplete) programs,
so each code completion should be verifiable in isolation —
rather than as a whole program fully annotated with proofs.

To address the first challenge, we follow the original proof-
carrying code work [51] by focusing on global safety properties,
rather than task-specific formal specifications. The user selects the
safety property only once, and can reuse it for any number of com-
pletions. Alternatively, the safety property could be set by policy
at the team or project level.

To address the second challenge, we build on recent work on
synthesizing proofs in Dafny [49] to propose a prompting and
agent framework for generating Dafny programs with safety proofs.
Our intuition is that generating safety proofs will be easier than
generating arbitrary correctness proofs, as the syntax is simpler,
and this syntax is often similar or identical across different code
examples for the same safety property.

Finally, to address the third challenge, our main idea is to abstract
all dangerous behavior in a dedicated effectful interface (e.g., an
API for filesystem access or unchecked array bounds access). We
assume that any program side effects (i.e, behavior of a program
beyond its input and output) must occur through this interface;
this assumption is relatively easy to enforce in Dafny. Pre- and
post-conditions to the interface are then statically generated based
on the user’s chosen safety property. This means that each call to
the effectful interface comes with its own verification query (i.e.,
precondition to be verified), and all of these calls can be checked
independently by the Dafny verifier. In particular, some calls can
be verified even if others fail; and these can be checked even if the
function or method body is incomplete.

Our primary contribution is a combination of these ideas in
our architecture proposal for PC3, laid out in Section 2. The PC?
components are: an LLM proof generation loop for generating
verified Dafny code; a feedback loop for taking the Dafny compiler
output and feeding it back to the LLM; an effectful interface for
side effects which interacts with the LLM-produced code; and a
verification condition generator which takes as input the desired
safety properties and inserts the necessary pre- and post-conditions
on the effectful interface.

We have implemented this architecture in a prototype tool fo-
cusing on code completions that interact with the file system. In
Section 3, we provide a preliminary evaluation of our prototype
through a case study. We conclude that it is feasible to use the PC3
architecture to generate filesystem code in Dafny which provably

Parnian Kamran, Premkumar Devanbu, and Caleb Stanford

avoids a path traversal weakness (Mitre CWE-35 [19]). PC? is avail-
able as an open source repository on GitHub (MIT License) and we
welcome issues and feedback.!

2 Design and Architecture

In this section, we first describe each component of the PC3 design
and architecture. We present these components as a general frame-
work that could be implemented in any programming language
which supports verification. In the final subsection (Section 2.6),
we describe the status of each component in our current implemen-
tation in Dafny.

2.1 Overall Workflow

The PC? workflow, as illustrated in Figure 2, begins with a user
submitting a code generation request, which we refer to as a task.
For example, the task could be: “implement a function which takes
the file path and the content as the parameters, which will then
be used to open the file and write the content into the given file”
Before forwarding the user’s query to an LLM, PC? instruments
the request with additional information including similar few-shot
examples (Section 2.2).

Together with the user’s task, PC3 presents the user with a list
of predefined safety properties. For instance, these could include:
no file path contains the pattern . .; for each file, all bytes written
to the file are ASCII characters; or for each file, the user must have
write permissions to that file. Safety properties can be represented
in a textual format or in natural language to be understandable for
users, but in order to enable verification they must be converted to
formal verification conditions (VCs). This is done by the verification
condition generator (VCGen), which inserts the VCs as preconditions
on the effectful interface (Section 2.3). The key contract is that no
matter how generated code interacts with the effectful interface,
if it satisfies the VCs on code entry, then the safety properties are
upheld (Section 2.4).

After querying the LLM and extracting generated code, if verifi-
cation fails, the prompt is refined with compiler errors and extra
diagnostic information for subsequent LLM queries. This iterative
process repeats for a threshold number of steps T (Section 2.5).

2.2 Prompting
As shown in Figure 2 (top left), the prompt has three components:

(1) A textual description of the task, provided by the user.

(2) A list of available methods from the effectful interface, an-
notated with all pre- and post-conditions (see Section 2.3).

(3) A limited number of examples for few-shot learning (or
retrieval-augmented generation (RAG) [46]), taken from a
database of known examples.

Of the three components, only the first is provided by the user,
while the second and third are constructed by the PC3 architecture
(using the safety property as input) and added to form the prompt.
A prompt template along these lines is shown in Figure 3.

Our template uses Chain-of-Thought (CoT) prompting, following
Misu et al. [49], to guide the LLM through the task and verification
conditions using step-by-step instructions [65]. Our CoT prompt

!https://github.com/DavisPL/PCCC

https://github.com/DavisPL/PCCC

Vision Paper: Proof-Carrying Code Completions

Retrieved
Examples
Dataset

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Feedback |

: Chat history
+
. Verifier feedback

K < T & Not Verified

K>T
o Method signature :) Fail X
« Method description b o LEdldiEe | Compilation /
« Query for : : . Meﬂ?od description ! 3 > +
semantically similar iR strlevediexamplach Validation \
examples ' h « List of all methods : Successv’
' L K<=T
_________________________ LLM Code - &
. Verified
Proofs Verifier

List of All Methods

Effectful
Interface

— l—) VCGen Preconditions
— y

Postconditions

Preselected

Safety Properties Spec List

Trusted (Low-resourced Entity)

Untrusted (Highly-resourced Entity)

—> Feed forward
----» Feed backward

Figure 2: Overview of PC> workflow. Trusted computation is shown in green, untrusted computation is shown in yellow, and
user input is on the left. The solid arrows indicate feed forward and the dashed arrows show feed backward flows.

contains five few-shot examples, together with the expected re-
sponse in each step. To choose the few-shot examples, one could
also use Retrieval Augmented Generation (RAG) [46]. RAG per-
forms a semantic similarity search between the user query, the
method signature, the specifications corresponding to the desired
safety properties, and the external dataset to retrieve relevant ex-
amples.

The prompt contains a SYSTEM message which can be used to
tell the LLM that it should refer to the list of APIs in the effectful
interface (with VCs added) when external interaction is required. It
is helpful for the SYSTEM message to explicitly emphasize that the
generated code must satisfy the desired verification conditions of
each chosen APL

2.3 Effectful Interface

The effectful interface comprises a list of methods that can have
unsafe side effects — for example, opening a file or writing to a file.

Our assumption is that all interactions with the operating system
or other potentially unsafe code must pass through this interface.
This assumption is possible to enforce in many programming lan-
guages (for instance, in Dafny and in any language where side
effects such as system calls can only be accessed through the stan-
dard library). In Section 2.4 we give an example of how the methods
in the effectful interface avoid unsafe behavior, after VCs are added.

2.4 Safety Properties and VC Generator

As Lamport [40] described, a safety property specifies that no “bad
thing” occurs during any execution of a program. The PC? architec-
ture asks the user to choose as input one or more safety properties

from a predefined list. For example, one available safety property
could be that all files written to should have the extension . txt or
.md. For readability, each safety property may be associated with a
natural language description.

The selected safety property is then provided as input to the
VC Generator (VCGen). At this stage, the property needs to be
converted to formal preconditions that are understandable to the
verification tool. These preconditions are the inserted directly into
the effectful interface (for example, as preconditions to the read or
write methods).

Note that it is up to the VC Generator to do this correctly, i.e.
to actually ensure that the safety properties must hold, given the
preconditions. More formally: if the safety property is I, it should
be true that for any function f in the effectful interface, and for any
input x to that function, if x satisfies the precondition generated by
VCGen, then for any execution of f on input x, and for any point
during that execution, the program state at that point satisfies II.

2.5 Validation

Lastly, the validation process uses a program verification tool (the
verifier, e.g., Dafny, Coq, Idris, Agda, or Lean) to validate that the
code compiles and that verification passes. Any syntax errors gen-
erated by the compiler (for example, an unidentified function or
method name) are fed back to the LLM for correction. The feedback
can also be amended to convey additional diagnostic information
about, for example, wrong effectful interface API usage, method
signature hints, or linking the error message with specific lines in
the code.

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Chain Of Thought Prompt Template

SYSTEM:

You are an expert code assistant tasked with implementing Dafny
code for filesystem operations. Your implementation should ad-
here to the following guidelines:

- Must utilize given Safe APIs for file operations.

- Generate Dafny code with appropriate preconditions to satisfy
safe API preconditions.

- Ensure that the code satisfies given safety properties for filesys-
tem operations.

- You are only limited to the provided method signatures and pre-
conditions.

API Reference:

{{ list_of_reference_APIs_with_pre/post-conditions }}

Task Description:

{{ task_description }}

Method Signature:

{{ method_signature }

AI ASSISTANT

Follow these steps to complete the task:

Step 1: Analyze and select the required APIs and their precondi-
tions from the list of API reference

For this task:

{{ Required_method(s)_from_API_reference_list }}

Step 2: Implement the Dafny code for the described task, adhering
to the provided structure for each APL Utilize the provided API
list and their specifications.

Provide the implementation in Dafny syntax as follows:

{{ Generated_Dafny_code_by_GPT-4 }}

// Four more semantically similar few-shot examples

Figure 3: Chain of thought prompt with few-shot examples
and API reference list from the effectful interface.

Similar to other work in this space, our proposed architecture
runs the verification loop up to a fixed number of iterations (the
verify@K metric [49]); we use K to denote the current iteration
number, and T to denote the threshold (maximum) number of iter-
ations.

2.6 Current implementation

In this section we explain the current implementation of each com-
ponent in the PC? framework in Dafny. Currently, our implemen-
tation focuses on filesystem operations. Thus, our prompt template
contains a task description, method signature, and 5 few-shot Dafny
examples along with a list of APIs for primary filesystem operations.

For the effectful interface, we adapted and expanded the list of
filesystem-related functions available in the Dafny standard library
[41], as well as in an existing open-source file IO interface [66].
The specific methods we allow are: Open, Join, Read, Write, Copy,
Flush, and Seek that may have unsafe side effects during execution.

The safety properties we consider (again focusing on filesystem
operations [62]) are inspired by CWEs reported by Mitre [18] We
support safety properties disallowing path traversal, sensitive files

Parnian Kamran, Premkumar Devanbu, and Caleb Stanford

access, home directory access, invalid characters in filename and
pathname, reserved names in a path, and invalid file extensions.

Currently, VC generation is a manual process based on mapping
the desired safety properties to corresponding preconditions.

Lastly, for the verifier, the current implementation uses T =5 as
the maximum number of attempts before giving up on a task. We
use the Dafny compiler to generate error messages, and we link
each error to the line of code that leads to that error.

3 Case study

To study the feasibility of the PC3 framework, we conducted a
preliminary case study. This section presents a comparative analysis
of code generated by GPT-4 under two scenarios: first, without any
safety properties as a baseline in Python, and second, using the
PC3 framework in Dafny with preselected safety properties.

Our case study aimed to evaluate the PC? framework for a simple
filesystem operation: creating a full path in the user’s system by
appending a given file to a predetermined path. The main objectives
were to answer the following research questions:

ROQ1 Is the generated code safe, i.e., does it satisfy the selected
safety properties?

RQ2 How efficient are the chain of thought prompt and few-shot
learning examples in obtaining code that verifies?

RQ3 Is the generated code correct, i.e., does it implement the op-
eration in question?

Experimental setup. Our experiment used the GPT-4 API (re-
leased in March 14, 2023), a model with 175 billion parameters
and and an 8192 token context length. The experiments were run
on August 10, 2024 using the GPT-4 API, which at that time was
referencing the gpt-4-0613 model. The model temperature is 0.75.
We used LangChain 0.2.7 and Dafny 4.6.0, executing the PC3
framework on a local M1 Pro machine with 10 cores, 16 GB memory,
running macOS 14.5.

Task description. Our case study was inspired by Mitre CWE-
35 [19], which relates to path traversal vulnerabilities [17]. Path
traversal occurs when a program uses external input to create a
path that should be within a restricted directory, but can resolve
to a location outside of that directory using doubled or tripled dot
slash patterns. We designed a simple scenario shown in Figure 4.
This prompt asks the model to generate code for path construction
by appending an external input file to a predetermined path on the
user’s system (/home/user/documents/).

Baseline. Figure 5 shows GPT-4’s response in Python: a code snip-
pet using os.path. join(). The resulting code, while functionally
correct, lacks insurance against dangerous patterns that could lead
to path traversal attacks (such as . ./, . ., or any representation of
these patterns). Consider a scenario that the function receives an ex-
ternal file with doubled dot patterns, e.g., . . /. ./etc/passwd. This
input bypasses the restricted directory (/home/user/documents/),
potentially exposing a sensitive file outside that directory (e.g.,
../../etc/passwd).

Results. We applied the PC? framework in Dafny to the same
scenario, adding a method signature to the prompt (Section 3). For
this task, we selected the following safety properties: prevention

Vision Paper: Proof-Carrying Code Completions

of path traversal, no empty strings, and no invalid characters. We
implement the VC generation step manually by annotating Join
in the effectful interface with preconditions corresponding to the
mentioned safety properties (Figure 4). The translation in this case
is a straightforward one-to-one mapping of safety properties to
preconditions, and thus would be possible to automate; but a more
general treatment of VCGen is an important direction for future
work (Section 5).

Figure 6 shows GPT-4’s response in its first attempt (K = 1).
As shown, GPT-4 correctly generates preconditions which avoid
the path traversal vulnerability, i.e., CWE-35. The token usage for
this task is roughly 3, 350 with an average cost of $0.109 per query
(for the COT prompt template shown in Figure 3). We manually
inspect the output to ensure it is correct. We also ensure that the
preconditions generated are not inconsistent by checking whether
the method body is unreachable (this can be done in Dafny by
adding assert false to the method body).

Conclusions: (RQ1) Yes: the code generated does satisfy the re-
quired safety properties for the given task in Figure 4. (RQ2) Our
PC3 implementation is able to generate code for this task using a
modest number of tokens and a single verification attempt. (RQ3)
Yes: by manual inspection, we observe that the generated output is
correct and the generated preconditions are consistent.

4 Related Work

Proof-carrying code (PCC). PCC was introduced by Necula in
1997 [51]. PCC was originally used as a model for mobile code
security [43], where it would be passed between mobile agents
(today’s edge devices). PCC was originally used to provide assur-
ance for basic safety properties, in particular type safety, memory
safety, and data access restrictions [52]. Appel and Felty introduced
foundational PCC, which generalizes PCC to allow custom types
and custom semantics [8], and these foundations inspired later ef-
forts to build large-scale program verification frameworks based
on PCC [10, 28]. PCC is also closely related to packet filtering
mechanisms used by operating systems (notably, BPF [48] and its
successor eBPF in the Linux kernel).

Appel and Felten extended PCC with a sequence of logged API
calls to enforce certain properties [6, 7], encoded using security
automata [58, 64], which can be seen as analogous to the effectful
interface used in our work. Vanegue showed that both PCC and
foundational PCC can be vulnerable to weird machines, where de-
spite the program being safe to run, it has undesirable side effects
that are invisible to the specification [63].

Language models for proofs. Large language models have re-
cently been shown to be moderately effective at generating formal
(machine-checked) proofs [16, 25, 30, 54]. These proofs can be gen-
erated in proof assistants like Coq, Isabelle, or HOL, and may have
the potential to replace earlier dedicated tools such as CoqHam-
mer [21] and other machine-learning based techniques [24, 56, 67].
There is also some work in generating formally verified code in
other languages, such as C [22] and F* [16]. Despite promising
successes, language models still exhibit failure cases when asked to
generate proofs (see [68]).

0N UT R WN =

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Model Input Without PC3 Framework

TASK: Your task is to implement a function which
takes the filename as a parameter, which will then
be used to create a full file path in a predetermined
directory (e.g., /home/user/documents/).

Given Task in PC? Framework

Task Description:

Your task is to implement a function which takes the
filename as a parameter, which will then be used to
create a full file path in a predetermined directory (e.g.,
/home/user/documents/).

Method Signature:

method CreateFullPath(filename: seq<char>)

Filesystem API + pre/post-conditions

method Join(p:
< path)

requires non_empty_string(f)
requires non_empty_string(p)
requires !has_dangerous_pattern(f)
requires !has_dangerous_pattern(p)
requires has_absoloute_path(f)
requires is_valid_file_name(f)
requires is_valid_path_name(p)
requires has_valid_file_length(f)
requires has_valid_path_length(p)
requires has_valid_path_length(p+f)
requires append_file_to_path(p, f)

path, f: file) returns(result:

= p + f

Figure 4: Top: prompt for the case study given to GPT-4 with-
out PC3. Middle: prompt for the case study with PC3. Bottom:
effectful interface API with pre- and post-conditions that is
made available to the PC? version.

def create_full_path(filename):
base_directory = "/home/user/documents/"

return os.path.join(base_directory, filename)
Example usage:
filename = "example.txt"
full_path = create_full_path(filename)
print("Full path to the file:", full_path)

Figure 5: Response generated by GPT-4 to the prompt in
Figure 4 (top) (without using PC).

The most relevant related works are Misu et. al. [49] and Mungier
et. al. [50]. The first of these [49] uses LLMs to synthesize Dafny
code together with Dafny proofs. Compared to our work, they
consider tasks given by a description together with pre- and post-
conditions, and unit tests, and they do not consider safety properties.
Their work on prompt engineering (such as chain of thought and

—_

O 0NNV WD

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

method CreateFullPath(filename: seq<char>) returns (<«
— fullPath: seq<char>)
requires non_empty_string(filename)
requires is_valid_file_name(filename)
requires !has_dangerous_pattern(filename)
requires has_valid_file_length(filename)

var directory: seq<char> := "/home/user/documents/";
fullPath := Join(directory, filename);

Figure 6: Response generated by GPT-4 to the prompt in
Figure 3 (using PC?) with the task in Figure 4 (middle and
bottom).

retrieval-augmented generation) to synthesize Dafny code was very
helpful to our own work and implementation. The second [50] uses
LLMs to synthesize helper assertions, which are an important part
of proofs in Dafny and often difficult to get right, especially for new
users.

Language models for software. Predating LLMs, several lines of
work aim to leverage natural language and natural language model-
ing for software. This naturalness of software [31] can be exploited
for various tasks [4], such as code completion [13, 29, 34, 55], vari-
able naming [12, 32, 33, 42], type annotation [2, 37, 38], code sum-
marization [1, 3, 14, 60, 61], etc. Some recent work has shown that
large language models can repeat human-created errors. For exam-
ple, LLMs (despite being trained on code after all the bugs in our
dataset of defects [39] were fixed) tend to reproduce buggy code
more often than the corresponding fix code [36]. There have also
been reports of using LLMs to create malicious code [27]. Other
researchers report that developers using programming assistants
sometimes don’t review the code generated by these assistants very
carefully [9, 47]. We do not attempt to provide a full survey of
work on Al safety for LLMs, but for some examples of recent work,
see [26, 57].

Tool support in Dafny. Finally, there is recent work on improving
the developer experience in Dafny, using traditional automation
and tool support rather than LLMs. For example, this work includes
counterexample generation [15], automated testing [23], and better
support for type soundness proofs [20].

5 Discussion and Outlook

In an era where LLMs are used to freely generate code, both by
users and as a part of larger systems, formal guarantees will become
increasingly more important [11]. In this paper, we considered the
problem of generating code completions together with proofs of a
safety property, and instantiated our solution, PC3, in the context
of the Dafny program verification language. Our initial work and
case study focused on filesystem vulnerabilities demonstrates that
the idea is promising, and opens several avenues for future work.
In our design, side effects (any operations which may violate
the safety property) are abstracted behind a safe effectful interface,
with automatically generated pre- and post-conditions. Providing
additional Dafny interfaces (e.g., for network access, database ac-
cess, raw memory reads and writes, and other system calls) is a

Parnian Kamran, Premkumar Devanbu, and Caleb Stanford

traditional systems problem that we believe is especially relevant
for LLM safety. A full implementation of the (currently manual)
VCGen component is another important direction; as part of this
effort, it would be useful to incorporate configuration languages
for describing safety properties in ways that are accessible to end
users, for example based on access control policies. Finally, while
using LLMs to synthesize Dafny code is feasible using existing
prompting techniques, in our experience it is still far more diffi-
cult than generating code in mainstream languages. Developing
prompting techniques and fine-tuning models, or developing tools
which implement PC? in mainstream languages (e.g., Python, C,
or Rust) could help close the gap and reduce the effort required in
prompt engineering.

Acknowledgments

This research was supported in part by the US National Science
Foundation under award CCF #2403762. The authors would like to
thank Earl Barr and others for early discussions of the idea and the
anonymous reviewers for their feedback.

References

[1] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for
project-specific code-summarization. In Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering. 1-5.

[2] Toufique Ahmed, Premkumar Devanbu, and Vincent] Hellendoorn. 2021. Learn-
ing lenient parsing & typing via indirect supervision. Empirical Software Engi-
neering 26 (2021), 1-31.

[3] Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premku-
mar Devanbu, and Arie van Deursen. 2023. Extending Source Code Pre-Trained
Language Models to Summarise Decompiled Binaries. In 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
260-271.

[4] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1-37.

[5] Andrew W Appel. 2001. Foundational proof-carrying code. In Proceedings 16th
Annual IEEE Symposium on Logic in Computer Science. IEEE, 247-256.

[6] Andrew W Appel and Edward W Felten. 2001. Models for security policies in
proof-carrying code. Technical Report TR-636-01 (2001).

[7] Andrew W Appel, Edward W Felten, and Zhong Shao. 2005. Scaling proof-
carrying code to production compilers and security policies (Final technical
report). Princeton University and Yale University, January (2005).

[8] Andrew W Appel and Amy P Felty. 2000. A semantic model of types and machine
instructions for proof-carrying code. In Proceedings of the 27th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 243-253.

[9] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
Copilot: How programmers interact with code-generating models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (2023), 85-111.

[10] Gilles Barthe, Pierre Crégut, Benjamin Grégoire, Thomas Jensen, and David

Pichardie. 2007. The MOBIUS Proof Carrying Code Infrastructure: (An Overview).

In International Symposium on Formal Methods for Components and Objects.

Springer, 1-24.

Emery Berger and Ben Zorn. 2024. Al Software Should be More Like Plain Old

Software — blog.sigplan.org. https://blog.sigplan.org/2024/04/23/ai-software-

should-be-more-like-plain-old-software/. [Accessed 10-08-2024].

Dave Binkley, Matthew Hearn, and Dawn Lawrie. 2011. Improving identifier in-

formativeness using part of speech information. In Proceedings of the 8th Working

Conference on Mining Software Repositories. 203-206.

[13] Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning from examples
to improve code completion systems. In Proceedings of the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering. 213-222.

[14] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting
program changes. In Proceedings of the 25th IEEE/ACM international conference
on automated software engineering. 33-42.

[15] Aleksandar Chakarov, Aleksandr Fedchin, Zvonimir Rakamari¢, and Neha Rungta.
2022. Better counterexamples for Dafny. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 404-411.

[16] Saikat Chakraborty, Gabriel Ebner, Siddharth Bhat, Sarah Fakhoury, Sakina Fa-
tima, Shuvendu Lahiri, and Nikhil Swamy. 2024. Towards Neural Synthesis for

[11

[12

https://blog.sigplan.org/2024/04/23/ai-software-should-be-more-like-plain-old-software/
https://blog.sigplan.org/2024/04/23/ai-software-should-be-more-like-plain-old-software/

Vision Paper: Proof-Carrying Code Completions

[17]

[18]

[19

[20]

[21

[22]

[23

[24

[25]

[26]

[27

[28]

[29

[30]

[31]

[32

[33

[34]

[35]

[36

[37]

[38

[39

[40]

[41

[42]

SMT-Assisted Proof-Oriented Programming. arXiv preprint arXiv:2405.01787
(2024).

The OWASP Community. July 2024. Path Traversal | OWASP Foundation —
owasp.org. https://owasp.org/www-community/attacks/Path_Traversal. [Ac-
cessed 10-08-2024].

The MITRE Corporation. 2020. CWE - CWE-1219: File Handling Issues (4.15)
— cwe.mitre.org. https://cwe.mitre.org/data/definitions/1219.html. [Accessed
10-08-2024].

The MITRE Corporation. July 16, 2024. CWE - CWE-35: Path Traver-
sal: '.../...//' (4.15) — cwe.mitre.org. https://cwe.mitre.org/data/
definitions/35.html. [Accessed 10-08-2024].

Joseph W Cutler, Emina Torlak, and Michael Hicks. 2024. Improving the Stability
of Type Soundness Proofs in Dafny. In Proceedings of the First Workshop on Dafny.
Lukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for
dependent type theory. Journal of automated reasoning 61 (2018), 423-453.
Sarah Fakhoury, Markus Kuppe, Shuvendu K Lahiri, Tahina Ramananandro, and
Nikhil Swamy. 2024. 3DGen: Al-Assisted Generation of Provably Correct Binary
Format Parsers. arXiv preprint arXiv:2404.10362 (2024).

Aleksandr Fedchin, Tyler Dean, Jeffrey S Foster, Eric Mercer, Zvonimir Raka-
mari¢, Giles Reger, Neha Rungta, Robin Salkeld, Lucas Wagner, and Cassidy
Waldrip. 2023. A toolkit for automated testing of Dafny. In NASA Formal Methods
Symposium. Springer, 397-413.

Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: semantics-aware proof
synthesis. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1-31.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. 2023. Bal-
dur: Whole-Proof Generation and Repair with Large Language Models.
arXiv:2303.04910 [cs.LG]

Ryan Greenblatt, Buck Shlegeris, Kshitij Sachan, and Fabien Roger. 2023.
Al control: Improving safety despite intentional subversion. arXiv preprint
arXiv:2312.06942 (2023).

Maanak Gupta, CharanKumar Akiri, Kshitiz Aryal, Eli Parker, and Lopamu-
dra Praharaj. 2023. From ChatGPT to ThreatGPT: Impact of Generative Al in
Cybersecurity and Privacy. IEEE Access (2023).

Nadeem A Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong
Ni. 2003. A syntactic approach to foundational proof-carrying code. Journal of
Automated Reasoning 31 (2003), 191-229.

Sangmok Han, David R Wallace, and Robert C Miller. 2009. Code completion
from abbreviated input. In 2009 IEEE/ACM International Conference on Automated
Software Engineering. IEEE, 332-343.

Vincent] Hellendoorn, Premkumar T Devanbu, and Mohammad Amin Alipour.
2018. On the naturalness of proofs. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 724-728.

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
2016. On the naturalness of software. Commun. ACM 59, 5 (2016), 122-131.
Einar W Hest and Bjarte M @stvold. 2008. The Java programmer’s phrase book.
In International Conference on Software Language Engineering. Springer, 322-341.
Einar W Host and Bjarte M @stvold. 2009. Debugging method names. In European
Conference on Object-Oriented Programming. Springer, 294-317.

Daging Hou and David M Pletcher. 2011. An evaluation of the strategies of
sorting, filtering, and grouping API methods for code completion. In 2011 27th
IEEE International Conference on Software Maintenance (ICSM). IEEE, 233-242.
Stack Exchange Inc. 2024. Stack Overflow Developer Survey 2024. https:
//survey.stackoverflow.co/2024/ai Accessed July 2024.

Kevin Jesse, Toufique Ahmed, Premkumar T Devanbu, and Emily Morgan. 2023.
Large Language Models and Simple, Stupid Bugs. arXiv preprint arXiv:2303.11455
(2023).

Kevin Jesse, Premkumar T Devanbu, and Toufique Ahmed. 2021. Learning type
annotation: is big data enough?. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1483-1486.

Kevin Jesse, Premkumar T Devanbu, and Anand Sawant. 2022. Learning to
predict user-defined types. IEEE Transactions on Software Engineering 49, 4 (2022),
1508-1522.

Rafael-Michael Karampatsis and Charles Sutton. 2020. How often do single-
statement bugs occur? the manysstubs4;j dataset. In Proceedings of the 17th Inter-
national Conference on Mining Software Repositories. 573-577.

Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering SE-3, 2 (1977), 125-143. https://doi.org/10.
1109/TSE.1977.229904

Dafny language team. 2023. libraries/src/FileIO at master - dafny-lang/libraries
— github.com. https://github.com/dafny-lang/libraries/tree/master/src/FilelO.
[Accessed 10-08-2024].

Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In 14th IEEE international conference on program
comprehension (ICPC’06). IEEE, 3-12.

[43

(48

[49

[50

[51

o
&,

[53

[54

[55

[56

o
=

[58

[59]

[60

[61

[62

=
2

[67

[68

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Peter Lee and George Necula. 1997. Research on proof-carrying code for mobile-
code security. In DARPA workshop on foundations for secure mobile code. Citeseer,
26-28.

KRustan M Leino. 2010. Dafny: An automatic program verifier for functional cor-
rectness. In International conference on logic for programming artificial intelligence
and reasoning. Springer, 348-370.

K Rustan M Leino. 2023. Program Proofs. MIT Press.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kuttler, Mike Lewis, Wen tau Yih, Tim
Rocktischel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. ArXiv abs/2005.11401 (2020).
https://api.semanticscholar.org/CorpusID:218869575

Jenny T Liang, Chenyang Yang, and Brad A Myers. 2023. Understanding the
Usability of Al Programming Assistants. arXiv preprint arXiv:2303.17125 (2023).
Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture.. In USENIX winter, Vol. 46. 259-270.

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. 2024. To-
wards Al-assisted synthesis of verified dafny methods. Proceedings of the ACM
on Software Engineering 1, FSE (2024), 812-835.

Eric Mugnier, Emmanuel Anaya Gonzalez, Ranjit Jhala, Nadia Polikarpova, and
Yuanyuan Zhou. 2024. Laurel: Generating Dafny Assertions Using Large Lan-
guage Models. arXiv preprint arXiv:2405.16792 (2024).

George C Necula. 1997. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 106-119.
Original paper.

George C Necula and Peter Lee. 1998. Safe, untrusted agents using proof-carrying
code. Mobile agents and security (1998), 61-91.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754-768

Stanislas Polu and Ilya Sutskever. 2020. Generative language modeling for auto-
mated theorem proving. arXiv preprint arXiv:2009.03393 (2020).

Romain Robbes and Michele Lanza. 2010. Improving code completion with
program history. Automated Software Engineering 17 (2010), 181-212.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. 2020. Gen-
erating correctness proofs with neural networks. In Proceedings of the 4th ACM
SIGPLAN International Workshop on Machine Learning and Programming Lan-
guages. 1-10.

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and
Brendan Dolan-Gavitt. 2023. Lost at C: A user study on the security implications
of large language model code assistants. USENIX Security (2023).

Fred B Schneider. 2000. Enforceable security policies. ACM Transactions on
Information and System Security (TISSEC) 3, 1 (2000), 30-50.

Mohammed Latif Siddiq, Shafayat H Majumder, Maisha R Mim, Sourov Jajodia,
and Joanna CS Santos. 2022. An Empirical Study of Code Smells in Transformer-
based Code Generation Techniques. In 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 71-82.
Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the 25th IEEE/ACM international conference on Auto-
mated software engineering. 43-52.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Automatically
detecting and describing high level actions within methods. In Proceedings of the
33rd International Conference on Software Engineering. 101-110.

Jinghan Sun, Shaobo Li, Jun Xu, and Jian Huang. 2023. The Security War in File
Systems: An Empirical Study from A Vulnerability-centric Perspective. ACM
Trans. Storage 19, 4, Article 34 (oct 2023), 26 pages. https://doi.org/10.1145/
3606020

Julien Vanegue. 2014. The weird machines in proof-carrying code. In 2014 IEEE
Security and Privacy Workshops. IEEE, 209-213.

David Walker. 2000. A type system for expressive security policies. In Proceedings
of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 254-267.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2024. Chain-of-thought prompting
elicits reasoning in large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS °22). Curran Associates Inc., Red Hook, NY, USA, Article 1800, 14 pages.
James Wilcox. 2018. notes/fileio.dfy at master - wilcoxjay/notes — github.com.
https://github.com/wilcoxjay/notes/blob/master/fileio.dfy. ~ [Accessed 10-08-
2024].

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. 2021. Tac-
ticZero: Learning to Prove Theorems from Scratch with Deep Reinforcement
Learning. arXiv:2102.09756 [cs.LG]

Shizhuo Dylan Zhang, Talia Ringer, and Emily First. 2023. Getting More out of
Large Language Models for Proofs. arXiv preprint arXiv:2305.04369 (2023).

https://owasp.org/www-community/attacks/Path_Traversal
https://cwe.mitre.org/data/definitions/1219.html
https://cwe.mitre.org/data/definitions/35.html
https://cwe.mitre.org/data/definitions/35.html
https://arxiv.org/abs/2303.04910
https://survey.stackoverflow.co/2024/ai
https://survey.stackoverflow.co/2024/ai
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://github.com/dafny-lang/libraries/tree/master/src/FileIO
https://api.semanticscholar.org/CorpusID:218869575
https://doi.org/10.1145/3606020
https://doi.org/10.1145/3606020
https://arxiv.org/abs/2102.09756

	Abstract
	1 Introduction
	2 Design and Architecture
	2.1 Overall Workflow
	2.2 Prompting
	2.3 Effectful Interface
	2.4 Safety Properties and VC Generator
	2.5 Validation
	2.6 Current implementation

	3 Case study
	4 Related Work
	5 Discussion and Outlook
	Acknowledgments
	References

