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Abstract

We present a new method for introducing stable non-equilibrium concentration gradients

in molecular dynamics simulations of mixtures. This method extends earlier Reverse Non-

Equilibrium Molecular Dynamics (RNEMD) methods which use kinetic energy scaling moves

to create temperature or velocity gradients. In the new scaled particle flux (SPF-RNEMD)

algorithm, energies and forces are computed simultaneously for a molecule existing in two

non-adjacent regions of a simulation box, and the system evolves under a linear combina-

tion of these interactions. A continuously increasing particle scaling variable is responsible for

migration of the molecule between the regions as the simulation progresses, allowing for simu-

lations under an applied particle flux. To test the method, we investigate diffusivity in mixtures

of identical, but distinguishable particles, and in a simple mixture of multiple Lennard-Jones

particles. The resulting concentration gradients provide Fick diffusion constants for mixtures.

We also discuss using the new method to obtain coupled transport properties using simul-

taneous particle and thermal fluxes to compute the temperature dependence of the diffusion
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coefficient and activation energies for diffusion from a single simulation. Lastly, we demon-

strate the use of this new method in interfacial systems by computing the diffusive permeability

for a molecular fluid moving through a nanoporous graphene membrane.
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1 Introduction

Fick’s law connects a particle flux (J) of one component (i) in an n-component mixture with gra-

dients of the mole fractions,

Ji =−ct

n−1

∑
j=1

Di j∇x j i = 1, . . . ,n−1. (1)

Here ct is the total molar concentration, x j is the mole fraction of component j, and Di j are the

Fick diffusivities. In a single component or binary mixture, where there is only one independent

flux, this simplifies to a single expression,

J1 =−D∇c1 , (2)

where the diffusion coefficient depends on the molecular details (and the thermodynamic state

point).

The Maxwell-Stefan (MS) model provides a generalization to Fick’s law (Eq. (1)), for multi-

component mixtures, accounting for non-ideality. It begins with gradients of the chemical poten-

tial,
xi

RT
∇T µi =

n

∑
j ̸=i

xiJ j− x jJi

ct-Di j
i = 1, . . . ,n−1. (3)

Here ∇T µi = ∇µi− (∂ µi/∂T )∇T , becomes the gradient of the chemical potential of species i

when the system is under isothermal conditions. -Di j represents the MS diffusion coefficient for

the i− j pair. Because MS diffusion coefficients are symmetric, -Di j = -D ji, and there are n(n−

1)/2 diffusivities needed to fully describe mass transport. This is in contrast with with the Fick

formulation, where diffusion coefficients in mixtures are not generally symmetric, so (n− 1)2

diffusivities are needed to describe transport.1–3

In molecular simulations, chemical potentials are not simple quantities to calculate, so it is

convenient to write MS diffusion (Eq. (3)) in terms of spatial composition gradients. The chemical

potential, µi = µ◦i +RT ln(γixi), depends on the mole fraction and the activity coefficient, γi, which
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may depend on the other components in the mixture. Chemical potential gradients can therefore

be expressed in terms of spatial gradients of the composition,

xi

RT
∇T µi =

n−1

∑
k=1

(
δik + xi

(
∂ lnγi

∂xk

)
T,p,Σ

)
∇xk

=
n−1

∑
k=1

Γik∇xk . (4)

Here δik is the Kronecker delta, the derivative now holds temperature (T ), pressure (p), and all

other mole fractions (Σ) constant, and ∇xk is the composition gradient for species k. Kirkwood and

Buff originally connected the thermodynamic factor, Γik, to composition fluctuations in the grand

canonical ensemble.4 Using this thermodynamic factor, Eq. (3) simplifies to a convenient form,5

n−1

∑
k=1

Γik∇xk =
n

∑
j ̸=i

xiJ j− x jJi

ct-Di j
, (5)

where the particle fluxes are connected to the compositional gradients.

1.1 Diffusion via Equilibrium Molecular Dynamics (EMD)

In single component fluids, mass transport is described by Fick’s law (Eq. (2)) and molecular

diffusivity is characterized by the self-diffusion coefficient, Di. This can be computed from the

long-time behavior of the mean-squared displacement using the Einstein relation,

Di = lim
t→∞

1
6Nit

〈
Ni

∑
l=1

(
ri,l(t)− ri,l(0)

)2

〉
, (6)

where Ni is the number of particles of type i, and ri,l(t) is the position of molecule l (of type i) at

time t, and the angle brackets average over initial times. Equivalently, the self-diffusion coefficient

can be evaluated using a Green-Kubo integral of the velocity autocorrelation function.

In contrast to self-diffusion coefficients which describe motion of individual molecules, col-

lective mass transport is described with the Maxwell-Stefan diffusion coefficients, denoted -Di j in
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a binary i− j mixture. These are most easily derived using the Onsager coefficients for mass

diffusion in a two component system,3,6

Λi j = lim
t→∞

1
N

1
6t

〈(
Ni

∑
l=1

(
ri,l(t)− ri,l(0)

))
·

(
N j

∑
m=1

(
r j,m(t)− r j,m(0)

))〉
. (7)

Here, N is the total number of molecules in the system, Ni and N j are the numbers of molecules

of the two components, and ri,l(t) is the position of molecule l (of type i) at time t. In binary sys-

tems, the Maxwell-Stefan diffusion coefficient can then be expressed in terms of the three Onsager

coefficients,

-DEMD
i j =

x j

xi
Λii +

xi

x j
Λ j j−2Λi j (8)

where xi = Ni/N is the mole fraction of component i.

In systems with weak interactions between the two species, the Darken relation approximates

the Maxwell-Stefan diffusion coefficient with the two self-diffusion coefficients,7

-Di j ≈ DDarken = x jDi + xiD j. (9)

1.2 Driving Flux in Molecular Dynamics Simulations

Non-equilibrium molecular dynamics (NEMD) methods are often used to impose temperature or

velocity gradients on a system,8–20 making use of linear constitutive relations to connect the re-

sulting thermal or momentum fluxes to transport coefficients,

Jq =−λ∇T jz(px) =−η
∂vx

∂ z
. (10)

Here, ∇T and ∂vx
∂ z are the imposed thermal and momentum gradients, and as long as the imposed

gradients are relatively small, the corresponding fluxes, Jq and jz(px), have a linear relationship to

the gradients. The coefficients that provide this relationship correspond to physical properties of

the bulk material, either the thermal conductivity (λ ) or shear viscosity (η).
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In contrast, reverse non-equilibrium molecular dynamics (RNEMD) methods impose an un-

physical flux between different regions of the simulation box.21–29 The system responds by devel-

oping a temperature or velocity gradient between the two regions. The gradients which develop in

response to the applied flux have the same linear response relationships to the transport coefficient

of interest. Since the amount of the applied flux is known exactly, and measurement of a gradient is

generally less complicated, imposed-flux methods typically take shorter simulation times to obtain

converged results for applied thermal and momentum fluxes. At interfaces, the observed gradients

often exhibit near-discontinuities at the boundaries between dissimilar materials. RNEMD meth-

ods do not need many trajectories to provide information about transport properties, and they have

become widely used to compute thermal and mechanical transport in both homogeneous liquids

and solids21,22,25 as well as heterogeneous interfaces.23,24,26–29

In principle, any material property for which a linear constitutive relation is known, e.g. Eqs.

(2), (5) or (10), may be computed by driving the appropriate flux and measuring the relevant

gradient. Some of these properties may not be accessible via classical molecular dynamics but

could become available with novel RNEMD techniques. In what follows, we develop a RNEMD

method to create a particle flux to model diffusion, specifically in mixtures. The following section

outlines a scaled particle flux (SPF) methodology which minimally perturbs the total energy of the

system. This allows the method to be “bolted on” to existing integration methods in molecular

dynamics.

2 Methods

As in other RNEMD methods, we begin with the simulation cell divided into regions, including

a ‘source’ region which serves as a particle reservoir, a ‘sink’ region where the particles will be

placed, and all intervening regions which are used to record the system’s response to the particle

flux. The algorithm described below creates a well-defined flux, Japplied, in a targeted component

of the mixture (type i), and as the system evolves, concentration gradients, ∇c{i, j}(r, t), develop in
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response. In traditional equilibrium molecular dynamics (EMD) simulations, no external work can

be done on the system, and the fluxes in Eq. (5) are not independent. However, non-equilibrium

simulations don’t have this constraint, so a flux can be applied independently to one component of

the mixture. In the case of a binary solution in which the flux is applied only to species 1, Eq. (5)

simplifies to

x2J1 =−-DΓ∇c1 =−D∇c1. (11)

Here, J1 is the externally-applied particle flux and J2 is zero. Because we don’t generally separate

ideal from non-ideal terms, we can connect

D = Γ-D , (12)

and there will be a linear relationship between the applied flux and the concentration gradient that

allows direct computation of the Fick diffusivity.

We note that J1, the flux in component 1, is an unphysical, external perturbation. The system

responds by creating concentration gradients, and a flow of other species in the opposite direction,

but this should not be counted as an applied flux. A useful thought experiment is to consider what

would happen if particles were moved based on their prevalence in the mixture, i.e. J1 = x1Japplied

and J2 = x2Japplied. In this case, Eq. (5) predicts that no gradients will develop, independent of the

composition of the mixture.

2.1 Creating a Particle Flux

To create a particle flux, a randomly selected molecule (of a specific type) is chosen to be migrated

from the source region and into the sink region, determined by the directionality of the applied

particle flux. This non-physical movement takes place over a sequence of time steps with a full

particle exchange between source and sink occurring over an exchange period, τexch. A progress

variable, λ , is introduced to represent the fraction of a particle which has been transferred between

the two regions at a given time. As λ increases from 0 (representing a particle fully present in
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the source region) to 1 (which represents a particle fully present in the sink region), the particle

coexists in both regions, moving with forces that are determined from a linear combination of

forces with the particle in both regions,

U(r,λ ) = [1− s(λ )] Usource(r)+ s(λ ) Usink(r) (13)

F(r,λ ) = [1− s(λ )] Fsource(r)+ s(λ ) Fsink(r) (14)

Here, s(λ ) is a function that moves smoothly from 0→ 1 as λ traverses the same range. Usource is

the potential energy with the particle fully present in the source region, and Usink is the potential

with it fully present in the sink region. Fsource and Fsink are the corresponding 3N-vectors of atomic

forces. A schematic of the simulation cell showing the various steps in the method is shown in Fig.

1.

MD 
Integration

Combine
Forces

Increment
λ by dλ

Compute
Forces

Select location in B

v
A

f
Bv

B

f(λ)
f(λ)

f
A

λ = 0 λ = 1

Particle Scaling Loop
A AB

Complete Move

A AB

Figure 1: Schematic showing the main steps in the Scaled Particle Flux RNEMD method. A
particle in the source bin (A) and a random location in the sink (B) are selected. In the particle
scaling loop, all atomic forces using both placements of the particle are computed (fA and fB).
Forces are combined using the scaling function, f(λ ) = (1− s(λ )) fA + s(λ ) fB, and the system is
propagated using standard MD integration with the combined forces. After a successful step, the
particle progress variable, λ is incremented by dλ .

In practice, we are using s(λ ) = λ k with k = 3 following a similar approach to thermodynamic
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integration of molecular crystals introduced by Báez and Clancy.30 This form of the function

effectively makes very small changes to the potential when λ is close to zero, and allows for more

substantial perturbations as λ → 1. Because λ has an initial value of 0, the initial placement of a

particle has no impact on the potential energy or forces. This effectively allows for a particle to be

placed on top of another particle in the sink region. It is not until the particle begins to grow, i.e.

as λ is incremented by dλ , that the system responds. The rate of change of the progress variable

is directly related to the applied particle flux,

Japplied =
1
A

dλ

dt
=

1
Aτexch

(15)

where dt is the RNEMD exchange time, A is the dividing area between the two regions in the

simulation cell. In rectangular simulation cells, A = 2LxLy.

We note that SPF-RNEMD uses infinitesimal molecular exchange moves between two control

regions, maintaining contributions from the exchanging molecule in both regions simultaneously

during the duration of the exchange. A discrete approach with whole particle exchanges between

control volumes was explored by Heffelfinger and van Swol in their dual control volume grand

canonical MD (DCV-GCMD) method.31 A similar scaling of Lennard-Jones contributions (using

λ to scale the repulsive wall) was proposed by Shi and Maginn in their continuous fractional

component Monte Carlo (CFC-MC) method.32

2.2 Conservation Constraints

In other RNEMD methods for generating thermal and momentum gradients, imposed fluxes per-

turbed only the velocities of particles. This was usually done with additional set of constraints

to conserve the total energy and linear momentum of the system. However, applying a particle

flux perturbs particle positions, altering the potential energy of the system. Yang et al., reduced

the impact of potential energy changes by using a system-wide thermostat.33 The presence of a

system-wide thermostat, particularly when the system comprises materials of different heat capac-
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ities, can mask thermal gradients, as the two materials can absorb heat from the thermostat and end

up at different temperatures (even if the system-wide temperature is kept constant). In the method

described here, we counter the effects of potential energy changes by scaling the velocities of all

particles in the two RNEMD exchange regions. In the earlier VSS-RNEMD method, velocity scal-

ing was used to generate thermal flux between the two regions.28 Applying a particle flux jointly

with a thermal flux will therefore be useful for mapping out the temperature dependence of the

diffusion constant from a single simulation.

To separate the effects of particle and thermal fluxes, we introduce two scaling coefficients to

the velocities of particles contained within the two RNEMD exchange regions. Total energy and

the imposed kinetic energy flux act as constraints which determine the values of these coefficients.

We begin by considering the net change in energy. During an increment of dλ , the net change in

the combined potential energy is,

∆U = [Usink(r)−Usource(r)] [s(λ +dλ )− s(λ )] . (16)

To constrain total energy, the velocities of particles in the source and sink regions must be scaled

to maintain an opposing change in the kinetic energy. Scaling the velocities of particles in the

exchange slabs is achieved relative to the center of mass velocities of those two regions,

vi← a(vi−⟨va⟩)+ ⟨va⟩ (17)

v j← b
(
v j−⟨vb⟩

)
+ ⟨vb⟩, (18)

where a and b are the scaling constants for the exchange regions, vi and v j are the velocities of the

unperturbed molecules, and ⟨va⟩ and ⟨vb⟩ are the center-of-mass velocities for the two exchange

slabs.

In previous RNEMD methods, points of intersection between constraint ellipsoids were used to

determine the values of scaling coefficients to satisfy energy and momentum constraints.26 Given

the scaling approach above, total linear momentum in the system is trivially conserved. The scaling
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parameters can then be used to simultaneously impose a thermal flux (Jq) and conserve total energy

in the system:

a2 = 1−
∆U− Jq A ∆t

2Ka−Ma ⟨va⟩2
(19)

b2 = 1−
∆U + Jq A ∆t

2Kb−Mb ⟨vb⟩2
. (20)

Here Ka and Kb are the initial kinetic energies of the regions, A(= 2LxLy) is the dividing area

between the two regions, ∆t is the time interval between particle scaling moves, and Ma and Mb

are the total masses of particles in the two regions. Note that there are effective limits on the

potential energy difference of thermal flux which can be applied. Both a2 and b2 must be positive,

and we further restrict velocity scaling during any one exchange interval to be within 0.1% of the

unperturbed velocities. Readers interested in the derivations of Eqs. (19) and (20) are encouraged

to consult the SI.

When Jq = 0, both a and b either cool or heat their regions simultaneously. The act of moving

particles can create large potential energy gradients in both regions, placing other molecules in

configurations where they experience large forces (and subsequent increases in velocity). Down-

scaling velocities in both regions helps counteract this instantaneous heating. Note that is also

possible to place molecules in configurations which result in lower potential energy configurations,

but this is much less common, and the scaling operations would increase the local kinetic energy in

those situations. The values of a and b, are easily calculated as the particle is shifted from source

to sink in an increment of dλ . Using these values, perturbed velocities are applied to the system

in a post-integration step. We note that a particle can always be placed in the sink region, but

there are configurations where the change in potential energy due to particle growth will prevent

further changes in λ until velocity scaling becomes numerically feasible. In situations like this,

the algorithm proceeds with the previous value of λ until the increment results in a change to the

potential energy which can be offset by scaling the velocities in the two exchange regions.
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3 Results and Discussion

3.1 Identical (but distinguishable) molecules

As the most straightforward test case, we chose a system for which the diffusion coefficient is

well known, liquid Argon represented with a Lennard-Jones potential. Lennard-Jones interaction

parameters used in this study are provided in Table 1. In order to measure concentration gradients

while keeping the density of the system constant throughout, individual Ar particles were tagged

with either a blue or gold identifier. Thus, the applied particle flux only acts on a specific set of

particles, and any property calculated from the other set measures system response. All particles

are identical, but distinguishable, which leads to interesting mixing results in systems both at and

near equilibrium. In these systems we simulated a range of mole fractions to test composition

effects on the method and measured diffusion coefficients.

Table 1: Nonbonded interactions used for SPF-RNEMD tests described in this section.

Atom Mass (amu) σ (Å) ε (kcal/mol) Source

Ar 39.948 3.41 0.2381 Ref. 34

Kr 83.80 3.67 0.3319 Ref. 34

Five different mole fractions were used in the creation of the systems: xblue = 0.1, 0.25, 0.5,

0.75, 0.9 (with xgold = 1− xblue). Each of these systems started from a random configuration

at a temperature of 101.8 K (T ∗ = 0.85) and a reduced density (ρ∗ = ρσ3) of 0.85. This was

followed by a short simulation in the canonical (NVT) ensemble to allow for structural relaxation

in the original placement. Next came a pressure relaxation phase in the isothermal-isobaric (NPT)

ensemble. The dimensions of the simulation boxes (and all atomic coordinates) were then scaled to

the box dimensions shown in Table 2. A short thermal relaxation period followed in the canonical

ensemble before a long time in the microcanonical (NVE) ensemble.
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Table 2: Composition of equilibrated mixtures, box dimensions, and ranges of applied particle flux
values for systems used in testing the SPF-RNEMD method.

System Nmolecules T (K)
Box dimensions Jp(×10−8)

Lx (Å ) Ly (Å ) Lz (Å ) particles Å−2 fs−1

Distinguishable Ar 2744 101.8

xblue = 0.1, 0.25, 0.5 40.0 40.0 80.0 2.23 – 6.25

0.75 40.0 40.0 80.0 2.50 – 8.93

0.9 40.0 40.0 80.0 2.84 – 15.6

Ar-Kr Mixture 6000 115.77

xAr = 0.5 32.3 35.6 291.3 0.435 – 3.11

0.75 32.1 35.4 289.8 0.440 – 3.14

0.9 32.1 35.4 289.5 0.440 – 3.14

Data collection for these systems was done in the NVE ensemble for both EMD and RNEMD

simulations. For the RNEMD simulations, imposed particle fluxes between 2.23×10−8 and 1.56×

10−7 Å−2fs−1 were applied to systems with a range of compositions. This flux was applied only

to the molecules with the designated blue tag. To determine when the systems had reached steady-

state concentration gradients, a number of consecutive 100 ps simulations were carried out; the

results of which are shown in Fig. 2. It takes approximately 4 ns under an imposed particle flux

before steady state concentration gradients are reached. Therefore, these systems were simulated

for a total of 6 ns, with only the last 2 ns used for data collection. To get statistically independent

samples, five different configurations for each composition were equilibrated and used for data

collection. The concentration gradients for the five samples were computed using linear least-

squared regressions of spatial concentration profiles in the regions between RNEMD slabs.

13



0 2 4 6 8 10
Sampling Window (ns)

0

0.1

0.2

∇
c(

z,t
)(

M
 Å

-1
)

Arblue   0.717     0.241
Argold   0.716     0.242

τrelax ∇c(z ,∞)

Figure 2: For a 50:50 Arblue : Argold mixture, convergence to steady-state concentration gradients
is reached after approximately 4 ns with an applied flux of 6.25× 10−8 Å−2fs−1. Data points
are sampled from 200 ps windows, and 5 statistically independent replicas are used to compute
average concentration gradients.

The thermodynamic factors (Γi j) in mixtures are connected to the correlated fluctuations in par-

ticle numbers (Ni and N j) within a local volume, V . Kirkwood and Buff connected these correlated

fluctuations,

Gi j =V
(
⟨NiN j⟩−⟨Ni⟩⟨N j⟩
⟨Ni⟩⟨N j⟩

−
δi j

⟨Ni⟩

)
, (21)

to integrals of the pair distribution functions,4

Gi j =
∫

∞

0
4πr2(gi j(r)−1)dr . (22)
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The thermodynamic factor can then be expressed in terms of the Kirkwood-Buff integrals (KBIs),

Γi j =
xi

kBT

(
∂ µi

∂x j

)
= 1−

xix j
(
Gii +G j j−2Gi j

)
ρ + xix j

(
Gii +G j j−2Gi j

) . (23)

KBIs are notoriously difficult to converge, often requiring massive simulations with significant

sampling requirements. In the past few years, there have been significant advances to make these

calculations more tractable under different simulation conditions and control volumes.35–40 In this

work, we have utilized the Ganguly correction for the pair distribution function and we compute

the KBIs using a cubic weighting function and integrate up to a fixed cutoff value R to check for

convergence,36

Gi j(R) =
∫ R

0
w(r,R)(gi j(r)−1)dr , (24)

where

w(r,R) = 4πr2
(

1− 3r
2R

+
r3

2R3

)
(25)

is an analytical weighting function for spherical control volumes.37

Once all pairwise KBIs are known, the thermodynamic factors are relatively straightforward to

determine. Sample KBIs with different spherical cutoffs for the control volume are shown in Fig.

3. We used 100 independent, 1 ns simulations to compute KBIs for identical, but distinguishable

Lennard-Jones Argon atoms. Values for Gi j are extrapolated from the largest volumes to 1/R→ 0.
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Figure 3: Averaged Kirkwood-Buff integrals, G11(R), G12(R), and G22(R) for the 50:50 mixture
of Arblue and Argold. R is the outer limit of integration, and we show the convergence of as R→
∞ (seen most simply as σ/R→ 0). The dashed lines represents the estimate of the integral in
the thermodynamic limit calculated through extrapolation from the linear region. Shaded regions
represent the 95% confidence intervals for 100 statistically independent simulations. Note that for
this mixture, G11(R) ≈ G22(R) at all distances. Differences between G11(R) and G12(R) indicate
the contribution due to an entropy of mixing for distinguishable particles.

In an ideal binary mixture, the thermodynamic factor, Γ12 = 1, and one would expect the term

G11 +G22− 2G12 to vanish.41 Naively, one would expect the values of G11, G22, and G12 to be

identical as they all measure the same pair interactions, i.e., Argon to Argon. One interesting

outcome of our calculations is that for mixtures of identical, but distinguishable particles, Γ12 ̸= 1

(see Fig. 3) due to an entropic driving force for mixing the distinguishable particles. This result

has an impact on the thermodynamic factor of the mixtures of distringuishable particles (Table 3).
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Table 3: Diffusion constants (in 10−9m2s−1) for binary mixtures of identical (but distinguishable)
Argon particles at a temperature of 101.8 K, using box geometries and particle numbers given in
Table 2.

Dself DFick

System Γ blue gold Darken EMD RNEMD

xblue = 0.1 0.92(5) 2.2609(6) 2.2550(4) 2.1(1) 2.2(1) 2.86(5)

0.25 0.97(3) 2.2076(5) 2.2054(4) 2.13(7) 2.13(7) 2.18(3)

0.5 0.98(3) 2.2083(5) 2.2100(5) 2.17(4) 2.20(7) 2.17(6)

0.75 0.97(3) 2.2054(4) 2.2076(5) 2.13(7) 2.13(7) 2.18(6)

0.9 0.92(5) 2.2550(4) 2.2609(6) 2.1(1) 2.2(1) 2.30(6)

Uncertainties in the last digits are indicated in parentheses.

Fig. 4 shows the concentration profiles of an 50:50 solution of distinguishable Argon across

a range of applied particle fluxes. To compute diffusion constants, linear least squares regression

was used to calculate concentration gradients from the regions between RNEMD slabs. For each

applied flux, we note that two gradients (from the regions between source and sink) can be used

to compute diffusion constants using Eq. 11. These are presented in the final column of Table

3. In this table, self-diffusion coefficients were computed using mean squared displacements for

particles of a given type. Fick diffusion coefficients were computed using one of three methods:

1) the Darken approximation, 2) EMD via the Onsager coefficients, or 3) using the SPF-RNEMD

method (this work). Both the Darken and EMD approaches calculate the MS diffusion coefficient,

so the values reported in the table are multiplied by the thermodynamic factor, Γ. Aside from the

10:90 solution, we see good agreement across most mixtures between SPF-RNEMD and both the

Darken approximation and the EMD diffusivity from the Onsager coefficients.
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Figure 4: Spatial concentration profiles for a 50:50 mixture of Arblue and Argold under different
applied particle fluxes (Jp), sampling from the last 2 ns of a 6 ns simulation. Error bars represent
the 95% confidence intervals for five statistically independent simulations.

In the 10% solution, at higher fluxes, the algorithm frequently fails to find a suitable particle to

move from the source bin, and the concentrations in the source RNEMD region drops to zero. This

results in flux values much lower than the intended applied flux, and we have moved the system out

of the linear response region. This implies that at low solute concentrations, lower applied fluxes

(and longer simulation times) are going to be required to provide accurate results that are in line

with values calculated from EMD techniques. In the 90% solution, the algorithm requires higher

fluxes to create a measurable concentration gradient, so appropriate tuning for solute vs. solvent

flux is required. Concentration profiles for all systems (and all applied flux values) are provided in

the Supporting Information (SI).
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3.2 Interdiffusion in a binary mixture of Lennard-Jones fluids

To test the method in mixtures of dissimilar molecules, we applied the method to a mixture of

Argon and Krypton atoms, again represented with a Lennard-Jones potential (parameters provided

in Table 1). Simulation parameters, including box geometry, number of particles, temperatures,

and applied flux values (Table 2) were identical to the ones studied in Ref. 33 which allows direct

comparison between the two RNEMD approaches. Three different mole fractions were used in the

creation of the systems: xAr = 0.9, 0.75, 0.5 (with xKr = 1− xAr). Five statistically independent

replicas of all systems were started from a random configuration, and with initial velocities sampled

from a Maxwell-Boltzmann distribution at 115.7 K. Equilibration was done in the same way as the

distinguishable Argon simulations, but in the RNEMD simulations, the particle flux was applied

only to the Argon atoms. Due to the larger system size (and heavier Kr atoms), convergence

to steady state takes longer in this system. Figure 5 shows that the steady state regime starts at

approximately 40 ns in to the simulation. All RNEMD simulations for 50 ns, and concentration

gradients were sampled only during the last 10 ns.
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Figure 5: For a 50:50 Ar:Kr mixture, convergence to steady-state concentration gradients is
reached after approximately 40 ns with an applied flux of 3.11× 10−8 Å−2fs−1. Data points are
sampled from 1 ns windows, and 5 statistically independent replicas are used to compute average
concentration gradients.

Concentration profiles for the 50:50 mixture of Argon and Krypton are shown in Fig. 6. For

each applied flux, two gradients (one from each of the regions between source and sink) can be

used to compute diffusion constants using Eq. 11. These diffusion constants are presented in the

final column of Table 4. We also present self-diffusion coefficients computed using mean squared

displacements for particles of a given type. Fick diffusion coefficients were computed using three

separate methods: 1) the Darken approximation, 2) EMD via the Onsager coefficients, or 3) using

the SPF-RNEMD method (this work). Both the Darken and EMD approaches calculate the MS

diffusion coefficient, so the values reported in the table are multiplied by Γ. Concentration profiles

for all other systems (and all applied flux values) are provided in the Supporting Information (SI).
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Figure 6: Spatial concentration profiles for a 50:50 mixture of Ar and Kr under different applied
particle fluxes (Jp), sampling from the last 10 ns of a 50 ns simulation. Error bars represent the 95%
confidence intervals for five statistically independent simulations, but these are generally smaller
than the displayed symbols. Equivalent particle exchange periods (τexch) are also shown for each
value of the applied flux.

Table 4: Diffusion constants (in 10−9m2s−1) for binary mixtures of Argon and Krypton at a tem-
perature of 115.7 K, using box geometries and particle numbers given in Table 2. Fick diffusivities
are compared with values calculated using a different RNEMD approach in Yang et al.33

Dself DFick

System Γ Ar Kr Darken EMD RNEMD Ref. 33

xAr = 0.5 0.97(1) 2.900(5) 2.364(5) 2.55(3) 2.59(4) 2.50(2) 2.6(2)

0.75 0.97(1) 3.682(8) 2.999(9) 3.06(3) 3.21(4) 3.12(7) 3.1(2)

0.9 0.978(7) 4.48(1) 3.65(1) 3.65(3) 3.36(3) 3.6(2) 3.8(7)

Uncertainties in the last digits are indicated in parentheses.

When compared with the identical, but distinguishable Argon mixtures, we note that this mix-

ture shows modest disagreement between the EMD results and the other measures of Fick diffu-
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sion. The study from Yang et al. reports diffusion coeficients of 2.63± 0.19, 3.14± 0.20, and

3.76±0.73 (all×10−9m2s−1) for the 50:50, 75:25, and 90:10 mixtures, respectively.33 Our values

are all within error of these diffusion coefficients, and the trend of increasing diffusivity with in-

creasing Argon concentration is maintained. In most cases, the differences between the EMD and

RNEMD diffusion coefficients are within error estimates. We note that in contrast with previous

RNEMD methods, SPF-RNEMD does not require a system-wide thermostat to maintain constant

energy, which allows for heat and particle fluxes to be applied simultaneously.

3.3 Temperature Dependence of Diffusion

When a binary mixture is subject to thermal (Jq) or particle (J1) fluxes, simultaneous concentration

and thermal gradients may develop in the system. The phenomenological relations governing this

behavior can be written in terms of the Onsager coefficients for coupled transport,42–47

Jq =−Λqq
1

T 2 ∇T −Λq1
1
T

∇T (µ1−µ2) (26)

J1 =−Λ1q
1

T 2 ∇T −Λ11
1
T

∇T (µ1−µ2) (27)

where Λ11, Λqq, Λ1q, and Λq1 are the Onsager coefficients. These relations assume that the

two fluxes are equal and opposite (J2 = −J1). These relations can also be written in terms of

experimentally-relevant transport coefficients,44–49

Jq =−λ∇T − kBT 2
Γ DD

T ∇c1 (28)

J1 =−ctx1x2DS
T ∇T −D∇c1 (29)

where λ is the thermal conductivity, D is the mutual (Fick) diffusion coefficient, DS
T is the thermal

diffusion of the Soret type, and DD
T is the Dufour coefficient. We have also utilized the definition

of the thermodynamic factor (Γ) for a binary mixture (see Eq. (23)).

If the mixture is evolving solely under a heat flux, it will reach steady state conditions and
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the concentration gradients will stabilize. In this case, the net flux in species 1 is zero (J1 = 0).

Simultaneous measurement of both concentration and thermal gradients therefore allows for the

calculation of the Soret coefficient using Eq. (29),

sT =
DS

T
D

=− 1
ctx1x2

(
∇c1

∇T

)
. (30)

With SPF-RNEMD, the ability to simultaneously impose a thermal flux, Jq, in addition to the

particle flux, J1, means that during a single simulation, the temperature can be made to vary as a

function of the box coordinates while also probing diffusive transport. The imposed thermal flux

creates a linear thermal gradient as in the top panel in Fig. 7. Each point along z represents a small

portion of the simulation being carried out at temperature T (z) with local concentration profiles and

gradients. At steady state, all of these subregions are experiencing the same particle flux through

their boundaries. The local temperature as well as the local concentration profile in the middle

panel of Fig. 7 can then be used to map out diffusion constants over a range of temperatures using

Eq. (29),

D[T ] =
−x2 J1

c2x1x2 sT ∇T +∇c1
(31)

where the quantities measuring composition and temperature, x1, x2, c2, T (and their gradients) all

depend on the spatial coordinate z. We have also used the definition of the Soret coefficient in Eq.

(30) to simplify this expression.
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Figure 7: With a combination of a thermal and a particle flux, a simulation can exhibit both a
temperature (top) and a concentration (middle) gradient. The value of ∇c depends on the local
temperature, so it varies along the same axis. This derivative can be computed using finite differ-
ence approximations (lower) and can be used to calculate D versus T (see Fig. 8).

To test SPF-RNEMD with simultaneous heat and particle fluxes, a set of simulations were

carried out using a 6000 atom Ar/Kr mixture (xAr = 0.5) at 125 K and in a simulation cell of

dimensions 32.7× 36.1× 295.3 Å. Equilibration procedures were the same as in the previous

sections. Similar to the other Ar/Kr systems, these simulations were run for 50 ns, with only the

last 10 ns being used for data collection. The data shown in Fig. 7 is an average of five statistically

independent simulations operating under an applied thermal flux, Jq = 7.5×10−7 kcal mol−1 Å−2

fs−1 (520 MW m−2) and a simultaneous particle flux, JAr = 1.93×10−8 Å−2 fs−1. 95% confidence

intervals in the concentration gradients are indicated with shaded regions, but for temperature and

concentration these are smaller than the displayed symbols. This data was used to generate all of
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the diffusion coefficients in Fig. 8.
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Figure 8: The temperature dependence of the mutual diffusion coefficient generated from a single
SPF-RNEMD simulation. Arrhenius behavior is observed for the temperature range being tested.

Diffusion coefficients were calculated from Eq. (31) with a Soret coefficient (sT = 3.65×

10−3 K−1). This constant was determined via a set of short RNEMD simulations to which only

a heat flux was applied, and the SI contains more details on those simulations. The resulting

diffusion coefficients are relatively noisy, but the temperature dependence appears to be primarily

exponential vs. 1/T , and this allows estimation of the Arrhenius activation energy for diffusion,

D(T )≈ Do e−Ea/RT . (32)

The activation energy obtained by fitting these diffusion coefficients, Ea = 3.93± 0.38 kJ/mol,
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agrees well with other experiments.50,51 We note that the temperature-dependent diffusion coeffi-

cients obtained from a single multi-flux simulation underestimate diffusivity when compared with

those obtained from single-temperature simulations, using both our SPF-RNEMD method as well

as those from Yang et al.33 However, the numerical calculation of concentration gradients in Fig.

7 is performed over a series of 2 Å regions. Narrowing the error bands in concentration gradients

would require significantly more sampling (or a much larger simulation cell). In the time required

for a single-temperature simulation to calculate a diffusion coefficient, application of simultane-

ous heat and particle flux using SPF-RNEMD generated diffusion coefficients over a wide range of

temperatures. We note that it should also be possible to use a simultaneous application of a thermal

and a particle flux to map out the composition dependence of thermal conductivity, λ (x1).

3.4 Molecular Diffusion Across A Semi-permeable Membranes

We have also tested the method on a molecular fluid with semipermeable membranes separating

two regions of the 41Å× 42Å× 110Å simulation box. This system contains 5540 SPC/E water

molecules (at 293.15 K and a density of 1 g cm−3) which were modeled as 3-site rigid bodies.52

The box was divided into two regions by two 41 Å × 42 Å graphene sheets that both contain

hydrogen-terminated P28 pores, using the terminology adopted by Sun et al., where 28 refers

to the number of disrupted graphene ring units by the addition of the pore.53 Parameters for the

nanoporous graphene (NPG) carbon and hydrogen atoms were adopted from OPLS/2020.54 A full

listing of all parameters used are given in the SI, and a representative snapshot of the system is

shown at the top of Fig. 9

In addition to the SPF-RNEMD molecular exchanges which migrate whole water molecules

between the two regions, the two NPG sheets are held in place using Z-constraints, which fix

the z coordinates of the two NPG sheets with respect to the center of the mass of the system.

This is a technique that was developed to obtain the forces required for the force auto-correlation

calculations,55 originally proposed by Roux and Karplus to investigate the dynamics of ions inside
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Figure 9: Top: A water box with two regions separated by nanoporous graphene sheets. Molecules
close to the pores are indicated with a ball and stick representation. Under an applied molecular
flux between the two regions, a steady state concentration difference develops between the two
regions. Z-constraint forces are applied to counteract the net forces on the two membranes (Gα

and Gβ ), and the arrows indicate time averages which are used to calculate the hydraulic pressure
difference between the regions. Bottom: the local concentration of water molecules in the box.
Dashed horizontal lines indicate the mean water concentrations in the two regions. A magnified
profile around one of the membrane regions highlights the concentration difference that develops
in response to the molecular flux.
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ion channels.56 After the force calculation, the total force on molecule α is:

Gα = ∑
i

Fαi, (33)

where Fαi is the force in the z direction on atom i in z-constrained molecule α . The forces on the

atoms in the z-constrained molecule are then adjusted to remove the total force on molecule α:

Fαi = Fαi−
mαiGα

∑i mαi
. (34)

Adjustments are also made to the velocities to keep the centers of mass of the NPG sheets fixed, and

the accumulated constraint forces from both membranes are also subtracted from unconstrained

liquid phase molecules to keep the system center of mass of the entire system from drifting.

The average pressure on each of the two nanoporous graphene sheets can be computed easily

from the time averages of the constraint forces that have been applied to keep them in place, so the

mean pressure difference between the two regions,

∆P = Pβ −Pα =

(〈
Gβ

〉
−⟨Gα⟩

)
LxLy

. (35)

Note that ∆P is the hydraulic pressure difference that develops as a result of applying a steady-state

particle flux between the two regions.

Once the system has come to steady state conditions, the flux of water across the membrane

via diffusion is directly related to the applied particle flux,

Jwd = Jp× (2LxLy)× (vρ) (36)

where (2LxLy) represents the dividing area between the two RNEMD regions, v is the volume

per water molecule, and ρ is the pore density of the membrane. The relevant linear constitutive
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equation for permeability,57,58

Jwd = Awd (∆P−∆Π) (37)

involves both the hydraulic (∆P) as well as the osmotic (∆Π) pressure differences. Here, Awd is

the pure water permeability by diffusion for this membrane.

Using the law of van’t Hoff, the osmotic pressure difference can be calculated from the water

concentration difference between the two regions,59

∆Π = RT ∆c (38)

which develops in response to the SPF-RNEMD exchanges. Therefore, from relatively straightfor-

ward SPF-RNEMD simulations, it is possible to apply a molecular flux between two regions, and

from the concentration across the membrane and the time average of membrane constraint forces,

obtain both the osmotic and hydraulic pressures.

In Fig. 10 we show the approach to the steady state ∆P and ∆Π for molecules in the two

regions under various applied molecular flux values. Note that the hydraulic pressure is typically

much larger than the osmotic pressure. Although we observe some local ordering of water near the

NPG membrane walls, ∆c is calculated from the mean concentration of water in the two separated

regions. Under very high fluxes (not included in Fig. 10), the surface tension of water leads to

bubble formation in the ‘source’ region, but the flux values used here all yield stable concentration

differences across the membrane. After the system has come to a steady state, the permeability is

computed from a linear least squares fit on Eq. (37).
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Figure 10: For the nanoporous graphene / water system, convergence to steady-state hydraulic and
osmotic pressure differences is reached after approximately 4 ns. Here we have used applied flux
values in the range 2.07−2.90×10−8 molecules Å−2fs−1. Data points are sampled from 200 ps
windows, and 5 statistically independent replicas were started for each flux value. On the right
side, we show the dependence of the infinite time ∆P and ∆Π values on the imposed flux.

The value of pure water permeability we have computed for the P28 pores, Awd = 6.85±0.15×

10−15 L hr−1 bar−1 pore−1. Comparing with the calculations of Cohen-Tanugi and Grossman, a

pore density of 1.7×1013 cm−2 would then yield a permeability of 1160±26 L hr−1 m−2 bar−1,

which is reasonably close to the reported value of 1041±20 L hr−1 m−2 bar−1 for the larger pore

in that study.58
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4 Conclusions

We have presented a novel method for carrying out reverse non-equilibrium molecular dynamics

simulations while simultaneously applying a particle flux or a thermal flux, or a combination of the

two. This method allows for straightforward calculation of isolated Fick diffusion constants in a

mixture. The combined use of particle and thermal fluxes allows for calculation of the temperature

dependence of diffusivity from a single simulation. Agreement with previous simulation methods

is good. We note that one of our test cases, a mixture of identical, but distinguishable molecules

provides an interesting result and test of the thermodynamic factor connecting Maxwell-Stefan and

Fick diffusion constants. The differences in Kirkwood-Buff integrals for this system are subtle, but

the effective entropy of mixing leads to some observable differences in the diffusivities of these

systems that would not be apparent from self diffusion coefficients.

We note that for transport in uniform mixtures, the Maxwell-Stefan / Onsager approach using

equilibrium molecular dynamics may be more useful for bulk diffusivities. The RNEMD method

described above begins with the same Maxwell-Stefan definitions, but because a single particle

flux is imposed independent of the other components, the Fick diffusivities arise naturally when

applying the particle flux.

We have also tested the method on a system comprising a molecular fluid separated into two

regions by a semipermeable membrane. The method works well at computing concentration differ-

ences across the membrane, and coupled with Z-constraint forces to estimate hydraulic pressures,

SPF-RNEMD allows for straightforward calculation of membrane permeability due to diffusion.

Convergence of the hydraulic and osmotic pressures across the membrane was rapid compared

with convergence to concentration gradients in bulk liquids.

In the semi-permeable membrane example, the ability to impose separate particle fluxes for

a single component in a mixture is a feature of the method which will allow for calculation of

single-species permeabilities, and potentially the osmotic pressure contribution due to solute con-

centration differences across the membrane. The timescales for convergence of the membrane

permeability are significantly shorter than for bulk diffusivity, and using this method to study
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membrane separations of mixtures will be the subject of our future work.
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