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ABSTRACT

The growing use of deep learning has led to an increasing demand
for hardware platforms that are computationally powerful, yet
energy-efficient. In-memory computing (IMC) architectures using
non-volatile memory, such as resistive random-access memory
(ReRAM), present a promising alternative. In addition to ReRAM,
there are a plethora of IMC devices. Each device offers different
advantages and drawbacks in terms of power, latency, area, and
non-idealities. However, IMCs lack general-purpose computing
capability. For instance, ReRAM crossbars are not suited for high-
throughput division, which is needed for implementing
normalization layers. In this paper, we present architectures that
combine both (IMC and general-purpose computing) in an
optimized manner to derive the best out of both worlds. The
heterogeneous  architectures combine the high-throughput
multiplications of IMCs with the general-purpose computing ability
of floating-point devices (such as CPU, GPU, etc.) to implement
both training and inferencing of various Al algorithms.
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1 Introduction

Deep Neural Networks (DNNs) are widely used to address
complex challenges in a variety of application domains, including
computer vision, natural language processing (NLP), and time-
series sensor data analytics [1]. DNNs have hundreds of millions of
trainable parameters, which need to be tuned using large and
complex datasets. The high latency and energy cost of data-
movement between the processing cores and memory units in
traditional computing platforms based on the von-Neuman
architecture (e.g., CPUs and GPUs) impose significant
performance bottlenecks while executing DNN workloads, which
is referred to as the “memory wall” challenge [2]. Consequently,
there has been a growing demand for in-memory computing (IMC)
platforms that seamlessly integrate both storage and computing,
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thereby  enabling high-performance and energy-efficient
acceleration of DNNs [3]. This is due to their ability to perform
energy-efficient computation within the memory to eliminate
unnecessary data movement, thus addressing the memory-wall
challenge.

Recent work has studied the use of CMOS-based memory devices
such as Static Random-Access-Memory (SRAM), and non-volatile
memory (NVM) devices such as Resistive-Random-Access-
Memory (ReRAM), Phase Change Memory (PCM), Ferroelectric-
Field-Effect-Transistors (FeFET), and spintronic ~memory
(MRAM) as suitable candidates for IMC-based platforms used for
accelerating DNN workloads [2] [3] [4] [5] [6]. Architectures
based on these IMC technologies offer significant speedup
compared to traditional computing architectures. However, these
devices have specific advantages and drawbacks in terms of power,
area, latency, data retention, endurance, and other non-idealities,
when used as the computing element in IMC-based architectures.
For example, ReRAM devices have ~35X less area compared to
SRAM cells. However, ReRAMs suffer from limited write
endurance (10° -10'2 programming cycles), whereas SRAMs have a
high write endurance >10'7 cycles [7]. As a result, none of these
IMC technologies are suited to handle the diversity in Al
workloads by itself.

In addition, IMC-based architectures lack general purpose
computing capability. For instance, IMC crossbar arrays can
perform energy-efficient Matrix-Vector-Multiplication (MVM)
operations very fast. However, they are not suited for high-
throughput division, which is needed for implementing
normalization layers or non-linear operations (such as SoftMax).
On the other hand, general-purpose processors, such as CPU and
GPU, can perform all kinds of mathematical tasks. However,
CPUs/GPUs have significant area and power overhead, and are
slower than IMC crossbar arrays for MVM operations, which form
the primary backbone of most Al algorithms. Consequently, this
necessitates the need for heterogeneous platforms that combine
more than one type of IMC device and general-purpose processors
on a single platform to achieve high-performance DNN
acceleration, both for training and inferencing.

However, despite the benefits that heterogeneous computing
platforms can potentially offer, integrating different types of
memory and devices in a single platform presents unique
challenges. Specifically, manufacturing technologies of IMC
devices vary, and they are not always CMOS-compatible. As a
result, fabricating a heterogeneous architecture that includes both
IMC and CMOS ASICs in a single system leads to lower yield
owing to the multiple design processes involved [9]. Recent work
has proposed 2.5D and 3D heterogeneous integration technologies
that enable the mapping of disparate technologies onto the same
platform [9]. A suitable architecture should combine both IMC
devices as well as general-purpose processors in an optimized
manner to derive the best out of both worlds. However, existing
implementations of 2.5D/3D heterogeneous architectures are not
well optimized to ensure high-accuracy, energy-efficient and high-
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TABLE ]
COMPARISON OF VARIOUS IMC TECHNOLOGIES ('F is the minimum feature size [22])

Property SRAM [3] | DRAM [23] | MRAM [27] | PCM [26] ReRAM [7] FeFET [25]
Multi-bit Cell No No No Yes Yes Yes
fCell Area (F?) 150F2 6F2 32F? 36F? 4F? 10F? - 35F2

Write Energy (nJ) ~0.003 ~0.05 ~1 ~6 39-53 0.01
Write Latency (ns) ~1 12-20 10-20 ~150 51-54 <1
Write Endurance (cycles) >1017 >1017 1012- 101 106 -10° 1010 - 1012 105-108

Leakage Energy High High Low Low Low Low

performance execution of DNN workloads [10]. This is because
they do not consider how the characteristics of the IMC device
could potentially impact the performance of DNN training and
inference in their design optimization flow. For example, 3D
architectures are known to give rise to thermal hotspots. This
challenge is further exacerbated when general purpose processors
such as GPUs are integrated in a 3D platform with IMC devices,
which typically exhibit non-ideal behavior due to thermal noise
[11]. As a result, this potentially degrades the inference accuracy of
DNNs. Hence, to meet the high-accuracy and performance
demands of DNNs, a hardware/software co-design approach needs
to be explored to derive the benefits of heterogeneous IMC-based
architectures.

In this paper, we first present the state-of-the-art IMC-based
architectures and their different underlying technologies. Next, we
discuss the challenges associated with DNN training and inference
using existing IMC-based architectures, as well as the inherent
reliability and non-ideal behavior of IMC devices. Finally, we
present heterogeneous manycore IMC-based architectures as a
solution to address these challenges.

2 IMC Architectures and Challenges

In this section, we first present some CMOS-based DNN hardware
accelerators. Next, we discuss an overview of various IMC-based
devices, their advantages, and limitations for accelerating DNN
workloads. Finally, we present shortcomings of IMC-based Al
accelerators to motivate the need for heterogeneous architectures.

2.1 Existing DNN Hardware Accelerators

DNN workloads primarily consist of highly parallelizable MVM
operations, which can be accelerated via CPUs and GPUs. GPU-
based processors with high-bandwidth memory remain the most
widely used choice for DNN acceleration [12] [13]. However, the
memory-wall challenge limits its applicability to large-scale DNN
workloads [3]. Other CMOS-based Al accelerators based on
FPGAs and ASICs such as Systolic Arrays have been proposed for
the energy-efficient acceleration of DNN workloads [14] [15].
However, these methods are still hampered by performance
bottlenecks, and significant energy consumption due to large
amount of data movement to and from memory. Efficient Network-
on-Chip (NoC) enabled manycore systems have been developed
[11] [16]. These architectures aim to reduce the communication
bottleneck by leveraging a multicast-enabled NoC to handle data
movement during DNN training and inference. NoC enabled
heterogeneous architectures with both CPU and GPUs have also
been proposed [17]. 3D manycore architectures for Al workloads is
another possibility [18]. Chiplet-based 2.5D architectures which are
known for having lower fabrication costs compared to 3D
counterparts have been proposed [19]. Despite the variety of
CMOS-based architectures available for accelerating Al workloads,
they are bottlenecked by the memory wall. Consequently, in-

memory computing (IMC) paradigm has emerged as an excellent
candidate for the energy-efficient acceleration of DNN workloads.

2.2 IMC Technologies

Several IMC technologies are used to develop high-performance
Al accelerators. Table I compares the physical characteristics of the
different IMC technologies used for accelerating DNN workloads.

SRAM-based IMC crossbar arrays have been proposed as suitable
candidates for high-accuracy DNN training and inference [20] [21].
This is due to their low device variability, high write endurance
(>10'7), low susceptibility to noise, and low write latency [3].
However, the SRAM crossbar suffers from high area overhead due
to the 6T-cell structure with an area footprint of 150F? [3] [22].
Moreover, SRAMs suffer from high leakage energy and have low-
density storage (i.e., 1-bit per-cell). Hence, this makes IMC
platforms built solely out of SRAM crossbars, unattractive for
energy-efficient acceleration of DNN workloads on platforms with
low form-factor.

Recent work has also leveraged DRAM technology for IMC-based
architectures due to its small cell area [23]. However, DRAM
suffers from high leakage power and refresh energy due to its
volatile nature. Moreover, the 1T1C array structure of the DRAM
cell lacks in-situ compute capability. Hence, they cannot enable
parallel energy-efficient MVM operations without significant
modifications (e.g. adding multiple row decoders) to its design
[24]. Consequently, this has led researchers to explore non-volatile
memory (NVM) devices as suitable candidates for DNN training
and inference.

ReRAM-based IMC crossbars have been proposed for accelerating
DNN workloads [4] [2]. The high-density storage enabled by
multi-bit cell structure, small cell area and low leakage energy of
the ReRAM device makes it suitable for energy-efficient execution
of DNN workloads [7]. However, despite these advantages,
ReRAM cells suffer from low write endurance, high write energy,
and latency. Moreover, ReRAMs suffer from reliability issues such
as faults and conductance drift due to temperature which can cause
errors [18]. As a result, this limits the applicability of ReRAM-
based architectures for reliable DNN training and inference.

FeFET-based devices have been explored as a possibility for IMC-
based DNN accelerators [5] [6]. FeFET devices are particularly
attractive due to their relatively low cell area compared to SRAMs,
high read and write speeds, low write energy, and low leakage
energy as shown in Table 1. Moreover, they exhibit relatively
better temperature stability compared to ReRAM, making them less
prone to errors [25]. However, they suffer from significantly lower
write endurance as the ON/OFF ratio of the FeFET device
deteriorates after repeated program/erase cycles [5]. This leads to
read errors during DNN training and inference.

IMC devices made from Phase Change Materials (PCMs) have
also been proposed as suitable candidates for DNN acceleration.



This is due to their high-density storage, high ON/OFF ratio,
reasonably high endurance compared to FeFET devices and fast
switching speeds. However, the high temperature sensitivity of
PCMs is a major concern [26]. Moreover, PCMs require
significantly high programming energy as shown in Table 1 [22].
This makes them unsuitable for certain scenarios such as for DNN
training or fine-tuning which requires multiple programing cycles.

MRAM-based IMC architectures have been demonstrated as
attractive candidates for energy-efficient acceleration of DNN
workloads [27]. This is due to their high endurance (up to 10'
cycles) and low write latency (~10 ns). However, they also suffer
from low ON/OFF ratio, and low-density storage (i.e., 1-bit per-
cell). The low ON/OFF ratio of MRAMs causes soft errors in the
form of erroneous read/write operations. This leads to a
degradation in accuracy during DNN training and inference.

2.3 IMC Architectures for DNN Inferencing and Training
Recent developments in in-memory computing have led to
hardware accelerators designed specifically for deep neural
network (DNN) training and inference. These IMCs utilize a
crossbar architecture to enable fast and energy-efficient matrix-
vector multiplications (MVMs). ReRAM-based IMC architectures,
where each tile contains specialized multiply-accumulate units
(IMAs) that perform MVM operations have been proposed [4]
[28]. Figure 1 illustrates an example of a ReRAM-based IMC
architecture [4]. The tiles are interconnected through a NoC,
optimizing data movement and facilitating high-bandwidth
aggregation of intermediate results, while also employing
pipelining to manage complex data dependencies during DNN
training and inference [2].

In addition to ReRAM-based designs, SRAM-based IMCs have
been explored, which utilize SRAM crossbar arrays for storage and
computations [3]. Recent advancements also include MRAM-based
accelerators offering floating point precision, multi-level FeFET
devices for better performance in DNN inferencing and PCM-
based accelerators designed for high-accuracy Al workloads [27]
[5] [26]. These various technologies reflect the ongoing efforts to
enhance performance of DNN accelerators through different
material and device innovations. Heterogeneous IMC-based
architectures aim to address some of these shortcomings and
achieve improved performance and energy efficiency for DNN
workloads.

2.4 Limitations/Challenges of IMC-based Architectures
Homogeneous IMC-based architectures have several challenges to
overcome, as we present next.

Reliability challenges: IMC-based architectures are prone to
functional errors arising from device and circuit non-idealities.
Generally, the errors due to these non-idealities can be broadly
categorized as; read errors and write errors. Read errors occur
during the read mode of the IMC-based crossbar array. These
errors are due to non-idealities such as IR-drop, conductance drift
etc. Meanwhile, write errors commonly occur due to Stuck-at-
faults (SAO or SA1). Consequently, these non-idealities lead to
erroneous MVM outputs, thus leading to DNN accuracy loss.
Moreover, IMC devices suffer from conductance drift under the
influence of thermal noise. These non-ideal effects must be
accounted for in the design of a suitable IMC-based architectures.
Although IMC-based devices generally exhibit non-ideal behavior,
it should be noted that each type of IMC device has its unique
behavior under certain non-ideal conditions. For example, both
ReRAM and FeFET devices suffer from conductance drift under
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Figure 1. A typical hierarchical ReRAM-based IMC architecture,
consisting of PEs, tiles, and in-situ multiply and accumulate units (IMAs).

high temperatures. However, ReRAM devices have an exponential
dependence on temperature, while FeFET devices have a linear
temperature dependence [25]. As a result, an increase in
temperature would have a more severe impact on the predictive
accuracy while executing DNN inference/training on ReRAM-
based IMC architectures compared to the FeFET-based
counterparts. It is crucial to consider the unique non-ideal
properties of devices in the design optimization of a suitable
heterogeneous architecture.

Circuit challenges: Next, analog IMC crossbars typically require
high-resolution ADCs and DACs to interface with the digital
domain. However, high-resolution ADCs (> 7-bits) consume
significantly higher energy and area compared to the IMC crossbar
itself [29]. As a result, ADC dominates the area and energy of
IMC-based architectures. Moreover, IMC crossbar arrays suffer
from IR-drop due to wire resistance and sneak-paths, which
constitute the main sources of DNN accuracy degradation. As the
crossbar array size increases, IR-drop becomes even more severe
[30]. Moreover, larger crossbar array sizes are undesirable, as the
resolution of the ADC increases with the crossbar size [29]. To
tackle device and circuit non-idealities, MVM operations are
computed at a much smaller granularity level than a full crossbar,
referred to as Operation Units (OUs) [31]. For example, only nine
wordlines (WLs) and eight bitlines (BLs) are activated
concurrently within a 512X256 crossbar array to achieve a balance
between achievable performance and reliability [32]. OU-based
computation allows us to utilize lower-bit resolution ADC in each
crossbar since fewer WLs are activated in each cycle.
Nevertheless, for most state-of-the-art IMC-based crossbar arrays
optimal selection of the crossbar size as well as OU size remain
crucial in achieving a reasonable tradeoff between power,
performance, area and DNN accuracy [31].

Training challenges: DNN training workloads pose additional
requirements for designing crossbar-based systems, which includes
a larger shared memory, and frequent crossbar writes. However,
existing IMC-based DNN training accelerators (discussed in
section 2.1 above) are not well optimized to accommodate these
additional requirements. Unlike inference workloads, DNN training
involves the back-propagation algorithm, which is sensitive to data
precision and imposes additional design considerations. During
training, these activations need to be stored temporarily for the
computation of errors and gradients in the back-propagation phase,
which is not needed for inference. Hence, IMC-based architectures
aimed at DNN training have significantly higher storage
requirements compared to their inference counterparts. To address
this challenge, existing IMC-based architectures need to be
equipped with high-bandwidth memory such as DRAM tiles for
additional storage to enable large-scale DNN training. Moreover,
the low precision of IMC devices poses a challenge during training,
as gradients need to be computed in high-precision (32-bit floating
point (FP32) precision). As a result, IMC-based architectures for
training DNN workloads would also require high-precision



processing elements (PEs) to support precision-critical portions of
the workload such as back-propagation to ensure high accuracy.

Furthermore, during DNN training, the crossbar is written at the
end of every step/batch corresponding to the weight update
process. Large-scale DNN training with real-world datasets
involves multiple epochs and training steps to achieve reasonable
accuracy. This imposes a high write endurance requirement for
devices used in IMC-based architectures designed for DNN
training; several IMC technologies lack the required endurance to
support DNN training (Table 1). AccuReD supports the execution
of the back-propagation phase on general-purpose processors such
as GPUs/CPUs [11]. Other work has proposed the use of SRAM-
based crossbar arrays for the computation of gradients in the back-
propagation phase [28].

Non-NVM operations: DNN workloads typically possess non-
MVM layers such as Normalization, non-linear activation functions
and pooling layers. These layers are often precision critical. The
use of lower precision here would result in accuracy loss. However,
these operations cannot be easily implemented on IMC-based
crossbar arrays, as they are best suited for MVM operations only.
As a result, existing approaches augment IMC-based architectures
with on-chip CMOS-based logic and memory units to enable the
implementation of non-MVM operations. However, this approach
results in significant performance and energy overheads due to the
high data movement between IMC and CMOS-based PEs during
DNN training and inference. A suitable heterogeneous architecture
must address this communication bottleneck.

From the above discussion, we see that despite the advantages,
homogeneous IMC-based architectures may not be suited for
accelerating diverse Al workloads. Hence, heterogeneous IMC-
based architectures are viable alternatives for the end-to-end
acceleration of DNN training and inference workloads.

3 Heterogeneous IMC Accelerators

In this section, we present heterogeneous IMC-based architecture
for accelerating DNNSs.

3.1 Heterogeneous Manycore IMC-based Architectures

To overcome the shortcomings of individual IMC technologies,
prior work has proposed heterogeneous architectures that combine
two or more IMC devices for accelerating DNN workloads.
Various hybrid ReRAM/SRAM-based IMC-based architectures
have been proposed to address the non-idealities of ReRAM
devices and reduce the high area overhead of SRAM. Some of
these methods involve encoding the MSBs using SRAMs, and
ReRAMs for the LSBs of multi-bit weights, while maintaining high
energy-efficiency [33]. Other methods involve the use of ReRAM
and SRAM to perform the DNN forward- and back-propagation
operations respectively, thereby mitigating the limited endurance
challenge of ReRAM. In fact, a recent hybrid architecture
incorporates SRAM macros to perform output compensation of the
non-ideal output of ReRAM crossbars, thereby enabling robust
DNN inference [8]. However, these methods do not consider the
layer-wise characteristics of DNN workloads (e.g., number of
neural layers, weights, activations, size of kernels etc.) while
mapping neural layers to the heterogeneous IMC-based
architectures.

In Figure 2, we show an example of how the layer-wise
characteristics of the DenseNet40 workload determine the IMC
device requirements during training. Here, we observe that initial
layers (layers 0 - 14) in DenseNet40 process a higher number of
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Figure 2: Layer-wise IMC crossbar array requirements for
DenseNet40 trained with CIFAR-10 dataset.

activations than the latter layers, hence requiring more crossbars to
store weights and activations. Therefore, these layers should be
mapped to dense, low power PEs. These initial layers must also be
placed closer to the heat sink to reduce thermal noise as these
layers are more crucial for predictive accuracy. On the contrary,
latter layers with comparatively fewer activations and smaller
kernels, should be mapped on comparatively less dense PEs. These
layer-wise characteristics must be considered while mapping DNN
workloads to IMC platforms to ensure the high-performance and
energy-efficient execution of DNN training and inference tasks.

HyDe is a recently proposed design and optimization methodology
for mapping of deep neural network (DNN) layers to various PIM
devices (SRAM, FeFET, PCM) in a hybrid platform, utilizing 2.5D
chiplet-based heterogeneous integration [22]. HyDe maps each
DNN layer to a suitable IMC device based on its characteristics. It
leverages a scalarized single-objective optimization formulation
and is aimed only at DNN inferencing. However, linear
scalarization is known to perform poorly due to its inability to
explore non-convex regions of the Pareto front. Other works such
as HyperX have proposed a hybrid SRAM/ReRAM architecture,
where the weights of some DNN layers remain static, and are
mapped to ReRAMs, while the weights of other layers are mapped
to SRAMs for fine-tuning [34]. Despite the advantages of
heterogeneity, these existing solutions do not consider the
challenges of integrating different IMC devices into a single
platform. Hence, suitable heterogeneous IMC architectures for
DNN training scenarios need to be explored.

3.2 3D Integration-enabled Heterogeneous Architectures

As mentioned above, IMC-based architectures are popular for
accelerating both inference and training. However, DNN models
typically consist of millions of parameters (weights and
activations) which often cannot all be mapped onto a single planar
tier consisting of IMC-based processing elements (PEs). Moreover,
planar architectures provide limited design choices in terms of floor
planning, i.e., how tiles are placed and the NoC is designed, which
can lead to sub-optimal performance. Hence, 3D integration
methods that stack planar tiers consisting of PEs connected to each
other using through-silicon-via (TSV)- and monolithic 3D (M3D)-
based vertical links have been proposed [18] [10]. Recent work
such as AccuReD proposes a 3D heterogeneous architecture that
enables high-performance execution of DNN workloads [11].
However, such heterogeneous architectures that leverage IMC
devices mostly assume ideal behavior of the IMC device.
Moreover, they only leverage one type of IMC device (ReRAM in
this case). As a result, this leads to over-estimation of the DNN
accuracy, and does not reap the benefits that other types of IMC
devices can potentially offer.

3D Integration challenges for IMC architectures: Although 3D
integration can enable high-performance DNN training as
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Figure 3: Illustration of layer-to-PE and PE-to-tier mapping of DNN
workload with K-layers on to a 3D heterogeneous IMC-based architecture.
Here, DNN layer L1is mapped to ReRAM-based PEs and placed on Tier 1.

discussed earlier, stacking multiple high-power PEs vertically on
top of one another increases temperature. Higher PE temperature
introduces thermal noise in IMC devices, and ultimately affects the
predictive accuracy [18]. Hence, we should avoid placing too many
high-power consuming cores along one specific vertical column of
the 3D architecture and away from the heat sink to reduce
temperature hotspots. Further, different neural layers of a DNN
workload possess unique characteristics such as kernel size,
number of activations, precision, sensitivity to thermal noise etc.,
which all impact the predictive accuracy of the DNN. For example,
the initial neural layers of a DNN workload are more crucial to the
predictive accuracy, as they process more activations and thus,
dissipate more power than the later layers [18]. Hence, the initial
neural layers should not be mapped to PEs that are far away from
the heat sink. Moreover, thermal noise has a varying impact on
different IMC devices (as discussed in section 2.2). Thus, the
accuracy-crucial layers should be mapped to IMC devices that are
less susceptible to thermal noise. As an example, Figure 3
illustrates a three-tier 3D heterogeneous manycore architecture.
Given the layer-wise characteristics of the DNN workload (as
shown in Figure 2), and the physical properties of the IMC devices
in the PEs, finding a suitable neural layer-to-PE and PE-to-tier
mapping present a unique optimization problem. Hence, achieving
an optimal mapping of the DNN layers to the IMC devices, as well
as a suitable configuration of the IMC technology for each planar
tier are necessary to achieve an acceptable balance between the
predictive accuracy, area, latency, and power.

Design Optimization of 3D IMC architectures: To tackle the
aforementioned challenges, the properties of the DNN neural
layers, IMC device characteristics, as well as the PE to 3D planar
tier mapping should be jointly considered to enable high-
performance, energy-efficient, and reliable DNN training on
heterogeneous IMC-based platforms. Consequently, this leads to a
multi-objective optimization (MOO) problem of finding the
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Figure 4: Layer-to-PE and PE-to-tier mapping trade-offs while
running the DNN training task for ResNet34 model on CIFAR-10
dataset.

suitable mapping of each neural layer to a PE with a suitable IMC
device (i.e., either SRAM-/ReRAM-/FeFET-based PE), as well as
its appropriate location in one of the planar tiers, that achieves the
best latency (Lat), area (Ar), power (Pwr), and accuracy (Acc)
trade-off. This MOO-formulation can be represented as:

D* = MOO(OBJ = Pwr, Ar, Lat, Acc) (D

where D™ is the set of Pareto optimal designs. The goal is to first find
the Pareto optimal set D* € D using a MOO solver (e.g., AMOSA)
[35]. The IMC devices largely vary in terms of design metrics such
as area, power, latency, and temperature-dependent non-ideal
effects etc. This variation provides the MOO solver with the scope
of optimizing across multiple conflicting, yet crucial objectives
namely: latency, accuracy, area, and power. We capture these
objectives using three key performance evaluation metrics: energy-
efficiency (TOPS/W), compute-efficiency (TOPS/mm?), and DNN
predictive accuracy. We select the best design d},.¢; from the set of
Pareto optimal designs that achieves the best performance in-terms
of either TOPS/W or TOPS/mm?, and negligible DNN accuracy
loss (less than 1% accuracy loss compared to ideal accuracy).

Figure 4 shows a representative example of the Pareto front
considering the four design objectives (latency, accuracy, area and
power), for the ResNet34 DNN model trained with the CIFAR-10
dataset. In this illustration, the PE-to-tier mapping is represented by
a = [ty, ty, ..., t,], where a planar tier t, has PEs of one IMC
device type — ReRAM (R), FeFET (F), SRAM (S). For example,
the PE-to-tier mapping [Ry, R,, F3,S,] implies ReRAM-based PEs
are mapped to the first two planar tiers (i.e., closer to the heat sink)
Similarly, FeFET- and SRAM-based PEs are mapped to the 3" tier
and the 4" planar tier respectively. In this example, we have
considered SRAM-, FeFET- and ReRAM-based IMC technologies,
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Figure 5: Performance evaluation of the optimized 3D IMC architecture (RRFS) with state-of-the-art homogeneous and heterogeneous
architectures in terms of (a) Energy-efficiency (TOPS/W), (b) Compute-efficiency (TOPS/mm?), and (c) Accuracy of DNN workloads executed

on CIFAR-10 dataset.



as examples to demonstrate the effectiveness of an optimized layer-
to-PE and PE-to-tier mapping for a 3D heterogeneous IMC-based
accelerator. It should be noted that other types of IMC devices such
as PCMs and MRAMs can also be considered for heterogeneous
systems. As shown in Figure 4, the Pareto optimal set of designs
(D*) are highlighted in black. Note that all the Pareto optimal
configurations have the SRAM devices at the bottom tier, away
from the heat sink. This SRAM tier is used for the gradient
calculation during back-propagation phase [28]. Due to the
necessity of the SRAM tier for the back-propagation, the
homogeneous configurations where we have only one type of IMC
device like FeFET or ReRAM, are: [F,F,, F;S,] and
[R1, Ry, R3, S,]. Alternatively, the homogeneous configuration with
only SRAM device is: [S1,S2,55,S,] . These homogeneous
architectures are referred to as FFFS, RRRS, SSSS respectively
hereafter. The 3D heterogeneous IMC-based architecture
[Ri, Ry, F5,S,] (referred to as RRFS hereafter) exploits device
heterogeneity with optimal layer-to-PE and PE-to-tier mapping and
achieves the best trade-offs between power, latency, area and DNN
accuracy compared to other Pareto optimal configurations.

In Figures 5(a) - 5(c), we evaluate the performance of the
optimized 3D heterogeneous IMC-based architecture (RRFS) on
five DNNs namely: VGG11, VGG16, ResNet18 (RN18), ResNet34
(RN34), and DenseNet40 (DN40) with the CIFAR-10 dataset in
terms of TOPS/W, TOPS/mm? and DNN test accuracy. We
compare the optimized RRFS heterogeneous architecture with three
homogenous IMC-based architectures (FFFS, RRRS & SSSS) and
state-of-the-art  heterogeneous architectures (AccuReD and
HyperX) [11] [34]. Here, AccuReD and HyperX architectures use
[Ry, Ry, GPU;,GPU,] and [R4,S,,S3,S,] 3D tier configurations
respectively. As shown in Figure 5(a) and 5(b), RRFS achieves up
to 20 TOPS/W and 10.73 TOPS/mm? corresponding to 2.1X and
1.5 average improvement in terms of TOPS/W and TOPS/mm?
respectively over the homogeneous architectures. Also, we
demonstrate that the RRFS configuration achieves an average
improvement of 3.1 X (and 1.4X), and 2.7X (and 1.5X) over
HyperX (and AccuReD) in terms of TOPS/mm? and TOPS/W
respectively. As shown in Figure 5(c), the all-SRAM configuration
(SSSS) achieves the highest accuracy due its high reliability, and
less vulnerability to thermal issues in the 3D architecture.
However, the homogeneous FeFET- and ReRAM-based
counterparts (FFFS and RRRS) suffer up to 4% and 2.5% accuracy
loss, due to the thermal noise in ReRAMs and FeFETs. Overall, the
optimized RRFS configuration achieves less than 1% accuracy
drop compared to the all-SRAM counterpart. Hence, the optimized
3D IMC architecture RRFS achieves the highest TOPS/W and
TOPS/mm? with negligible loss in accuracy.

3.3 Heterogeneous Architectures for Transformers
Transformers have emerged as a focal point in the field of deep
learning [36]. Transformers include various models that use multi-
head attention layers e.g., large language models, vision
transformers. The transformer architecture is composed of multiple
sequential layers of encoder/decoder blocks, as shown in Figure 6.
Each of these blocks consists of three major compute kernels: the
multi-head attention (MHA), the feed-forward (FF) network, and
the layer normalization block as shown in Figure 6.

Designing hardware accelerators for transformer models is
complex due to the variety of computing kernels used.
Homogeneous IMC-based architectures struggle with performance
and endurance issues, particularly with MHA kernels. The MHA

Decoder Stack

Encoder Stack

. . <
EncoderN  |— M .

Einear) Decoder 3

Concat

'
'

'

'

'

'

. '
Lo
R
Lo
P
L
Bl

1
Scaled Attention A
'

"

'

'

'

'

'

'

[y

Decoder 2

Decoder 1

Add & Norm Add & Norm

[ Feed Forward |

- Add & Norm
| Multi-Head Attention
N

Positional €

Encoding

Feed Forward

L

Ll
Pt

Add & Norm
. L3 .
| Multi-Head Attention |

Add & Norm
A
Masked Multi-Head Attention

K

Mutli-Head

Input M
Embedding

Figure 6: Transformer model architecture consisting of encoder and
decoder stack of length V.

kernels require dynamic operand multiplications, and thus
necessitate a high frequency of write operations to IMC devices
[37]. Since, IMC devices such as ReRAMs suffer from limited
write endurance and high write latency, they are not suitable for
MHA computation. In contrast, the FF network computation is
independent of the input sequence length and can utilize IMC
devices. To address these challenges, heterogeneous architectures
have been proposed, such as Xformer, which uses SRAM to handle
more frequently updated computation kernels [38]. CMOS-based
solutions like TransPIM and HAIMA have also been proposed, that
integrate. DRAM with other memory types such as SRAM to
improve performance [39] [40]. Recent developments also include
3D hybrid systems like H3D-Transformer consisting of FeFETs,
SRAMs, and TPU cores [41]. Although, they demonstrate
performance gains, they do not consider the challenges of thermal
feasibility.

To address these challenges, we can extend the multi-objective
formulation in (1) (discussed in Section 3.2) for transformers. The
formulation must consider the requirements of the various
transformer kernels and the properties of the IMC technologies to
find a suitable heterogeneous IMC architecture, and this can be
explored in future work.

4 Conclusion

In-memory computing (IMC) is an emerging paradigm that enables
energy-efficient and high-performance acceleration of DNN
workloads. However, standalone IMC technologies have their
unique challenges, which limit their applicability to state-of-the-art
artificial intelligence applications. To address this challenge, three-
dimensional (3D) heterogeneous architectures facilitate the
integration of more than one type of IMC device, as well as
general-purpose processors into a single platform. However, when
multiple IMC-based technologies are integrated to design a
heterogeneous architecture, we need to address various challenges
to establish suitable power, performance, area, and accuracy trade-
offs. In this paper, we highlight the challenges of integrating
multiple IMC devices in a 3D heterogeneous architecture. We also
discuss the design space optimization using different IMC
technologies and neural layer characteristics to achieve energy-
efficient and high-performance acceleration of DNN workloads and
Transformers.
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