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ABSTRACT

Differentially mapping snow depth in mountain watersheds from airborne laser altimetry is
a valuable hydrologic technique that has seen an expanded use in recent years. Additionally,
lidar systems also record the strength of the returned light pulse (i.e. intensity), which can be used
to characterize snow surface properties. For near-infrared lidar systems, return intensity is relatively
high over snow and inversely related to the effective grain size, a primary control on snow albedo.
Raw intensity is also sensitive to laser range and incidence angle, however, and requires
a correction for snow property retrieval that is especially pertinent in mountainous terrain. Here,
we describe a workflow to correct the intensity using the plane trajectory, lidar scan angle, and
lidar-derived topography. As a proof of concept for snow retrievals, we apply the workflow to an
airborne 1064 nm lidar flight over a snow-covered mountain basin in the Colorado Rockies.
Corrected intensity was empirically related to reflectance before delineating snow extent and
retrieving grain size. Relative to the traditional snow classification derived from optical imagery, the
lidar-derived snow extent covered 5.4% more area due to the fine resolution point cloud and
absence of shadows common in optical imagery. The lidar-derived grain size retrievals had a MAE
of 32 um compared to those from field spectroscopy, which translated to a 1% error in snow
albedo. We found high incidence angles yielded an overcorrection in intensity that introduced
a high bias in the grain size distribution and, therefore, suggest using an incidence angle threshold
(40°). Developing methods specifically for quantitative snow surface property retrievals from lidar
intensity is timely and relevant as aerial lidar is increasingly being used to map snow depth for
hydrologic and cryospheric studies.
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1. Introduction
uctt In addition to snow depth and distribution, lidar

Airborne laser scanning (ALS) applications within snow
hydrology have increased exponentially in recent dec-
ades, with most studies focused primarily on characteriz-
ing snow volume, including snow depth, snow
redistribution, and avalanche movement (Anttila et al.
2016; Bhardwaj et al. 2016; Helfricht et al. 2014; Hood
and Hayashi 2010; T. H. Painter et al. 2013; Prokop 2008;
Vionnet et al. 2021). Snow depth mapping is commonly
conducted by differencing two geo-registered topogra-
phies of the same location: one with snow (“snow on”")
and the other snow-free (“snow off”) (T. H. Painter et al.
2016). The temporal differencing approach can provide
an observation of snow depth with sub-decimeter vertical
accuracy and a fine spatial resolution across entire water-
sheds (Deems, Fassnacht, and Elder 2006; Deems, Painter,
and Finnegan 2013; Mott, Schirmer, and Lehning 2011).

can also be used to map surface optical properties by
leveraging the intensity measurement, or the ratio of
the strength of the return signal relative to that of the
emitted pulse (Song et al. 2002). Theoretically, lidar
intensity should vary with the reflectivity of a surface,
allowing lidar to be both a spatial and a spectral
instrument (Antonarakis, Richards, and Brasington
2008). Raw intensity, however, is not directly usable
for retrievals. The absolute magnitude of the values
varies with factors that include transmitted power,
laser pulse repetition rate, range (e.g. the distance
between the sensor and the surface), atmospheric
conditions, topography of the study area, scan
angle, footprint size, beam divergence, and surface
composition (Bretagne, Dassonvalle, and Caron 2018;
Kashani et al. 2015). Although various approaches
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exist for intensity correction, there is no standardized
method and, thus, these data remain unexploited
(Lang and McCarty 2009; Sanchiz-Viel et al. 2021;
Song et al. 2002; Yan and Shaker 2018).

To translate intensity into an analysis-ready pro-
duct, correction for range and incidence angle is of
primary importance (Jutzi and Gross 2009;
Kaasalainen et al. 2011; Sanchiz-Viel et al. 2021). An
increase in the range extends the travel path of the
laser pulse, exacerbating the energy loss due to beam
divergence and considerably reduces the number of
returns. Relatedly, an increase in range and incidence
angle enlarges the footprint of a given laser pulse,
lengthening travel time for the laser pulse and weak-
ening the return intensity (Goodwin, Coops, and
Culvenor 2006). Accounting for these parameters is
especially critical over snow-covered mountainous
watersheds, where the topography produces high
variability in both range and incidence angle (Currier
et al. 2019; Deems, Painter, and Finnegan 2013;
Hartzell et al. 2015; Soudarissanane et al. 2009).

Topographic complexity may confound one-to-
one mapping between return intensity and snow
property retrieval, but these challenges can be over-
come. Lidar sensors selected for monitoring snow
typically operate in the near-infrared (Baltsavias
1999; Goodwin, Coops, and Culvenor 2006), where
light penetration is relatively shallow (~1cm), and
snow is relatively bright (Deems, Painter, and
Finnegan 2013). Previous studies delineated seasonal
snow on a glacier surface from lidar intensity (Arnold
et al. 2006; Prantl et al. 2017), whereas others used
intensity to characterize snow, ice, rock, and water
across a glacial region in Norway (Lutz, Geist, and
Stotter 2003).

In addition to surface classification, variation in
lidar intensity should relate to the effective grain
size of snow, a surface optical property and primary
control on snow albedo (Warren 1982). In the near-
infrared portion of the electromagnetic spectrum,
snow reflectivity is inversely related to the photon
path length through ice, commonly characterized as
an effective grain radius or specific surface area (SSA)
(Warren 1982). Generally, as snow grains round and
grow over time due to snow metamorphism, the
effective grain size increases. Nolin (1998) and Yang
et al. (2017) proposed a proof of concept for deriving
snow grain size from the Geoscience Laser Altimeter
System (GLAS) onboard the Ice, Cloud, and land

Elevation Satellite (ICESat), although neither study
could validate retrievals. At a finer scale, Kaasalainen,
Kaartinen, and Kukko (2008) attributed variation in
terrestrial lidar intensity over snow to grain size but
noted that it was a qualitative assessment that could
be further refined. For the remainder of the paper, we
will refer to effective grain size simply as grain size.

Here, we present a method to correct lidar intensity
at 1064 nm for range and incidence angle. To demon-
strate this methodology, we applied the correction to
a lidar flight over a snow-covered mountain
watershed in Colorado and related the corrected
intensity to reflectance, from which snow extent was
delineated and grain size retrieved. The snow proper-
ties from lidar intensity were assessed against tradi-
tional retrieval approaches (i.e. snow extent from
imagery and grain size from field spectroscopy).
Retrieving snow extent and grain size from lidar inten-
sity optimizes the full lidar dataset and provides
a useful supplement to established methods with
the added benefits of an active sensor.

2. Methods
2.1. Data

The lidar dataset used in our study originated from an
airborne Riegl Q1560 dual laser scanner flown aboard
a King Air A90 as a component of the Airborne Snow
Observatory (ASO), a now complete NASA-JPL project
(T. H. Painter et al. 2016). The acquisition occurred on
21 February 2017 over the Senator Beck Basin Study
Area (SBBSA; Landry et al. 2014) in the San Juan
Mountains, CO, as part of the NASA SnowEx campaign
(Year 1; Figure 1a). The Riegl Q1560 is a 1064 nm, dual
laser scanner with a system scan angle of 60° (+30°
from nadir). Each flightline included 50% overlap, with
the total survey area flown in a double overlap
“checkerboard” flight pattern (10 flight lines in each
direction; 4x lidar coverage) across a larger domain
encompassing SBBSA, which was subset to the eight
flight lines that cover the basin (Figure 1b).

The lidar sensor collected return signals at a pulse
repetition rate of 400 kHz per laser and at 100%
power. The flight altitude was 5,182 m (17,000 ft)
above sea level (asl) with ground elevations in the
study area spanning ~ 3345-4100 m (Figure 1c). At
this elevation, beam divergence (0.25 mrad) for
nadir laser pulses yield a footprint of ~1 m on flat
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Figure 1. The study area is Senator Beck Basin in the San Juan Mountains, Colorado. (A) RGB orthomosaic from day of flight (B)
Airborne Snow Observatory (ASO) flight lines on 21 February 2017 (C) Lidar-derived digital elevation model of the study area with
values ranging from approximately 3345 — 4100 m. Sources for the basemap include ESRI, USGS, and NOAA.

terrain with increases in size proportionate to scan
angle and topography (Deems, Painter, and
Finnegan 2013). The survey commenced at 16:48
UTC (9:48 AM MST) and completed at 17:44 UTC
(10:44 AM MST). Throughout the duration of this
flight, clear skies existed in the survey area below
the aircraft, while isolated cirrus clouds existed
above the aircraft. The survey area experienced snow-
fall the previous day.

We collected in-situ spectral albedo and reflec-
tance measurements with an ASD FS4 field spectro-
meter on the same day of overflight. The ASD FS4
samples the spectral range 350-2500 nm, with con-
tiguous bands that are 3 nm (at 700 nm) to 10 nm (at
1400 and 2100 nm) at full width half maximum. The
spectra are resampled and splined to 1 nm resolution,
and the wavelength reproducibility and accuracy are
0.1 and 0.5 nm, respectively. Albedo measurements
took place over both snow and snow-free targets (i.e.
road asphalt adjacent to SBBSA). Reflectance transects
took place over snow at two locations: an alpine
meadow near the middle of the basin (Mid-basin,
3843 m) and the alpine study plot (Senator Beck
Study Plot, 3716 m). Approximately 80 reflectance
measurements, each with a ~25cm footprint, were
collected along ~2.5 m transects and georeferenced
using locations from a handheld GNSS receiver

(Trimble Geo), which had an uncertainty of 1-3 cm
after post-processing. Mid-basin observations were
being collected near the time the plane flew overhead
(10:00 AM local time), and Senator Beck Study Plot
measurements occurred later in the afternoon (2:00
PM local time). The albedo measurements were used
as calibration data, referenced to convert corrected
intensity to reflectance as described further in
Section 2.2. The reflectance transects were used as
assessment data; the effective snow grain size was
retrieved from each spectral reflectance measure-
ment and compared to the lidar-derived grain size
as described in Section 2.3.

The imaging spectrometer (CASI-1500) on ASO was
coincidentally recording at-surface reflectance con-
tinuously from 400 to 1040 nm (T. H. Painter et al.
2016). The imagery was processed by ASO to produce
a basic land surface classification (e.g. snow, rock,
vegetation, water) using band ratios, including the
normalized difference snow index (NDSI, threshold >
0.86) for snow extent. The snow classification was
used here to assess snow cover delineated from lidar
intensity. Due to the decreasing signal-to-noise ratio
and quality of spectral measurements past 900 nm,
however, the instrument was not suitable for grain
size retrievals (Soffer 2021). Additionally, because the
spectral range does not extend to 1064 nm, a direct
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spatial comparison between the lidar and imaging
spectrometer reflectance was not possible.

2.2. Lidar intensity correction

2.2.1. Theory

Lidar operates under the same fundamental princi-
ples as radar, replacing radio waves with shorter
wavelengths commonly found in the visible (520--
560 nm) and near-infrared (700-1400 nm) portion of
the electromagnetic spectrum (Jelalian 1992; Sanchiz-
Viel et al. 2021). A lidar instrument emits photons
toward a target, the signal then encounters
a surface, and a portion of the signal is backscattered
toward the instrument’s receiver. To begin the lidar
intensity correction process, the factors that deter-
mine the intensity value first need to be understood
by evaluating the radar equation:

PtD,2
r— 5] nsysnatmo
t

2.1.
= (2.1)

4
0 = —pPA;s

a (2.2.)

where P, is the received laser power (watts), P; is the
transmitted laser power (watts), D, is the diameter of
the receiver aperture (meters), R is the range or dis-
tance from the scanner to the surface (meters), B; is the
laser beam width (radians), n,s and ng.m are the system
and atmospheric attenuation, respectively, and o
includes the target characteristics of the cross-section,
including Q as the scattering solid angle (steradians), p
as the target reflectance, and A, as the target area
(square meters; Hofle and Pfeifer 2007; Jelalian 1992).
The raw intensity or the received laser power (P,), there-
fore, is a reduction of the transmitted laser beam (P,) in
accordance with the instrumentation design, the geo-
metric and reflectance properties of the scanned sur-
face, as well as the atmospheric conditions.

Simplifying the radar equation (Equation 2.1) iden-
tifies which parameters have the highest impact on
the received laser signal and could be leveraged to
normalize the data. If a laser signal is assumed to
encounter an individual surface with Lambertian
reflectance, then the area of the target (A;) is depen-
dent upon the laser beam width (8,) and range (R;
Jelalian 1992):

_ mR?B;

A==

(2.3)
This definition of the target area can be substituted
when solving for the target characteristics of the
cross-section (o; Equation 2.2), which can refine the
original radar equation (Equation 2.1) as follows:

o = mpR*B?cosa; (2.4.)

_ PDp

" T 4R2 NsysNatm€OSA; (2.5.)

where the cosa; parameter is added to account for the
incidence angle, or the angle between the incoming
laser pulse and the surface normal (Baltsavias 1999;
Hofle and Pfeifer 2007; Jelalian 1992; Figure 2). This
modified equation indicates that the received laser
pulse is proportional to the cosine of the incidence
angle and has an inverse relationship with the
squared range (Hofle and Pfeifer 2007).

The remaining parameters are primarily inherent to
a lidar system and can be assumed to remain constant
during overflight, including the transmitted laser sig-
nal, the receiver aperture diameter, and the systema-
tic attenuation (Hofle and Pfeifer 2007). Although the
atmospheric attenuation is a vital parameter, the
strength of its effect on the received signal is mainly
dependent upon the range (Hofle and Pfeifer 2007).
Thus, the literature suggests that the range and the
incidence angle are considered the primary factors
that influence lidar intensity (Jutzi and Gross 2009;
Kaasalainen et al. 2011; Kaasalainen, Kaartinen, and
Kukko 2008; Kashani et al. 2015; Sanchiz-Viel et al.
2021; Yan and Shaker 2018; Zhang et al. 2020).

2.2.2. Application

The initial steps in the lidar intensity correction
include a series of filtering with each flight line
processed individually. First, lidar data were filtered
to scan angles of £15° in accordance with the
assumption that snow is primarily forward scattering
in the near-infrared wavelengths, but is nearly
a Lambertian scatterer near nadir (Donahue, Skiles,
and Hammonds 2021; T. H. Painter and Dozier 2004).
Next, to best represent the snow surface, the lidar
point cloud is filtered to include only single ground
returns (Figure 2). Lidar points with more than one
return have a diminished intensity value after
encountering multiple objects and do not solely
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Figure 2. Overview of the methodology that includes calculating the range (R) and the incidence angle (6., in reference to N or the
surface normal) before correcting lidar intensity and estimating snow grain size.

represent light interaction with the snow surface
(Kashani et al. 2015). Lastly, to further reduce
noise, the point cloud is passed through the
extended local minimum (ELM) filter and a voxel
centroid nearest neighbor filter, both of which eval-
uate lidar points in relation to neighboring values
and remove outliers that exceed the set threshold
(Chen et al. 2012).

In order to correct for the range and incidence
angle over mountainous terrain, the relation between
the location of the laser scanner and a given laser
pulse needs to be determined. We aligned the instan-
taneous location of the scanner with a given laser
pulse by minimizing the GPS time recorded in the
aircraft flight trajectory and the time stamp of
a given laser pulse. Using these two positions, we
calculate the range between the sensor (Xs, Ys, Zs)
and the ground (Xg, Ys, Zo):

R= \/(x5 —Xo) 2 4 (Ys = Y6)2 4 (Zs — Z6)*  (2.6.)

The surface normal (n, ny, n3) is then calculated using
eigenvectors based on the k-nearest neighbors. Both
the surface normal and the vector of the laser signal
(-X, -Y, -Z) can then be used to calculate the incidence
angle of a given laser pulse (Wu et al. 2021):

(=X)-m +(=Y) -+ (=2)-ns

VX + (Y2 4 (-2 /m2 Fng? 4 n?

(2.7.)

Cos Bjpc =

We excluded laser signals where incidence angles
would exceed 60° as errors in overcorrecting lidar
intensity can occur when incidence angles are
exceptionally steep (Yan and Shaker 2014), and
further tested the sensitivity of retrievals to lower
threshold values using 10° increments from 10° to
60°. The calculated range and incidence angle are
then required to rectify the raw intensity (/z) to
determine the corrected intensity (/) (Kashani
et al. 2015):
2
IC = IR X —— R2 *

ref

E— (2.8.)
€osa;

The reference range (R, is a user-defined metric cho-
sen to normalize the data, in which the minimum range
or median range are often selected (Yan and Shaker
2017). The median range was applied here as the refer-
ence range before removing global outliers that are
three standard deviations from the median. To assess
sensitivity to the reference range value, it was per-
turbed by +10% to represent reasonable uncertainty
bounds in determining the median range, which did
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not impact the retrieved /.. The point cloud was then
normalized by dividing the maximum corrected inten-
sity before producing the final rasterized 1-m corrected
intensity product. We note that the workflow described
here is open access, and the link is provided in the code
availability section.

2.3. Snow retrievals

Corrected intensity can be converted to reflectance
values through radiative transfer modeling if the speci-
fications of the lidar instrumentation are known, but
because lidar units are typically proprietary, the sensor
information needed for this approach is rarely available,
as was the case here. Corrected intensity was instead
converted to reflectance using the known reflectance of
surfaces within the scene. Here, reflectance at 1064 nm
from coincident field spectroscopy measurements of
geolocated road asphalt and snow albedo was used to
convert the corrected intensity to reflectance. A simple
threshold was then used to classify snow-covered area
based upon the lowest expected reflectance value for
snow (0.30) at 1064 nm (Painter et al. 2009).

We retrieved snow grain size by relating the lidar-
derived reflectance and incidence angle to simulated
values from the Asymptotic Analytical Radiative
Transfer (AART) model (Kokhanovsky and Zege 2004).
A range of effective grain radii (30-1500 um) and inci-
dence angles (0-60°) run through AART yielded
a multi-dimensional lookup table of snow reflectance
values at 1064 nm. The AART model simulates multiple
scattering and reflectance from ice fractals using geo-
metric optics, which has been observed to be a more
accurate approach in representing light interactions
with snow grains relative to the commonly used sphe-
rical models, particularly for new snow. Because the
AART model also simulates reflectance in correspon-
dence with observed bidirectional reflectance of snow,
it allows for modeling reflectance in the backscatter
direction as needed with lidar intensity. Both the lidar-
derived reflectance and incidence angle are then refer-
enced to determine grain size across the study site.

The lidar retrieved grain size was then compared
against a well-established retrieval approach from
measured snow spectral reflectance. The scaled
band depth, or the depth of the continuum normal-
ized ice absorption feature centered at 1030 nm,
was calculated for each ASD measurement along

the reflectance transects (Clark and Roush 1984;
Donahue et al. 2023). The grain size was then
retrieved by relating the measured scaled band
depth to values in a lookup table. The lookup
table was produced by simulating spectral reflec-
tance with the AART model over a wide range of
grain sizes for the solar geometry at the time of field
spectroscopy measurements. Our approach to
assess lidar grain size leverages the relative depth
of the ice absorption feature as opposed to an
absolute reflectance magnitude, an approach that
is less sensitive to view and illumination angles
(Donahue et al. 2023). The mean grain size values
from both the lidar and ASD over the two study
sites were used to model snow albedo using the
AART model, in order to translate error in grain size
to error in snow albedo. The AART model is open
access, and a link to the code is provided in the
code availability section.

3. Results
3.1. Corrected intensity

The Senator Beck Basin intensity correction offered
several improvements relative to the initial (raw)
lidar intensity data. The range effect, for instance,
was dominant in the raw lidar intensity data as
shorter ranges at higher elevations generated larger
intensity retrievals. The corrected lidar intensity suc-
cessfully removed this effect and produced reflec-
tance across the study area independent of the
surface elevation (Figure 3). The corresponding
median lidar-derived reflectance was 0.68 (0.10
standard deviation), a bright value for 1064 nm con-
sistent with the freshly fallen snow that occurred
prior to the lidar flight. The median lidar reflectance
held consistent across varying incidence angle
thresholds with a maximum increase of 0.02 when
the threshold was set to 10° (Table 1). Nevertheless,
overcorrection was evident on steep slopes, where
a low bias in reflectance was visually prominent as
darker areas in the reflectance map relative to sur-
rounding values (Figure 3). The bias effect of steep
incidence angles was minimized when the plane
directly passed over steep terrain, suggesting that
careful adjustments to the flight plan could mitigate
this problem as the scan angle is decreased and
more retrievals are collected near nadir.
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Figure 3. The three parameters needed for intensity correction: raw lidar intensity (top left), range (top center) and incidence angle
(top right), including the final corrected lidar intensity (bottom center). Both the incidence angle and the final corrected lidar intensity

demonstrate the 40° incidence angle threshold.

Table 1. The range in lidar snow-covered area (km?), reflectance, and effective grain size (um) across varying

incidence angle thresholds (0-60°).

Reflectance Grain Size (um)
Incidence Angle Threshold (°) SCA (km?) Median SD Median SD
10 0.97 0.70 0.09 162 101
20 1.86 0.69 0.09 170 114
30 2.57 0.69 0.10 177 128
40 2.88 0.68 0.10 183 123
50 294 0.68 0.10 189 155
60 2.96 0.68 0.10 193 168

3.2. Snow extent

The snow cover classification extent was 2.88 km? from
lidar intensity relative to 2.72 km? from imagery (NDSI),
a difference of approximately 0.16 km? or 5.4% of the
total basin area (Figure 4). Snow cover classifications
from both the lidar intensity and the imaging spectro-
meter mapped snow in relatively flat terrain without
any overhead obstruction, such as vegetation.
However, the snow classification derived from lidar
intensity covered a greater extent as it could also iden-
tify snow in shadowed areas and around trees, which
the imaging spectrometer often misclassified. By

lowering the incidence angle threshold to reduce arti-
facts of overcorrection, the delineated snow extent
reduced over slopes (Table 1). For example, at 40° the
mapped area decreased by 0.06 km? or 2.03% of the
total area.

3.3. Snow grain size

Across the entire basin, the median lidar grain size
was 183 um (123 um standard deviation). The grain
size spatial distribution displayed an inverse pattern
to corrected intensity, indicative of the relationship



8 (&) C.ACKROYD ET AL.

SCA (Hyperspectral)
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No Data
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Figure 4. Snow-covered area as determined from an imaging spectrometer (NDSI) and lidar sensor (left) with reference to the
orthophoto from the same day of overflight (right). The lidar detected the same snow cover classified from the spectrometer imagery,
while also detecting snow in areas not detected by imagery (dark blue). For reference to other maps, lidar snow cover extent is shown

for 40° incidence angle.

between near-infrared absorption and snow grain
size. At the higher elevation ground measurement
sites, the median lidar grain size was 141 pm (MB;
Mid-basin) and 126 um (SBSP; Senator Beck Study
Plot), respectively. The median grain size derived
from the ASD field spectrometer was 115 um for the
MB transects and 146 um near the SBSP transects
(Figure 5). The transects were measured first at MB
and then later in the day at SBSP, so the larger grain

= Mid-basin

= Senator Beck Study Plot

sizes were not unexpected. Relative to the in situ
grain size, the mean absolute error (MAE) in lidar
grain size was 32 um for both the MB and SBSP trans-
ects, which would translate into an albedo uncer-
tainty of £0.01 (1%).

This error can also apply to absorbed (net) solar
radiation (i.e. the primary metric of interest for
snow energy balance) as demonstrated here for
context. For clean snow, a grain size of 183 um
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Figure 5. Lidar-derived grain size across the study area with a 40° incidence angle threshold applied, including the transects where
in situ measurements were collected (left). Histogram of lidar-derived grain size across the total basin across varying incidence angle
thresholds (top right), and associated plots relating grain size from lidar intensity to in situ observations at mid-basin (center right) and

Senator Beck Study Plot (lower right).



would translate to a broadband albedo of 0.83.
Using a typical incoming solar radiation for this
location during time of overflight in mid-February
(e.g. 500 W m™), the absorbed solar radiation
would be 85 Wm™2. Perturbing the albedo by
+1% changes absorbed solar radiation by %5
Wm™2. We note that the relationship between
grain size and albedo is non-linear (Dozier and
Painter 2004)) and the associated albedo and
absorbed solar radiation uncertainty would be
lower for larger grained snow with the same
MAE. For example, at 500 um the albedo error
would be 0.1%.

Considering that there are differences in retrieval
methods and footprint sizes, this initial comparison
indicates that lidar-retrieved grain size values were
reasonable. The MAE across both transect sites
remained consistent (32 um) across varying inci-
dence angle thresholds; however, the basin median
grain size ranged from 162 pm to 193 um for the 10°
and 60° thresholds, respectively (Table 1). Due to
the high grain size bias introduced at steep inci-
dence angles, we suggest a 40° incident angle
threshold for grain size analysis. Although it is
used as the reference measurement here, we note
that there is also uncertainty in the grain size
retrieved from ground reflectance measurements.
The reported sensitivity to variability in environ-
mental conditions is 20 um (Skiles and Painter
2017). We refer interested readers to further discus-
sion of uncertainties in Donahue, Skiles, and
Hammonds (2021) and Skiles et al. (2023).

As an additional assessment of lidar grain size,
distributions were examined across the subalpine
Swamp Angel Study Plot, where the incidence angle
was approximately 0° and inherently had the lowest
uncertainty. The median grain size across the mea-
dow encompassing the study plot was 198 um with
a standard deviation of 26 um. This range of values
was reasonable relative to variability in snow grain
size mapped from a UAV imaging spectrometer over
the same area in March 2022, which had a mean grain
size of 100 um and standard deviation of 23 um (Skiles
et al. 2023). Further assessment of lidar grain size
across different snow conditions and on varying
slopes is needed before uncertainties can be better
constrained, but the initial results here are promising
and motivate further assessment of this method and
exploration of applications.
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4. Discussion

The primary goal of this work was to present
a correction workflow for lidar intensity in mountainous
terrain. The intensity correction demonstrated the value
of correcting for range and incidence angle to retrieve
a signal representative of the surface. However, it also
showed that high incidence angles were overcorrected,
which was more evident when deriving snow grain size.
This can be addressed in part by applying an incidence
angle threshold, but there is a tradeoff between redu-
cing overcorrection and excluding terrain. Additionally,
snow tends to be shallower on steep slopes, which
influences the snow metamorphism that could lead to
faster grain growth. Thus, it is a challenge to quantita-
tively identify the bias due to overcorrection alone.

Future work should include sensitivity analysis
across steeper slopes (e.g. from coincident airborne
VIR-SWIR imaging spectroscopy) to examine the varia-
bility in grain size and better interpret the impact of
high incidence angles. The overcorrection will be
a primary challenge to address for lidar intensity
retrievals in mountains, although flight planning and
processing workflows could potentially be optimized
to limit overcorrection effects. Nevertheless, the
uncertainty in absorption (1%) is well under the 10%
target identified to improve surface radiation balance
in the most recent National Academies’ Decadal
Survey on Earth Science and Applications (2019).

An additional challenge related to the approach pre-
sented here is the empirical conversion of lidar intensity
to reflectance. Without coincident field spectroscopy,
a reference surface with known reflectance properties
at the lidar wavelength within the flight area could be
used. This could be a stable snow-free surface such as
a road (as used in this study) or rock outcropping. In the
absence of these, a reflectance target within the scene
could also be utilized. Alternatively, a system calibration
effort could be undertaken to establish the relationship
between lidar intensity and reflectance. This would be
ideal for survey platforms that regularly collect data over
similar land surface types using relatively consistent
flight parameters (i.e. like ASO), where the relationship
is unlikely to change. The accuracy and consistency of
such a calibration would need to be assessed across
multiple flights. If suitable, however, it would eliminate
the need for flight-to-flight conversion from lidar inten-
sity to reflectance and make application of this approach
more practical.
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The benefit of snow surface property retrievals for
a stand-alone lidar platform is clear. Snow surface
elevations could be supplemented with snow extent
delineated from lidar reflectance, which could be
used as a mask to determine where the snow depth
should be differentially calculated. The evolution of
grain size over time is an indicator of snow age and,
via its control on albedo and absorbed solar radiation,
could be useful for understanding snow evolution if
the dataset was being collected as a time series. An
additional step in the workflow could include produ-
cing a clean snow albedo map, which could be
directly useful to inform change in surface energy
balance (Skiles et al. 2023). This methodology could
also be applied to other platforms beyond aerial lidar,
including ground-based, UAV, and satellite, such as
the Global Ecosystem Dynamics Investigation (GEDI)
lidar.

Lidar intensity and reflectance could also be
a useful supplementary dataset for airborne plat-
forms that couple a lidar with an imaging spectro-
meter, like ASO (T. H. Painter et al. 2016) or ACO
(the Airborne Coastal Observatory; Donahue et al.
2023). With these systems, data collection is often
restricted to ideal conditions for optical imaging
(e.g. high sun angles, consistent illumination, clear
atmosphere) that can pose several challenges for
acquiring snow surface properties. For instance,
shadows from both terrain and vegetation
decrease snow reflectance in optical imagery, par-
ticularly in the mountains during winter and spring
when sun angles are low (Prantl et al. 2017; Yan
and Shaker 2017). Because a lidar system is an
active sensor, it can detect snow cover in the
presence of thin clouds, in shadowed regions,
and over bright snow surfaces. Additionally,
because it has a finer spatial resolution, it is better
at detecting snow adjacent to trees and other
vegetation. Lidar intensity may also have the
potential to detect snow cover under tree cano-
pies if last returns are included in the analysis,
although the reduction in intensity from the pre-
vious returns would also need to be evaluated.
Retrieving snow extent and grain size from aerial
lidar intensity, therefore, is advantageous as data
collection may occur independent of solar illumi-
nation, allowing for snow retrievals regardless of
the time of day or time of year in the high lati-
tudes. Additionally, snow retrievals are challenging

from imagery when pixels are mixed, a common
issue in mountain environments. Supplementing
imaging spectroscopy retrievals with those from
lidar intensity, therefore, may provide more flex-
ibility in regard to illumination conditions and finer
surface detail at the point cloud level.

5. Conclusion

Aerial lidar intensity at 1064 nm has proven to be
a valuable alternative for retrieving snow surface
properties, including extent and grain size, after
correcting for range and incidence angle. The
lidar-derived grain size demonstrated a mean
absolute error (MAE) of 32 um relative to in situ
measurements, corresponding to an uncertainty
of 1% in snow albedo and absorption. This
approach, utilizing only one wavelength, exhib-
ited greater variability than field spectroscopy,
particularly on steeper slopes where incidence
angles were high. To mitigate this, we recom-
mend incorporating an incidence angle threshold
and recognize that coincident field spectroscopy
would also facilitate the conversion of lidar inten-
sity to reflectance. Despite these challenges, lidar
intensity corrections are still a useful supplement
to traditional methods, as lidar can detect snow
surfaces at finer resolutions and is independent of
solar illumination, which is especially useful
around vegetation and in shadows. Further
assessment of this methodology across varying
snow conditions and slopes is recommended, as
well as its application across different lidar plat-
forms, such as UAVs or satellites. Although this
technique has its limitations, it holds great poten-
tial to enhance current methods for monitoring
snow evolution and energy balance.
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