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ABSTRACT

Di�erentially mapping snow depth in mountain watersheds from airborne laser altimetry is 
a valuable hydrologic technique that has seen an expanded use in recent years. Additionally, 
lidar systems also record the strength of the returned light pulse (i.e. intensity), which can be used 
to characterize snow surface properties. For near-infrared lidar systems, return intensity is relatively 
high over snow and inversely related to the e�ective grain size, a primary control on snow albedo. 
Raw intensity is also sensitive to laser range and incidence angle, however, and requires 
a correction for snow property retrieval that is especially pertinent in mountainous terrain. Here, 
we describe a work,ow to correct the intensity using the plane trajectory, lidar scan angle, and 
lidar-derived topography. As a proof of concept for snow retrievals, we apply the work,ow to an 
airborne 1064 nm lidar ,ight over a snow-covered mountain basin in the Colorado Rockies. 
Corrected intensity was empirically related to re,ectance before delineating snow extent and 
retrieving grain size. Relative to the traditional snow classi2cation derived from optical imagery, the 
lidar-derived snow extent covered 5.4% more area due to the 2ne resolution point cloud and 
absence of shadows common in optical imagery. The lidar-derived grain size retrievals had a MAE 
of 32 µm compared to those from 2eld spectroscopy, which translated to a 1% error in snow 
albedo. We found high incidence angles yielded an overcorrection in intensity that introduced 
a high bias in the grain size distribution and, therefore, suggest using an incidence angle threshold 
(40°). Developing methods speci2cally for quantitative snow surface property retrievals from lidar 
intensity is timely and relevant as aerial lidar is increasingly being used to map snow depth for 
hydrologic and cryospheric studies.
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1. Introduction

Airborne laser scanning (ALS) applications within snow 

hydrology have increased exponentially in recent dec-

ades, with most studies focused primarily on characteriz-

ing snow volume, including snow depth, snow 

redistribution, and avalanche movement (Anttila et al.  

2016; Bhardwaj et al. 2016; Helfricht et al. 2014; Hood 

and Hayashi 2010; T. H. Painter et al. 2013; Prokop 2008; 

Vionnet et al. 2021). Snow depth mapping is commonly 

conducted by di�erencing two geo-registered topogra-

phies of the same location: one with snow (“snow on”) 

and the other snow-free (“snow o�”) (T. H. Painter et al.  

2016). The temporal di�erencing approach can provide 

an observation of snow depth with sub-decimeter vertical 

accuracy and a 2ne spatial resolution across entire water-

sheds (Deems, Fassnacht, and Elder 2006; Deems, Painter, 

and Finnegan 2013; Mott, Schirmer, and Lehning 2011).

In addition to snow depth and distribution, lidar 

can also be used to map surface optical properties by 

leveraging the intensity measurement, or the ratio of 

the strength of the return signal relative to that of the 

emitted pulse (Song et al. 2002). Theoretically, lidar 

intensity should vary with the re,ectivity of a surface, 

allowing lidar to be both a spatial and a spectral 

instrument (Antonarakis, Richards, and Brasington  

2008). Raw intensity, however, is not directly usable 

for retrievals. The absolute magnitude of the values 

varies with factors that include transmitted power, 

laser pulse repetition rate, range (e.g. the distance 

between the sensor and the surface), atmospheric 

conditions, topography of the study area, scan 

angle, footprint size, beam divergence, and surface 

composition (Bretagne, Dassonvalle, and Caron 2018; 

Kashani et al. 2015). Although various approaches 
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exist for intensity correction, there is no standardized 

method and, thus, these data remain unexploited 

(Lang and McCarty 2009; Sanchiz-Viel et al. 2021; 

Song et al. 2002; Yan and Shaker 2018).

To translate intensity into an analysis-ready pro-

duct, correction for range and incidence angle is of 

primary importance (Jutzi and Gross 2009; 

Kaasalainen et al. 2011; Sanchiz-Viel et al. 2021). An 

increase in the range extends the travel path of the 

laser pulse, exacerbating the energy loss due to beam 

divergence and considerably reduces the number of 

returns. Relatedly, an increase in range and incidence 

angle enlarges the footprint of a given laser pulse, 

lengthening travel time for the laser pulse and weak-

ening the return intensity (Goodwin, Coops, and 

Culvenor 2006). Accounting for these parameters is 

especially critical over snow-covered mountainous 

watersheds, where the topography produces high 

variability in both range and incidence angle (Currier 

et al. 2019; Deems, Painter, and Finnegan 2013; 

Hartzell et al. 2015; Soudarissanane et al. 2009).

Topographic complexity may confound one-to- 

one mapping between return intensity and snow 

property retrieval, but these challenges can be over-

come. Lidar sensors selected for monitoring snow 

typically operate in the near-infrared (Baltsavias  

1999; Goodwin, Coops, and Culvenor 2006), where 

light penetration is relatively shallow (~1 cm), and 

snow is relatively bright (Deems, Painter, and 

Finnegan 2013). Previous studies delineated seasonal 

snow on a glacier surface from lidar intensity (Arnold 

et al. 2006; Prantl et al. 2017), whereas others used 

intensity to characterize snow, ice, rock, and water 

across a glacial region in Norway (Lutz, Geist, and 

Stötter 2003).

In addition to surface classi2cation, variation in 

lidar intensity should relate to the e�ective grain 

size of snow, a surface optical property and primary 

control on snow albedo (Warren 1982). In the near- 

infrared portion of the electromagnetic spectrum, 

snow re,ectivity is inversely related to the photon 

path length through ice, commonly characterized as 

an e�ective grain radius or speci2c surface area (SSA) 

(Warren 1982). Generally, as snow grains round and 

grow over time due to snow metamorphism, the 

e�ective grain size increases. Nolin (1998) and Yang 

et al. (2017) proposed a proof of concept for deriving 

snow grain size from the Geoscience Laser Altimeter 

System (GLAS) onboard the Ice, Cloud, and land 

Elevation Satellite (ICESat), although neither study 

could validate retrievals. At a 2ner scale, Kaasalainen, 

Kaartinen, and Kukko (2008) attributed variation in 

terrestrial lidar intensity over snow to grain size but 

noted that it was a qualitative assessment that could 

be further re2ned. For the remainder of the paper, we 

will refer to e�ective grain size simply as grain size.

Here, we present a method to correct lidar intensity 

at 1064 nm for range and incidence angle. To demon-

strate this methodology, we applied the correction to 

a lidar ,ight over a snow-covered mountain 

watershed in Colorado and related the corrected 

intensity to re,ectance, from which snow extent was 

delineated and grain size retrieved. The snow proper-

ties from lidar intensity were assessed against tradi-

tional retrieval approaches (i.e. snow extent from 

imagery and grain size from 2eld spectroscopy). 

Retrieving snow extent and grain size from lidar inten-

sity optimizes the full lidar dataset and provides 

a useful supplement to established methods with 

the added bene2ts of an active sensor.

2. Methods

2.1. Data

The lidar dataset used in our study originated from an 

airborne Riegl Q1560 dual laser scanner ,own aboard 

a King Air A90 as a component of the Airborne Snow 

Observatory (ASO), a now complete NASA-JPL project 

(T. H. Painter et al. 2016). The acquisition occurred on 

21 February 2017 over the Senator Beck Basin Study 

Area (SBBSA; Landry et al. 2014) in the San Juan 

Mountains, CO, as part of the NASA SnowEx campaign 

(Year 1; Figure 1a). The Riegl Q1560 is a 1064 nm, dual 

laser scanner with a system scan angle of 60° (±30° 

from nadir). Each ,ightline included 50% overlap, with 

the total survey area ,own in a double overlap 

“checkerboard” ,ight pattern (10 ,ight lines in each 

direction; 4× lidar coverage) across a larger domain 

encompassing SBBSA, which was subset to the eight 

,ight lines that cover the basin (Figure 1b).

The lidar sensor collected return signals at a pulse 

repetition rate of 400 kHz per laser and at 100% 

power. The ,ight altitude was 5,182 m (17,000 ft) 

above sea level (asl) with ground elevations in the 

study area spanning ~ 3345–4100 m (Figure 1c). At 

this elevation, beam divergence (0.25 mrad) for 

nadir laser pulses yield a footprint of ~1 m on ,at 
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terrain with increases in size proportionate to scan 

angle and topography (Deems, Painter, and 

Finnegan 2013). The survey commenced at 16:48 

UTC (9:48 AM MST) and completed at 17:44 UTC 

(10:44 AM MST). Throughout the duration of this 

,ight, clear skies existed in the survey area below 

the aircraft, while isolated cirrus clouds existed 

above the aircraft. The survey area experienced snow-

fall the previous day.

We collected in-situ spectral albedo and re,ec-

tance measurements with an ASD FS4 2eld spectro-

meter on the same day of over,ight. The ASD FS4 

samples the spectral range 350–2500 nm, with con-

tiguous bands that are 3 nm (at 700 nm) to 10 nm (at 

1400 and 2100 nm) at full width half maximum. The 

spectra are resampled and splined to 1 nm resolution, 

and the wavelength reproducibility and accuracy are 

0.1 and 0.5 nm, respectively. Albedo measurements 

took place over both snow and snow-free targets (i.e. 

road asphalt adjacent to SBBSA). Re,ectance transects 

took place over snow at two locations: an alpine 

meadow near the middle of the basin (Mid-basin, 

3843 m) and the alpine study plot (Senator Beck 

Study Plot, 3716 m). Approximately 80 re,ectance 

measurements, each with a ~25 cm footprint, were 

collected along ~2.5 m transects and georeferenced 

using locations from a handheld GNSS receiver 

(Trimble Geo), which had an uncertainty of 1–3 cm 

after post-processing. Mid-basin observations were 

being collected near the time the plane ,ew overhead 

(10:00 AM local time), and Senator Beck Study Plot 

measurements occurred later in the afternoon (2:00 

PM local time). The albedo measurements were used 

as calibration data, referenced to convert corrected 

intensity to re,ectance as described further in 

Section 2.2. The re,ectance transects were used as 

assessment data; the e�ective snow grain size was 

retrieved from each spectral re,ectance measure-

ment and compared to the lidar-derived grain size 

as described in Section 2.3.

The imaging spectrometer (CASI-1500) on ASO was 

coincidentally recording at-surface re,ectance con-

tinuously from 400 to 1040 nm (T. H. Painter et al.  

2016). The imagery was processed by ASO to produce 

a basic land surface classi2cation (e.g. snow, rock, 

vegetation, water) using band ratios, including the 

normalized di�erence snow index (NDSI, threshold >  

0.86) for snow extent. The snow classi2cation was 

used here to assess snow cover delineated from lidar 

intensity. Due to the decreasing signal-to-noise ratio 

and quality of spectral measurements past 900 nm, 

however, the instrument was not suitable for grain 

size retrievals (So�er 2021). Additionally, because the 

spectral range does not extend to 1064 nm, a direct 

Figure 1. The study area is Senator Beck Basin in the San Juan Mountains, Colorado. (A) RGB orthomosaic from day of flight (B) 
Airborne Snow Observatory (ASO) flight lines on 21 February 2017 (C) Lidar-derived digital elevation model of the study area with 
values ranging from approximately 3345 – 4100 m. Sources for the basemap include ESRI, USGS, and NOAA.
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spatial comparison between the lidar and imaging 

spectrometer re,ectance was not possible.

2.2. Lidar intensity correction

2.2.1. Theory

Lidar operates under the same fundamental princi-

ples as radar, replacing radio waves with shorter 

wavelengths commonly found in the visible (520–-

560 nm) and near-infrared (700–1400 nm) portion of 

the electromagnetic spectrum (Jelalian 1992; Sanchiz- 

Viel et al. 2021). A lidar instrument emits photons 

toward a target, the signal then encounters 

a surface, and a portion of the signal is backscattered 

toward the instrument’s receiver. To begin the lidar 

intensity correction process, the factors that deter-

mine the intensity value 2rst need to be understood 

by evaluating the radar equation: 

where Pr is the received laser power (watts), Pt is the 

transmitted laser power (watts), Dr is the diameter of 

the receiver aperture (meters), R is the range or dis-

tance from the scanner to the surface (meters), βt is the 

laser beam width (radians), ηsys and ηatm are the system 

and atmospheric attenuation, respectively, and σ 

includes the target characteristics of the cross-section, 

including Ω as the scattering solid angle (steradians), ρ 

as the target re,ectance, and As as the target area 

(square meters; Hö,e and Pfeifer 2007; Jelalian 1992). 

The raw intensity or the received laser power (Pr), there-

fore, is a reduction of the transmitted laser beam (Pt) in 

accordance with the instrumentation design, the geo-

metric and re,ectance properties of the scanned sur-

face, as well as the atmospheric conditions.

Simplifying the radar equation (Equation 2.1) iden-

ti2es which parameters have the highest impact on 

the received laser signal and could be leveraged to 

normalize the data. If a laser signal is assumed to 

encounter an individual surface with Lambertian 

re,ectance, then the area of the target (As) is depen-

dent upon the laser beam width (βt) and range (R; 

Jelalian 1992): 

This de2nition of the target area can be substituted 

when solving for the target characteristics of the 

cross-section (σ; Equation 2.2), which can re2ne the 

original radar equation (Equation 2.1) as follows: 

where the cosαi parameter is added to account for the 

incidence angle, or the angle between the incoming 

laser pulse and the surface normal (Baltsavias 1999; 

Hö,e and Pfeifer 2007; Jelalian 1992; Figure 2). This 

modi2ed equation indicates that the received laser 

pulse is proportional to the cosine of the incidence 

angle and has an inverse relationship with the 

squared range (Hö,e and Pfeifer 2007).

The remaining parameters are primarily inherent to 

a lidar system and can be assumed to remain constant 

during over,ight, including the transmitted laser sig-

nal, the receiver aperture diameter, and the systema-

tic attenuation (Hö,e and Pfeifer 2007). Although the 

atmospheric attenuation is a vital parameter, the 

strength of its e�ect on the received signal is mainly 

dependent upon the range (Hö,e and Pfeifer 2007). 

Thus, the literature suggests that the range and the 

incidence angle are considered the primary factors 

that in,uence lidar intensity (Jutzi and Gross 2009; 

Kaasalainen et al. 2011; Kaasalainen, Kaartinen, and 

Kukko 2008; Kashani et al. 2015; Sanchiz-Viel et al.  

2021; Yan and Shaker 2018; Zhang et al. 2020).

2.2.2. Application

The initial steps in the lidar intensity correction 

include a series of 2ltering with each ,ight line 

processed individually. First, lidar data were 2ltered 

to scan angles of ±15° in accordance with the 

assumption that snow is primarily forward scattering 

in the near-infrared wavelengths, but is nearly 

a Lambertian scatterer near nadir (Donahue, Skiles, 

and Hammonds 2021; T. H. Painter and Dozier 2004). 

Next, to best represent the snow surface, the lidar 

point cloud is 2ltered to include only single ground 

returns (Figure 2). Lidar points with more than one 

return have a diminished intensity value after 

encountering multiple objects and do not solely 
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represent light interaction with the snow surface 

(Kashani et al. 2015). Lastly, to further reduce 

noise, the point cloud is passed through the 

extended local minimum (ELM) 2lter and a voxel 

centroid nearest neighbor 2lter, both of which eval-

uate lidar points in relation to neighboring values 

and remove outliers that exceed the set threshold 

(Chen et al. 2012).

In order to correct for the range and incidence 

angle over mountainous terrain, the relation between 

the location of the laser scanner and a given laser 

pulse needs to be determined. We aligned the instan-

taneous location of the scanner with a given laser 

pulse by minimizing the GPS time recorded in the 

aircraft ,ight trajectory and the time stamp of 

a given laser pulse. Using these two positions, we 

calculate the range between the sensor (XS, YS, ZS) 

and the ground (XG, YG, ZG): 

The surface normal (n1, n2, n3) is then calculated using 

eigenvectors based on the k-nearest neighbors. Both 

the surface normal and the vector of the laser signal 

(-X, -Y, -Z) can then be used to calculate the incidence 

angle of a given laser pulse (Wu et al. 2021): 

We excluded laser signals where incidence angles 

would exceed 60° as errors in overcorrecting lidar 

intensity can occur when incidence angles are 

exceptionally steep (Yan and Shaker 2014), and 

further tested the sensitivity of retrievals to lower 

threshold values using 10° increments from 10° to 

60°. The calculated range and incidence angle are 

then required to rectify the raw intensity (IR) to 

determine the corrected intensity (IC) (Kashani 

et al. 2015): 

The reference range (Rref) is a user-de2ned metric cho-

sen to normalize the data, in which the minimum range 

or median range are often selected (Yan and Shaker  

2017). The median range was applied here as the refer-

ence range before removing global outliers that are 

three standard deviations from the median. To assess 

sensitivity to the reference range value, it was per-

turbed by ±10% to represent reasonable uncertainty 

bounds in determining the median range, which did 

Figure 2. Overview of the methodology that includes calculating the range (R) and the incidence angle (θInc, in reference to N or the 
surface normal) before correcting lidar intensity and estimating snow grain size.
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not impact the retrieved Ic. The point cloud was then 

normalized by dividing the maximum corrected inten-

sity before producing the 2nal rasterized 1-m corrected 

intensity product. We note that the work,ow described 

here is open access, and the link is provided in the code 

availability section.

2.3. Snow retrievals

Corrected intensity can be converted to re,ectance 

values through radiative transfer modeling if the speci-

2cations of the lidar instrumentation are known, but 

because lidar units are typically proprietary, the sensor 

information needed for this approach is rarely available, 

as was the case here. Corrected intensity was instead 

converted to re,ectance using the known re,ectance of 

surfaces within the scene. Here, re,ectance at 1064 nm 

from coincident 2eld spectroscopy measurements of 

geolocated road asphalt and snow albedo was used to 

convert the corrected intensity to re,ectance. A simple 

threshold was then used to classify snow-covered area 

based upon the lowest expected re,ectance value for 

snow (0.30) at 1064 nm (Painter et al. 2009).

We retrieved snow grain size by relating the lidar- 

derived re,ectance and incidence angle to simulated 

values from the Asymptotic Analytical Radiative 

Transfer (AART) model (Kokhanovsky and Zege 2004). 

A range of e�ective grain radii (30–1500 µm) and inci-

dence angles (0–60°) run through AART yielded 

a multi-dimensional lookup table of snow re,ectance 

values at 1064 nm. The AART model simulates multiple 

scattering and re,ectance from ice fractals using geo-

metric optics, which has been observed to be a more 

accurate approach in representing light interactions 

with snow grains relative to the commonly used sphe-

rical models, particularly for new snow. Because the 

AART model also simulates re,ectance in correspon-

dence with observed bidirectional re,ectance of snow, 

it allows for modeling re,ectance in the backscatter 

direction as needed with lidar intensity. Both the lidar- 

derived re,ectance and incidence angle are then refer-

enced to determine grain size across the study site.

The lidar retrieved grain size was then compared 

against a well-established retrieval approach from 

measured snow spectral re,ectance. The scaled 

band depth, or the depth of the continuum normal-

ized ice absorption feature centered at 1030 nm, 

was calculated for each ASD measurement along 

the re,ectance transects (Clark and Roush 1984; 

Donahue et al. 2023). The grain size was then 

retrieved by relating the measured scaled band 

depth to values in a lookup table. The lookup 

table was produced by simulating spectral re,ec-

tance with the AART model over a wide range of 

grain sizes for the solar geometry at the time of 2eld 

spectroscopy measurements. Our approach to 

assess lidar grain size leverages the relative depth 

of the ice absorption feature as opposed to an 

absolute re,ectance magnitude, an approach that 

is less sensitive to view and illumination angles 

(Donahue et al. 2023). The mean grain size values 

from both the lidar and ASD over the two study 

sites were used to model snow albedo using the 

AART model, in order to translate error in grain size 

to error in snow albedo. The AART model is open 

access, and a link to the code is provided in the 

code availability section.

3. Results

3.1. Corrected intensity

The Senator Beck Basin intensity correction o�ered 

several improvements relative to the initial (raw) 

lidar intensity data. The range e�ect, for instance, 

was dominant in the raw lidar intensity data as 

shorter ranges at higher elevations generated larger 

intensity retrievals. The corrected lidar intensity suc-

cessfully removed this e�ect and produced re,ec-

tance across the study area independent of the 

surface elevation (Figure 3). The corresponding 

median lidar-derived re,ectance was 0.68 (0.10 

standard deviation), a bright value for 1064 nm con-

sistent with the freshly fallen snow that occurred 

prior to the lidar ,ight. The median lidar re,ectance 

held consistent across varying incidence angle 

thresholds with a maximum increase of 0.02 when 

the threshold was set to 10° (Table 1). Nevertheless, 

overcorrection was evident on steep slopes, where 

a low bias in re,ectance was visually prominent as 

darker areas in the re,ectance map relative to sur-

rounding values (Figure 3). The bias e�ect of steep 

incidence angles was minimized when the plane 

directly passed over steep terrain, suggesting that 

careful adjustments to the ,ight plan could mitigate 

this problem as the scan angle is decreased and 

more retrievals are collected near nadir.
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3.2. Snow extent

The snow cover classi2cation extent was 2.88 km2 from 

lidar intensity relative to 2.72 km2 from imagery (NDSI), 

a di�erence of approximately 0.16 km2 or 5.4% of the 

total basin area (Figure 4). Snow cover classi2cations 

from both the lidar intensity and the imaging spectro-

meter mapped snow in relatively ,at terrain without 

any overhead obstruction, such as vegetation. 

However, the snow classi2cation derived from lidar 

intensity covered a greater extent as it could also iden-

tify snow in shadowed areas and around trees, which 

the imaging spectrometer often misclassi2ed. By 

lowering the incidence angle threshold to reduce arti-

facts of overcorrection, the delineated snow extent 

reduced over slopes (Table 1). For example, at 40° the 

mapped area decreased by 0.06 km2 or 2.03% of the 

total area.

3.3. Snow grain size

Across the entire basin, the median lidar grain size 

was 183 µm (123 µm standard deviation). The grain 

size spatial distribution displayed an inverse pattern 

to corrected intensity, indicative of the relationship 

Figure 3. The three parameters needed for intensity correction: raw lidar intensity (top left), range (top center) and incidence angle 
(top right), including the final corrected lidar intensity (bottom center). Both the incidence angle and the final corrected lidar intensity 
demonstrate the 40° incidence angle threshold.

Table 1. The range in lidar snow-covered area (km2), reflectance, and effective grain size (µm) across varying 
incidence angle thresholds (0–60°).

Incidence Angle Threshold (°) SCA (km2)

Reflectance Grain Size (µm)

Median SD Median SD

10 0.97 0.70 0.09 162 101
20 1.86 0.69 0.09 170 114
30 2.57 0.69 0.10 177 128
40 2.88 0.68 0.10 183 123
50 2.94 0.68 0.10 189 155
60 2.96 0.68 0.10 193 168
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between near-infrared absorption and snow grain 

size. At the higher elevation ground measurement 

sites, the median lidar grain size was 141 µm (MB; 

Mid-basin) and 126 µm (SBSP; Senator Beck Study 

Plot), respectively. The median grain size derived 

from the ASD 2eld spectrometer was 115 µm for the 

MB transects and 146 µm near the SBSP transects 

(Figure 5). The transects were measured 2rst at MB 

and then later in the day at SBSP, so the larger grain 

sizes were not unexpected. Relative to the in situ 

grain size, the mean absolute error (MAE) in lidar 

grain size was 32 µm for both the MB and SBSP trans-

ects, which would translate into an albedo uncer-

tainty of ±0.01 (1%).

This error can also apply to absorbed (net) solar 

radiation (i.e. the primary metric of interest for 

snow energy balance) as demonstrated here for 

context. For clean snow, a grain size of 183 µm 

Figure 4. Snow-covered area as determined from an imaging spectrometer (NDSI) and lidar sensor (left) with reference to the 
orthophoto from the same day of overflight (right). The lidar detected the same snow cover classified from the spectrometer imagery, 
while also detecting snow in areas not detected by imagery (dark blue). For reference to other maps, lidar snow cover extent is shown 
for 40° incidence angle.

Figure 5. Lidar-derived grain size across the study area with a 40° incidence angle threshold applied, including the transects where 
in situ measurements were collected (left). Histogram of lidar-derived grain size across the total basin across varying incidence angle 
thresholds (top right), and associated plots relating grain size from lidar intensity to in situ observations at mid-basin (center right) and 
Senator Beck Study Plot (lower right).
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would translate to a broadband albedo of 0.83. 

Using a typical incoming solar radiation for this 

location during time of over,ight in mid-February 

(e.g. 500 W m−2), the absorbed solar radiation 

would be 85 Wm−2. Perturbing the albedo by 

±1% changes absorbed solar radiation by ±5 

Wm−2. We note that the relationship between 

grain size and albedo is non-linear (Dozier and 

Painter 2004)) and the associated albedo and 

absorbed solar radiation uncertainty would be 

lower for larger grained snow with the same 

MAE. For example, at 500 µm the albedo error 

would be 0.1%.

Considering that there are di�erences in retrieval 

methods and footprint sizes, this initial comparison 

indicates that lidar-retrieved grain size values were 

reasonable. The MAE across both transect sites 

remained consistent (32 µm) across varying inci-

dence angle thresholds; however, the basin median 

grain size ranged from 162 µm to 193 µm for the 10° 

and 60° thresholds, respectively (Table 1). Due to 

the high grain size bias introduced at steep inci-

dence angles, we suggest a 40° incident angle 

threshold for grain size analysis. Although it is 

used as the reference measurement here, we note 

that there is also uncertainty in the grain size 

retrieved from ground re,ectance measurements. 

The reported sensitivity to variability in environ-

mental conditions is 20 µm (Skiles and Painter  

2017). We refer interested readers to further discus-

sion of uncertainties in Donahue, Skiles, and 

Hammonds (2021) and Skiles et al. (2023).

As an additional assessment of lidar grain size, 

distributions were examined across the subalpine 

Swamp Angel Study Plot, where the incidence angle 

was approximately 0° and inherently had the lowest 

uncertainty. The median grain size across the mea-

dow encompassing the study plot was 198 µm with 

a standard deviation of 26 µm. This range of values 

was reasonable relative to variability in snow grain 

size mapped from a UAV imaging spectrometer over 

the same area in March 2022, which had a mean grain 

size of 100 µm and standard deviation of 23 µm (Skiles 

et al. 2023). Further assessment of lidar grain size 

across di�erent snow conditions and on varying 

slopes is needed before uncertainties can be better 

constrained, but the initial results here are promising 

and motivate further assessment of this method and 

exploration of applications.

4. Discussion

The primary goal of this work was to present 

a correction work,ow for lidar intensity in mountainous 

terrain. The intensity correction demonstrated the value 

of correcting for range and incidence angle to retrieve 

a signal representative of the surface. However, it also 

showed that high incidence angles were overcorrected, 

which was more evident when deriving snow grain size. 

This can be addressed in part by applying an incidence 

angle threshold, but there is a tradeo� between redu-

cing overcorrection and excluding terrain. Additionally, 

snow tends to be shallower on steep slopes, which 

in,uences the snow metamorphism that could lead to 

faster grain growth. Thus, it is a challenge to quantita-

tively identify the bias due to overcorrection alone.

Future work should include sensitivity analysis 

across steeper slopes (e.g. from coincident airborne 

VIR-SWIR imaging spectroscopy) to examine the varia-

bility in grain size and better interpret the impact of 

high incidence angles. The overcorrection will be 

a primary challenge to address for lidar intensity 

retrievals in mountains, although ,ight planning and 

processing work,ows could potentially be optimized 

to limit overcorrection e�ects. Nevertheless, the 

uncertainty in absorption (1%) is well under the 10% 

target identi2ed to improve surface radiation balance 

in the most recent National Academies’ Decadal 

Survey on Earth Science and Applications (2019).

An additional challenge related to the approach pre-

sented here is the empirical conversion of lidar intensity 

to re,ectance. Without coincident 2eld spectroscopy, 

a reference surface with known re,ectance properties 

at the lidar wavelength within the ,ight area could be 

used. This could be a stable snow-free surface such as 

a road (as used in this study) or rock outcropping. In the 

absence of these, a re,ectance target within the scene 

could also be utilized. Alternatively, a system calibration 

e�ort could be undertaken to establish the relationship 

between lidar intensity and re,ectance. This would be 

ideal for survey platforms that regularly collect data over 

similar land surface types using relatively consistent 

,ight parameters (i.e. like ASO), where the relationship 

is unlikely to change. The accuracy and consistency of 

such a calibration would need to be assessed across 

multiple ,ights. If suitable, however, it would eliminate 

the need for ,ight-to-,ight conversion from lidar inten-

sity to re,ectance and make application of this approach 

more practical.
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The bene2t of snow surface property retrievals for 

a stand-alone lidar platform is clear. Snow surface 

elevations could be supplemented with snow extent 

delineated from lidar re,ectance, which could be 

used as a mask to determine where the snow depth 

should be di�erentially calculated. The evolution of 

grain size over time is an indicator of snow age and, 

via its control on albedo and absorbed solar radiation, 

could be useful for understanding snow evolution if 

the dataset was being collected as a time series. An 

additional step in the work,ow could include produ-

cing a clean snow albedo map, which could be 

directly useful to inform change in surface energy 

balance (Skiles et al. 2023). This methodology could 

also be applied to other platforms beyond aerial lidar, 

including ground-based, UAV, and satellite, such as 

the Global Ecosystem Dynamics Investigation (GEDI) 

lidar.

Lidar intensity and re,ectance could also be 

a useful supplementary dataset for airborne plat-

forms that couple a lidar with an imaging spectro-

meter, like ASO (T. H. Painter et al. 2016) or ACO 

(the Airborne Coastal Observatory; Donahue et al.  

2023). With these systems, data collection is often 

restricted to ideal conditions for optical imaging 

(e.g. high sun angles, consistent illumination, clear 

atmosphere) that can pose several challenges for 

acquiring snow surface properties. For instance, 

shadows from both terrain and vegetation 

decrease snow re,ectance in optical imagery, par-

ticularly in the mountains during winter and spring 

when sun angles are low (Prantl et al. 2017; Yan 

and Shaker 2017). Because a lidar system is an 

active sensor, it can detect snow cover in the 

presence of thin clouds, in shadowed regions, 

and over bright snow surfaces. Additionally, 

because it has a 2ner spatial resolution, it is better 

at detecting snow adjacent to trees and other 

vegetation. Lidar intensity may also have the 

potential to detect snow cover under tree cano-

pies if last returns are included in the analysis, 

although the reduction in intensity from the pre-

vious returns would also need to be evaluated. 

Retrieving snow extent and grain size from aerial 

lidar intensity, therefore, is advantageous as data 

collection may occur independent of solar illumi-

nation, allowing for snow retrievals regardless of 

the time of day or time of year in the high lati-

tudes. Additionally, snow retrievals are challenging 

from imagery when pixels are mixed, a common 

issue in mountain environments. Supplementing 

imaging spectroscopy retrievals with those from 

lidar intensity, therefore, may provide more ,ex-

ibility in regard to illumination conditions and 2ner 

surface detail at the point cloud level.

5. Conclusion

Aerial lidar intensity at 1064 nm has proven to be 

a valuable alternative for retrieving snow surface 

properties, including extent and grain size, after 

correcting for range and incidence angle. The 

lidar-derived grain size demonstrated a mean 

absolute error (MAE) of 32 µm relative to in situ 

measurements, corresponding to an uncertainty 

of 1% in snow albedo and absorption. This 

approach, utilizing only one wavelength, exhib-

ited greater variability than 2eld spectroscopy, 

particularly on steeper slopes where incidence 

angles were high. To mitigate this, we recom-

mend incorporating an incidence angle threshold 

and recognize that coincident 2eld spectroscopy 

would also facilitate the conversion of lidar inten-

sity to re,ectance. Despite these challenges, lidar 

intensity corrections are still a useful supplement 

to traditional methods, as lidar can detect snow 

surfaces at 2ner resolutions and is independent of 

solar illumination, which is especially useful 

around vegetation and in shadows. Further 

assessment of this methodology across varying 

snow conditions and slopes is recommended, as 

well as its application across di�erent lidar plat-

forms, such as UAVs or satellites. Although this 

technique has its limitations, it holds great poten-

tial to enhance current methods for monitoring 

snow evolution and energy balance.
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