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Abstract

We perturb a real matrix A of full column rank, and derive lower bounds for the smallest singular
values of the perturbed matrix, in terms of normwise absolute perturbations. Our bounds, which extend
existing lower-order expressions, demonstrate the potential increase in the smallest singular values, and
represent a qualitative model for the increase in the small singular values after a matrix has been downcast
to a lower arithmetic precision. Numerical experiments confirm the qualitative validity of this model and
its ability to predict singular values changes in the presence of decreased arithmetic precision.

1 Introduction

Given a real, full column-rank matrix A, we present lower bounds for the smallest singular values of a
perturbed matrix A + E.

1.1 Motivation

We investigate the change in the computed singular values of a tall and skinny matrix A € R™*™ with
m > n and rank(A) = n when A is demoted, that is, downcast to a lower arithmetic precision.

We have observed that demotion to lower precision can improve the conditioning of A by significantly
increasing the computed small singular values, while leaving large singular values mostly unharmed. For
instance, if the smallest singular value of A is on the order of double precision roundoff,

Omin (double(A)) ~ 10716,
then downcasting A to single precision can increase the smallest singular value to single precision roundoff,
Omin (double(single(A))) ~ 1075,
This phenomenon has been observed before, as the following quotes illustrate:

. small singular values tend to increase [SS90, page 266/
. even an approximate inverse of an arbitrarily ill-conditioned
matriz does, in general, contain useful information [Rum09, page 260]
This is due to a kind of regularization by rounding to working precision [Rum09, page 261]

1.2 Modelling demotion to lower precision in terms of perturbations

We model the downcasting of a matrix to lower precision in terms of normwise absolute perturbations.
The accumulated error from typical singular value algorithms in Matlab and Julia is a normwise absolute

error [GV13, section 8.6]. Thus, if we downcast a matrix A € R™*™ with m > n to single precision and

compute the singular values of the demoted matrix, the resulting error can be represented as an absolute


mailto:cboutsik@purdue.edu
mailto:pdrineas@purdue.edu
mailto:ipsen@ncsu.edu

perturbation E. According to Weyl’s inequality [GV13, Corollary 8.6.2|, corresponding singular values! of
A change by at most || E|z2,

0;(A+E) —0,(A)| < |Bla~10%,  1<j<n.

The bound implies that singular values larger than single precision roundoff, i.e. ¢;(A) > ||E|2, remain
essentially the same,

0j(A) = 0;(A) = |Ell; < 0;(A+ E) < 0;(A) + ||E|lz = 0;(A),
10—8 10-8

while it is inconclusive about small singular values on the order of double precision roundoff,

90(A) = |El2 < 00(A + E) < 0u(A) + || El2.
—— N~ —— N~

10—16 10-8 10—16 10-8

1.3 Owur contributions

Our main results are normwise absolute lower bounds on the smallest singular value cluster of a perturbed
matrix. The bounds, compactly summarized in Theorem 1 below, testify to a definitive increase in the
perturbed small singular values. The qualitative validity of the bounds is confirmed by the numerical
experiments in section 4. Our assumptions are not restrictive and merely require the smallest singular value
cluster to be separated by a small gap from the remaining singular values.

Theorem 1 improves the second-order perturbation expansions in [Ste84; SS90; Ste06], because it is a true
lower bound and, unlike [Ste84], [SS90, Lemma V.4.5], it needs no assumptions on the size of the offdiagonal
blocks. Its proof (Sections 2 and 3) follows from Theorem 7 and a restatement of Assumptions 3.1. The
special case where r = 1 reduces to Assumptions 2.1 and Theorem 4.

Theorem 1. Let A € R™*™ with m > n have rank(A) > n —r for somer > 1. Let A = USVT be a full
singular value decomposition, where 3 € R™*™ s diagonal, and U € R™*™ and V € R"*™ are orthogonal
matrices. Partition commensurately,

> 0 E;; Ep
=10 X, UTEV = |Ey, Es|
0 0 E3 E3

where 31, E11 € R=)x(n=r) ypith 3, nonsingular diagonal; and Xo, Eoy € R™" with 3o diagonal.
127 e > 4| Ell2 and [|Ssalla < | B2, then?

Onrtj(A+ E)’ > \j(EfyEs + (B2 + Ex) " (Zo + Egg) — Rg) -y, 1< j <,
where Ry contains terms of order 3,

B S+ E
Ry=ELW +W'E,, W= (S +En) " [EL Eg1]|: ’ 22]

E3;
and ry contains terms of order 4 and higher,

IE|3 (21 + E11) (B2 + W)|I3
1 — 4| E|3](Z: + Eun)7L3

ra = |[W]3+4

Future work, sketched in section 5, will refine the above results towards a quantitative analysis that predicts
the order of magnitude of the increase, and the influential matrix properties, in particular, the role of the
singular value gap. We also note that our theorem does not directly account for computational precision.
However, our experiments in Section 4 demonstrate that when performing calculations in double precision,
the “exact” singular values exhibit complete overlap with those computed in double precision. This suggests
that perturbations arising from computational precision should not affect our results.

IThe singular values of a matrix A € R™*™ are labelled in non-increasing order, by o1(A) > o2(A) > ... > Tmin{m,n} (A).
2The eigenvalues of a symmetric matrix H € RFX* are labelled in non-increasing order, by A1 (H) > --- > A\ (H).



1.4 Existing work

There are many bounds for the smallest singular value of general, unstructured matrices. The bounds for
n—1
nonsingular matrices A € C"*" in [LX21; Shu22; Zoul2] involve the factor | det(A)|? ( nl ) , while the

1A%

ones in [HP92; YGI7] contain factors like |det(A)|? ("T_l)(n_l)/2 and row and column norms. The Schur
complement-based bounds for strictly diagonally dominant matrices in [Hua08; Li20; Ois23; San21; Var75]
depend on the degree of diagonal dominance, as do the Gerschgorin type bounds for rectangular matrices in
[Joh89; JS98].

In contrast, we are bounding the smallest singular values of perturbed matrices. The expressions for small
singular values in [Ste84, Theorem]|, [Ste06, Theorem 8|, [SS90, Section V.4.2] are second-order perturbation
expansions rather than bounds, and require assumptions on the singular vectors.

1.5 Overview

Our deterministic lower bounds for small singular values of A + E are based on eigenvalue bounds for
(A+ E)T(A + E). We present normwise absolute bounds for a single smallest singular value (section 2)
and for a cluster of small singular values (section 3). The numerical experiments (section 4) confirm the
qualitative increase in small singular values resulting from the demotion of the matrix to lower precision. A
brief discussion of future work (section 5) concludes the paper.

2 A single smallest singular value

We perturb a matrix that has a single smallest singular value, and derive a lower bound for the smallest
singular value of the perturbed matrix in terms of normwise absolute perturbations (Section 2.2), based on
eigenvalue bounds (Section 2.1).

2.1 Auxiliary eigenvalue results

We square the singular values of A € R™*" and consider instead the eigenvalues of the symmetric positive
semi-definite matrix B = AT A € R™*",

For a symmetric positive semi-definite matrix B € R™*™ with a single smallest eigenvalue Ay, (B), we
present two expressions for A\pi, (B) with different assumptions (Lemmas 1 and 2), and two lower bounds in
terms of normwise absolute perturbations (Theorems 2 and 3).

We assume that A\pin(B) is separated from the remaining eigenvalues, in the sense that it is strictly
smaller than the smallest eigenvalue of the leading principal submatrix By of order n — 1. The equality
below expresses Apin (B) in terms of itself.

Lemma 1 (Exact expression). Let B € R™ " be symmetric positive semi-definite with rank(B) > n — 1,
and partition

B = [BH b} where Byp € RDx(=1),

Then
(1) 0 < Apin(B) < 5.
If also Apin(B) < Amin(B11) then
Amin(B) = B — b" (B11 — Amin(B) I)'b,

Proof. Abbreviate Ain = Amin(B). The positive semi-definiteness of B implies the lower bound in (1),
while the variational inequalities imply the upper bound,

0< S\min = min x'Bx < eZBen = /.

N lIx[l2=1



To show the expression for S\min, observe that the shifted matrix

Y Bll - Amin I b
B — Arﬂin I= 3
|: bT B - )\min:|
is singular. From the assumption S\min < Amin(B11) follows that By; — S\min I is nonsingular. So we can
determine the block LU decomposition B — Ay, I = LU with

L= I 0
N bT(Bll - Amin I)_l 1|’
U= Bii — Anin I . b i
B 0 ﬁ - )\min _bT(Bll — Amin I)ilb ’

Since B — Amin I is singular and the unit triangular matrix L is nonsingular, the block upper triangular
matrix U has no choice but to be singular. Its leading principal submatrix B1; — Apin I is nonsingular by
assumption, which leaves the (2,2) element to be singular, but it being a scalar implies

ﬂ - ;\min _bT(Bll - S\min I)_lb =0.
This gives the expression for S\min. O

If b = 0 then Lemma 1 correctly asserts that Ay, (B) = .
Lemma 2 below presents the same expression for Ay, (B) as in Lemma 1, but under a stronger albeit
more useful assumption.

Lemma 2 (Exact expression with stronger assumption). Let B € R™*™ be symmetric positive semi-definite

with rank(B) > n — 1, and partition

where By, € R—Dx (=1,

Sl

b’ B
Ifﬁ < Amzn(Bll) then
Amin(B) = B —b" (B11 — Amin(B) I)"'b > 0.

Proof. The upper bound (1) combined with the assumption 8 < Apn(Bi1) implies the assumption in
Lemma 1,

(2) 0 < >\min(B) < ﬂ < >\min(Bll)'

The subsequent lower bounds for A, (B) are informative if the offdiagonal part has small norm.

Theorem 2 (First lower bound). Let B € R™*" be symmetric positive semi-definite with rank(B) > n —1,
and partition

B= [BH b} where Byp; € RMDx (=1,

Ifﬁ < )\min(Bll) then

BB1'bl3

Amin(B) > B —b" Byj'b— — L2
1- B HB111||2



Proof. Abbreviate Auin = Amin(B). From (2) follows that B1; and By; — Amin I are nonsingular. Combined
with the symmetric positive semi-definiteness of Bj; this gives

Amin < Amin(B11) = 1/|| B2,
hence
(3) | Amin B2 < 1.
Thus we can apply the Sherman-Morrison formula [GV13, Section 2.1.4],
(Bll - xmin I)il = B;ll + S\min Bfll(I - S\min B1711)71B17117
and substitute the above into the expression for Amin from Lemma 1,
(4) Amin = 8 — bY B11'b — Ain 0" BT (I — A\uin B17) "' B7'b.

The symmetric positive semi-definiteness of B implies that § > 0 and bTBfllb > 0, hence it remains to
bound the norm of the remaining summand. From the symmetry of B1; and the invariance of the two-norm
under transposition follows

16" B (I = Awin B1y') ' Biy'bllz < 16" By l2/l( — Ain B1i') ™ [l2| By bll2
(5) <IBL BN = Amin B1y) -
The inequality (3) allows us to apply the Banach lemma [GV13, Lemma 2.3.3] to bound the norm of the
inverse by

1

H(I - 5‘min Bl_ll)_1||2 < N — = N —
1- || Amin B111H2 1 — Amin ||B111||2~

Substitute this into (5) and the resulting bound into the expression for Ay, in (4),

:\Inin ||B;11b||%

5\min Z 5 - bTBIllb - N — )
1-— >\min H3111||2

and at last apply the upper bound (1). O

The lower bound in Theorem 2 is positive if ||b|2 is sufficiently small, in which case Amin (B) > 8—O(]|b]|3).
If b = 0 then (1) and Theorem 2 imply Apin(B) = 8.
The slightly weaker bound below focusses on a ‘dominant part’ of Bi;.

Theorem 3 (Second lower bound). Let B € R™*™ be symmetric positive semi-definite with rank(B) > n—1,
and partition

B b
B = 71} where By, € RM—Dx (=1,
b- B

If B1; = C11 + C12 where Cq1 is symmetric positive definite with Apin(C11) > B, and C1a is symmetric
positive semi-definite then

BlCn bl
1-BC7 |2
Proof. Abbreviate Ain = Amin(B). From (1) and the assumption follows Amin < 8 < Amin(C11), hence C1q
and C11 — Apin I are nonsingular. Write

Amin(B) > 8 —b"C1i'b -

Bii —Amin I = C1i = Auin [+C12 = G2 (I + G2 C1, GV GY?,
—_—_—————
P H




where G is symmetric positive definite, G2 is its symmetric positive definite square root, and H is sym-
metric positive semi-definite. The Loewner partial ordering® implies I < I + H. From [HJ13, Corollary
7.7.4] follows (I + H)~' < I"' = I. Thus

(Bi1 = Auin 1) ' =G V2T + H)'G™/?
<G VUGV =G = (C1 - dain 1)
Substituting (B11 — Amin )" =< (C11 — Amin I) ™! into the expression for Ay, in Lemma 1 gives
Amin > B —b"(C11 — Amin I) ™ 'b.
We continue as in the proof of Theorem 2 with the Sherman-Morrison formula [GV13, Section 2.1.4],
Amin > B — b"C11'b — Anin b CTH(I — Apin C11) ' C1'b

Amin | C7'b]3

>pB-b'C'b— u —2_
1 = Amin ||C111H2

and at last apply (1). O

If C15 = 0, then Theorem 3 reduces to Theorem 2.

2.2 A lower bound for the smallest singular value

We consider a matrix with a distinct smallest singular value. Based on the eigenvalue bounds in section 2.1,
we derive a lower bound for the smallest singular value of a perturbed matrix (Theorem 4) in terms of
normwise absolute perturbations. We start with a summary of all assumptions (Assumptions 2.1), and end
with a discussion of their generality (Remark 2.1).

Assumptions 2.1. Let A € R™*" with m > n have rank(A) > n — 1. Let A =UXV7" be a full singular
value decomposition, where 3 € R™*" is diagonal, and U € R™*™ and V' € R™*™ are orthogonal matrices.
Partition commensurately,

> 0 Eq.; e
=10 ominl, E=U e} exn|V'
0 0 E;3  es

where X1 € R=UX(=1) s nonsingular diagonal, and o i > 0.

For a matrix with a single smallest singular value, we corroborate the observation that ‘small singular
values tend to increase’ [SS90, page 266]. Motivated by the second-order expressions in terms of absolute
perturbations [SS90, Section V.4.2] and [Ste06, Theorem 8], we derive a true lower bound.

Theorem 4. Let A, E € R™ ™ satisfy Assumptions 2.1. If 1/||27 |2 > 4| E|l2 and opmin < || E||2, then
Omin(A+ E)* > |lesa||5 + (Omin +e22)” — 13 — 14,
where 3 contains terms of order 3,

_ €22 + Omin
rs=2el,w  w=(Z1+En) " [en Ej] [ . } ’

€32
and r4 contains terms of order 4 and higher,

|E|3 (31 4+ E11) (e +w)|3
1 —A4[E|3(Z1 + Eun) 73

3For Hermitian matrices A and B, A < B means that A — B is positive semi-definite.

re = w3 +4




Proof. We square the singular values of A + E, and consider the eigenvalues of

B=(A+E(A+E) =V ﬁ}l g} vT

(6) By = (21 + E)T(Z1 + En) +enel, + Ef Esy
Cll C’12
B = llex2ll3 + (omin +e22)” + [les2|l3

b= (21 +E) e + e (omin +e2) + E§1632-

From owin(X1) > 4[| E||2 follows that C1; is symmetric positive definite, while C15 is symmetric positive
semi-definite and contains only second order terms. Abbreviate Amin = Amin(B) = omin(A + E)2.
The proof proceeds in two steps:

1. Confirming that C'1; satisfies the assumptions of Theorem 3.

2. Deriving the lower bound for S\min from Theorem 3.

1. Confirm that C;; satisfies the assumptions of Theorem 3 We show that Apin(C11) > 8, by
bounding 8 from above and A\pin(C11) from below.
Regarding the upper bound for 3, the expression (7) and the assumption o, < || E||2 imply

T 2
®) 8=leh entomn e[, < (o +IBenl)* < 41BIB

Regarding the lower bound for Apin(C11), view C1; = (21 4+ E11)7 (21 + E11) as a singular value problem,
so that A\pin(C11) = omin(X1 + E11)%. The well-conditioning of singular values [GV13, Corollary 8.6.2]
implies

| Omin(B1 + E11) — omin(Z1)] < [[E11l|2 < || Elf2-

Adding the assumption opin (1) = 1/ 27 ||l2 > 4| E|2 gives
Omin(1 + E11) 2 omin(Z1) — [ Ell2 > 4[| Ell2 — [ Ell2 = 3] E|2.
Now combine this lower bound for Ay, (C11) with (8),
Anin(C11) = Omin(Z1 + E1n)? > 9| E|3 > 4| E|3 > 8.

Hence A\pmin(C11) > 8, and C1; satisfies the assumptions of Theorem 3.

2. Derive the lower bound for A\, from Theorem 3 In this bound,

BlICL b3

(9) Auin > = b7 Cp'b — =2
1 o1-sle

where the key term is C fllb. Insert the expression for b from (7),

(Z1+En) "b=en+ (1 +En) " (621(Umin +e22) + E§1€32)
(10) = ey +wW.
Combine the expression for C'1; from (6) with (10),

(11) C;llb = (21 + Ell)il (21 + Ell)in = (21 + E11)71(612 + W)
—————

ei2+w



Multiply the above by b’ on the left, and use (10)
b'Cr'b=b" (21 + E11) (1 4+ En) b= (ern +w) (12 +w)
= llesz + w3 = [lew]l3 + 2efow + [|wlf3.
Substitute the above, and § from (7) into the first two summands of (9),
B —b"C7'b = (llerz]3 + (omin +ez2)? + [lesz]3) — (lewzll’ + 2elw + [lw]3)

(12) = |les2|l3 + (omin +e22)* — 2ef,w —||w]]3.
——

T3

Substitute the bound for 8 in (8), and (11) into the third summand of (9),

BIICHbIE B I(E: + En)~Hew + w3
1-BlCy e = 1—AIEBI(Z: + Eu) '3

Inserting (12) and (13) into (9) gives

(13)

5\min > H€32H§ + (Umill +622)2

— e — ||W||2 +4||EH% (21 + Ell)_l(em +W)“%
’ 2 1—4|EB][(Z1 + En)~ 3

T4

O

Remark 2.1. The assumptions in Theorem 4 are not restrictive. Only a small gap of 3||E||2 is required to
separate the smallest singular value of A from the remaining singular values,

Tmin(A) < |El2 < 4| E|2 < 1/[27" 2.

3 A cluster of small singular values

We extend the results in Section 2 from a single smallest singular value to a cluster of small singular values.
To this end, we derive lower bounds for the small singular values of the perturbed matrix in terms of normwise
absolute perturbations (Section 3.2), based on eigenvalue bounds (Section 3.1).

3.1 Auxiliary eigenvalue results

We square the singular values of A € R™*" and consider instead the eigenvalues of the symmetric positive
semi-definite matrix B = AT A € R"*",

For a symmetric positive semi-definite matrix B € R"*™ with a cluster of r small eigenvalues, we
present an expression for these eigenvalues (Lemma 3), and two lower bounds in terms of normwise absolute
perturbations (Theorems 5 and 6).

We assume that the r small eigenvalues are separated from the remaining ones, in the sense that they
are strictly smaller than the smallest eigenvalue of the leading principal submatrix By of order n — r. The
eigenvalues are labelled so that

M(B) <+ < Aperst(B) < Anp(B) < - < M(B).

The equality below expresses the smallest eigenvalues in terms of themselves, and represents an extension
of Lemma 2 to clusters.

Lemma 3 (Exact expression). Let B € R"*™ be symmetric positive semi-definite with rank(B) > n—r for

some r > 1, and partition

o Bll BlQ (n—r)x(n—r) rXr
B = |:B¥~2 BQQ:| where B € R , By eR .



If ||B22||2 < )\min(Bll) then

Na-ris(B) = X (Baz = Bly(Bui = Ay (B)D) ' Bia) . 1< <,
where
(14) 0 < An—rtj(B) < [|Bazlf2, 1<j<r

Proof. Abbreviate A\, _r1; = Ay_rs;(B), 1 < j < r. The lower bound in (14) follows from the positive
semi-definiteness of B, and the upper bound from the Cauchy interlace theorem [Par80, Section 10.1]

An—rtj < Aj(B22) < Amax(Ba2) = || Bazl|2, 1<j<r

Combining this with the assumption ||Baa||2 < Amin(B11) shows

(15) 5\71—r+j S HBQQHQ < Amin(Bll)v 1 S ] S T.
Hence is By, — S\H_H_j I is nonsingular.
To derive the expression for A,,_,; , we start as in the proof of [Par80, Theorem (10-1-2)]. The shifted

matrix B — S\n,,«ﬂ- I has at most n —r + 7 — 1 positive eigenvalues, at least one zero eigenvalue, and at most
r — j negative eigenvalues, 1 < j < r. Perform the congruence transformation

3 B — My, I 0} T _ [ I 0
B-)\_,,;I=L J LY, L= < _
norh 0 S B, (Bii— My D)7 T
where
(16) S=By—Anrij I —Bly(Bii—Ayory; I) "B, 1<j<m.

From (15) follows that B11 — Ap—r4; I has n — r positive eigenvalues. Combining this with the inertia
preservation of congruence transformations implies that S has at most r — j positive eigenvalues, at least
one zero eigenvalue \;(S) = 0, and at least j — 1 negative eigenvalues, 1 < j < r. Insert (16) into X;(S) =0,
and exploit the fact that the shift ;\n_rﬂ I does not change the algebraic eigenvalue ordering, to obtain the
expression for an_rﬂ-, 1<5<r. O

By restricting ourselves to a ‘dominant part’ of B1;, we weaken the expression in Lemma 3 to a lower
bound, which allows the eigenvalues to be negative.

Lemma 4 (Lower bound). Let B € R™*™ be symmetric positive semi-definite with rank(B) > n —r for

some r > 1, and partition

o Bll B12 (n—r)x(n—r) rXr
B = |:B{2 B22:| where Bji; € R s By € R .

Let B1, = C11 4+ C12 where C1; € R=7)X(=7) 45 symmetric positive definite and C1o € R(=7)x(n=7) 4
symmetric positive semi-definite. If

~ C B

o=t B
With Amin(C11) > || Baz||2, then
(17) Mrii(B) > Anery;(B)
(18) = A (322 - B,(Cn - /\n—r+j(B)I)71B12) , 1<j<r,
where
(19) An—ri;(B) < |[Bas|,

I~ -1 Ci'll .

2 [(cn-rers@n)| < ey 1<is

Proof. The proof proceeds in four steps.



Proof of (17) The symmetric positive semi-definiteness of C15 and Weyl’s monotonicity theorem [HJ13,
Corollary 4.3.3] imply

N(B)>\(B), 1<j<n.

Now we concentrate on the eigenvalues of ﬁ, and abbreviate Xn_TH = Aoy (B), 1 <5 <r.

Proof of (19) Apply the Cauchy interlace theorem [Par80, Section 10.1] to E,

/):nfr+j < Aj(B22) < Amax(B22) = || Bazl|2, 1<j<r
Combining this with the assumption || Baa|l2 < Amin(C11) shows

o~

An—rtj < || Bazll2 < Amin(C11), 1<j<r

Hence C11 — Xn_r+j I is nonsingular, which holds in particular if XH_TH < 0.

Proof of (18) To derive the expression for Xn,rﬂ- , apply the proof of Lemma 3 to the eigenvalues of
B. This proof relies only on the signs of eigenvalues of shifted matrices, and does not require positive
semi-definiteness of the host matrix B.

Proof of (20) Fix some 1 < j < r for the inverse in (18). Then factor out C},
(Cll — /}\\n77‘+j I)_l = Cl_llD where D = (I — /):n,TJrj Cl_ll)_17
and take norms,

|€1n=Xeris D7 < G312 1D

To bound || D)5, consider the eigenvalue decomposition C1; = WAW?, where W is an orthogonal matrix,
and the diagonal matrix

A =diag (vi -+ An_r) € ROTIX0D)

has positive diagonal elements v, > 0. Thus D has an eigenvalue decomposition D = W (I —Xn,rﬂ- A‘l)_IWT
with eigenvalues

Ag(D):1/<1—)\"_T+j>, 1<l{<n-r
Ve

Case 1: If Xn,rﬂ» > 0, then (19) implies

Py | Baz |2
<

0< — ||B Cille <1, 1<l<n-—r.
< S (O [ Baz|l2]|C1y |2 st<n-—r
Hence
1
(21) [Dll22 = max [A;(D)] < T
1<t<n—r "’ 1— || Ba|2lIC' [l2

Case 2: If //\\n_Tﬂ» < 0, then v, > 0 and (19) imply

//\\n—r j /):n—r j —
1—7ﬂ:1+ﬂ>1>1—HB22H2||0111||2, 1</<n—r.
e e
Again, as in (21) we conclude
1
[Dl22 = max [X;(D)] < T
1<tsn—r "’ 1 — || Baoll2[|CT |12
Since we fixed an arbitrary j to show (20), it holds for all 1 < j <. O

10



The subsequent lower bounds are informative if the offdiagonal part has small norm. We start with an
extension of Theorem 2.

Theorem 5 (First lower bound). Let B € R™ "™ be symmetric positive semi-definite with rank(B) >n —r
for some r > 1, and partition

Bi; B - -
B = where By € R7x(=1) B, e RTXT
{B{Q ng] 11 22
If ||B22||2 < )\mm(Bn) then )\n_7-+j(B) > )\j(Zj), 1< j < r, where

Zj = By — B, B Bis — | Bas|2 B, Bi'(I — \y—15(B) B1') ' By Bia.

Proof. Abbreviate ;\n_H_j = A—rtj(B), 1 < j < r. Asin the proof of Theorem 2, apply the Sherman-
Morrison formula [GV13, Section 2.1.4]

(Bll - 5‘nfrJrj I)_l = Bl_ll + j‘nfr+j Bl_ll(I - 5‘nfr+j Bl_ll)_lBl_11>

and substitute the above into the expressions for

(22) Anrij =X (Mj), 1<j<r
from Lemma 3 where
M; = By — B{,(Bi1 — A—ri; I) 7' Byo
= By, — B1,B1' Bz — Ay ry; BB (I = Ay Bi') 7' B Bua.
From (14) follows the Loewner bound
M, = Z; = By, — B,Bi{ Bi2 — ||Bas|s BI, By} (I - Ay Bii') "' By Ba.
This and (22) imply A\, = Aj(M;) > \;(Z;), 1 < j <r [HJ13, Corollary 7.7.4]. O

The slightly weaker bound below extends Theorem 3 and focusses on a ’dominant’ part of By;. This
establishes the connection to Theorem 7, where B represents the perturbed matrix and the low order terms
in By are captured by C1;.

Theorem 6 (Second lower bound). Let B € R™*™ be symmetric positive semi-definite with rank(B) > n—r
for some r > 1, and partition

_|B11 B (n—r)x (n—r) rxr
B = l:B{Q 322:| where Bi; € R , By e R .

If By1 = Cyy + Cya where Cyy is symmetric positive definite with Apin(C11) > ||Baz|2, and Cia is
symmetric positive semi-definite, then

B C7 B2
_ || 22”2 H 11 ji”z’ 1<j<r
1 —[[Baz|2[|C1; |2

Ancris(B) > A (322 - BlTQC;llBu)

Proof. Define

B Cll Blz]
B = ,
{Bﬂ Bsy

and abbreviate Xn,rﬂ- = Aoy (B)7 1 <j <r. From (18) in Lemma 4 follows

Anori i (B) > X = A (Bzz — B, (Ci1 — M 1)71312) , 1<j<m,
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We proceed as in the proof of Theorem 5, and apply the Sherman-Morrison formula [GV13, Section 2.1.4],
(C11 = Ay D7H=CF 4 Ay CHH T = Ay C) IO,
and (19) to the expression for
(23) Mgy = X(M;),  1<j<m
from Lemma 4, where
M, =By —BL(Cii— Ny 1) 'Byy,  1<j<r
= By — B,C1' Bis — Ayrij B,C1' (I = Auyy; C1i) 7' C1y Bua.
From (19) and (20) follows the lower bound
M = Bay — B,C1'Bis — | Baz|s B,C1i (I = Ay C11!) 7' C1' Bz
| B22|l2 [|C1y Biz23 I
1 — | Bas|2 |C7 2

ol

= Z = By, — BL,C{'B1y —

1<j<r

i

Thus, M; = Z, 1 < j < r. The Loewner properties [HJ13, Corollary 7.7.4] imply the same for the
eigenvalues, A;(M;) > X\;j(Z), 1 < j < r. Combine this with the well conditioning of eigenvalues [GV13,
Theorem 8.1.5],

An—rtj = Nj(M;) > X\;j(Z) > \j(B22 — B{,B1' B12) — 7, 1<j<r

Theorem 6 reduces to Theorem 3 for » = 1, and to Theorem 5 for C'15 = 0.

3.2 A lower bound for a cluster of smallest singular values

We extend the bound for a single smallest singular value in section 2.2 to a cluster of smallest singular values.
The resulting lower bound for the cluster of perturbed smallest singular values (Theorem 7) is based on the
eigenvalue bounds in section 3.1, and expressed in terms of normwise absolute perturbations. We start with
a summary of all assumptions (Assumptions 3.1), and end with a discussion of their generality (Remark 3.1).

Assumptions 3.1. Let A € R™*™ with m > n have rank(A) > n —r for some r > 1. Let A = uxv”
be a full singular value decomposition, where 3 € R™*"™ 4s diagonal, and U € R™*™ and V € R™ "™ are
orthogonal matrices. Partition commensurately,

>, 0 E, E
=10 X, E=U |Ey, Ex»|VT,
0 0 E3  Es

where X1 € RM=)X(=7) 45 nonsingular diagonal, and Xy € R™*" is diagonal.
This bound below extends Theorem 4, and reduces to it for » = 1.
Theorem 7. Let A, E € R™*" satisfy Assumptions 3.1. If 1/||37 |2 > 4[| E|l2 and || S22 < || E||2, then
Onrij(A+E)> > N(ELEsy + (224 Eos) (B9 + E) — R3) —rq, 1<5<r,

where Rg contains terms of order 8

) S+ E
R;=E{,W +W"E;,, W= (S +En) " [Ex By { 2E32 22]

and ry contains terms of order 4 and higher,

B3 |(21 + E11) "' (Er2 + W)|I3
1= A E|3(Z1 + Eu) '3

ra = ||W]5+4

12



Proof. We square the singular values of A + E and consider the eigenvalues of the perturbed matrix

B=(A+E"(A+E)=V {B% B”] vT
B12 Bs;
where
(24) Bi1 = (21 + E)" (21 + En) + EJ Es + E E5y
Ci11 Ci2
(25) Bay = EL,E15 + (32 + E92) (29 + Ex) + E5,Es

By = (1 +En)'Ep+ ES (34 Eg) + E3T1E32~

From omin(X1) > 4| E||2 follows that C1; is symmetric positive definite, while C15 is symmetric positive
semi-definite and contains only second order terms. Abbreviate j\n,rﬂ = N—rtj(B) = 0p_rsj(A+ E)2,
1<j<r.

The proof proceeds in two steps:

1. Confirming that C'; satisfies the assumptions of Theorem 6.

2. Deriving the lower bounds for ;\,L_,.+j from Theorem 6.

1. Confirm that C;; satisfies the assumptions of Theorem 6 We show that A\pin(C11) > || Bazl|2,
by bounding ||Bazl|2 from above and Apin(C11) from below.
Regarding the upper bound for || Baz||2, the expression for Bss in (25) and the assumption || 2z]|s < || E||2

imply
T2
(26) |Bullz = ||[BY, (Baz+52)7 EB]"| < (1%l + 1B]2)* < 4] B3,

Regarding the lower bound for Api,(C11), view C11 = (21 + E11)7 (21 + E11) as a singular value problem,
50 that Amin(C11) = omin(E1 + E11)?. The well-conditioning of singular values [GV13, Corollary 8.6.2]
implies

| omin(B1 + E11) — omin(Z1)| < [[B1all2 < | El2.

Adding the assumption opmin (1) = 1/|| 27 |l2 > 4| E|2 gives
Omin(Z1 + E11) 2 omin(E1) — [|Ell2 > 4 E|2 — [|E|[2 = 3[| E]|2.
Now combine this lower bound for Ay, (C11) with (26),
Anin(C11) = Tmin(B1 + E11)? > 9| E[3 > 4| E|3 > | Baz|lo-

Hence Apmin(C11) > || Baz||2, and C1; satisfies the assumptions of Theorem 3.

2. Derive the lower bounds for Xn,rﬂ» from Theorem 6 In these bounds,

5 | B2z |2 | C17' Bi2 |3

(27) A— 1 Z)\(S)— — s SEBQQ—BT CilBlg,
T - Bal (G e

the key term is Cl_llBu. Insert the expression for Bis from (25),

(31 + E11)_T312 =FE;;+ (21 + Ell)_T (EQTl(Ez + Ey) + E§1E32)
(28) =FE ,+W.
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Combine the expression for C'1; from (24) with the above,

(29) Ci'Bi2=(Z1+E) ' (Z1+En) "Bia= (1 + En) H(E+W)

E >+W

Multiply the above by BT, on the left, and use (28),

BL,C{!'B1y =BY(Z, + E1) (21 + Ei) TBy,
= (Ep+W)(E+W)=ELE,+ELW+WTE,+W'W.

Substitute the above, and Bag from (25) into S from (27),
S = EP{2E12 + (22 + EQQ)T(EQ + E22) + E§2E32
— (E{,E12+ E,W + W E;; + W'W)
=E5E3 + (22 + E2) (Ss+ Ess) — Ry — W W.
The well conditioning of eigenvalues [GV13, Theorem 8.1.5] implies
(30) Xj(8) 2 Nj(E5y By + (S + E2)" (B2 + Ex) — Ry) — [ W3-
Substitute the bound for || Basl|2 from (26), and (28) into the second summand of (27),

| B2z [|C17' Ba2|/3 < 4HE||§ [(Z1+ En) (B +W)|3

(31) 12 < —
1= [ B2 [|C1' |2 1= 4| B3] (31 + Ewn) 73

At last insert (30) and (31) into (27). O

Remark 3.1. The assumptions in Theorem 7 are not restrictive. Only a small gap of 3| E|2 is required to
separate the small singular value cluster of A from the remaining singular values,

[Z2ll2 < [1E|l2 < 4 Ell2 < 1/Z7" |2

4 Numerical experiments

We present numerical experiments to illustrate that downcasting to lower precision can increase small singular
values, thus confirming that our bounds in sections 2 and 3 are informative models for the effects of reduced
arithmetic precision.

After describing the algorithms for computing the singular values (Section 4.1), we present the numerical
experiments (Section 4.2).

4.1 Generation and computation of singular values

The code for the numerical experiments consists of two algorithms: Algorithm 2 in Appendix A generates the
diagonal matrix 3 containing the exact singular values, while Algorithm 1 generates the matrix A € R™*"
from X in double precision, and then computes the singular values of A and those of its lower precision
versions single(A) and half(A). We use Julia programming language for our computations. The scripts
for reproducing the numerical experiment are published in our git repository?*.

The n singular values in the diagonal matrix 3 generated by Algorithm 2 consist of two clusters: a
cluster X of large singular values, and a cluster 35 of small singular values. Each cluster is defined by the
following input parameters: the number of singular values; the smallest and largest singular value; and the
gap between the two clusters. Specifically, cluster 37 consists of k1 > 0 singular values, the largest one being
10%* and the smallest one being 10°1~%. Here d; > 0 controls the distance between smallest and largest
singular value. If d; > 0 and k; > 2, then the interior singular values of 3; are sampled uniformly at random
in the interval [10%1 =41, 10%1].

4https://github.com/cboutsikas/small_sigmas_increase.git
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The parameter g controls the gap between the clusters, which is set to 109. Cluster X5 consists of
ks = n — ki > 0 singular values, the largest one being 105194 ~9, and the smallest one being 1051 ~%1—9—d2
where dy > 0 controls the distance between the smallest and largest singular value in cluster ¥,. If do >

0 and ko > 2, then the interior singular values of 3, are sampled uniformly at random in the interval
N (]

4.2 Numerical results and discussion

We present numerical experiments that corroborate bounds in sections 2 and 3. Our experiments are per-
formed on matrices A € R™*" with rank(A) = n, m = 4,096 and n = 256. We emphasize that changing
the matrix dimensions while keeping the aspect ratio m/n fixed does not change our conclusions.

Figures 1-4 show the exact singular values as well as the singular values computed in double precision,
which turn out to be identical in all cases. In addition, Figures 1 and 3 show the singular values computed
in single precision, while Figures 2 and 4 show the singular values computed in half precision.

To guarantee that our empirical evaluations satisfy Assumptions 2.1 and 3.1, we compute the singular
values with the Golub-Kahan Bi-Diagonalization® algorithm [GK65] in the respective precision. As in [GV13,
Algorithm 8.6.2] we assume that

UTAV =X + E,

satisfies || E|l2 = ul|A]|2 , where u is the unit roundoff [GV13, section], which depends on the underlying
precision®. Thus, we can express the assumption in Remark 3.1 as follows:
(32) Omax ¥ S 4omaxt S 1/|27H|2 = oper,

~

On—rt1 = [[B2fl2
for some r > 1. Table 1 shows the increase in the smallest singular value for » = 1; and the average increase
in the r smallest singular values » > 1. Since we describe a qualitative model, an increase can be observed
even when the assumptions are not satisfied. We provide demonstrations of two such cases in Appendix B.

min(X) | min(T?) [ min(E®) | avg(ET3) | min(Z?) | avg(Xh)
Fig. 1 | 1077 1077 6x107 [ 5x 1077 [ N/A N/A
Fig. 2 | 1073 1073 N/A N/A 4%x1073 [ 3x 1073
Fig. 3 [ 107 1075 6x10~% [4x107% [ N/A N/A
Fig. 4 | 1077 1077 N/A N/A 8x 1073 [ 6x1073

Table 1: Smallest singular values in Figures 1-4: exact (X); double precision (£9); single precision (X*); and
half precision (£"). The quantities avg(23) and avg(Xh) represent the average increase of the r smallest
singular values for single and half precision.

4.2.1 A single smallest singular value

We illustrate that downcasting to lower precision can increase the smallest singular value, thus confirming
that Theorem 4 represents a proper qualitative model for the effects of reduced precision. In Figures 1 and
2, the small singular value cluster 35 consists of a single singular value, while the large singular value cluster
33, contains 255 singular values.

Figure 1 The cluster ¥; contains 255 distinct singular values in the interval [107%,10%], while 35 contains
the single singular value 10~7. The values in Assumption 2.1 and (32) are

On f, Omax U f, 4 Omax U ,S Op—1 -
N—— N——
10-7 6x10—6 2.4x10—5 10—4

In single precision, the smallest singular value has increased by almost 5 x 107

5Julia computes the SVD with the LAPACK routine dgesvd(), which employs the Bi-Diagonalization method.
6In double precision (binary64), u = 2753 ~ 1.11 x 10716, in single precision (binary32), u = 2724 ~ 5.96 x 10~8; and in
half precision (binary16) u = 271! ~ 4.88 x 1074.
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Figure 2 The cluster X; contains 255 distinct singular values in the interval [10~%, 10!], while 35 contains
the single singular value 10~3. The values in Assumption 2.1 and (32)) are

On 5 Omax U f, 40maxu ,S Op—1 -
10-3 5x10—3 2x10~2 10-1

In half precision, the smallest singular value has increased to 4 x 1073,

4.2.2 A cluster of small singular values

We illustrate that downcasting to lower precision can increase the values of the cluster of small singular
values, thus confirming that Theorem 7 represents a proper qualitative model for the effects of reduced
precision. In Figures 3 and 4, the small singular value cluster 35 contains 28 singular values, while the large
singular value cluster 3; contains 228 singular values.

Figure 3 The cluster X; contains 228 distinct singular values in the interval [10~1, 10°], while 35 contains
28 singular values in the interval [107°,1073]. The values in Assumption 2.1 and (32) are

On—r ,S Omax U S 4Umaxu 5 Opn—r+1 -
~—— ~—— ~— ~——

10—3 6x10—3 2.4x10—2 101

In single precision, the smallest singular value of 35 has increased to 6 x 10™%, with an average increase of
4 x 10™* for the r smallest singular values.

Figure 4 The cluster ¥; contains 228 distinct singular values in the interval [10°,102], while ¥, contains
28 singular values in the interval [107%,1072]. The values in Assumption 2.1 and (32) are

On—r ,S Omax U 5 40maxu S On—r+1 -
—— ————

10—2 5x10—2 101 100

In half precision, the smallest singular value of Xy has increased to 8 x 1073, with an average increase of
7 x 1073 for the r smallest singular values.

5 Future Work

We investigated the change in the computed singular values of a full column-rank matrix A after it has been
is downcast to a lower arithmetic precision. Our lower bounds in Theorem 1 represent a qualitative model
for the increase in the smallest singular values of the perturbed matrix A + FE, which is confirmed by the
experiments in section 4.

Future work will consist of a quantitative analysis to determine the exact order of magnitude of the
increase in the small singular values and the structural properties of A that can contribute to it, including
specifically the size of the gap that separates the small singular values from the larger singular values; and
the condition number of A with respect to left inversion.

In addition, the influence of the third order perturbation terms needs to be investigated, as they might
possibly become dominant for ill-conditioned matrices A.

A Algorithms

We present pseudo codes for two algorithms: The function create_sigmas in Algorithm 2 computes the
singular values % according to the specifications in the input parameters params. Algorithm 1 constructs A
from X in double precision, and then computes the singular values ¢ of A, X° of single(A), and X" of
half(A). If d; =0 or do = 0 in Algorithm 2, then the cluster 3; or 35 consists of a single singular value of
multiplicity k1 or ko, respectively.
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Algorithm 1 Singular values of A, single(A) and half(A)

Input: Large matrix dimension m, params
Output: Singular values of A in double, single, half precision
Y + create sigmas(params) {Exact singular values}

n < length(X) {Small dimension of A}

[U,S,V] < SVD(randn(m,n)) {Left and right singular vectors for A}
A« UxvT {Compute A in double precision}

>4« SVD(A) {Singular values of double precision A}

3% < SVD(double(single(A)) {Singular values of single precision A}
3" < SVD(double(half(A)) {Singular values of half precision A}
return X, ¥4 ¥ »h

Algorithm 2 Exact singular values: function create_sigmas

Input: params = {s1,9, k1, k2,d1,da}
Output: Exact singular values 3

Y + zeros(ky + k2, 1) {Initialize vector of all singular values}
3, « zeros(k, 1) {Initialize cluster of large singular values}
35 + zeros(ke, 1) {Initialize cluster of small singular values}

3(1) + 10% {Largest singular value}

if k1 > 1 then

2 (k) < 10574 {Smallest singular value in 3;}
end if
{Uniform sampling of interior singular values in cluster X}
for j=2:k —1do

31 (j) « Uniform([34(ky), 31(1)])
end for
(1) + 1051 7h—9 {Largest singular value in 35}
if ko > 1 then

3o (ky) < 1051~ d1—9—dz {Smallest singular value in X5}
end if
{Uniform sampling of interior singular values in cluster ¥}
for j=2:k —1do

39(j) < Uniform([Xa(ksy), Xa(1)])

end for
3 [Xq, 3] {Concatenate the two singular value clusters}
return sort(X) {Return sorted singular values in non-ascending order}
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1:  The matrix A € R1096%256 hag 255 distinct singular values in [107%,10%], and a single small
singular value 1077.
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B Supplementary material

All panels: Double precision singular values (squares). Left: Exact singular values

We illustrate that downcasting to lower precision can the increase the set of the smallest singular values,
even when the Assumptions 2.1, 3.1 are not satisfied. We present two additional plots, and specifically
Figure 5 shows the increase of the computed smallest singular values in single (r = 28) and Figure 6 shows
the increase of the computed smallest singular value in half (r = 1).

min(X) | min(T7) | min(E?) | avg(E3) | min(Z?) | avg(Zh)
Fig. 5 | 1077 1077 5x 107" [ 4x 107> | N/A N/A
Fig. 6 | 1073 1073 N/A N/A 6x107% [ 5x 1073

Table 2: Smallest singular values in Figures 5-6: exact (X); double precision (£9); single precision (X*); and
half precision (£"). The quantities avg(23) and avg(Xh) represent the average increase of the r smallest
singular values for single and half precision.

Figure 5 The cluster X; contains 228 distinct singular values in the interval [10~2, 10%], while 35 contains
the smallest 28 singular values in the interval [10~7,107%]. The values in Assumption 3.1 and (32) are not

18



101! E 101! E

100 _E “. 100 _E ‘-.

101 E ws| 1071 E 1!
102 E 102 E

[0 Double 1 O Double "

10734 V Exact Y 1073 ¢ & Half =

0 50 100 150 200 250 0 50 100 150 200 250

Figure 2: The matrix A € R096%256 hag 255 distinct singular values in [107!,10!], and a single small
singular value 1073, All panels: Double precision singular values (squares). Left: Exact singular values
(triangles). Right: Half precision singular values ( ).

satisfied since

~

N~
10—4 6x10—2

On—r S Omax U
——
4amax U > Op—r4l -
— ~——
2.4x10-1 10-3

However, the smallest singular value of 35 has increased to 5 x 1075, with an average increase of 4 x 10~°
for the r smallest singular values.

Figure 6 The cluster X; contains 255 distinct singular values in the interval [1072,102], while 35 contains
the single singular value 10~2. The values in Assumption 2.1 and (32) are not satisfied since

On S Omax U,
——
10-3 5x10—2

40maxth > Opn_1.
H/_/ v

2x10-1 10-2

However, in half precision, the smallest singular value has increased to 6 x 1073.
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Figure 5: The matrix A € R*096%256 hag 228 distinct singular values in [1073,10%], and 28 distinct singular
values in [1077,1074]. All panels: Double precision singular values (squares). Left: Exact singular values
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Figure 6: The matrix A € R%096%256 hag 228 distinct singular values in [1072,102], and a single small singular
value 1073, All panels: Double precision singular values (squares). Left: Exact singular values (triangles).
Right: Half precision singular values (stars).
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