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1 Introduction

The transition from characteristic functions to corresponding distribution functions is commonly
performed with the help of the Fourier inversion formula

T
—ite __ —ity
)~ Fly) = 5= Jim [ S payar, (L.1)
-7
where -
£(t) = / ¢ qF (z) (1.2)

denotes the Fourier—Stieltjes transform (the characteristic function) of an arbitrary Borel prob-
ability measure p on the real line with the associated distribution function F'(z) = u((—o0,z])
and z,y € R are points of continuity of F'.

Although the convergence in (1.1) might not be uniform with respect to z, y, in various
asymptotic problems it is desirable to have a uniform bound for the error of approximation

op(T) = sup
zy

(1.3)

(Pa) - F) - 5 [ it

-T
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for large values of T'. One natural bound which immediately follows from (1.1) is given by
o
t
51 (T) < /%lﬁ (1.4)
T

If the measure p is absolutely continuous and has a density of bounded total variation, then
ft)=0(1/t) as t — oo, and (1.4) yields ép(T) = O(1/T). However, in general, the integral in
(1.4) can be divergent.

For quantified statements, one can also use the Lévy (maximal) concentration function

Qr(h)=sup P{z < X <z +h}=sup(F(z+h)— F(z—)), h>=0,

where X is a random variable with distribution p. For example, suppose that p is unimodal
(i.e., it has a density p(z) which is nondecreasing for < a and is nonincreasing for x > a for
some point a € R). In this case, it was shown by Ushakov [1] that, for all £ > 0,

f(®)] < Qr(r/t)

(see also [2, p. 95]). Using this pointwise bound in (1.4), we find

w/T
5F(T)<%/QFh(h) dh. (1.5)
0

In this paper, we consider a general situation (including discrete probability distributions),
thus removing any constraint on the shape of the distribution.

Proposition 1.1. Given a distribution function F', for all'T > 0

Mﬂgﬁ%+ﬂ/%%%ﬂh (1.6)
0

Under quasi-Lipschitz conditions posed on F, the last integral can be further estimated.

Corollary 1.2. If the distribution function F satisfies
[F(x) - Fy)l < M (e + |z —yl), =zy€eR, (1.7)

with some M > 0 and & > 0, then for all T > 2

2 logT
5F(T)<f+4M(e+ > ) (1.8)

If M > 1, one can simplify the above inequality as the representation

—itx __ —it
Flz) - Fly) = — / % F(t)dt+ oM (= + loiT)
T
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with a quantity 6 bounded in absolute value.

The logarithmic term in (1.8) cannot be removed under the condition (1.7), even with € = 0,
i.e., when p has a bounded density p. In this case, let us introduce the functional

M(F) = ||F||Lip = esssup p(x),
T
where ||F'||rip denotes the Lipschitz seminorm (with respect to the Euclidean distance).

Proposition 1.3. For M >0 and T > 2M

log(T/M) < swp p(T) <o log(T'/M)

T/M M(F)=M /M (1.9)

with some absolute constants c1 > co > 0.
These relations are invariant under linear transformations: (1.9) does not change when the
random variable X with distribution function F'is multiplied by any positive constant.

As for distribution functions of class Lip(«) with parameter o < 1, there is a similar upper
bound, but without the logarithmic term.

Corollary 1.4. Let 0 < a < 1. If the distribution function F satisfies
[F(z) = F(y)l < M (e + [z —y[*), z,y€R,

with some M >0 and € > 0, then for oll T > 0,

5r(T) <%+4M(5+W).

If € = 0, this bound is consistent with what is obtained on the basis of the inequality (1.5),
up to an a-depending factor.

The right-hand side of (1.6) can also be related to the characteristic function f associated
to F', by applying Esseen’s upper bound

1/h

Qr(h) <ch/\f<t>|dt, h> o,
0

where ¢ is an absolute constant (see [3]). This leads to the inequality

clogT
T

T
5r(T) < 2+ /]f(t)\dt, 70
0

However, here the logarithmic term can be removed. One smoothing type result by Prawitz [4]
implies the following sharpening of the upper bound (1.4).

Proposition 1.5. Let X be a random variable with distribution function F' and characteristic

function f. For any T >0,
T

[1swla (1.10)

0

6r(T)

N
N
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In particular, if f(t) is nonnegative, then with some absolute constant ¢ > 0,

5p(T) < cP{|X| < 1/T). (1.11)

If, additionally, X has a bounded density (which is equivalent to the integrability of f when
this function is nonnegative), the latter inequality yields

5p(T) < QC@. (1.12)

This improves upon (1.8).
2 Functions of Bounded Total Variation

Proposition 1.1 is a consequence of a more general assertion for the class of functions F' of
bounded total variation on the real line. Denote by |dF(z)| the variation of F' viewed as a finite
positive Borel measure on the real line with total variation norm ||F||1v.

Proposition 2.1. Let F' be a function of bounded total variation with the Fourier—Stieltjes
transform f defined by (1.2). For all z,y € R and T >0

1 efitx _ efity
F(z) - F(y) = g/i—it f(t)dt
-T
[ dF()] 7 dF(2)]
+91/71+T|Z—£C|+02 T+ T2y (2.1)

with some complex numbers 01 and 0y such that [0;] < 1.

The last two integrals in (2.1) are bounded by || F||Tv. Since also |F(z) — F(y)| < || F||Tv,
we see that the error function (1.3) is uniformly bounded, namely,

Op(T) < 3||F|ltv, T>0.

Moreover, by the Lebesgue dominated convergence theorem, these integrals are convergent to
zero as T — 0o, as long as x and y are points of continuity of F', and then in the limit we return
o (1.1). Hence (2.1) can serve as a quantification of the Fourier inversion formula.

Now, introduce the function

t
R(t):/smudu, teR.
u
0

It satisfies R(t) — 7/2 as t — oo and R(—t) = —R(t) for any t > 0. Also, put

u

r(t) = / snw g, o R(). (2.2)
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As a preliminary step towards the proof of Proposition 2.1, first let us prove the following
assertion.

Lemma 2.2. Forallt >0

T
< ——. 2.3
O] < (23)
Proof. Integrating by parts with ¢ > 0, we have
[o.¢] o
/sinudu: cost _/COSQ”LL " (2.4)
U t U
t t
which implies
2 us
rt))| < - < ——, t=>th= = ~ 1.752
t 1+t -
To treat the values 0 < t < tg, consider the function
t .
T s sin u T
H=rt)— — == — du — .
) =r®) -7 =3 / v T
0
Using the inequality
3
sinu}u—% (u>0),
we get
W(t) <o(t) = = P S
SNY% == — To 1 =
2 18 141
To show that v(¢) < 0 in the interval 0

< t < tg, consider the polynomial

P(t) = (1+t)w(t) = (1+1) (7T r

18
We have P(0) = v(0) = —7/2 and

2 23
P’(t):g—1—2t+—+—,

T
P(0) ==
Since also

- 1.
2

Pty =2 (+2)(t - 3),

2
we conclude that P(t) is concave in 0 < ¢t < 3/2 and is convex in ¢ > 3/2. This implies that, on
the first interval,

T U 3 w3
Pt)< P POt < —= (——1)—:——— :
(1) (0) + P(0) 5 T35 5= 1 2<0
—2.82... < 0, we also have, by convexity, P(t) < 0in 3/2 <t < tg. Thus, P(¢t) <0
to, and the same is true for v(t) and ¢ (t) as well, i.e., r(t) < 7/(1 + t).
570
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As the next step, consider the function

T T
H<olt) = —— 4t — ——
YO <o) = -3+t
The function v(t) is increasing, so that
om
v(t) <o(ty) <v(2)=2-— 5 < 0.

Thus, ¢(t) <0, i.e., —r(t) < 7/(1 +t). The two bounds yield the desired inequality (2.3). O

Proof of Proposition 2.1. By the Fubini theorem,

(— ity T T eitte—a) _ git(z—y)
e~ itr _ o1 eitlz—z) _ pit(z—

I= | ——M— = F
/ ———f)dt / [/ — dt | dF(z)
=T —oo =T

0 T . .
_ / [/ sin(t(z — x)) ; sin(t(z — y)) it | dr(2).
—oco -0
Hence, in terms of the function R, we obtain the general representation
1 o0
31— [ [REG— ) — RTG — ) dF (),

We can assume that z,y are points of continuity of F' and x > y. Splitting the integration
into the three regions, write

Y

I= / [R(T(x — 2)) — R(T(y — ))] dF(2)

—0o0

N =

(e}

" / [R(T(z — y)) - R(T(z — 2))] dF() + / [R(T(z — y)) + R(T(x — 2))] dF(2).

T

Equivalently, by the definition (2.2),
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Let us rewrite this equality as

Yy
31— (P @)~ F) = [Ty - 2) = (T~ ) dF ()

+ /[T(T(Z —z)) —r(T(z —y)dF(z) - /[T(T(Z —y) +r(T(x—2)dF(z).  (2.5)

Applying the bound (2.3), we get

y Y
|57~ (P ()~ F)| < / eI+ / re— )
—i—/mdF(z)—i—/mdF(z)—i—/<1+T7(Tz_y) + 1+T7(rx_z)>dF(z).
z z Y
As a result,
%I_ (F(2) —F(y))‘ S / <1+T1]z—y\ * 1+TL:—Z\) dF(2).
The proposition is proved. ]

3 Proof of Proposition 1.1, Corollaries 1.2 and 1.4

From now on, let F' be a distribution function. In this case, the relation (2.1) is simplified to

T 0o 00
1 —ite __ ,—ity dF dF
F(l')_F(y):%/%f(t)dt—Fel/W(ZZ)_M—FGQ/W(;)_Z/’ (3.1)

=T —00 —00
with some complex numbers 6; such that |6;| < 1.

Proof of Proposition 1.1. To estimate the last integral in (3.1), assume without loss of
generality that y = 0 and that it is the point of continuity of F'. First, note that
oo

/ 1 +1Tz dF(z) < 7 +1Ta (1= F(a)),

a

where a > 0 is a point of continuity of F. On the other hand, integrating by parts, we have

a

1 1 [ F(z) - F(0)
/ R () = (F(a) — F(0)) + T/ el
0 0
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Combining the two estimates and letting a — 1, we get

S 14T

O\H
s
5o

U

T 1
!1+T/m@)<___u_pm»+T

By a similar argument,

0

1
/#dF(z)é LF(O)—!—T/QF—(z)dz,
0

14Tz 1+T (1+Tz)?
—0o0
so that
i Qr(2)
1 1 F
F(z) < —— +2T

/1+TM B <irt L/Q+T@2

S 0

More generally, for all y € R

00 1
1 1 Qr(z)
————dF(2) < —=+2T | ——=55d=.
/1+Tz—y| @ <pt /(1+Tz)2 :
— 00 0
y (3.1), the error function (1.3) admits the upper bound (1.6). O

Proof of Corollaries 1.2 and 1.4. In the setting of Corollary 1.2, Qr(h) < M (e + h) for
all h > 0. Hence the integral in (1.6) does not exceed

1
e+h M M T
M 5 (log(1+7T) = ——).
/1+Th St (el +T) -
0
Here, the expression in the brackets is smaller than log T for T" > 2.

In Corollary 1.4, we assume that Qp(h) < M(e + h®), h > 0. Then the integral in (1.6) is
bounded by

T et he Me M T ue
€+ € U
M = — d
/ 1+ Th)? T 7 | Trap™
0 0
o
Me M du Me
+ =—+

T Tetl | 14w T (1—a)Totl
0

The corollaries are proved. O

Remark 3.1. In connection with the use of the function Q) in Proposition 1.1, one can
also recall the Kawata mean concentration function

o
1

Cr(h) = - / (F(z+h) — F(z))*dz, h>0,

—00

573



which is related to the maximal concentration function via the inequalities

%Qp(h/Q)Q < Cr(h) < Qp(h).

The relationship between the behavior of Qr(h) and Cr(h) at h = 0 in the form of Lipschitz
properties of F' and that of the characteristic function f(¢) at infinity were studied by Kawata
[5] and Makabe [6]. Some portion of connections is based on the Parseval identity

2 ht?

—00

crom = 5 [ U0 par

4 Proof of Proposition 1.3

First, let us verify that the inequality (1.9) is invariant with respect to linear transformations
of a random variable X with distribution functions F'. Define

e—im _ e—ity
Irr(z,y) = / —— — f)dt,
S

where f is the characteristic function of X. For A > 0 the random variable AX has respectively
the distribution and characteristic functions Fy(xz) = F(z/)), fa(t) = f(At), (z,t € R). Hence

T . .
e—ztz/)\ _ e—zty/)\

—[F/\,T(‘T7 y) = / it f(t) dt = IF)\T({/U//\,y/)\),
—A\T

and it follows from the definition (1.3) that ép, (') = dp(AT).
In addition, M(Fy) = M(F)/A. Therefore, if (1.9) holds for F with an arbitrary value
T > 2M(F), it will hold automatically for F)\ with T > 2M (F}).

As a consequence, to prove the upper bound in (1.9), we can assume without loss of generality
that M = 1. But then, by Corollary 1.2, for any T > 2
2 logT

logT
T < T 4 g )
0r(T) T + T 7 T

i.e., we obtain (1.9) with ¢; = 7.
Let us now turn to the lower bound. By the homogeneity with respect to X, assume again
that M = 1. Then we need to show that

logT
T

for some distribution function F' such that M(F) = 1. So, fix T' > 2.

Suppose that F' corresponds to the probability measure p which is supported on the interval
(0,27) and is symmetric about the point 7. In particular, x = 27+27m/T and y = —27m/T are
points of continuity of F' for any integer m > 1 (which will be chosen later on), with F'(z) = 1,
F(y) =0, so that F(z) — F(y) = 1.

6p(T) = co (4.1)
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As in the proof of Proposition 2.1, define

T + ity
e—ite _ =i
= [ ——¢ .
/ iy
=T

Note that the first two integrals in (2.5) are vanishing, and this identity is simplified to

27 27
%I —T=— /(T(T(Z —y)+r(T(x—=2)))dF(z) = 2/7’(T(z —y))dF(z),
0 0
where we used the symmetry assumption at the last step. This gives
27
6(1) > = [ r(T(z ~ ) dF (). (12)
0

Put Ty = [T] and define A to be the union of the intervals of the form

2
Ak:%(k—h,k+h), k=1,...,Ty—1,
with 0 < h < 1/2, so that these intervals are disjoint. In this case, A is contained in (0, 27) and

has the Lebesgue measure
= T)—1
b —
|A| = kg_l |Ag| = 47h T

Moreover, let us require that |A| =1, i.e.,

1T
A Ty -1

Since the last ratio is maximized for T 1 3, we have

— <h< =, (4.3)

Sp(T) > 2 / r(T(z — y)) dz. (4.4)

It remains to properly estimate the above integrand. For this aim, let us integrate in (2.4) once
more, which leads to

cost sint

The last integral is smaller than 1/(2t2), so,

2 1 2
r(t)g———:z(cost—g), t>0. (4.5)

975



Let t =T(z —y) for z € Ak, 1 <k < Ty. Then t = 27(k + 6) 4+ 27wm for some 6 € (—h, h),
so that
cost = cos(2m6) > cos(2mh) > cos(3/2) = 0.0707...,

where we made use of the upper bound in (4.3). On the other hand,
t = 2m(k —h) + 2rm > 2wm.

It follows that

~+~ | Do

1
cost — — > cos(3/2) — — > 0.01,
™m

where, at the last step, we choose m = 6. Then t < 27(k+ h) +2mm < 27(k+7) and, by (4.5),

0.01
r(t) =

> Ty, A
e [ TTEmY), zE A

Returning to (4.4), this gives with some absolute constant ¢y > 0

To To
2 0.01 0.04h 1 log T
or(T) 2 = = Ak = > ;
r(T) 71';27r(k—|—7)| ¢l T };k+7 07T

where we made use of the lower bound in (4.3). This proves (4.1).
5 Proof of Proposition 1.5

We apply smoothing inequalities due to Prawitz [4]: For an arbitrary distribution function
F with characteristic function f and any point z € R

T T
%— / eIt o (<) F(£) dt < F(z) < % + / et K (D) (1) dt. (5.1)
-T =T

Here, for a fixed value T > 0 the kernel is defined by

ot~ b (2)

where

@q

K(t) = 3 (1= Jt]) + 2 (1~ [t cot(mt) + <1

The integrals in (5.1) are understood as principal values, i.e., as limits of the integrals over the
regions € < [t| < T as € | 0. It was also mentioned in [4] that
i

|
ortl 4

= (= Jt)? [1 + (% - cot(wt))]Q,

which can be estimated by means of the elementary bound

‘K(t) -

. 1 =z =
cota;/;—gﬁz_ 7, O0<z<m.
It is easy to see that this leads to
1 1
K@) - 5| <5 M<t
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Applying this bound to (5.1), we arrive at the representation

ﬂ@_l+ii/i:f®ﬁ+R (5.2)
“r

with the remainder term satisfying

T
Rl < 5 [ 150]dr 5.3
T

Thus, for all z,y € R

—ity

T
1 e T _ ¢
F(z) = F(y) = o /T
“r

T
fyde+ 3 [ 1rw]d
~r

with some complex number 6§ = 0(z,y,T) such that |#] < 1. As a consequence, similarly to the
Esseen bound with h = 1/T", we obtain the desired inequality (1.10).

If f(t) is nonnegative, the normalized integral in (1.10) is equivalent to P{|X| < 1/T},
assuming that the random variable X has the distribution function F' (see, for example, [7, p.
27]). Therefore, in this case, (1.10) can be written up to some absolute constant ¢ as (1.11).

Remark 5.1. With the factor 1/T in front of the integral in (5.3), the representation (5.2)
appeared in [8, Lemma 4.1].

Let us explain why the inequality (1.11) improves upon (1.4). Consider the function

t

Im:/wmm 120,

0

assuming for a moment that I(t) = o(t) as t — co. Then, integrating by parts, we have

(/%gﬁ—/%ﬂw—ﬂﬂ+/””a>ﬂﬂ.
T T

T 12 T
T

At this step, the assumption on the growth of I(t) can be dropped. Hence (1.11) implies
o0
ety <2 [ 0Ly,
T
i.e., (1.4) with an extra factor.

6 Squares of Bernoulli Sums

To illustrate Corollaries 1.2 and 1.4 by specific examples, let us fix an integer d > 1 and

consider the normalized sums
1
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of independent random vectors Xj, uniformly distributed in the discrete cube {—1,1}¢. By
the central limit theorem, the distributions of ZT(ld) are weakly convergent as n — oo to the
distribution of the random vector Z(9) in R% with the standard normal law.

Let F* and F*? denote respectively the distribution functions of the random variables

¢ Lz

1 2

)

¢d) = L z@p,
2

If d = 1, we simplify the notation: Z, = ZT(LI), Z=2zM ¢, = gﬁf), ¢ = W and similarly for
the distribution functions Fj, = F\Y, F = F().

Note that 2&, is the square of the sum of n independent Bernoulli random variables taking
the values +1 with probability 1/2, and {,(fl) is the sum of d independent copies of £,. Hence
F*4 and F*¢ represent the d-th convolution power of F,, and F, respectively.

First let us look at the one-dimensional case d = 1. In terms of the distribution functions
¢, (x) =P{Z, < z} and ®(z) = P{Z < x}, we have

Fo(x) = P{|Z,] < V21} = 2®,(vV22) — 1,
F(z) = P{|Z| < V2z} = 20(V2z) - 1,

for all x > 0. It is well-known that, up to some absolute constant ¢ > 0,

1
On(@) = aly) (= e —vl), wyeR,

and obviously |®(x) — ®(y)| < |z — y|. Thus,
1
vn

and F(z) — F(y) < Vx —\/y for x >y > 0. Since /2 — \/y < /z —y, we are in position to
apply Corollary 1.4 with a = 1/2. Introduce the characteristic functions

Ful@) = Fuly) < e (= + V& = Vi),

o0

Fult) = B2/ - / 112 4 (1), (6.1)
A s 1
F(t) = Bel'Z*/2 = / 172 1B () = S t € R, (6.2)

associated with the distribution functions F,, and F'.

Corollary 6.1. For allxz,y € R and T >0

R~ ) = 5 [ S a0 (= ),

4-

27 t
-T
Fla) - F(y) 1/T Y rwyar+ -2
x) — Fy) = o= . t)dt + ——,
27 —t T
_T \/_
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where 0 is bounded in absolute value by an absolute constant.

Thus, if T' > n, then dg, (T') < ¢/+/n and similarly for F'. Note that F,,(x) makes a jump of
order 1/y/n at x = 0 for large even values of n.

7 Approximation for Convolutions F*?

If d > 2, the remainder term in the Fourier inversion formula is improved for the d-th
convolution power F*¢ of the distribution Fj, with its characteristic function f,,(t)? (recall that
fn(t) was defined in (6.1)). To see this, here we focus on the case d = 2. In what follows, we
use the sequence

1
_ ogloglogN7 N>3
loglog N
(putting 1 = g9 = 0 for definiteness).
Corollary 7.1. For allx,y € R and T > 2
1 e~ir _ ity 1 logT
F*2 - F*Q _ = e —e 2 en <_ )
Po) - F2) = o [ S @ o (14 22T,

-T
where the quantity 0 is bounded in absolute value by an absolute constant.

Note that the random variable £ has a standard exponential distribution with the distri-

bution function
F2r)=P{EP <a}=1—e® (2>0)

and characteristic function f(t)> = 11, cf. (6.2). Therefore, by (1.4),

T
. . 1 e—itz _ e—ity 0
=T

To prove the corollary, we need an upper bound for the number of representations of a
natural number N as the sum of two squares of integers, which is commonly denoted as

ro(N) = card {(k1, ko) : k¥ + k2 = N, ki, ko € Z}.

It is well known that ro(N) = o(N¥) for any € > 0 as N tends to infinity. Let us give a more
precise statement which seems to be also known, although we cannot give a precise reference.

Lemma 7.2. For A > 1/2 we have r2(N) < N*N for all N large enough.

Proof. One can employ the following representation [9]: If
N = ZO‘p?l...pff’"q?l...qfs
is the decomposition of N into prime factors, where p; = 1 (mod4), ¢; = 3 (mod 4), then

4(oq +1)...(ar +1), all B; are even
ra(N) =
0, some of [3; is odd.
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Therefore, starting from the prime factorization without the above specification

N=p"...py", 2<p1 <---<pp, (7.1)
we have
7"2(]\7)<4(a1—|—1)...(ar—|—1)<2T+2a1...ar. (7.2)
Necessarily, N > p1...p, > r! implying that for all N large enough
log N
<A—. 7.3
" loglog N (7.3)

Indeed, assume that the opposite inequality holds. Then for a given ¢ > 0 we would get
logr —1 >log A —1+1loglog N —logloglog N > (1 —¢) loglog N

for sufficiently large N. Using r! > (r/e)"/r and choosing ¢ = (2A — 1)/(2\ + 1), this would
lead to

log N 1-—
08 (1 —¢) loglog N + <

1
log(r!) > 7 (logr —1) + S logr > A loglog N = log N,

loglog N
contradicting to 7! < N. Thus, by (7.3) with A < 1/log2,
log N
or — rlog 2 < { }
c S P loglog N J’
so that, by (7.2),

log N }

TQ(N) <40él...06r exp{w

(7.4)

Now, taking the logarithm in (7.4), let us maximize the concave function in r real variables
u(aq,...,ap) =loga; +---+loga,, ai,...,a, >0,
subject to the linear condition cia; + - -+ + ¢, = ¢ with ¢; = logp; and ¢ = log N, according
to (7.1). Treating «, as a function of the remaining variables and assuming that r > 2, we have
ou 1 ¢ 1

=————=0, 1<ig<r—1,
doy o ¢ O

which means that the point of maximum of u satisfies ¢;a; = b for all ¢ < r. Since the sum of
cia; is ¢, we get b = c¢/r, a; = ¢/(¢ir), so

c?"

maxu = log(ay ...q,) = log ——.
r’ey...cp

This also holds for r = 1. Using c; ...c, > log?2, we get
< (logN)T

Qy ... < .

! " rlog?2

But the function ((log NV)/(xzlog2))* is positive and increasing for 1 < = < (1/(elog?2)) log N.
In view of (7.3), our values of r belong to this interval for all N large enough as long as
1/2 < A < (1/(elog?2)) ~ 0.53... which can be assumed. We then get

log N\r _ /Aloglog N\ msvsls Alog N
(Fiogz) < )" = ey

111N1A—112}.
rlog 2 log 2 loglog]\f(og oglog ¥+ og oglog2)

It remains to recall (7.4) and note that A can be as close to 1/2 as we wish. O
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Proof of Corollary 7.1. Recall that

5( ) _Z2 + Z/2

n 2 no
where Z!, is an independent copy of Z,,. By the local limit theorem for the binomial distributions,

P{Zn - %} < % ke, (7.5)

with some absolute constant ¢ > (0. Since the random variable 57(12) takes values of the form
N/(2n) with N = k? 4+ k2 (k1, ko € Z), the inequality (7.5) yields

P{c? - 2n} = k%%NP{Zn - %}P{Zn = %} < = ra(N).

Note that |Z,| < v/n. Hence we only need to consider the values N < 2n2. In this case, since

n®" is increasing for large n, while €y,2 ~ €y, from Lemma 7.2 for all n large enough we have
3

ro(N) < nicm? < nr. Thus,

N c
P{ (2):_}<_ en 7.6
=21 < (7.6
Now, suppose that z > y > 0 and 1/n < z —y < 1. The interval [y, z] contains at most

2n(x —y)] + 1 < 3n(x — y) points of the form N/(2n) with integers N. Hence

F2a) - F20) = Y Ple=1 ) <en® (x—y)

y<%<$
Combining this with (7.6), it follows that F? satisfies the quasi-Lipschitz condition

() - FR )| < e (5 + o~ y]) (77)

for all x,y € R up to some absolute constant ¢ > 0. We are in position to apply Corollary 1.2
to F,, with e = 1/n and M = cn?n. O

8 Approximation for Convolution Powers F*?

As the last example, consider the distribution functions F*3 of the random variables

5( ) - Z2 ZI2 Z//2

n 2 n
where Z!,, Z!' are independent copies of Z,,. The next assertion is analogous to Corollary 7.1.

Corollary 8.1. Forallz,y € R and T > 2

T
1 [ e _emity 1 logT
*3 3 - 3 en —
F@) = B0 = 5 [ S fad o (4 25D,
=T
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where f,(t) is the characteristic function of % Z2 and where 0 is bounded in absolute value.

Proof. By Lemma 7.2, the set Q = {(k1, k2, ks3) : k¥ + k3 + k3 = N, k; € Z, |kj| < n} has
cardinality
r3n(N) = card (Q) < ey/n N3~/ (8.1)

(where ¢ > 0 is an absolute value which can vary from place to place). Since 57(13) takes the
values N/(2n), where N = k? + k3 + k3 with k; € Z, |k;j| < n, we obtain, by (7.5),

P{e? = %} < (khgﬁ)EQP{Zn - %}P{Zn _ %}P{Zn - %} < ng—c/Qrs,n(N)-

Hence, by (8.1),

P{ (3) _ ﬁ} < C N3N/,
" 2n n

Since |Z,| < /n, it is necessary that N < 3n2. As we noted above, n°" is increasing for large
n, while 3,2 ~ &,. Therefore, we arrive at the same bound as in dimension two,

Pl i} <o

With a similar argument, this implies that the distribution functions F;, of the random variables
&y, satisfy the quasi-Lipschitz condition (7.7). One can therefore apply Corollary 1.2. O

Remark 8.1. For the convolutions F** with larger values of k (at least for k > 4) one can

derive similar representations as in Corollaries 7.1 and 8.1 without the factor n°». In this case,

k
the number r(n) of representations of n as a sum of k squares of integers is approximately nz"1

within k-dependent factors. There is an intensive literature on this topic (see, for example, [10]).
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