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ABSTRACT 
The growing use of deep learning has led to an increasing demand 
for hardware platforms that are computationally powerful, yet 
energy-efficient. In-memory computing (IMC) architectures using 
non-volatile memory, such as resistive random-access memory 
(ReRAM), present a promising alternative. In addition to ReRAM, 
there are a plethora of IMC devices. Each device offers different 
advantages and drawbacks in terms of power, latency, area, and 
non-idealities. However, IMCs lack general-purpose computing 
capability. For instance, ReRAM crossbars are not suited for high-
throughput division, which is needed for implementing 
normalization layers. In this paper, we present architectures that 
combine both (IMC and general-purpose computing) in an 
optimized manner to derive the best out of both worlds. The 
heterogeneous architectures combine the high-throughput 
multiplications of IMCs with the general-purpose computing ability 
of floating-point devices (such as CPU, GPU, etc.) to implement 
both training and inferencing of various AI algorithms.   
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1 Introduction 
Deep Neural Networks (DNNs) are widely used to address 
complex challenges in a variety of application domains, including 
computer vision, natural language processing (NLP), and time-
series sensor data analytics [1]. DNNs have hundreds of millions of 
trainable parameters, which need to be tuned using large and 
complex datasets. The high latency and energy cost of data-
movement between the processing cores and memory units in 
traditional computing platforms based on the von-Neuman 
architecture (e.g., CPUs and GPUs) impose significant 
performance bottlenecks while executing DNN workloads, which 
is referred to as the “memory wall” challenge [2]. Consequently, 
there has been a growing demand for in-memory computing (IMC) 
platforms that seamlessly integrate both storage and computing, 

thereby enabling high-performance and energy-efficient 
acceleration of DNNs [3]. This is due to their ability to perform 
energy-efficient computation within the memory to eliminate 
unnecessary data movement, thus addressing the memory-wall 
challenge. 
Recent work has studied the use of CMOS-based memory devices 
such as Static Random-Access-Memory (SRAM), and non-volatile 
memory (NVM) devices such as Resistive-Random-Access-
Memory (ReRAM), Phase Change Memory (PCM), Ferroelectric-
Field-Effect-Transistors (FeFET), and spintronic memory 
(MRAM) as suitable candidates for IMC-based platforms used for 
accelerating DNN workloads [2] [3] [4] [5] [6]. Architectures 
based on these IMC technologies offer significant speedup 
compared to traditional computing architectures. However, these 
devices have specific advantages and drawbacks in terms of power, 
area, latency, data retention, endurance, and other non-idealities, 
when used as the computing element in IMC-based architectures. 
For example, ReRAM devices have ~35× less area compared to 
SRAM cells. However, ReRAMs suffer from limited write 
endurance (106 -1012 programming cycles), whereas SRAMs have a 
high write endurance >1017 cycles [7]. As a result, none of these 
IMC technologies are suited to handle the diversity in AI 
workloads by itself.  
In addition, IMC-based architectures lack general purpose 
computing capability. For instance, IMC crossbar arrays can 
perform energy-efficient Matrix-Vector-Multiplication (MVM) 
operations very fast. However, they are not suited for high-
throughput division, which is needed for implementing 
normalization layers or non-linear operations (such as SoftMax). 
On the other hand, general-purpose processors, such as CPU and 
GPU, can perform all kinds of mathematical tasks. However, 
CPUs/GPUs have significant area and power overhead, and are 
slower than IMC crossbar arrays for MVM operations, which form 
the primary backbone of most AI algorithms. Consequently, this 
necessitates the need for heterogeneous platforms that combine 
more than one type of IMC device and general-purpose processors 
on a single platform to achieve high-performance DNN 
acceleration, both for training and inferencing. 
However, despite the benefits that heterogeneous computing 
platforms can potentially offer, integrating different types of 
memory and devices in a single platform presents unique 
challenges. Specifically, manufacturing technologies of IMC 
devices vary, and they are not always CMOS-compatible. As a 
result, fabricating a heterogeneous architecture that includes both 
IMC and CMOS ASICs in a single system leads to lower yield 
owing to the multiple design processes involved [9]. Recent work 
has proposed 2.5D and 3D heterogeneous integration technologies 
that enable the mapping of disparate technologies onto the same 
platform [9]. A suitable architecture should combine both IMC 
devices as well as general-purpose processors in an optimized 
manner to derive the best out of both worlds. However, existing 
implementations of 2.5D/3D heterogeneous architectures are not 
well optimized to ensure high-accuracy, energy-efficient and high-
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performance execution of DNN workloads [10]. This is because 
they do not consider how the characteristics of the IMC device 
could potentially impact the performance of DNN training and 
inference in their design optimization flow. For example, 3D 
architectures are known to give rise to thermal hotspots. This 
challenge is further exacerbated when general purpose processors 
such as GPUs are integrated in a 3D platform with IMC devices, 
which typically exhibit non-ideal behavior due to thermal noise 
[11]. As a result, this potentially degrades the inference accuracy of 
DNNs. Hence, to meet the high-accuracy and performance 
demands of DNNs, a hardware/software co-design approach needs 
to be explored to derive the benefits of heterogeneous IMC-based 
architectures.  
In this paper, we first present the state-of-the-art IMC-based 
architectures and their different underlying technologies. Next, we 
discuss the challenges associated with DNN training and inference 
using existing IMC-based architectures, as well as the inherent 
reliability and non-ideal behavior of IMC devices. Finally, we 
present heterogeneous manycore IMC-based architectures as a 
solution to address these challenges. 
2 IMC Architectures and Challenges 
In this section, we first present some CMOS-based DNN hardware 
accelerators. Next, we discuss an overview of various IMC-based 
devices, their advantages, and limitations for accelerating DNN 
workloads. Finally, we present shortcomings of IMC-based AI 
accelerators to motivate the need for heterogeneous architectures. 

2.1    Existing DNN Hardware Accelerators  
DNN workloads primarily consist of highly parallelizable MVM 
operations, which can be accelerated via CPUs and GPUs. GPU-
based processors with high-bandwidth memory remain the most 
widely used choice for DNN acceleration [12] [13]. However, the 
memory-wall challenge limits its applicability to large-scale DNN 
workloads [3]. Other CMOS-based AI accelerators based on 
FPGAs and ASICs such as Systolic Arrays have been proposed for 
the energy-efficient acceleration of DNN workloads [14] [15]. 
However, these methods are still hampered by performance 
bottlenecks, and significant energy consumption due to large 
amount of data movement to and from memory. Efficient Network-
on-Chip (NoC) enabled manycore systems have been developed 
[11] [16]. These architectures aim to reduce the communication 
bottleneck by leveraging a multicast-enabled NoC to handle data 
movement during DNN training and inference. NoC enabled 
heterogeneous architectures with both CPU and GPUs have also 
been proposed [17]. 3D manycore architectures for AI workloads is 
another possibility [18]. Chiplet-based 2.5D architectures which are 
known for having lower fabrication costs compared to 3D 
counterparts have been proposed [19]. Despite the variety of 
CMOS-based architectures available for accelerating AI workloads, 
they are bottlenecked by the memory wall. Consequently, in-

memory computing (IMC) paradigm has emerged as an excellent 
candidate for the energy-efficient acceleration of DNN workloads.  
2.2     IMC Technologies 
Several IMC technologies are used to develop high-performance 
AI accelerators. Table I compares the physical characteristics of the 
different IMC technologies used for accelerating DNN workloads. 
SRAM-based IMC crossbar arrays have been proposed as suitable 
candidates for high-accuracy DNN training and inference [20] [21]. 
This is due to their low device variability, high write endurance 
(>1017), low susceptibility to noise, and low write latency [3]. 
However, the SRAM crossbar suffers from high area overhead due 
to the 6T-cell structure with an area footprint of 150F2 [3] [22]. 
Moreover, SRAMs suffer from high leakage energy and have low-
density storage (i.e., 1-bit per-cell). Hence, this makes IMC 
platforms built solely out of SRAM crossbars, unattractive for 
energy-efficient acceleration of DNN workloads on platforms with 
low form-factor.  
Recent work has also leveraged DRAM technology for IMC-based 
architectures due to its small cell area [23]. However, DRAM 
suffers from high leakage power and refresh energy due to its 
volatile nature. Moreover, the 1T1C array structure of the DRAM 
cell lacks in-situ compute capability. Hence, they cannot enable 
parallel energy-efficient MVM operations without significant 
modifications (e.g. adding multiple row decoders) to its design 
[24]. Consequently, this has led researchers to explore non-volatile 
memory (NVM) devices as suitable candidates for DNN training 
and inference.  
ReRAM-based IMC crossbars have been proposed for accelerating 
DNN workloads [4] [2]. The high-density storage enabled by 
multi-bit cell structure, small cell area and low leakage energy of 
the ReRAM device makes it suitable for energy-efficient execution 
of DNN workloads [7]. However, despite these advantages, 
ReRAM cells suffer from low write endurance, high write energy, 
and latency. Moreover, ReRAMs suffer from reliability issues such 
as faults and conductance drift due to temperature which can cause 
errors [18]. As a result, this limits the applicability of ReRAM-
based architectures for reliable DNN training and inference.  
FeFET-based devices have been explored as a possibility for IMC-
based DNN accelerators [5] [6]. FeFET devices are particularly 
attractive due to their relatively low cell area compared to SRAMs, 
high read and write speeds, low write energy, and low leakage 
energy as shown in Table 1. Moreover, they exhibit relatively 
better temperature stability compared to ReRAM, making them less 
prone to errors [25]. However, they suffer from significantly lower 
write endurance as the ON/OFF ratio of the FeFET device 
deteriorates after repeated program/erase cycles [5]. This leads to 
read errors during DNN training and inference.   
IMC devices made from Phase Change Materials (PCMs) have 
also been proposed as suitable candidates for DNN acceleration. 

TABLE I 
COMPARISON OF VARIOUS IMC TECHNOLOGIES (†F is the minimum feature size [22]) 

Property SRAM [3] DRAM [23] MRAM [27] PCM [26] ReRAM [7] FeFET [25] 
Multi-bit Cell No No No Yes Yes Yes 
†Cell Area (F2) 150F2 6F2 32F2 36F2 4F2 10F2 - 35F2 
Write Energy (nJ) ~ 0.003 ~ 0.05 ~1 ~6 3.9 - 5.3 0.01 
Write Latency (ns) ~1 12 - 20 10 - 20 ~150 51 - 54 <1 

Write Endurance (cycles) >1017 >1017  1012 - 1015 106 - 109  1010 - 1012 105 - 108 
Leakage Energy High High Low Low Low Low 

 



 

This is due to their high-density storage, high ON/OFF ratio, 
reasonably high endurance compared to FeFET devices and fast 
switching speeds. However, the high temperature sensitivity of 
PCMs is a major concern [26]. Moreover, PCMs require 
significantly high programming energy as shown in Table 1 [22]. 
This makes them unsuitable for certain scenarios such as for DNN 
training or fine-tuning which requires multiple programing cycles. 
MRAM-based IMC architectures have been demonstrated as 
attractive candidates for energy-efficient acceleration of DNN 
workloads [27]. This is due to their high endurance (up	 to	 1015 
cycles) and low write latency (∼10 ns). However, they also suffer 
from low ON/OFF ratio, and low-density storage (i.e., 1-bit per-
cell). The low ON/OFF ratio of MRAMs causes soft errors in the 
form of erroneous read/write operations. This leads to a 
degradation in accuracy during DNN training and inference.   

2.3  IMC Architectures for DNN Inferencing and Training 
Recent developments in in-memory computing have led to 
hardware accelerators designed specifically for deep neural 
network (DNN) training and inference. These IMCs utilize a 
crossbar architecture to enable fast and energy-efficient matrix-
vector multiplications (MVMs). ReRAM-based IMC architectures, 
where each tile contains specialized multiply-accumulate units 
(IMAs) that perform MVM operations have been proposed [4] 
[28]. Figure 1 illustrates an example of a ReRAM-based IMC 
architecture [4]. The tiles are interconnected through a NoC, 
optimizing data movement and facilitating high-bandwidth 
aggregation of intermediate results, while also employing 
pipelining to manage complex data dependencies during DNN 
training and inference [2]. 
In addition to ReRAM-based designs, SRAM-based IMCs have 
been explored, which utilize SRAM crossbar arrays for storage and 
computations [3]. Recent advancements also include MRAM-based 
accelerators offering floating point precision, multi-level FeFET 
devices for better performance in DNN inferencing and PCM-
based accelerators designed for high-accuracy AI workloads [27] 
[5] [26]. These various technologies reflect the ongoing efforts to 
enhance performance of DNN accelerators through different 
material and device innovations. Heterogeneous IMC-based 
architectures aim to address some of these shortcomings and 
achieve improved performance and energy efficiency for DNN 
workloads. 
2.4  Limitations/Challenges of IMC-based Architectures 
Homogeneous IMC-based architectures have several challenges to 
overcome, as we present next.  
Reliability challenges: IMC-based architectures are prone to 
functional errors arising from device and circuit non-idealities. 
Generally, the errors due to these non-idealities can be broadly 
categorized as; read errors and write errors. Read errors occur 
during the read mode of the IMC-based crossbar array. These 
errors are due to non-idealities such as IR-drop, conductance drift 
etc. Meanwhile, write errors commonly occur due to Stuck-at-
faults (SA0 or SA1). Consequently, these non-idealities lead to 
erroneous MVM outputs, thus leading to DNN accuracy loss. 
Moreover, IMC devices suffer from conductance drift under the 
influence of thermal noise. These non-ideal effects must be 
accounted for in the design of a suitable IMC-based architectures.  
Although IMC-based devices generally exhibit non-ideal behavior, 
it should be noted that each type of IMC device has its unique 
behavior under certain non-ideal conditions. For example, both 
ReRAM and FeFET devices suffer from conductance drift under 

high temperatures. However, ReRAM devices have an exponential 
dependence on temperature, while FeFET devices have a linear 
temperature dependence [25]. As a result, an increase in 
temperature would have a more severe impact on the predictive 
accuracy while executing DNN inference/training on ReRAM-
based IMC architectures compared to the FeFET-based 
counterparts. It is crucial to consider the unique non-ideal 
properties of devices in the design optimization of a suitable 
heterogeneous architecture.  
Circuit challenges: Next, analog IMC crossbars typically require 
high-resolution ADCs and DACs to interface with the digital 
domain. However, high-resolution ADCs (> 7-bits) consume 
significantly higher energy and area compared to the IMC crossbar 
itself [29]. As a result, ADC dominates the area and energy of 
IMC-based architectures. Moreover, IMC crossbar arrays suffer 
from IR-drop due to wire resistance and sneak-paths, which 
constitute the main sources of DNN accuracy degradation. As the 
crossbar array size increases, IR-drop becomes even more severe 
[30]. Moreover, larger crossbar array sizes are undesirable, as the 
resolution of the ADC increases with the crossbar size [29]. To 
tackle device and circuit non-idealities, MVM operations are 
computed at a much smaller granularity level than a full crossbar, 
referred to as Operation Units (OUs) [31]. For example, only nine 
wordlines (WLs) and eight bitlines (BLs) are activated 
concurrently within a 512×256 crossbar array to achieve a balance 
between achievable performance and reliability [32]. OU-based 
computation allows us to utilize lower-bit resolution ADC in each 
crossbar since fewer WLs are activated in each cycle.  
Nevertheless, for most state-of-the-art IMC-based crossbar arrays 
optimal selection of the crossbar size as well as OU size remain 
crucial in achieving a reasonable tradeoff between power, 
performance, area and DNN accuracy [31].    
Training challenges: DNN training workloads pose additional 
requirements for designing crossbar-based systems, which includes 
a larger shared memory, and frequent crossbar writes. However, 
existing IMC-based DNN training accelerators (discussed in 
section 2.1 above) are not well optimized to accommodate these 
additional requirements. Unlike inference workloads, DNN training 
involves the back-propagation algorithm, which is sensitive to data 
precision and imposes additional design considerations. During 
training, these activations need to be stored temporarily for the 
computation of errors and gradients in the back-propagation phase, 
which is not needed for inference. Hence, IMC-based architectures 
aimed at DNN training have significantly higher storage 
requirements compared to their inference counterparts. To address 
this challenge, existing IMC-based architectures need to be 
equipped with high-bandwidth memory such as DRAM tiles for 
additional storage to enable large-scale DNN training. Moreover, 
the low precision of IMC devices poses a challenge during training, 
as gradients need to be computed in high-precision (32-bit floating 
point (FP32) precision). As a result, IMC-based architectures for 
training DNN workloads would also require high-precision 

 Figure 1. A typical hierarchical ReRAM-based IMC architecture, 
consisting of PEs, tiles, and in-situ multiply and accumulate units (IMAs). 



 
 

processing elements (PEs) to support precision-critical portions of 
the workload such as back-propagation to ensure high accuracy.   
Furthermore, during DNN training, the crossbar is written at the 
end of every step/batch corresponding to the weight update 
process. Large-scale DNN training with real-world datasets 
involves multiple epochs and training steps to achieve reasonable 
accuracy. This imposes a high write endurance requirement for 
devices used in IMC-based architectures designed for DNN 
training; several IMC technologies lack the required endurance to 
support DNN training (Table 1). AccuReD supports the execution 
of the back-propagation phase on general-purpose processors such 
as GPUs/CPUs [11]. Other work has proposed the use of SRAM-
based crossbar arrays for the computation of gradients in the back-
propagation phase [28].  
Non-NVM operations: DNN workloads typically possess non-
MVM layers such as Normalization, non-linear activation functions 
and pooling layers. These layers are often precision critical. The 
use of lower precision here would result in accuracy loss. However, 
these operations cannot be easily implemented on IMC-based 
crossbar arrays, as they are best suited for MVM operations only. 
As a result, existing approaches augment IMC-based architectures 
with on-chip CMOS-based logic and memory units to enable the 
implementation of non-MVM operations. However, this approach 
results in significant performance and energy overheads due to the 
high data movement between IMC and CMOS-based PEs during 
DNN training and inference. A suitable heterogeneous architecture 
must address this communication bottleneck. 
From the above discussion, we see that despite the advantages, 
homogeneous IMC-based architectures may not be suited for 
accelerating diverse AI workloads. Hence, heterogeneous IMC-
based architectures are viable alternatives for the end-to-end 
acceleration of DNN training and inference workloads. 

3 Heterogeneous IMC Accelerators  
In this section, we present heterogeneous IMC-based architecture 
for accelerating DNNs. 
3.1 Heterogeneous Manycore IMC-based Architectures	
To overcome the shortcomings of individual IMC technologies, 
prior work has proposed heterogeneous architectures that combine 
two or more IMC devices for accelerating DNN workloads. 
Various hybrid ReRAM/SRAM-based IMC-based architectures 
have been proposed to address the non-idealities of ReRAM 
devices and reduce the high area overhead of SRAM. Some of 
these methods involve encoding the MSBs using SRAMs, and 
ReRAMs for the LSBs of multi-bit weights, while maintaining high 
energy-efficiency [33]. Other methods involve the use of ReRAM 
and SRAM to perform the DNN forward- and back-propagation 
operations respectively, thereby mitigating the limited endurance 
challenge of ReRAM. In fact, a recent hybrid architecture 
incorporates SRAM macros to perform output compensation of the 
non-ideal output of ReRAM crossbars, thereby enabling robust 
DNN inference [8]. However, these methods do not consider the 
layer-wise characteristics of DNN workloads (e.g., number of 
neural layers, weights, activations, size of kernels etc.) while 
mapping neural layers to the heterogeneous IMC-based 
architectures.  
In Figure 2, we show an example of how the layer-wise 
characteristics of the DenseNet40 workload determine the IMC 
device requirements during training. Here, we observe that initial 
layers (layers 0 - 14) in DenseNet40 process a higher number of 

activations than the latter layers, hence requiring more crossbars to 
store weights and activations. Therefore, these layers should be 
mapped to dense, low power PEs. These initial layers must also be 
placed closer to the heat sink to reduce thermal noise as these 
layers are more crucial for predictive accuracy. On the contrary, 
latter layers with comparatively fewer activations and smaller 
kernels, should be mapped on comparatively less dense PEs. These 
layer-wise characteristics must be considered while mapping DNN 
workloads to IMC platforms to ensure the high-performance and 
energy-efficient execution of DNN training and inference tasks.  
HyDe is a recently proposed design and optimization methodology 
for mapping of deep neural network (DNN) layers to various PIM 
devices (SRAM, FeFET, PCM) in a hybrid platform, utilizing 2.5D 
chiplet-based heterogeneous integration [22]. HyDe maps each 
DNN layer to a suitable IMC device based on its characteristics. It 
leverages a scalarized single-objective optimization formulation 
and is aimed only at DNN inferencing. However, linear 
scalarization is known to perform poorly due to its inability to 
explore non-convex regions of the Pareto front. Other works such 
as HyperX have proposed a hybrid SRAM/ReRAM architecture, 
where the weights of some DNN layers remain static, and are 
mapped to ReRAMs, while the weights of other layers are mapped 
to SRAMs for fine-tuning [34]. Despite the advantages of 
heterogeneity, these existing solutions do not consider the 
challenges of integrating different IMC devices into a single 
platform. Hence, suitable heterogeneous IMC architectures for 
DNN training scenarios need to be explored.  
3.2 3D Integration-enabled Heterogeneous Architectures  
As mentioned above, IMC-based architectures are popular for 
accelerating both inference and training. However, DNN models 
typically consist of millions of parameters (weights and 
activations) which often cannot all be mapped onto a single planar 
tier consisting of IMC-based processing elements (PEs). Moreover, 
planar architectures provide limited design choices in terms of floor 
planning, i.e., how tiles are placed and the NoC is designed, which 
can lead to sub-optimal performance. Hence, 3D integration 
methods that stack planar tiers consisting of PEs connected to each 
other using through-silicon-via (TSV)- and monolithic 3D (M3D)-
based vertical links have been proposed [18] [10]. Recent work 
such as AccuReD proposes a 3D heterogeneous architecture that 
enables high-performance execution of DNN workloads [11]. 
However, such heterogeneous architectures that leverage IMC 
devices mostly assume ideal behavior of the IMC device. 
Moreover, they only leverage one type of IMC device (ReRAM in 
this case). As a result, this leads to over-estimation of the DNN 
accuracy, and does not reap the benefits that other types of IMC 
devices can potentially offer.  
3D Integration challenges for IMC architectures: Although 3D 
integration can enable high-performance DNN training as 

  
Figure 2: Layer-wise IMC crossbar array requirements for 
DenseNet40 trained with CIFAR-10 dataset.  
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discussed earlier, stacking multiple high-power PEs vertically on 
top of one another increases temperature. Higher PE temperature 
introduces thermal noise in IMC devices, and ultimately affects the 
predictive accuracy [18]. Hence, we should avoid placing too many 
high-power consuming cores along one specific vertical column of 
the 3D architecture and away from the heat sink to reduce 
temperature hotspots. Further, different neural layers of a DNN 
workload possess unique characteristics such as kernel size, 
number of activations, precision, sensitivity to thermal noise etc., 
which all impact the predictive accuracy of the DNN. For example, 
the initial neural layers of a DNN workload are more crucial to the 
predictive accuracy, as they process more activations and thus, 
dissipate more power than the later layers [18]. Hence, the initial 
neural layers should not be mapped to PEs that are far away from 
the heat sink. Moreover, thermal noise has a varying impact on 
different IMC devices (as discussed in section 2.2). Thus, the 
accuracy-crucial layers should be mapped to IMC devices that are 
less susceptible to thermal noise. As an example, Figure 3 
illustrates a three-tier 3D heterogeneous manycore architecture. 
Given the layer-wise characteristics of the DNN workload (as 
shown in Figure 2), and the physical properties of the IMC devices 
in the PEs, finding a suitable neural layer-to-PE and PE-to-tier 
mapping present a unique optimization problem. Hence, achieving 
an optimal mapping of the DNN layers to the IMC devices, as well 
as a suitable configuration of the IMC technology for each planar 
tier are necessary to achieve an acceptable balance between the 
predictive accuracy, area, latency, and power.    
Design Optimization of 3D IMC architectures: To tackle the 
aforementioned challenges, the properties of the DNN neural 
layers, IMC device characteristics, as well as the PE to 3D planar 
tier mapping should be jointly considered to enable high-
performance, energy-efficient, and reliable DNN training on 
heterogeneous IMC-based platforms. Consequently, this leads to a 
multi-objective optimization (MOO) problem of finding the 

suitable mapping of each neural layer to a PE with a suitable IMC 
device (i.e., either SRAM-/ReRAM-/FeFET-based PE), as well as 
its appropriate location in one of the planar tiers, that achieves the 
best latency (𝐿𝑎𝑡), area (𝐴𝑟), power (𝑃𝑤𝑟), and accuracy (𝐴𝑐𝑐) 
trade-off. This MOO-formulation can be represented as: 

	𝐷∗ = 	𝑀𝑂𝑂(𝑂𝐵𝐽 = 𝑃𝑤𝑟, 𝐴𝑟, 𝐿𝑎𝑡, 𝐴𝑐𝑐)																	(1) 
where 𝐷∗ is the set of Pareto optimal designs. The goal is to first find 
the Pareto optimal set 𝐷∗ ⊆ 𝐷 using a MOO solver (e.g., AMOSA) 
[35]. The IMC devices largely vary in terms of design metrics such 
as area, power, latency, and temperature-dependent non-ideal 
effects etc. This variation provides the MOO solver with the scope 
of optimizing across multiple conflicting, yet crucial objectives 
namely: latency, accuracy, area, and power. We capture these 
objectives using three key performance evaluation metrics: energy-
efficiency (TOPS/W), compute-efficiency (TOPS/mm2), and DNN 
predictive accuracy. We select the best design 𝑑"#$% from the set of 
Pareto optimal designs that achieves the best performance in-terms 
of either TOPS/W or TOPS/mm2, and negligible DNN accuracy 
loss (less than 1% accuracy loss compared to ideal accuracy). 
Figure 4 shows a representative example of the Pareto front 
considering the four design objectives (latency, accuracy, area and 
power), for the ResNet34 DNN model trained with the CIFAR-10 
dataset. In this illustration, the PE-to-tier mapping is represented by 
𝛼 = [𝑡&, 𝑡', … , 𝑡(],  where a planar tier 𝑡(  has PEs of one IMC 
device type – ReRAM (R), FeFET (F), SRAM (S). For example, 
the PE-to-tier mapping [𝑅&, 𝑅', 𝐹), 𝑆*] implies ReRAM-based PEs 
are mapped to the first two planar tiers (i.e., closer to the heat sink) 
Similarly, FeFET- and SRAM-based PEs are mapped to the 3rd tier 
and the 4th planar tier respectively. In this example, we have 
considered SRAM-, FeFET- and ReRAM-based IMC technologies, 
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Figure 5: Performance evaluation of the optimized 3D IMC architecture (RRFS) with state-of-the-art homogeneous and heterogeneous 
architectures in terms of (a) Energy-efficiency (TOPS/W), (b) Compute-efficiency (TOPS/mm2), and (c) Accuracy of DNN workloads executed 
on CIFAR-10 dataset.  
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Figure 4: Layer-to-PE and PE-to-tier mapping trade-offs while 
running the DNN training task for ResNet34 model on CIFAR-10 
dataset.  

 
Figure 3: Illustration of layer-to-PE and PE-to-tier mapping of DNN 
workload with 𝑲-layers on to a 3D heterogeneous IMC-based architecture. 
Here, DNN layer L1 is mapped to ReRAM-based PEs and placed on Tier 1. 
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Figure 6: Transformer model architecture consisting of encoder and 
decoder stack of length N. 

as examples to demonstrate the effectiveness of an optimized layer-
to-PE and PE-to-tier mapping for a 3D heterogeneous IMC-based 
accelerator. It should be noted that other types of IMC devices such 
as PCMs and MRAMs can also be considered for heterogeneous 
systems. As shown in Figure 4, the Pareto optimal set of designs 
(𝐷∗ ) are highlighted in black. Note that all the Pareto optimal 
configurations have the SRAM devices at the bottom tier, away 
from the heat sink. This SRAM tier is used for the gradient 
calculation during back-propagation phase [28]. Due to the 
necessity of the SRAM tier for the back-propagation, the 
homogeneous configurations where we have only one type of IMC 
device like FeFET or ReRAM, are: [𝐹&, 𝐹', 𝐹), 𝑆*]	 and 
[𝑅&, 𝑅', 𝑅), 𝑆*]. Alternatively, the homogeneous configuration with 
only SRAM device is: [𝑆&, 𝑆', 𝑆), 𝑆*] . These homogeneous 
architectures are referred to as FFFS, RRRS, SSSS respectively 
hereafter. The 3D heterogeneous IMC-based architecture 
[𝑅&, 𝑅', 𝐹), 𝑆*]  (referred to as RRFS hereafter) exploits device 
heterogeneity with optimal layer-to-PE and PE-to-tier mapping and 
achieves the best trade-offs between power, latency, area and DNN 
accuracy compared to other Pareto optimal configurations.  
In Figures 5(a) - 5(c), we evaluate the performance of the 
optimized 3D heterogeneous IMC-based architecture (RRFS) on 
five DNNs namely: VGG11, VGG16, ResNet18 (RN18), ResNet34 
(RN34), and DenseNet40 (DN40) with the CIFAR-10 dataset in 
terms of TOPS/W, TOPS/mm2 and DNN test accuracy. We 
compare the optimized RRFS heterogeneous architecture with three 
homogenous IMC-based architectures (FFFS, RRRS & SSSS) and 
state-of-the-art heterogeneous architectures (AccuReD and 
HyperX) [11] [34]. Here, AccuReD and HyperX architectures use 
[𝑅!, 𝑅", 𝐺𝑃𝑈#, 𝐺𝑃𝑈$]  and [𝑅!, 𝑆", 𝑆#, 𝑆$]  3D tier configurations 
respectively. As shown in Figure 5(a) and 5(b), RRFS achieves up 
to 20 TOPS/W and 10.73 TOPS/mm2 corresponding to 2.1× and 
1.5× average improvement in terms of TOPS/W and TOPS/mm2 
respectively over the homogeneous architectures. Also, we 
demonstrate that the RRFS configuration achieves an average 
improvement of 3.1×  (and 1.4× ), and 2.7×  (and 1.5× ) over 
HyperX (and AccuReD) in terms of TOPS/mm2 and TOPS/W 
respectively. As shown in Figure 5(c), the all-SRAM configuration 
(SSSS) achieves the highest accuracy due its high reliability, and 
less vulnerability to thermal issues in the 3D architecture. 
However, the homogeneous FeFET- and ReRAM-based 
counterparts (FFFS and RRRS) suffer up to 4% and 2.5% accuracy 
loss, due to the thermal noise in ReRAMs and FeFETs. Overall, the 
optimized RRFS configuration achieves less than 1% accuracy 
drop compared to the all-SRAM counterpart. Hence, the optimized 
3D IMC architecture RRFS achieves the highest TOPS/W and 
TOPS/mm2 with negligible loss in accuracy. 
3.3   Heterogeneous Architectures for Transformers 
Transformers have emerged as a focal point in the field of deep 
learning [36]. Transformers include various models that use multi-
head attention layers e.g., large language models, vision 
transformers. The transformer architecture is composed of multiple 
sequential layers of encoder/decoder blocks, as shown in Figure 6. 
Each of these blocks consists of three major compute kernels: the 
multi-head attention (MHA), the feed-forward (FF) network, and 
the layer normalization block as shown in Figure 6.  
Designing hardware accelerators for transformer models is 
complex due to the variety of computing kernels used. 
Homogeneous IMC-based architectures struggle with performance 
and endurance issues, particularly with MHA kernels. The MHA 

kernels require dynamic operand multiplications, and thus 
necessitate a high frequency of write operations to IMC devices 
[37]. Since, IMC devices such as ReRAMs suffer from limited 
write endurance and high write latency, they are not suitable for 
MHA computation. In contrast, the FF network computation is 
independent of the input sequence length and can utilize IMC 
devices. To address these challenges, heterogeneous architectures 
have been proposed, such as Xformer, which uses SRAM to handle 
more frequently updated computation kernels [38]. CMOS-based 
solutions like TransPIM and HAIMA have also been proposed, that 
integrate DRAM with other memory types such as SRAM to 
improve performance [39] [40]. Recent developments also include 
3D hybrid systems like H3D-Transformer consisting of FeFETs, 
SRAMs, and TPU cores [41]. Although, they demonstrate 
performance gains, they do not consider the challenges of thermal 
feasibility.  
To address these challenges, we can extend the multi-objective 
formulation in (1) (discussed in Section 3.2) for transformers. The 
formulation must consider the requirements of the various 
transformer kernels and the properties of the IMC technologies to 
find a suitable heterogeneous IMC architecture, and this can be 
explored in future work.   

4    Conclusion 
In-memory computing (IMC) is an emerging paradigm that enables 
energy-efficient and high-performance acceleration of DNN 
workloads. However, standalone IMC technologies have their 
unique challenges, which limit their applicability to state-of-the-art 
artificial intelligence applications. To address this challenge, three-
dimensional (3D) heterogeneous architectures facilitate the 
integration of more than one type of IMC device, as well as 
general-purpose processors into a single platform. However, when 
multiple IMC-based technologies are integrated to design a 
heterogeneous architecture, we need to address various challenges 
to establish suitable power, performance, area, and accuracy trade-
offs. In this paper, we highlight the challenges of integrating 
multiple IMC devices in a 3D heterogeneous architecture. We also 
discuss the design space optimization using different IMC 
technologies and neural layer characteristics to achieve energy-
efficient and high-performance acceleration of DNN workloads and 
Transformers. 
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