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Abstract

Privacy protection methods, such as differentially private mechanisms, introduce
noise into resulting statistics which often produces complex and intractable sampling
distributions. In this paper, we propose a simulation-based “repro sample” approach
to produce statistically valid confidence intervals and hypothesis tests, which builds on
the work of Xie and Wang (2022). We show that this methodology is applicable to a
wide variety of private inference problems, appropriately accounts for biases introduced
by privacy mechanisms (such as by clamping), and improves over other state-of-the-art
inference methods such as the parametric bootstrap in terms of the coverage and type
I error of the private inference. We also develop significant improvements and exten-
sions for the repro sample methodology for general models (not necessarily related to
privacy), including 1) modifying the procedure to ensure guaranteed coverage and type
I errors, even accounting for Monte Carlo error, and 2) proposing efficient numerical
algorithms to implement the confidence intervals and p-values.

Keywords: Indirect Inference, Confidence Interval, Hypothesis Test, Differential Privacy

1 Introduction

There is a growing interest in developing privacy-preserving methodologies, and differential
privacy (DP) has arisen as the state-of-the-art in privacy protection (Dwork et al., 2006).
However, when formal privacy protection methods are applied to sensitive data, the published
quantities may have a very different structure/distribution than the original data, which
depends on the privatization algorithm. A major benefit of differential privacy is that the
privacy mechanism – the noise-adding distribution – can be publicly communicated without
compromising privacy. Thus, a statistician or data analyst can, in principle, incorporate
the uncertainty due to the privacy mechanism into their statistical reasoning. Despite this
potential, there is a need for general-purpose methods to conduct valid statistical inferences
on privatized data. A major challenge is that, given a model x > f(x | ¹) for the sensitive
data and the privacy mechanism s|x > ¸(s | x), the marginal likelihood function for ¹ based
on s,

L(¹ | s) =
∫

x

f(x | ¹)¸(s | x) dx,
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is often computationally intractable, requiring integration over all possible databases x.
Recently, there have arisen Markov chain Monte Carlo methods to sample from the posterior
distribution Ã(¹ | s) (Bernstein and Sheldon, 2018, 2019; Kulkarni et al., 2021; Ju et al.,
2022), with Ju et al. (2022) giving a general-purpose technique for Bayesian inference on
privatized data. However, there are not as many general-purpose frequentist methods. Due
to the intractability of the marginal likelihood, most common approaches use approximations,
such as the parametric bootstrap (Ferrando et al., 2022) or limit theorems (Wang et al.,
2018).

Unfortunately, while these approximate techniques are often reliable in non-private set-
tings, they often do not have finite sample guarantees and may give unacceptable accuracy
when applied to privatized data. For example, while the noise for privacy is often asymp-
totically negligible compared to the statistical estimation rate, researchers have found that
arguments based on convergence in distribution often result in unsatisfactory approximations
(Wang et al., 2018), resulting in unreliable inference. While alternative asymptotic regimes
have been proposed (e.g., Wang et al., 2018), they are limited to specific models, mecha-
nisms, and test statistics. Ferrando et al. (2022) proposed using the parametric bootstrap
on privatized data, but in order to prove the consistency of their method, they assumed that
the data was not clamped, while clamping is often necessary in DP mechanisms. Thus, as
we demonstrate in this paper, the parametric bootstrap often gives unacceptable accuracy
on privatized data, likely due to the bias in the privatized estimator.

While the marginal likelihood may not be easily evaluated, it is often the case that both
f(x | ¹) and ¸(s | x) are relatively easy to sample from. This aspect makes simulation-
based inference a good candidate for analyzing privatized data. Our simulation-based (also
known as indirect inference) framework is inspired by the “repro samples” framework of Xie
and Wang (2022), and the general setup is similar to other simulation-based works as well
(Guerrier et al., 2019), and is widely applicable to statistical problems, beyond DP.

We assume that rather than directly sampling from our model/mechanism, given a pa-
rameter ¹, we can separately sample a “seed” u from a known distribution P (not involving
¹), and apply a function that combines the seed and the parameter to produce the observed
random variable: s = G(¹, u). Intuitively, s = G(¹, u) can be thought of as the equation that
generated the observed s, where u is the source of randomness. Since the true parameter is
unknown, in simulation-based inference, we simulate seeds {ui}Ri=1 from P and hold these
fixed during our search over the parameter space for the parameter(s) ¹̂ that make the values
G(¹̂, u1), . . . , G(¹̂, uR) “similar” to our observed s, where ideally a higher similarity measure
will result in better estimates ¹̂ of ¹. Intuitively, a confidence set consists of all ¹̂ which
produces samples “similar” to s; likewise, for a null hypothesis H0 : ¹ * Θ0, if no ¹̂ * Θ0

results in samples “similar” to ¹, then we reject H0. We give a construction for a broad class
of “similarity” measures that allow us to give finite-sample guarantees for these confidence
sets and hypothesis tests.
Our Contributions In this paper we propose a general-purpose simulation-based infer-
ence framework based on repro samples (Xie and Wang, 2022), which is motivated by the
challenges in analyzing privatized data, and results in the following contributions:

• We modify the repro samples methodology using simulation-based inference techniques
to ensure guaranteed coverage and type I errors, even accounting for Monte Carlo
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errors, and present the repro methodology with a new notation to better communicate
the applicability of the framework.

• We propose computationally efficient algorithms for computing p-values and confidence
intervals/sets, which maintain the theoretical validity.

• We use our methodology to tackle several DP inference problems, giving provable infer-
ence guarantees and improving over state-of-the-art methods (such as the parametric
bootstrap.)

• We demonstrate that our methodology can account for biases introduced by DP mech-
anisms, such as due to clamping or other non-linear transformations.

We emphasize that while our methodology is motivated by problems in privacy, our
framework is general-purpose and can be applied to non-DP settings as well. Our approach
is applicable when one either has a test statistic, or only a low dimensional summary statistic
but need not have an estimator for the true parameters, let alone an understanding of the
sampling distribution.
Organization The remainder of the paper is organized as follows: In Section 2 we set the no-
tation for the paper and review some necessary background on differential privacy. In Section
3, we start by giving an abstract framework for generating confidence sets in Section 3.1 and
show how our framework is related to the repro sample framework of Xie and Wang (2022) in
Section 3.2. Then we use our abstract framework to develop simulation-based confidence sets
in Section 3.3 with guaranteed coverage, and develop a numerical algorithm for simulation-
based confidence intervals in Section 3.4. In Section 4, we review how repro samples can be
used to test hypotheses, and give a simulation-based method for valid p-values, as well as an
efficient numerical algorithm. In Section 5, we conduct several simulation studies, applying
our methodology to various DP inference problems. We conclude in Section 6 with some
discussion and directions for future work. In Section 6.1, we specifically discuss the choice of
the test statistic in the repro methodology, and quantify the cost of over-coverage, which is
common when using our simulation-based approach. Proofs and technical lemmas, as well as
simulation details and additional simulation results are deferred to the supplement. Code to
replicate the experiments of this paper can be found at https://github.com/Zhanyu-Wang/
Simulation-based_Finite-sample_Inference_for_Privatized_Data.
Related work The area of indirect inference was proposed by Gourieroux et al. (1993),
which initially gave a simulation-based approach to bias correction and parameter estimation.
However, the inferential method proposed by Gourieroux et al. (1993) is based on large
sample theory, which is often unreliable in privacy problems (Wang et al., 2018). Guerrier
et al. (2019, 2020); Zhang et al. (2022) developed a more theoretical basis for the indirect
inference approach, focusing on bias-correction. Xie and Wang (2022) developed the repro
sample methodology, and both their abstract framework and Monte Carlo methods serve as
the basis for the simulation-based inference techniques proposed in this paper. Wang et al.
(2022) applied the repro sample methodology to develop model and coefficient inference in
high-dimensional linear regression.

In the area of statistical inference on privatized data, there are several notable works.
For Bayesian inference on privatized data, Ju et al. (2022) proposed a general Metropolis-
within-Gibbs algorithm, which correctly targets the posterior distribution for a wide variety
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of models and privacy mechanisms. In the frequentist setting, Wang et al. (2018) developed
a custom asymptotic framework that ensures, under certain circumstances, that the approxi-
mations produced are at least as accurate as similar approximations for the non-private data.
While lacking finite-sample guarantees, Ferrando et al. (2022) showed that the parametric
bootstrap is a very flexible technique to perform inference on privatized data.

There have also been several works that tailor their statistical inference to particular
models and mechanisms. Awan and Slavković (2018) developed uniformly most powerful
DP tests for Bernoulli data, and Awan and Slavković (2020) extended this work to produce
optimal confidence intervals as well. Drechsler et al. (2022) developed private non-parametric
confidence intervals for the median of a univariate random variable. Karwa and Vadhan
(2018) developed private confidence intervals for the mean of normally distributed data.
Covington et al. (2021) developed a DP mechanism to generate confidence intervals for
general parameter estimation, based on the CoinPress algorithm (Biswas et al., 2020) and
the bag of little bootstraps (Kleiner et al., 2012).

In contrast with many of the related works above, the goal of this paper is to produce
valid finite-sample frequentist inference for a wide variety of models and mechanisms. In
particular, we will not ask that the privacy mechanism be tailored for our model or for our
particular statistical task. While Ju et al. (2022) offered a general solution in the Bayesian
setting, there are essentially no prior frequentist techniques to derive valid finite-sample
inference for general models and mechanisms.

2 Background

In this section, we review the necessary background and set the notation for the paper.
We call a function T : X ×X n ³ Y permutation-invariant if for any permutation Ã on

{1, 2, . . . , n}, we have T (x; (xi)
n
i=1) = T (x; (xÃ(i))

n
i=1). Note that if X1, . . . , Xn are exchange-

able random variables in X , and T is a permutation-invariant function, then the sequence
of random variables, T (X1; (Xi)

n
i=1), T (X2; (Xi)

n
i=1), . . . , T (Xn; (Xi)

n
i=1) is also exchangeable.

For a real value x, we define +x, to be the greatest integer less than or equal to x, and
+x, to be the smallest integer greater than or equal to x. We define the clamp function
[·]ba : R ³ [a, b] as [x]ba = min{max{x, a}, b}. Many differentially private mechanisms use
clamping to ensure finite sensitivity; see Example 2.4.

In this paper, we will use s to denote the observed “sample.” While in many statistical
problems, a sample consists of i.i.d. data, in this paper, we allow s to generally be the set of
observed random variables from an experiment. In differential privacy, the observed values
after privatization are often low-dimensional quantities; see Example 2.1 below. When
working with a list of samples, s1, . . . , sR, we use s

(j)
i to denote the jth entry of the vector si.

Example 2.1 (Bernoulli example). One of the simplest models is independent Bernoulli

data. Suppose that xi
iid> Bern(¹), and (x1, x2, . . . , xn) represents a confidential dataset. If

we are interested in doing inference on ¹, the total X =
∑n

i=1 xi is a sufficient statistic, but
for privacy purposes, we will instead base our inference solely on X̃ = X +N , where N is a
random variable independent of X chosen such that X̃ satisfies differential privacy (Vu and
Slavkovic, 2009; Awan and Slavković, 2018). In this paper, we consider our “sample” to be
the observed value s := X̃.
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2.1 Differential privacy

Differential privacy, introduced by Dwork et al. (2006), is a probabilistic framework used
to quantify the privacy loss of a mechanism (randomized algorithm). In the big picture,
differential privacy requires that for any two neighboring databases – differing in one person’s
data – the resulting distributions of outputs are “close”. There have been many variants of
differential privacy proposed, which alter both the notion of “neighboring” as well as “close”-
ness. Typically, the neighboring relation is expressed in terms of an adjacency metric on the
space of input databases, and the closeness measure is formulated in terms of a divergence
or constraint on hypothesis tests.

If D is the space of input datasets, a metric d : D × D ³ R
g0 is an adjacency metric

if d(D,D2) f 1 represents that D and D2 differ by one individual. When d(D,D2) f 1, we
say that D and D2 are neighboring or adjacent datasets. A mechanism M : D ³ Y is a
randomized algorithm; more formally, for each D * D , M(D)|D is a random variable taking
values in Y .

Definition 2.2 (Differential privacy: Dwork et al. (2006)). Let · g 0, let d be an adjacency
metric on D , and let M : D ³ Y be a mechanism. We say that M satisfies ·-differential
privacy (·-DP) if P (M(D) * S) f exp(·)P (M(D2) * S), for all d(D,D2) f 1 and all
measurable sets S ¢ Y .

In many problems, the space of datasets can be expressed as D = X n, where X repre-
sents the space of possible contributions from one individual and n is fixed. In this case, it
is common to take the adjacency metric to be Hamming distance, which counts the number
of different entries between two databases. This setup is commonly referred to bounded DP.
The inference framework proposed in this paper is applicable to general database spaces and
metrics, but the examples bounded DP unless otherwise noted.

Another common formulation of DP is Gaussian-DP, where the measure of “closeness”
is expressed in terms of hypothesis tests.

Definition 2.3 (Gaussian DP: Dong et al., 2022). Let µ g 0, let d be an adjacency metric
on D , and let M : D ³ Y be a mechanism. We say that M satisfies µ-Gaussian DP (µ-
GDP) if for any two adjacent databases D and D2 satisfying d(D,D2) f 1, the type II error
of any hypothesis test on H0 : Z > M(D) versus H1 : Z > M(D2), where Z is the observed
output of M , is no smaller than Φ(Φ21(12³)2µ), where ³ is the type I error, and Φ is the
cumulative distribution function (cdf) of a standard normal random variable.

One can interpret GDP as follows: a mechanism satisfies µ-GDP if testing H0 : Z >
M(D) versus H1 : Z > M(D2) for adjacent databases is at least as hard as testing H0 : Z >
N(0, 1) versus H1 : Z > N(µ, 1).

Differential privacy satisfies basic properties such as composition and post-processing:

• Composition: if a mechanism M1 : D ³ Y satisfies ·1-DP (µ1-GDP) and mechanism
M2 : D ³ Z satisfies ·2-DP (µ2-GDP), then the composed mechanism which releases
both M1(D) and M2(D) satisfies (·1 + ·2)-DP (

√
µ2
1 + µ2

2-GDP).

• Post-processing : if a mechanism M : D ³ Y satisfies ·-DP (µ-GDP) and f : Y ³ Z

is another mechanism, then f çM : D ³ Z satisfies ·-DP (µ-GDP).
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Example 2.4 (Additive noise mechanism). Given a statistic T : D ³ R
d, and a norm

'·' on R
d, an additive noise mechanism samples a random vector N independent of the

dataset, and releases T̃ (D) = T (D) + ∆N , where ∆ = supd(D,D)f1'T (D) 2 T (D2)' is the

sensitivity of T . The Laplace mechanism uses the 31 norm and samples Ni
iid> Laplace(0, 1/·)

for i = 1, . . . , d; then T̃ (D) satisfies ·-DP. The Gaussian mechanism uses the 32 norm and

samples N > Nd(0, (1/µ
2)I) and T̃ (D) satisfies µ-GDP.

Given a real-valued statistic of the form T (D) = 1
n

∑n
i=1 t(xi), where D = (x1, . . . , xn),

many DP mechanisms will often first alter T using a clamp function, to ensure finite sen-
sitivity: T 2(D) = 1

n

∑n
i=1[t(xi)]

b
a, and then apply an additive noise mechanism to T 2(D).

However, clamping is a non-linear function, which results in a bias.

3 Confidence intervals

Confidence intervals/sets are a fundamental statistical tool, which concretely communicate
the uncertainty of a parameter estimate. In Section 3.1, we describe a general and abstract
framework for constructing a confidence set, which encompasses both traditional methods
as well as the simulation-based method explored in this paper. In Section 3.2 we show that
the repro sample methodology of Xie and Wang (2022) can be expressed as a special case
of our framework, and discuss the limitations of the Monte Carlo methods of Xie and Wang
(2022). In Section 3.3, we show that, using simulation-based inference, we can construct
valid confidence sets with guaranteed coverage, even accounting for the randomness in the
simulation. In Section 3.4, we give a concrete algorithm to find the smallest confidence
interval containing the confidence set derived in Section 3.3 as well as a grid-based confidence
set.

3.1 Abstract confidence sets

In this section, we set up a general and abstract framework for constructing a confidence set
for an unknown parameter ¹ in Lemma 3.1.

The abstraction in Lemma 3.1 is motivated by the framework in Xie and Wang (2022),
but we present our framework using a different notation and perspective; in Section 3.2 we
show that the framework of Xie and Wang (2022) is a special case of Lemma 3.1.

Lemma 3.1. Let ³ * (0, 1) be given. Let ¹7 * Θ be the unknown parameter, s be the

observed sample where s > F¹∗, and É > Q be a random variable which is independent of

s. For any fixed ¹, let B³(¹; s, É) be an event, which depends on s and É, such that for all

¹ * Θ,

Ps>Fθ,É>Q(B³(¹; s, É)) g 12 ³. (1)

Then

Γ³(s, É) := {¹ | I(B³(¹; s, É)) = 1}, (2)

is a (1 2 ³)-confidence set for ¹7. If ¹ = (¹1, . . . , ¹k) can be decomposed to ´ and ¸ where

´ = (¹i1 , · · · , ¹im), 1 f i1 < · · · < im f k and ¸ contains the rest ¹i not included in ´,
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because each Γ¹i
³ (s, É) is implicitly constructed from a Γ³(s, É) that we get the simultaneous

coverage of Γ¹1
³ (s, É), . . . ,Γ¹k

³ (s, É). As we will discuss in Section 6.1, a downside of this
construction is that the simultaneous nature of the confidence sets can lead to over-coverage
for any one of the Γ¹i

³ (s, É).

Most traditional constructions of confidence intervals fit in the framework of Lemma 3.1,
as illustrated in Example 3.3.

Example 3.3. We show how the classical method of deriving a confidence interval for the
location parameter of the normal distribution fits into the framework of Lemma 3.1. In this

case, we will not need the random variable É. Let s = (x1, . . . , xn) where xi
iid> N(¹7, Ã2

0),
where only ¹7 is unknown. Then T¹(s) =

x2¹
Ã0/

:
n
> N(0, 1) is a pivot where x = 1

n

∑n
i=1 xi.

We then take C = [2z12³/2, z12³/2], which is a (12 ³) prediction interval for T¹∗(s), where
¹7 is the true parameter. Then B³(¹; s) = {T¹(s) * C}, and our confidence set is

Γ³(s) = {¹|I(B³(¹; s)) = 1}
= {¹|T¹(s) * [2z12³/2, z12³/2]}

=

{

¹

∣

∣

∣

∣

2z³/2 f
x2 ¹

Ã0/
:
n
f z³/2

}

=
{

¹
∣

∣x2 Ã0z12³/2/
:
n f ¹ f x+ Ã0z12³/2/

:
n
}

= [x2 Ã0z12³/2/
:
n, x+ Ã0z12³/2/

:
n],

which is the usual confidence interval for the mean.

Example 3.9 below gives a DP example where the sampling distribution of s can be
evaluated numerically. However, in most DP problems, this is not the case. For the remainder
of the paper, we will not assume that this sampling distribution is available, and in Section
3.3, we will show how the auxiliary random variable É allows us to use simulation-based
inference to construct an event B³ satisfying (1).

Example 3.4 (Bernoulli distribution: Awan and Slavković, 2018). Awan and Slavković
(2018) derived the uniformly most powerful DP hypothesis tests for Bernoulli data and
showed that they could be expressed in terms of the test statistic X + N , where X >
Binomial(n, p7) and N > Tulap(0, b, q), where X is based on the privatized data, and the
parameters of the Truncated-Uniform-Laplace (Tulap) distribution1 depend on the privacy
parameters · and ¶. Awan and Slavković (2018) gave a closed-form expression for the cdf of
N , and showed that the cdf of X +N can be expressed as

FX+N(t) =
n

∑

x=0

FN(t2 x)fX(x),

where fX is the pmf of X, and FN is the cdf of N . This cdf is then used to derive p-values
and confidence intervals for p7 in Awan and Slavković (2018, 2020).

1The Tulap distribution is closely related to the Staircase distributions (Geng and Viswanath, 2014) and
the Discrete Laplace distribution (used in the geometric mechanism) (Inusah and Kozubowski, 2006; Ghosh
et al., 2009).
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In the previous example, the convolution of X and N was tractable since there were
only two variables, the pmf/cdf of X and N are easily evaluated, and X took on only a
finite number of values. Awan and Vadhan (2023) showed that one could use the inversion
of characteristic functions to numerically evaluate the cdf when convolving multiple known
distributions, which they applied to the testing of two population proportions. In Section B.1
of the supplement, we show that for exponentially distributed data, we can apply this trick
to account for clamping. However, it is not always tractable to evaluate the characteristic
function of a clamped random variable.

3.2 Repro sample confidence sets

Xie and Wang (2022) propose a general framework to produce valid confidence sets using
“repro samples,” which we show is a special case of Lemma 3.1. In the case where a sampling
distribution is unavailable, Xie and Wang (2022) propose an approximate Monte Carlo con-
fidence set, which serves as the motivation for the method we propose in Section 3.3. In this
section, we review the key results from Xie and Wang (2022) which motivate our methods.

We assume that the observed data s, drawn from a distribution parameterized by the
true parameter ¹7 * Θ, can be expressed as

s
d
= G(¹7, u), (4)

for a known measurable function G and a random variable u > P , with known distribution
P (not depending on ¹7). We will refer to equation (4) as a generating equation, which
can be interpreted as the equation that was used to generate the data (Hannig, 2009). We
will sometimes refer to u as the “seed” that produced the sample s. Generating equations
like (4) are used in many areas of statistics, including fiducial statistics (Hannig, 2009),
the reparametrization trick in variational autoencoders (Kingma and Welling, 2013), and
co-sufficient sampling (Engen and Lillegard, 1997; Lindqvist and Taraldsen, 2005).

Remark 3.5. For many problems, there is a natural choice for G, such as a linear trans-
formation for location-scale families and inverse-transform sampling for real-valued random
variables. However, there is no general prescription for the generating equation, and models
may have multiple generating equations. While the theory presented in this paper is equally
valid for any generating equation, intuition suggests that it is preferable to choose G that is
smooth in both ¹ and u. We also note that for complex models, it may be easier to specify
multiple “mini” generating equations for each step of a hierarchical model, which is often
convenient when working with privatized data. See Example 3.9 for an example.

Xie and Wang (2022) proposed the repro sample methodology as a theoretical framework
to derive a confidence interval, given a generating equation G(¹, u), nuclear mapping T (u, ¹)
(similar to a test statistic), and a P -probability (12³) set A³(¹) on the range of T (i.e., for
all ¹ * Θ, Pu>P (T (u, ¹) * A³(¹)) g 12 ³):

Γ³(s) =
{

¹ | #u7 s.t. s = G(¹, u7), T (u7, ¹) * A³(¹)
}

. (5)

Xie and Wang (2022) show that with this construction, Γ³(s) is a valid confidence set for
¹. By taking B³ to be the event {#u7 s.t. s = G(¹, u7), T (u7, ¹) * A³(¹)}, we see that (5) is
a special case of (2).
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When the sampling distribution of T (u7, ¹) for u7 > P is unavailable, Xie and Wang

(2022) propose a Monte Carlo algorithm, which uses R simulated copies u1, . . . , uR
iid> P ,

and an empirical (1 2 ³) set Â³ calculated from G(u1, ¹), . . . , G(uR, ¹) over a grid search
of ¹. While they show that this procedure works well in practice, there is no theoretical
guarantee that the resulting confidence sets are calibrated to the nominal level. The lack of
calibration arises from two main issues:

1. The empirical Â³ does not account for Monte Carlo errors, and it would be required
that R ³ > in order to make the Monte Carlo errors negligible.

2. The grid search over ¹ may miss disconnected or irregularly shaped regions. Even
assuming that all connected regions are somewhat well-behaved, it would require that
the density of the grid increases in order to identify all regions of the confidence set.

Besides the above issues, the grid search method is computationally expensive, espe-
cially if one is only interested in producing a confidence interval for a single parameter. In
the following subsection, we address these limitations with an improvement to the repro
methodology using simulation-based inference techniques.

3.3 Simulation-based confidence sets

Similar to the Monte Carlo method of Xie and Wang (2022), we will use simulation tech-
niques to build the event B³ in Section 3.1. Unlike Xie and Wang (2022), our result offers
guaranteed coverage, even accounting for the Monte Carlo sampling in the procedure. Go-
ing forward, we will refer to our simulation-based method as “repro sample” or “repro” and
will reference Xie and Wang (2022) when discussing the original repro sample methodology.

Using the same setup as in Section 3.2, our procedure draws R i.i.d. copies u1, . . . , uR
iid>

P , and for each ¹ * Θ, we consider si(¹) = G(¹, ui) for i = 1, . . . , R, which we call repro
samples. At the true parameter ¹7, these Monte Carlo samples {si(¹7)}Ri=1 have the same
distribution as s. Then, considering the sequence s, s1(¹), . . . , sR(¹), which consists of the
repro samples and the observed sample, we construct the event B³(¹; s, (ui)

R
i=1) such that

for every ¹ * Θ, Ps>Fθ,ui>P (B³(¹; s, (ui)
R
i=1)) g 12 ³. We then plug in B³ into either (2) or

(3) to form a valid (1 2 ³)-confidence set. We offer a general and constructive method to
produce a valid B³(¹; s, (ui)

R
i=1) in Theorem 3.6.

Theorem 3.6. Let ³ * (0, 1). Let s * X be the observed sample, where s = G(¹7, u), u > P ,

and ¹7 is the true parameter. Let u1, . . . , uR
iid> P , and set si(¹) = G(¹, ui) for i = 1, . . . , R.

Let T¹ : X ×X R+1 ³ R be a permutation-invariant function, which serves as a test statistic.

Call Tobs(¹) = T¹

(

s; s, s1(¹), . . . , sR(¹)
)

, and let T(1)(¹), . . . , T(R+1)(¹) be the order statistics of
T¹

(

s; s, s1(¹), . . . , sR(¹)
)

, T¹

(

s1(¹); s, s1(¹), . . . , sR(¹)
)

, . . . , T¹

(

sR(¹); s, s1(¹), . . . , sR(¹)
)

. Then

for any b2a g +(12³)(R+1),21, the event B³(¹; s, (ui)
R
i=1) = {Tobs(¹) * [T(a)(¹), T(b)(¹)]}

satisfies (1). Thus, using B³ in either (2) or (3) of Lemma 3.1, where É = (u1, . . . , uR),
gives a (12 ³)-confidence set.

Theorem 3.6 gives a straightforward construction for sets satisfying (1), which, as Lemma
3.1 points out, lead to valid confidence sets. A key difference between these results and those
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of Xie and Wang (2022) is that our B³ sets exactly satisfy (1), even including the Monte Carlo
errors. The key insights for Theorem 3.6 are 1) the need for a permutation-invariant statistic,
2) the importance of including s on the right hand side of T to ensure exchangeability, and 3)
the construction of prediction sets based on order statistics, using reasoning similar to that
in conformal prediction (Vovk et al., 2005). See Lemma A.1 in the supplement for details.

Example 3.7. We list some examples of permutation-invariant functions, and show how a
and b can be chosen for one-sided or two-sided criteria:

1. If s * R, then setting T¹(s; (si(¹))
R
i=1) = s is trivially permutation-invariant. In this

case, both large and small values of s indicate that it is unusual, so we may set a and
(R+1)2b to be approximately equal: a = +(³/2)(R+1), and b = a++(12³)(R+1),21.

2. More generally, if T¹ : X ³ R is a test statistic, which may also depend on the
parameter ¹, then this also satisfies the assumptions of Theorem 3.6. If large values
indicate that it is unusual, we can set a = 1 and b = +(1 2 ³)(R + 1),. On the other
hand, if small values of T indicate that it is unusual, then we set a = +³(R + 1), + 1
and b = R + 1.

3. In general, most statistical depth functions are permutation-invariant, such as Maha-
lanobis depth, simplicial depth, and Tukey/Halfspace depth. Typically, depth statistics
are designed such that lower depth corresponds to unusual points. For example, Ma-
halanobis depth is defined as T (x;X) = [1 + (x 2 µX)

2Σ21
X (x 2 µX)]

21 where µX and
ΣX are the sample mean and covariance of X. To use this depth as the T in Theo-
rem 3.6, we let X = (s, s1(¹), . . . , sR(¹)) and x be one of s, s1(¹), . . . , sR(¹), and set
a = +³(R + 1),+ 1 and b = R + 1.

Remark 3.8. We remark that depth statistics were also recommended by Xie and Wang
(2022) for use in their Monte Carlo repro sampling framework, but their approach did not
calibrate the confidence sets as we do in Theorem 3.6.

We end this section with two relatively simple examples, showing how one can apply
our simulation-based framework to private inference problems. See Section 5 for additional
examples.

Example 3.9. Suppose that x = (x1, . . . , xn), xi
iid> Bern(¹7), and we observe the privatized

statistic s =
∑n

i=1 xi + N , for some noise distribution N . Following Awan and Slavković
(2020), we use the Tulap(0, exp(21), 0) distribution to achieve 1-DP. According to Awan

and Slavković (2020), such a Tulap random variable can be sampled as N
d
= G1 2 G2 + U ,

where G1, G2
iid> Geom(12 exp(21)) and U > Unif(21/2, 1/2) are independent.

In this setting, we can set Px := Unif(0, 1) and sample ux
i > Px for i = 1, . . . , n.

Then using Gx(¹, u) = I(u f ¹), we have Gx(¹, u
x
i )

iid> Bern(¹). For the privacy mech-
anism, we set PDP = Tulap(0, exp(21), 0) and sample uDP > PDP. Using the function

Gs(x, uDP) =
∑n

i=1 xi + uDP, we have that s|x d
= Gs(x, uDP). Then, the full generating

equation is, G(¹, u) =
∑n

i=1 I(u
x
i f ¹) + uDP, where u = ((ux

i )
n
i=1, uDP).

In this case, the exact sampling distribution of s can be derived, which Awan and
Slavković (2020) use to construct an asymptotically unbiased DP confidence interval of ¹7
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Empirical Coverage Average Width
Repro Sample 0.949 (0.007) 0.1657 (0.0005)
(Awan and Slavković, 2020) 0.947 (0.007) 0.1632 (0.0004)

Table 1: Nominal 95% confidence intervals for the ¹7 of Bernoulli data. True parameters are

¹7 = 0.2. Sample x1, . . . , x100
iid> Bern(¹7). The results are under 1-DP and computed over

1000 replicates.
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Figure 2: 95% confidence set for location-scale normal (Example 3.10 and Section 5.2), based
on s = (1, 0.75), generated using n = 100, ¹7 = (µ7, Ã7) = (1, 1), ÷ = 1, U = 3, L = 0, and
R = 200 repro samples. From left to right: Mahalanobis depth (area 0.35), Halfspace/Tukey
depth (area 0.61), Simplicial depth (area 0.63), Spatial depth (area 0.36).

based on s, which has exact type I error and is near-optimal. Table 1 is the result of a small
simulation study showing that our simulation-based methodology is able to obtain nearly
identical performance as Awan and Slavković (2020), and does not require an analytical
sampling distribution. We set R = 200 and use Mahalanobis depth as T .

Example 3.10 (Comparison of depth statistics). For privatized data, it can be challenging
to develop a customized test statistic with good properties (such as being a pivot). Because
of this, we explore various depth statistics which can be used as a default test statistic.
In this example, we compare the confidence sets of different depth statistics in a location-
scale normal problem, where we are given DP summary statistics which are the noisy mean
and noisy variance of clamped data. See Section 5.2 for details on the model and privacy
mechanism.

For this problem, we have a two-dimensional privatized summary, one for the mean and
one for the variance, and we compare different options of statistical depth for use in Theorem
3.6, see Figure 2 (using Algorithm 3 in Section 3.4). We see that the halfspace and simplicial
depth statistics result in disconnected confidence regions, whereas Mahalanobis and spatial
depth give better behaved confidence regions. Between Mahalanobis and spatial depth, we
prefer Mahalanobis depth as it is more computationally efficient, has a simple formula, and
is connected to other indirect inference techniques (Gourieroux et al., 1993). Note that
while Mahalanobis depth results in a connected confidence region in this example, this need
not generally be the case; in Section 3.4 we propose an algorithm which can account for
disconnected regions in the confidence set.

12



Algorithm 1 accept(Θ0 ¢ Θ, ³, (ui)
R
i=1, G, s, T )

INPUT: subset Θ0 ¢ Θ to search over, ³ * [1/(R + 1), 1), seeds (ui)
R
i=1, observed statistic s * R

d, exchangeable statistic

Tθ : Rd ×R
d(R+1) ³ [0, 1], defined for all ¹ * Θ (low values are interpreted as unusual), and G(¹, u) is the generating equation

for s.

1: For a given ¹, denote si(¹) = G(¹, ui).
2: Denote Ti(¹) = Tθ(si(¹); s, s1(¹), . . . , sR(¹))
3: Denote Tobs(¹) = Tθ(s; s, s1(¹), . . . , sR(¹))
4: Call M = supθ∈Θ0

[#{Ti(¹) f Tobs(¹)}+ 1 + Tobs(¹)]

5: if M g +³(R+ 1),+ 1 then

6: Return TRUE

7: else

8: Return FALSE

9: end if

3.4 Numerical algorithm for confidence intervals

While Theorem 3.6 gives a construction for confidence sets, which even accounts for Monte
Carlo errors, finding an explicit description for the confidence set is another challenge. In
this section, we propose numerical algorithms that enable valid confidence sets which can be
easily implemented. We first develop Algorithm 1 which is determines whether a subset of
the parameter space has intersection with the confidence set of Theorem 3.6, and use this to
develop Algorithm 2 which gives a valid confidence interval for a parameter of interest. We
also propose Algorithm 3 which is a valid grid-based multi-dimensional confidence set.

Proposition 3.11. Let Θ = B × H be a decomposition of a parameter space such that B
is a connected subset of R. Let T be a permutation-invariant statistic taking values in [0, 1],
where small values give evidence that a sample is “unusual” relative to the others. Let

Γ´
³(s, É) be the confidence set for ´ * B from (3) based on T as described in Theorem 3.6,

using a = +³(R + 1), + 1 and b = R + 1. Then, the output of Algorithm 2 is a (1 2 ³)
confidence interval containing Γ´

³(s, É), whose width is at most 2tol units larger than the

smallest interval containing Γ´
³(s, É).

Example 3.12 (Example confidence sets). In Figure 3, we give illustrations on how Al-
gorithms 2 and 3 operate. In part a) we run Algorithm 2, where at each point in time,
regions are colored yellow to indicate that we are currently unsure whether a region belongs
in the confidence interval or not, red if the region is confirmed to be outside of the confidence
interval, and blue if the region is confirmed to belong to our final confidence interval. In the
first line, we plot ´init, which we know lies in the confidence set, and in the second line, we
identify ´L and ´U , which form initial lower and upper bounds for the confidence set. In line
3 we find that the interval [´L, ´

7
L] does not intersect the confidence set and is marked red,

and the interval [´7
L, ´init] is marked yellow; we set ´L = ´7

L for the next iteration . We also

confirm that the interval [´7
U , ´U ] does intersect the confidence set and so is marked yellow,

while this information implies that [´init, ´
7
U ] should be marked blue; we set ´U = ´7

U for
the next iteration. Line 4 implements another iteration of the algorithm, and after this we
output the resulting [´L, ´U ].

Part b) of Figure 3 shows the grid search confidence set of Algorithm 3, where the green
region is the original confidence set Γ³ by Theorem 3.6, the blue regions are the output
of Algorithm 3, which are confirmed to have intersection with Γ³, and the red regions are
confirmed to have no intersection with Γ³.
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Algorithm 2 confidenceInterval(³, Θ = B ×H, (ui)
R
i=1, G, s, T , tol)

INPUT: ³ * [1/(R+ 1), 1), decomposition Θ = B ×H of ¹ = (´, ¸) such that B ¢ R, seeds (ui)
R
i=1, observed statistic s * R

d,

exchangeable statistic Tθ : Rd × R
d(R+1) ³ [0, 1], defined for all ¹ * Θ (low values are interpreted as unusual), G(¹, u) is the

generating equation for s, and tol > 0 is the numerical tolerance.

1: if There exists ˆ́
init * B such that accept( ˆ́init, ³,Θ = B ×H, (ui)

R
i=1, G, s, T ) = TRUE then

2: if There exists ´L * B such that accept([inf B, ´L]×H,³, (ui)
R
i=1, G, s, T ) = FALSE then

3: Perform a bisection method search as follows:
4: Set ´L = ˆ́

init

5: while ´L 2 ´L > tol do

6: Set ´∗

L = (´L + ´L)/2

7: if accept([´L, ´
∗

L]×H,³, (ui)
R
i=1, G, s, T ) = TRUE then

8: Set ´L = ´∗

L
9: else

10: Set ´L = ´∗

L

11: end if

12: end while

13: else

14: ´L = inf B

15: end if

16: if There exists ´U * B such that accept([´U , supB], ³, (ui)
R
i=1, G, s, T ) = FALSE then

17: Perform a bisection method search as follows:
18: Set ´U = ˆ́

init

19: while ´U 2 ´U > tol do

20: Set ´∗

U = (´U + ´U )/2

21: if accept([´∗

U , ´U ]×H,³, (ui)
R
i=1, G, s, T ) = TRUE then

22: Set ´U = ´∗

U

23: else

24: Set ´U = ´∗

U
25: end if

26: end while

27: else

28: ´U = supB

29: end if

30: else

31: OUTPUT: '
32: end if

OUTPUT: [´L, ´U ]

Remark 3.13. Step 1 of Algorithm 2 requires us to find ˆ́
init * Γ´

³(s, u). Assuming that
ˆ́
init = argmax´{sup¸{#{Tobs((´, ¸)) g T(i)((´, ¸))}}} is well defined and Γ´

³(s, u) is non-

empty, we see that ˆ́
init * Γ´

³(s, u). Note that since we only need any point in Γ´
³(s, u), we

can also use any other estimator, provided it is confirmed to belong to Γ´
³(s, u).

To find the starting ´L (and similarly for ´U) in Algorithm 2, one can use ´L = inf B
in the case that inf B > 2>. Otherwise, we can use a “logarithmic bisection method”
starting at ´L = min{21, supB} and doubling ´L until we obtain a value that meets our
requirements (if ´L diverges to 2>, we can set ´L = 2> in line 14).

Remark 3.14. In Algorithm 1, it is equivalent to set M = sup¹*¹0 #{Ti(¹) f Tobs(¹)}+ 1,
as noted in the proof of Proposition 3.11. However, it is numerically challenging to maximize
an integer-valued objective function. By altering the objective with the value Tobs(¹), we
introduce a continuous component where typically, by increasing Tobs(¹), we will also increase
the rank. This altered objective is more easily optimized by standard optimization software,
such as R’s L-BFGS-B method in optim.
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Algorithm 3 confidenceGrid(³, Θ, (ui)
R
i=1, G, s, T , r)

INPUT: ³ * [1/(R + 1), 1), Θ + ¹, seeds (ui)
R
i=1, observed statistic s * R

d, exchangeable statistic Tθ : Rd × R
d(R+1) ³ [0, 1],

defined for all ¹ * Θ (low values are interpreted as unusual), G(¹, u) is the generating equation for s, and r is the resolution of
the grid.

1: Use confidenceInterval with seeds (ui)
R
i=1 to obtain a confidence interval for each coordinate: [¹

(i)
L

, ¹
(i)
U

] for i =

1, 2, . . . , d = dim(Θ). We assume that all endpoints are finite. Call Γ0 =
∏d

i=1[¹
(i)
L

, ¹
(i)
U

].

2: Set b
(i)
r =

θ
(i)
U

−θ
(i)
L

r
, the grid width

3: Set ¹
(i)
j = ¹

(i)
L

+ jb
(i)
r for j = 0, 1, 2, . . . , r, the grid endpoints

4: Call Γr
0 =

{

∏d
i=1[¹

(i)
ji

, ¹
(i)
ji+1]

∣

∣

∣
ji * {0, 1, 2, . . . , r 2 1}, i = 1, . . . , d

}

, the discretization of Γ0 into a grid with resolution r

OUTPUT:
⋃

{

Θ0 * Γr
0

∣

∣ accept(Θ0, ³, (ui)
R
i=1, G, s, T ) = TRUE

}

Note that sup¹*Θ0
p(¹) is a p-value for H0 : ¹7 * Θ0, where p(¹0) is a p-value for H0 : ¹7 =

¹0, which agrees with the p-value formula given in Xie and Wang (2022, Corollary 1). If
B³(¹; s, É) is constructed from an exchangeable sequence of test statistics, then this p-value
can be expressed in a simple form in Theorem 4.1, accounting for the Monte Carlo errors.
Furthermore, Algorithm 4 gives a pseudo code implementation of this p-value.

Theorem 4.1. Let u0, u1, . . . , uR
iid> P , ¹7 * Θ be the true parameter, s = G(¹7, u0) * R

d

be the observed value, ¹ * Θ0 ¢ Θ, si(¹) = G(¹, ui) * X be the repro samples, and

T¹ : Rd × R
d×(R+1) ³ R be a permutation-invariant statistic, where small values indicate

that a sample is “unusual”. Call Tobs(¹) = T¹(s; s, s1(¹), . . . , sR(¹)), and let T(1)(¹), . . .,
T(R+1)(¹) be the order statistics of T¹(s; s, s1(¹), . . . , sR(¹)), T¹(s1(¹); s, s1(¹), . . . , sR(¹)), . . . ,
T¹(sR(¹); s, s1(¹), . . . , sR(¹)). Then,

p =
sup¹*Θ0

#{T(i)(¹) f Tobs(¹)}
R + 1

,

is a p-value for the null hypothesis H0 : ¹
7 * Θ0.

In Algorithm 4, we give a simple procedure to calculate the p-value of Theorem 4.1, which
in Proposition 4.2 is proved to be correct.

Proposition 4.2. Under the same assumptions as Theorem 4.1 and assuming that T¹ takes

values in [0, 1], the output of Algorithm 4 is equal to the p-value, stated in Theorem 4.1.

Remark 4.3. In Algorithms 1-4, the test statistic is restricted to take values in [0, 1]. How-
ever, this is not much of a restriction, since any real-valued test statistic can be transformed
to the interval [0, 1] using a cdf, such as Φ.

Remark 4.4. When implementing Algorithm 4, ¹̂(s) = argmax¹*Θ0
[#{Ti(¹) f Tobs(¹)} +

Tobs(¹)] may be used as an intermediate computation, but this value could have independent
interest as an estimator. We can interpret that ¹̂(s) is the parameter that makes the data the
“most plausible”, since it maximizes the rank #{Ti(¹) f Tobs(¹)}. Similarly, taking Θ0 = Θ,
¹̂(s) is an element of every confidence set, as the coverage goes to zero. We may also interpret
¹̂(s) as the mode of an implicit confidence distribution; in the one-dimensional case, the mode
of the confidence distribution is known to be a consistent estimator under some regularity
conditions (Xie and Singh, 2013, Section 4.2), and can be viewed as a generalization of
maximum likelihood estimation.
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Algorithm 4 pvalue(Θ0, (ui)
R
i=1, G, s, T )

INPUT: null hypothesis Θ0, seeds (ui)
R
i=1, observed statistic s * X , exchangeable statistic Tθ : X ×X R+1 ³ [0, 1] (low values

give evidence against the null hypothesis), and G(¹, u) is the generating equation for s.

1: For a given ¹, denote si(¹) = G(¹, ui).
2: Denote Ti(¹) = Tθ(si(¹); s, s1(¹), . . . , sR(¹))
3: Denote Tobs(¹) = Tθ(s; s, s1(¹), . . . , sR(¹))
4: Set M = supθ∈Θ0

[#{Ti(¹) f Tobs(¹)}+ Tobs(¹)]

5: Set p = 1
R+1

min{+M,+ 1, R+ 1}
OUTPUT: p

5 Simulations

In this section, we conduct multiple simulation studies, applying our methodology to various
privatized data settings, with the following goals: 1) validate the coverage/type I errors of
the simulation-based confidence intervals and hypothesis tests, 2) illustrate the improved
performance of our methodology against other techniques such as parametric bootstrap, 3)
demonstrate the flexibility of our inference methodology by considering a variety of models
and privacy mechanisms, and 4) use our framework to understand how statistical inference
is affected by clamping. In each simulation, we show that compared to the state-of-the-
art methods, our methodology is able to offer comparable performance (power/confidence
interval width) with more conservative type I error/coverage. Additional simulations are
found in Section B of the supplementary materials.

5.1 Poisson distribution

In this section, we produce DP confidence intervals for Poisson data using our simulation-
based methodology and investigate the effect of clamping on the confidence interval width.

Suppose that x1, . . . , xn
iid> Pois(¹7), and we observe the privatized statistic s = 1

n

∑n
i=1[xi]

c
0+

(c/(n·))N , for some noise distribution N , where c is a fixed non-negative integer. Call ux
i

iid>
Unif(0, 1) and ux = (ux

i )
n
i=1 and uDP

d
= N . Then we have the transformation xi = F21(ux

i ; ¹),
where F21(·; ¹) is the quantile function of Pois(¹), andG(¹, (ux, uDP )) =

1
n

∑n
i=1[xi]

c
0+

c
n·
uDP .

To generate a simulation-based confidence interval for ¹ , we produce R i.i.d. copies of
(ux, uDP ), and use the (12³) sets according to part 1 of Example 3.7 to form the confidence
interval in Lemma 3.1, using s itself as the test statistic.

In Figure 4, we fix both the data generating seeds as well as the seeds for simulation-based
inference, and compare the constructed confidence intervals (with provable 95% coverage) as
the quantity c is varied. For the simulation, we set n = 100, ¹ = 10, · = 1, and N > N(0, 1),
so that s satisfies 1-GDP, and build our CIs from R = 1000 repro samples. In the left
plot of Figure 4, we see the generated confidence intervals as c varies. In the right plot of
Figure 4, we plot the widths of the intervals. We see that for c g 15, the width of the
interval increases at an approximately linear rate, which reflects the fact that the privacy
noise increases linearly in c. On the other hand, for c f 10, we see a rapid increase in the
CI width when c becomes smaller. In fact, in this simulation, for c f 4, the upper bound
for the confidence interval is +>.

Our simulation highlights the fact that while valid inference can be done with virtually
any clamping threshold, there can be a much higher price to pay for choosing a threshold too
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Figure 4: For fixed seeds in data generation, and in simulation-based inference, confidence
intervals for x1, . . . , xn > Pois(10) based on s = 1

n

∑n
i=1[xi]

c
0 + (c/(n·))N , where n = 100,

R = 1000, N > N(0, 1) and · = 1. Left: 95% confidence intervals as c varies. Right: width
of the 95% confidence intervals as c varies. For c f 4, the upper confidence limit is >.

low versus too high. Nevertheless, with c = 10, approximately half of the data is clamped,
and we are still able to get near minimal confidence intervals. For this simulation, the optimal
clamping threshold is c = 14, which alters about 8% of the datapoints, giving a CI width of
1.46. In the right plot of Figure 4, we see that even with c = 50, we can get an interval with
width 2.47, which is less than twice the optimal width. While this is a noticeable loss in
accuracy, we are still able to make informative inference even with a very suboptimal choice
of c. See Section B.1 in the supplement for another example investigating the effect of the
clamping threshold on confidence interval width.

5.2 Location-scale normal

In this section, we produce private confidence intervals for the location and scale parameters
for normally distributed data, and compare the coverage and width against the parametric
bootstrap (Ferrando et al., 2022; Du et al., 2020) and the method of Karwa and Vadhan
(2018).

Suppose that x1, . . . , xn
iid> N(µ7, Ã7), and we are interested in a confidence set for (µ7, Ã7).

Suppose we are given clamping bounds L and U , so that we work with the clamped data
[xi]

U
L . It is easy to see that the clamped mean xc = 1

n

∑n
i=1[xi]

U
L has sensitivity U2L

n
, and

Du et al. (2020) derived the sensitivity of the sample variance s
(2)
c = 1

n21

∑n
i=1([xi]

U
L 2 xc)

2

is (U2L)2

n
, where the “c” subscript reminds us that these statistics are for the clamped data.

If N1, N2
iid> N(0, 1), then a privatized statistic is s = (xc +

U2L
n·

N1, s
(2)
c + (U2L)2

n·
N2), which

satisfies (
:
2·)-GDP. To see how this problem fits into our simulation-based inference, we
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µ Ã
Empirical Coverage 0.989 (0.003) 0.984 (0.004)

Repro Sample Average Width 0.599 (0.003) 0.756 (0.004)
Empirical Coverage 0.688 (0.015) 0.003 (0.001)

Parametric Bootstrap (percentile) Average Width 0.311 (0.001) 0.291 (0.024)
Empirical Coverage 0.859 (0.011) 0.819 (0.012)

Parametric Bootstrap (simplified t) Average Width 0.311 (0.001) 0.291 (0.024)

Table 2: Nominal 95% confidence intervals for location-scale normal. True parameters are

µ7 = 1 and Ã7 = 1. Sample x1, . . . , x100
iid> N(1, 1), which are clamped to [0, 3]. Gaussian

noise with scale parameter 0.03 is added to the sample mean of the clamped data, and
Gaussian noise with scale parameter 0.09 is added to the sample variance of the clamped
data, jointly satisfying

:
2-GDP. The results are over 1000 replicates.

Empirical Coverage Average Width
Repro Sample 0.989 (0.003) 0.200 (0.001)
(Karwa and Vadhan, 2018) 0.994 (0.002) 3.314 (0.013)

Table 3: Nominal 95% confidence intervals for the location µ in location-scale normal. True

parameters are µ7 = 1 and Ã7 = 1 where both are unknown. Sample x1, . . . , x1000
iid> N(1, 1),

which are clamped to [0, 3]. The results are under 1-DP and computed over 1000 replicates.
We use R = 200 and Mahalanobis depth in repro samples.

sample ux
i

iid> N(0, 1) and use the transformation xi = Ãux
i +µ to generate simulated datasets;

for the DP mechanism, the seeds are the variables N1 and N2.
For a simulation study, we generate 1000 replicates using n = 100, R = 200, µ7 = 1,

Ã7 = 1, ÷ = 1, U = 3, and L = 0. Using (3) and Algorithm 2 with the Mahalanobis depth
function, we get 95% (simultaneous) confidence intervals for µ and Ã with average coverage
0.989 and width 0.599 for µ and coverage 0.984 and width 0.756 for Ã, as shown in Table 2.

We compare against the parametric bootstrap, using the estimator ¹̂ = (s(1),
√

max{s(2), 0})
and 200 bootstrap samples; note that the parametric bootstrap targets two marginal 95%
confidence intervals, whereas our method gives 95% simultaneous intervals. Using the per-
centile method parametric bootstrap gives average coverage of 0.688 and width 0.311 for µ,
and coverage of 0.003 and width 0.291 for Ã (over 1000 replicates). While the parametric
bootstrap intervals are much smaller, the coverage is unacceptably low. The parametric
bootstrap can be improved to some extent by using a simplified version of the bootstrap-t
interval, which is based on the empirical distribution of 2¹̂2 ¹̂b, where ¹̂b is the value from the
bth bootstrap; this method offers some bias correction and improves the coverage to 0.859
and 0.819 for µ and Ã, respectively. While more complex bias-correction methods could
potentially improve the parametric bootstrap, many available methods are inapplicable for
privatized data, since the original data is unobserved.

We also compare our approach against the confidence interval of Karwa and Vadhan
(2018). However, the Algorithm 5 of Karwa and Vadhan (2018) satisfies ·-DP rather than
Gaussian DP, so to have a fair comparison, we change the distributions of N1, N2 above to
be Laplace(0, 1/2) so that our summary statistics also satisfy ·-DP with · = 1. For the
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1.5, 2, 5, 10. In the bottom right subfigure of Figure 6, the parametric bootstrap drastically
fails to maintain the significance level 0.05 when n g 2000 and ∆ = 0.8, 1, 1.5, 2; what is
especially concerning is that the type I errors seem to get worse, rather than better, as the
sample size increases. On the other hand, the type I errors for our simulation-based approach
are very well controlled, never exceeding 0.004. In addition to having better-controlled type
I errors, our method also often has higher power, especially in smaller sample sizes. Addi-
tional simulations, where the privacy parameter µ is varied, are found in Section B.2 of the
supplement.

5.4 Logistic regression via objective perturbation

In this section, we demonstrate that our methodology can be applied to non-additive privacy
mechanisms as well. In particular, we derive confidence intervals for a logistic regression
model using the objective perturbation mechanism (Chaudhuri and Monteleoni, 2008), via
the formulation in (Awan and Slavković, 2021), which adds noise to the gradient of the
log-likelihood before optimizing, resulting in a non-additive privacy noise. However, since
we assume that the predictor variables also need to be protected, we privatize their first
two moments via the optimal K-norm mechanism (Hardt and Talwar, 2010; Awan and
Slavković, 2021), a multivariate additive noise mechanism. Details for both mechanisms are
in Section B.3 of the supplement. We compare the performance of our confidence intervals
against those developed in Wang et al. (2019), which use a custom privacy mechanism, and
a combination of asymptotics and the parametric bootstrap.

We assume that the predictor variable x is naturally bounded in some known interval,
and normalized to take values in [21, 1]. We model x in terms of the beta distribution:

xi = 2zi 2 1, where zi
iid> Beta(a7, b7). Then y|x comes from a logistic regression: yi|xi >

Bern(expit(´7
0+´7

1xi)), where expit(x) = exp(x)/(1+exp(x)). In this problem, the parameter
is ¹7 = (´7

0 , ´
7
1 , a

7, b7), and we are interested in producing a confidence interval for ´7
1 ; the

other parameters are viewed as nuisance parameters.
To set up the generating equation, we use inverse transform sampling for zi: zi =

F21
a7,b7(u

z
i ), where F

21
a7,b7 is the quantile function of Beta(a7, b7), and uz

i
iid> U(0, 1); similarly, we

generate yi = I(uy
i f expit(´7

0+´7
1xi)), where u

y
i

iid> U(0, 1). The privatized output s consists
of estimates of (´7

0 , ´
7
1) from objective perturbation, as well as noisy estimates of the first two

moments of the zi’s, privatized by a K-norm mechanism. Since the only source of random-
ness in the two privacy mechanisms are independent variables from K-norm distributions,
we use the K-norm random variables as the “seeds” for the privacy mechanisms. See Section
B.2 of the supplement for details about objective perturbation and K-norm mechanisms.

In the simulation generating the results in Figure 7, we let a7 = b7 = 0.5, ´7
0 = 0.5,

´7
1 = 2, R = 200, ³ = 0.05, n = 100, 200, 500, 1000, 2000, and · = 0.1, 0.3, 1, 3, 10 in ·-DP.

Other details for this experiment are found in Section B.3 of the supplement.
In Figure 7, we compare the width and coverage of our simulation-based confidence

intervals using Mahalanobis depth, against an alternative method proposed by Wang et al.
(2019), which develops a joint privacy mechanism and confidence interval algorithm for
empirical risk minimization problems, and which is also based on objective perturbation (we
refer to this method as DP-CI-ERM). Some key differences between our simulation-based
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necessary and sufficient conditions for the repro confidence sets to be connected as well as
other techniques to reduce the width of the simulation-based confidence intervals.

In our simulations, we found that the parametric bootstrap method of Ferrando et al.
(2022) often produced unacceptable coverage/type I errors. Based on Beran (1997), we know
that bootstrap consistency typically requires asymptotic equivariance of the estimator, which
itself requires the estimator to be consistent and asymptotically normal. Due to clamping,
many DP estimators are biased (and generally inconsistent when the clamping bounds are
fixed for all n), and this is likely the cause for the failure of the parametric bootstrap in
these settings. Thus, it may be possible to improve the performance of the parametric
bootstrap for privatized data by deriving estimators with lower bias. Nevertheless, at best
the parametric bootstrap gives an asymptotic approximation while our framework has finite-
sample guarantees.

6.1 Choice of test statistic

The ideal test statistic for use in repro would be a pivot, whose formula and sampling distri-
bution do not depend on the nuisance parameters, as this avoids the issue of over-coverage as
well as reduces the computation burden of optimizing over the nuisance parameters. How-
ever, finding a pivot is not always possible. Especially in the setting of differential privacy,
it is very challenging to design test statistics whose distribution does not depend on nui-
sance parameters (e.g., Gaboardi et al. (2016); Du et al. (2020); Awan and Vadhan (2023);
Alabi and Vadhan (2022)). As Xie and Wang (2022) suggested, the goal is then to find
an approximate pivot, such as one whose asymptotic distribution does not depend on the
nuisance parameters. While classical statistical methods suggest plugging in an estimator for
the nuisance parameters to approximate the sampling distribution using asymptotic theory,
there is no finite sample guarantee that this will give accurate coverage/type I error rates.
On the other hand, using repro samples, we can still get the benefit of using an approximate
pivot, while still ensuring coverage/type I error rates. See Section B.4 of the supplement
for an example where we construct a custom test statistic and demonstrate the improved
coverage compared to the depth statistic. A problem for future work would be to develop
general strategies to construct approximate pivots from DP statistics, which can both reduce
the over-coverage and optimize the test statistic for the model and mechanism at hand.

On the other hand, most of the examples considered in this paper used a depth statistic
as the default test statistic in repro. In this section, we quantify the suboptimality of this
approach in terms of increased width/decreased power. There are two main issues at play:
1) The depth statistic may generally be a sub-optimal test statistic and 2) Because we are
implicitly obtaining a simultaneous confidence set for all d parameters, assuming that the
marginal coverages of each projected confidence set are roughly equal, we would expect each
coverage to be (12 ³)1/d, resulting in an increased width.

While there is often a loss in power from using a default test statistic, such as a depth
statistic, it is difficult to quantify the suboptimality, as this is problem specific.

To understand the cost of over-coverage, we consider as an idealized setting the widths
of confidence intervals on normal data – this is a useful example since many statistics are
asymptotically normal. We explore the increased width due to over-coverage when ³ = 0.05
and d increases in Table 4. We see that having a single nuisance parameter increases the
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d 1 2 5 10 100 1000
Relative width 1 1.14 1.31 1.43 1.77 2.07

Table 4: Relative width due to over-coverage for the normal mean with known variance,
when the nominal level is 12 ³ = 0.95, and the over-coverage level is 12 ³7 = (12 ³)1/d.

width by 14%, but that as d increases, the increase in the width is very slow, requiring
d = 1000 before we have about twice the width. So, while over-coverage does increase the
width of our intervals, the increased width is often within a factor of 1.5-2, even for a large
number of nuisance parameters. For a fixed nominal level ³, the relative width of the normal
confidence interval grows proportionally to

√

log(d), a very slow rate (see Proposition A.4
in the supplement).

6.2 Non-parametric inference

As a simulation-based inference method, repro requires the function G to generate s using
s = G(¹, u). While the previous examples shown in the paper have a parametric model for
the sensitive dataset D, there are also examples where the generation of s does not require
a parametric model of D.

For example, to build DP confidence intervals for the median of a dataset following an
unknown distribution, it is possible to design an s which can be simulated directly without
specifying a model for D. Given a dataset of real-values, D = (x1, . . . , xn) where xi are i.i.d.
from an unknown distribution F , we define s =

∑n
i=1 I({xi f median(F )}) and simulate

s using s > Binom(n, 0.5), which is proposed by Xie and Wang (2022, Example 2(A)) in
making inference about the population quantile ¹0 = F21(0.5). If we follow this idea to use
repro to build DP confidence intervals for the median, we could potentially obtain a method
similar to the CDFPostProcess method by Drechsler et al. (2022), by adding noise to s on
a grid of candidate values for median(F ) (note though that Drechsler et al. (2022) derived
their result without considering the repro framework).

Similar to building DP confidence interval for the median, we can use repro in conducting
DP non-parametric hypothesis tests such as the Mann-Whitney test. In our supplementary
materials Section B.5, we explain how to use repro in DP hypothesis test based on the
DP version of Mann-Whitney test statistic, and we compare repro to two state of the art
methods, (Couch et al., 2019) and (Kazan et al., 2023). We show through simulations that
our method has a better or comparable power to their methods.

We leave it as open problems how to construct such summaries which have a parametric
form, especially in privatized data settings, as well as the development of other techniques
when no such parametric summary is available.
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A Proofs and technical details

In this section, we present the proofs and technical details needed to support the results in
the main paper.

Results similar to Lemmas A.1 and A.2 have been used in conformal prediction to guar-
antee coverage rates for the predictions. We include proofs of the lemmas for completeness.

Lemma A.1. Let x1, . . . , xn be an exchangeable sequence of real-valued random variables.
Then P (x(a) f xn) g n2a+1

n
, P (xn f x(b)) g b

n
, and P (x(a) f xn f x(b)) g (b2a+1)

n
, where x(a)

and x(b) are the ath and bth order statistics of x1, . . . , xn. Furthermore, for a³ = +³n, + 1,
P (x(aα) f xn) g 1 2 ³, and for b³ = +(1 2 ³)n,, P (xn f x(bα)) g 1 2 ³. For any
a = 1, 2, . . . , n2 +(12 ³)n,+ 1, setting b = a+ +(12 ³)n, 2 1 ensures that P (x(a) f xn f
x(b)) g 12 ³.

Proof. Notice that xn is equally likely to take any of the n positions among the order statis-
tics. In the first case, there are a 2 1 positions not in the interval (assuming no ties), so
there are n2 a+ 1 positions that make the probability true. In the second case, there are b
positions that make the probability true, and in the third case, there are (b2a+1) positions
in the interval. If there are ties at the boundaries, then each of these counts only increases.

For a³ and b³ defined above, note that P (x(aα) f xn) g n2(aα21)
n

= n2+³n,
n

g 1 2 ³,

and P (xn f x(bα)) g bα
n

= +(12³)n,
n

g 1 2 ³. Finally, let a and b be any values such that
b2a = +(12³)n,21. Then by the earlier result, we have P (x(a) f xn f x(b)) g (b2a+1)/n =
+(12 ³)n,/n g (12 ³).

Lemma A.2. Let x1, . . . , xn be an exchangeable sequence of real-valued random variables.
Then p = n21#{xi f xn} satisfies P (p f ³) f ³.

Proof. First, let k * {0, 1, 2, . . . , n2 1}, and consider

P (#{xi f xn} f k) = P (#{xi f xn) < k + 1)

= P (xn < x(k+1))

= 12 P (xn g x(k+1))

f 12 (n2 (k + 1) + 1)/n

= k/n.
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where we used Lemma A.1 to establish the inequality. Now, setting k = +n³,, we have
that

P (p f ³) = P (#{xi f xn} f n³) = P (#{xi f xn} f +n³,) = +n³,/n f ³.

Proof of Lemma 3.1. The fact that Γ³(s, É) is a (12³)-confidence set is easily seen from the
following: Ps>Fθ,É>Q(¹ * Γ³(s, É)) = Ps>Fθ,u>Q(B³(¹; s, É)) g 1 2 ³. Note that Γ´

³(s, É) ×
{¸|#´7 s.t. (´7, ¸) * Θ} £ Γ³(s, É). It follows that

Ps>F(β,η),É>Q(´ * Γ´
³(s, É)) g Ps>F(β,η),É>Q((´, ¸) * Γ³(s, É)) g 12 ³.

To see that Γ¹1
³ (s, É), . . . ,Γ¹k

³ (s, É) are simultaneous (1 2 ³)-confidence sets for ¹1, . . . , ¹k,
consider

Ps>F(θ1,...,θk),É>Q(¹1 * Γ¹1
³ (s, É), . . . , ¹k * Γ¹k

³ (s, É)) = Ps>Fθ,É>Q(¹ * Γ¹1
³ (s, É)× · · · × Γ¹k

³ (s, É))

g Ps>Fθ,É>Q(¹ * Γ³(s, É))

g 12 ³,

since Γ¹1
³ (s, É)× · · · × Γ¹k

³ (s, É) £ Γ³(s, É).

Proof of Theorem 3.6. The fact that B³(¹; s, (ui)
R
i=1) satisfies (1) follows from Lemma A.1,

since T¹(s; s, s1(¹), . . . , sR(¹)), T¹(s1(¹); s, s1(¹), . . . , sR(¹)), . . . , T¹(sR(¹); s, s1(¹), . . . , sR(¹))
are exchangeable. Setting É = (ui)

R
i=1 and Q = PR, it follows from Lemma 3.1 that both

Γ³(s, (ui)
R
i=1) and Γ´

³(s, (ui)
R
i=1) are (12 ³)-confidence sets.

Lemma A.3. Suppose that the inputs to Algorithm 1 are as specified, and call Γ the con-
fidence set of Theorem 3.6 using a = +³(R + 1), + 1 and form (2) of Lemma 3.1. Then,
Algorithm 1 returns TRUE if and only if Θ0 + Γ ;= '.

Proof. We consider alternative expressions of Θ0 + Γ :

Θ0 + Γ = {¹ * Θ0|Tobs(¹) g T(a)(¹)}
= {¹ * Θ0|#{Tobs(¹) g T(i)(¹)} g a}
= {¹ * Θ0|#{Tobs(¹) g Ti(¹)}+ 1 g a}
= {¹ * Θ0|#{Tobs(¹) g Ti(¹)}+ 1 + Tobs(¹) g a},

where T(i)(¹) is the notation from Theorem 3.6 and Ti(¹) is the notation from Algorithm
1; the final equation follows because Tobs(¹) * [0, 1], a * Z, and Tobs(¹) = 1 implies that
#{Tobs(¹) g T(i)(¹)} = R + 1.

From the above equations, we see that Θ0 + Γ ;= ' if and only if sup¹*Θ0
#{Tobs(¹) g

Ti(¹)}+ 1 + Tobs(¹) g a, which is precisely when Algorithm 1 returns TRUE.

Proof of Proposition 3.11. We will focus on the left portion of the confidence interval, as
the argument for the right side is symmetric. Lemma A.3 showed that Algorithm 1 returns
TRUE if and only if the input set has intersection with the confidence set of Theorem 3.6. For
brevity, call Γ´ the confidence set of Theorem 3.6 using form (3) of Lemma 3.1.
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Note that at initialization, [´L, ´L] + Γ´ ;= ' and [inf B, ´L] + Γ´ = ' (for the right side,

we have [´U , ´U ] + Γ´ ;= ' and [´U , supB] + Γ´ = '). At each iteration of the algorithm, if

[´L, ´
7
L] + Γ´ ;= ', then we set ´L = ´7

L and otherwise, we set ´L = ´7
L. We see that after

every iteration, we maintain that [´L, ´L] + Γ´ ;= ' and [inf B, ´L] + Γ´ = ' (for the right

side, we have [´U , ´U ] + Γ´ ;= ' and [´U , supB] + Γ´ = ').
We see that at any point in the procedure, we have that [´L, ´U ] £ Γ´, so the interval

has coverage (12 ³), inherited by the properties of Γ´.
In terms of the width of the interval, note that at any point in the procedure, inf Γ´ *

[´L, ´L] and supΓ´ * [´U , ´U ]. So, when the algorithm terminates, we have the following
inequalities:

inf Γ´ 2 ´L f ´L 2 ´L < tol,

´U 2 sup Γ´ f ´U 2 ´U < tol.

This implies the following upper bound:

´U 2 ´L = supΓ´ 2 inf Γ´ + (´U 2 sup Γ´ + inf Γ´ 2 ´L)

< sup Γ´ 2 inf Γ´ + 2tol,

establishing that the interval produced by Algorithm 2 is at most 2tol units wider than the
smallest interval containing Γ´.

Proof of Theorem 4.1. For any ¹0 * Θ0, call p(s; ¹0) = 1
R+1

[#{T(i)(¹0) f Tobs(¹0)}], which
due to the exchangeability of the T(i)(¹0) is a valid p-value for H0 : ¹7 = ¹0, according to

Lemma A.2. Then we can write p =
supθ*Θ0

#{T(i)(¹)fTobs(¹)}
R+1

as p = sup¹*Θ0
p(s; ¹). Then,

since p g p(s; ¹7), where ¹7 * Θ0 is the true parameter value, we have Ps>Fθ7
(p f ³) f

Ps>Fθ7
(p(s; ¹7) f ³) f ³, and we see that p is a valid p-value for H0.

Proof of Proposition 4.2. Note that since T takes values in [0, 1], +M, = sup¹*Θ0
#{Ti(¹) f

Tobs(¹)} unless Tobs(¹) = 1. When Tobs(¹) = 1 we have Tobs(¹) g Ti(¹) for all i = 1, 2, . . . , R,
giving +M, = R+1, whereas #{Ti(¹) f Tobs(¹)} = R. We conclude that min{+M,+1, R+
1} = sup¹*Θ0

#{Ti(¹) f Tobs(¹)} + 1 = sup¹*Θ0
#{T(i)(¹) f Tobs(¹)}. We see that p, the

output of pvalue(Θ0, (ui)
R
i=1, G, s, T ) is equal to

supθ*Θ0
#{T(i)(¹)fTobs(¹)}

R+1
, as desired.

Proposition A.4. Let ³ * (0, 1). Then
√

log(1/(12 (12 ³)1/d)) >
√

log(d), as d ³ >.

Proof. Our goal is to show that limd³>

:
(21) log(12(12³)1/d):

log(d)
= 1. First, we will evaluate the
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limit without the square root:

lim
d³>

(21) log(12 (12 ³)1/d)

log(d)
L’H
= lim

d³>

d(21) log(12 ³)(12 ³)1/d

d2(12 (12 ³)1/d)

= lim
d³>

(21) log(12 ³)(12 ³)1/d(1/d)

12 (12 ³)1/d

L’H
= lim

d³>

log(12 ³)(12 ³)1/d(log(12 ³) + d)d2

d3 log(12 ³)(12 ³)1/d

= lim
d³>

log(12 ³) + d

d
= 1,

where “
L’H
= ” indicates that we used L’Hôpital’s rule. Finally, since

:· is a continuous function
at 1, applying

:· to both sides gives the desired result.

B Additional simulation details and results

B.1 Exponential distribution

In this section, we a privatized summary of exponentially distributed data, which is clamped
in order to ensure finite sensitivity. We show that in this case we can exactly evaluate the
DP summary’s sampling distribution using the inversion of characteristic functions. We
then compare the performance of exact confidence intervals at different clamping thresholds
using the inversion technique, our simulation-based inference method, and the parametric
bootstrap.

Suppose that x1, . . . , xn
iid> Exp(µ7), where µ7 is the scale/mean parameter. We assume

that we have some pre-determined threshold c, and the data will be clamped to lie in the
interval [0, c]. Our privatized statistic is s = 1

n

∑n
i=1[xi]

c
0 +

c
n·
N , where N is a noise adding

mechanism; for this example, we will assume that N > Laplace(0, 1), which ensures that s
satisfies ·-DP. Note that there are two complications to understanding the sampling distri-
bution of s: the clamping and the noise addition.

We will show that for the exponential distribution, we can derive the characteristic func-
tion for [xi]

c
0, which we will call ×µ7 . Then the characteristic function for s is

×s,µ7(t) = (×µ7(t/n))n×N((c/(n·))t),

where ×N is the characteristic function for N . Once we have ×s, we can use inversion formulae
to evaluate the cdf and pdf. This strategy was first proposed for DP statistical analysis in
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Awan and Vadhan (2023) in the context of privatized difference of proportions tests.

×µ7(t) = Ex>µ7eit[x]
c
0

=

∫ c

0

eitx
1

µ7 e
2x/µ7

dx+ eitcPx>µ7(x g c)

=

∫ c

0

1

µ7 e
x(21/µ7+it) dx+ eitce2c/µ7

=
ex(21/µ7+it)

µ7(21/µ7 + it)

∣

∣

∣

c

0
+ eitc2c/µ7

=
12 ec(it21/µ7)

12 itµ7 + eitc2c/µ7

.

Note that while [x]c0 is not a continuous distribution, the Laplace noise makes s continu-
ous. So, Gil-Pelaez inversion tells us that we can evaluate the cdf Fs,µ7 as

Fs,µ7(x) =
1

2
2 1

Ã

∫ >

0

Im(e2itx×s,µ7(t))

t
dt,

which can be solved by numerical integration, such as by integrate command in R. We
can then use the cdf to determine a level ³ set by finding the (1 2 ³)/2 and 1 2 (1 2 ³)/2
quantiles, for example by the bisection method (relies on the fact that Fs,µ7(x) is monotone
in µ7 for a fixed s and x). Based on the general description above, we then determine which
µ7 values lie in these intervals. However, we can actually skip the creation of the level ³ sets
by simply checking for each µ7 whether Fs,µ7(s) * [(1 2 ³)/2, 1 2 (1 2 ³)/2]. In this case,
we only need to perform two bisection method searches to determine the lower and upper
confidence limits for µ7.

Note that by using characteristic functions, the computational complexity does not de-
pend on n at all, making this approach tractable for both small and large sample sizes. While
there can potentially be some numerical instability in the integration step, we found that it
was not a significant problem for the settings considered in the following simulation.

In Table 5, we see the result of a simulation study, using the confidence interval procedure
described above for the exponential distribution. We used the parameters n = 100, · = 1,
µ7 = 10, ³ = 0.95, and varied c. We include the empirical coverage and average confidence
interval width over 1000 replicates. The coverage is very close to the provable 0.95 coverage
level. While one may expect the width to depend on the c parameter, and we did indeed find
larger widths with very small and very large c, even with extreme values of c, we still had an
informative confidence interval, with the width of the smallest interval (from c = 20) being
4.906, and the width of the largest interval (from c = 100) being 7.153. As the inversion
method is a theoretical approach following the idea of Lemma 3.1, we compare it to our
simulation-based inference method using repro with Mahalanobis depth on s, and see that
the coverage and width of these two methods are similar. We also compare these approaches
to parametric bootstrap (PB) simplified t confidence interval (as in Section 5.2) where PB
fails to provide enough coverage when c = 10 and c = 20.

33



c = 10 c = 20 c = 50 c = 100
Coverage 0.936 (0.008) 0.935 (0.008) 0.938 (0.008) 0.955 (0.007)

Inversion Average Width 6.066 (0.041) 4.919 (0.023) 5.030 (0.014) 7.144 (0.011)
Coverage 0.944 (0.007) 0.942 (0.007) 0.949 (0.007) 0.955 (0.007)

Repro Sample Average Width 6.071 (0.044) 4.956 (0.025) 5.120 (0.019) 7.307 (0.024)
Coverage 0.005 (0.002) 0.785 (0.013) 0.947 (0.007) 0.957 (0.006)

PB Average Width 1.474 (0.001) 2.696 (0.004) 4.692 (0.011) 7.007 (0.014)

Table 5: 95% confidence intervals for clamped exponential distribution with Laplace noise.
n = 100, · = 1, µ7 = 10, number of replicates 1000. Top row is based on the inversion of
characteristic functions, middle is based on the simulation-based inference of repro using
Mahalanobis depth, and bottom is from the parametric bootstrap (simplified-t intervals).

B.2 More simulations with simple linear regression hypothesis

testing

We show more simulation results in Figure 8 and 9, where we vary the privacy parameter µ.
We can see that when µ g 0.5 for µ-GDP and sample size n = 5000, the type I error of the
parametric bootstrap method (Alabi and Vadhan, 2022) is higher than the significance level
³ = 0.05, while the repro sample method always controls the type I error well. Although
the power of the two methods is comparable, the repro sample method follows our intuition
that when ´1 is further away from 0, the power is larger, for all settings of sample size and
privacy requirement, while the parametric bootstrap method does not.

B.3 Details for logistic regression simulation

We assume that the space of datasets is of the form D = X n, and that the adjacency
metric d is the Hamming distance. For the logistic regression application in Section 5.4, we
use techniques from Awan and Slavković (2021), including the sensitivity space, K-norm
mechanisms, and objective perturbation. In order to be self-contained, we include the basic
definitions and algorithms in this section.

Definition B.1 (Sensitivity Space: Awan and Slavković, 2021). Let T : X n ³ R
m be any

function. The sensitivity space of T is

ST =

{

u * R
m

∣

∣

∣

∣

#X,X 2 * X n s.t d(X,X 2) = 1
and u = T (X)2 T (X 2)

}

.

A set K ¢ R
m is a norm ball if K is 1) convex, 2) bounded, 3) absorbing: "u * R

m,
#c > 0 such that u * cK, and 4) symmetric about zero: if u * K, then 2u * K. If K ¢ R

m

is a norm ball, then 'u'K = inf{c * R
g0 | u * cK} is a norm on R

m.
The sensitivity of a statistic T is the largest amount that T changes when one entry of T

is modified. Geometrically, the sensitivity of T is the largest radius of ST measured by the
norm of interest. For a norm ball K ¢ R

m, the K-norm sensitivity of T is

∆K(T ) = sup
d(X,X2)=1

'T (X)2 T (X 2)'K = sup
u*ST

'u'K .
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Algorithm 6 Sampling K-Norm Mechanism with Rejection Sampling (Awan and Slavković,
2021)
INPUT: ·, statistic T (X), 3> sensitivity ∆>(T ), K-norm sensitivity ∆K(T )

1: Set m = length(T (X)).
2: Draw r > Gamma(³ = m+ 1, ´ = ·/∆K(T ))

3: Draw Uj
iid> Uniform(2∆>(T ),∆>(T )) for j = 1, . . . ,m

4: Set U = (U1, . . . , Um)¦

5: If U * K, set NK = U , else go to 3)
6: Release T (X) + r ·NK .

Algorithm 7 3> Objective Perturbation (Awan and Slavković, 2021)

INPUT: X * X n, · > 0, a convex set Θ ¢ R
m, a convex function r : Θ ³ R, a convex loss L̂ (¹;X) =

1
n

∑n
i=1 3(¹;xi) defined on Θ such that '23(¹;x) is continuous in ¹ and x, ∆ > 0 such that supx,x2*X supθ*Θ''3(¹;x) 2

'3(¹;x2)'> f ∆, ¼ > 0 is an upper bound on the eigenvalues of '23(¹;x) for all ¹ * Θ and x * X , and q *
(0, 1).

1: Set µ = λ
exp(ε(12q))21

2: Draw V * R
m from the density f(V ; ·,∆) ? exp(2 εq

∆
'V '>) using Algorithm 5

3: Compute ¹DP = argminθ*Θ L̂ (¹;X) + 1
n
r(¹) + γ

2n
¹¦¹ + V ¦θ

n

OUTPUT: ¹DP

The privacy mechanism consists of two components, each of dimension 2: to encode
information about the parameters a and b, we release (

∑n
i=1 zi,

∑n
i=1 z

2
i ) +NK , where NK is

from a K-norm mechanism that discuss in the following paragraphs; to learn ´0 and ´1, we
run Algorithm 7. In Awan and Slavković (2021, Section 4.1), it was calculated that ∆> = 2
and ¼ = m/4, where m is the number of regression coefficients; in Awan and Slavković
(2021, Section 4.2), it was numerically found that q = 0.85 optimized the performance of
objective perturbation. Awan and Slavković (2021, Theorem 4.1) showed that the output of
Algorithm 7 satisfies ·-DP.

Awan and Slavković (2021) showed that the optimal K-norm mechanism (in terms of
quantities such as stochastic tightness, minimum entropy, and minimum conditional vari-
ance) of a statistic T (X) uses the norm ball, which is the convex hull of the sensitivity
space. For the statistic T (X) = (

∑n
i=1 zi,

∑n
i=1 z

2
i ), where zi * [0, 1], we can derive the

sensitivity space as

ST =

{

(u1, u2)

∣

∣

∣

∣

u2
1 f u2 f 12 (u1 2 1)2

or (1 + u1)
2 2 1 f u2 f u2

1

}

, (6)

and the convex hull can be expressed as

Hull(ST ) =

ù

ú

û

(u1, u2)

∣

∣

∣

∣

∣

∣

(u1 + 1)2 2 1 f u2 f 2u2
1, u1 f 21/2

u1 2 1/4 f u2 f u1 + 1/4, 21/2 < u1 f 1/2
u2
1 f u2 f 12 (u1 2 1)2, 1/2 f u1

ü

ý

þ

. (7)

See Figure 10 for a visualization of ST and Hull(ST ). We use K = Hull(ST ) as the norm ball
in Algorithm 6 with ∆K = 1 and ∆> = 1, which Hardt and Talwar (2010) showed satisfies
·-DP.

In the simulation generating the results in Figure 6 of Section 5.4, we let a7 = b7 = 0.5,
´7
0 = 0.5, ´7

1 = 2, R = 200, ³ = 0.05, n = 100, 200, 500, 1000, 2000, and · = 0.1, 0.3, 1,
3, 10 in ·-DP. For the repro sample method, the private statistics we release and use are
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Coverage Width
Mahalanobis Depth 0.981 (0.004) 0.198 (0.0006)
Approximate Pivot 0.949 (0.007) 0.164 (0.0005)

Table 6: 95% confidence intervals for private Bernoullis with unknown n. The first row uses
Mahalanobis depth on (s(1), s(2)), and the second row uses Mahalanobis depth of the test
statistics from Equation (8). For both intervals, an initial (1 2 1024)-CI for n is used to
reduce the nuisance parameter search. Parameters for the simulation are n7 = 100, p7 = 0.2,
÷ = 1, R = 200, and the results were averaged over 1000 replicates.

0’s: s(1) =
∑n7

i=1 xi + N1, s(2) = n7 2 ∑n7

i=1 xi + N2, where N1, N2
iid> N(0, 1/·2), which

satisfies ·-GDP as the 32 sensitivity of (
∑n7

i=1 xi, n
7 2 ∑n7

i=1 xi) is 1. Using the notation of

Section 3, let u(1), u(2), u(3) iid> U(0, 1), and set G(¹7, u) = (F21(u(1)) + Φ21(u(2))/·, n7 2
F21(u(1)) + Φ21(u(3))/·), where F21 is the quantile function of Binom(n7, p7) and Φ(·) is
the CDF of standard normal distribution. We see that G(¹7, u) is equally distributed as
(s(1), s(2)) described above.

First, we consider the 95% confidence interval built by using Mahalanobis depth, whose
width and coverage are shown in Table 6. We see that the coverage is 0.98, indicating
over-coverage. Alternatively, we consider the test statistic

T¹(s) =
s(1) 2 n̂p

√

n̂p(12 p) + (p2 + (12 p)2)·22
, (8)

where n̂ = max{s(1) + s(2), 1}, which we can see is asymptotically distributed as N(0, 1), as
n7 ³ >.

We then apply our simulation-based methodology, but use T¹(s), T¹(s1(¹)), . . . , T¹(sR(¹)).
Note that we need to search over the nuisance parameter n as well. We propose to first get a
very conservative confidence interval for n7 based on (s(1), s(2)) (say with coverage 12 1024),

which is easily done since s(1) + s(2)
d
= n7 + N(0, 2/·2), and · is a known value. Then we

set the nominal coverage level of the repro interval for ¹ as 1 2 ³ + 1024, and only search
over the values of n in its preliminary confidence interval. The idea of using a preliminary
confidence set to limit the search space was also proposed in Xie and Wang (2022).

In Table 6, we implement the repro interval using both the Mahalanobis depth, with
either (s(1), s(2)) or the approximate pivot T¹(s) given in (8) using the preliminary search
interval for n7. In the simulation described in Table 6, we see that using the approximate
pivot T¹(s) has better-calibrated coverage, and reduced width at 0.163 compared to 0.197
compared to the interval generated directly from (s(1), s(2)).

Remark B.2. This example highlights one of the benefits of using Gaussian noise for pri-
vacy, rather than other sorts of noise distributions. Because many statistical quantities are
approximately Normal, using Gaussian noise allows us to more easily construct approximate
pivots. While many privacy mechanisms result in asymptotically normal sampling distribu-
tions (e.g., Smith, 2011; Wang et al., 2018; Awan et al., 2019), if the privacy noise is not
itself Gaussian, then it has been found that such asymptotic approximations do not work
well in finite samples (Wang et al., 2018).
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B.5 Private Mann–Whitney test

We use our simulation-based methodology to build a DP Mann–Whitney test with finite-
sample type I error guarantees. Couch et al. (2019) built the first DP Mann–Whitney test
where they used a parametric bootstrap method to determine the rejection region. We apply
our simulation-based inference methodology using the same test statistic, and compare the
two methods through a simulation study. We show that their test fails to control the type I
error, while our method always has the type I error below the significance level. Furthermore,
we compare against another approach for finite-sample DP hypothesis testing proposed by
Kazan et al. (2023), and we show that our results have better or comparable power to their
results.

We first review the sensitivity analysis of the non-private test statistic by Couch et al.
(2019). Let D = (x1, . . . , xn), and let ri be the rank of xi in D for i = 1, . . . , n. Assume
that D contains two groups, D1 = (x1, . . . , xn1) and D2 = (xn1+1, . . . , xn), where n is fixed,
n1 is not publicly known, and xi are independently sampled from continuous distributions.
We want to test whether the elements in D1 and D2 are from the same distribution. Let
m = min(n1, n 2 n1), and U1 =

∑n1

i=1 ri 2 n1(n1+1)
2

. The non-private Mann–Whitney test
statistic is U = min(U1, (n2n1)n12U1). Couch et al. (2019) proved that the local sensitivity
of U is (n2m) when the neighboring datasets can have one individual different in both value
and group. By the definition of m, its global sensitivity is 1. As n2m f n for any unknown
m, we can derive from the local sensitivity result that the global sensitivity of U is n.

Couch et al. (2019) proposed an (·, ¶)-DP estimate of (m,U) based on the local sensitivity
of U and global sensitivity of m. As the framework by Kazan et al. (2023) satisfies ·-DP, to
fairly compare (Couch et al., 2019) with (Kazan et al., 2023), modify the approach of Couch
et al. (2019) to satisfy ·-DP by using the global sensitivity of U and m in the following way:

we define m̃ = m+ 1
·m

u
(1)
DP and Ũ = U+ n

·U
u
(2)
D P where ·m+·U = · and u

(i)
DP

iid> Laplace(0, 1),

then, s = (m̃, Ũ) satisfies ·-DP. We can also replace the above Laplace mechanism with
Gaussian mechanism such that (m̃, Ũ) satisfies ·-GDP. After obtaining the private estimate,
Couch et al. (2019) used parametric bootstrap to obtain the p-value, and they mentioned
that there was no theoretical guarantee but only empirical verification for the type I error
control.

In contrast to (Couch et al., 2019), Kazan et al. (2023) proposed the test of tests which
has theoretically proven control of the type I error. In this method, Kazan et al. (2023)
used subsample-and-aggregate (Nissim et al., 2007) to transform a valid non-private test
into a valid private test: They split the sensitive dataset into k non-overlapping subsets,
conducted the valid non-private hypothesis test with significance level ³0 on each split, and
built an ·-DP test statistic by privatizing the number of rejections of these tests. As the
number of rejections follows a binomial distribution Binom(k, ³0) under the null hypothesis,
Kazan et al. (2023) set the optimal private binomial test (Awan and Slavković, 2018) as their
privatized test (under ·-DP) to guarantee the type I error control. To transform their test
to a ·-GDP test, we simply change the Tulap distribution to a Gaussian distribution (Awan
and Vadhan, 2023). Although (Kazan et al., 2023) can be used in general test settings such
as the Mann–Whitney test, its power is often much lower than (Couch et al., 2019) even
when their type I errors are similar, as shown by our simulation results in the remaining of
this section.
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After introducing the approaches of (Couch et al., 2019) and (Kazan et al., 2023), we
demonstrate how to use simulation-based inference to analyze the DP summaries from Couch
et al. (2019). Under the null hypothesis,

H0 : D1 and D2 are from the same distribution F ,

the distribution of U does not depend on F but only depends on m. Therefore, we can

simulate U with xi
iid> F = Unif(0, 1). For the repro method, we let m̂ = min(max(m̃, 1), +n

2
,)

and compute the pivot test statistic, T (s) =
Ũ2 (n2m̃)m̃

2
2 1

ε2m
√

m̂(n2m̂)(n+1)
12

+ 2n2

ε2u
+

(n22m̂)2

2ε2m
+ 1

2ε4m

. We reject the

null hypothesis if the p-value computed by our Theorem 4.1 is smaller than or equal to the
significance level ³ where Θ0 includes all choices of m.

Given · = 1, ³ = 0.05, n = 100, we compare our method with (Couch et al., 2019) and
(Kazan et al., 2023) for the settings of m = 20, 30, 50 under both ·-DP and ·-GDP. We
manually choose the hyperparameter for (Kazan et al., 2023) to obtain its best performance
in these simulations. For repro and the ·-DP version of (Couch et al., 2019), we try ·m =

0.2, 0.3, 0.4. We use R = 1000 in repro. For calculating the type I error, we use xi
iid>

Unif(0, 1), i = 1, . . . , n. For calculating the power, we use xi
iid> Unif(0, 1), i = 1, . . . ,m, and

xj
iid> Beta(2, 5), j = m+1, . . . , n. The results are shown in Table 7 for ·-DP and Table 8 for

·-GDP. We can see that (Couch et al., 2019) fails to control the type I error when m = 20
while having the largest power in all settings. Our method controls the type I error well,
similar to (Kazan et al., 2023), while improving their power from 0.324 and 0.342 to 0.380
and 0.606 when m = 30 and m = 50 respectively under ·-DP, and improving uniformly and
more significantly under ·-GDP. The increased performance under GDP is likely due to the
fact that GDP has a tighter composition result than ·-DP, and both the repro and Couch
et al. (2019) method rely on composition, whereas Kazan et al. (2023) does not.

In the end of this section, we show that there is a tradeoff between the performance of
the repro sample method and the computation cost. When using the repro method for DP
Mann–Whitney test, as we need to compute the p-value using sup¹*Θ0

where Θ0 includes all
choices of m, it is necessary to search over m. In Table 9, we show that increasing R gives
us a better power when searching over m, although it requires longer computation time due
to more extensive simulations. Intuitively, larger R enables more accurate simulation of the
test statistic distribution to improve the power, but this improvement may not be significant
when R is large enough. However, in Table 9, when m is unknown, compared to the case
that m is known and we do not need to search over m, the power and type I error still
increase for larger R when R is already large. Note that the type I errors are under control
for all R, and these results only indicate that the repro method is less conservative for larger
R. This is because when we search over m, we may reject the null hypothesis for the true m
but accept the null for another m, which means we finally reject less cases under the null,
i.e., smaller R increases the conservativeness of repro.
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Type I error Power
m = 20 m = 30 m = 50 m = 20 m = 30 m = 50

Repro Sample (·m = 0.2) 0.055 0.040 0.045 0.205 0.363 0.606
Repro Sample (·m = 0.3) 0.048 0.037 0.043 0.239 0.380 0.547
Repro Sample (·m = 0.4) 0.044 0.038 0.041 0.219 0.320 0.446
(Couch et al., 2019) (·m = 0.2) 0.112 0.065 0.051 0.437 0.522 0.641
(Couch et al., 2019) (·m = 0.3) 0.083 0.056 0.052 0.381 0.474 0.587
(Couch et al., 2019) (·m = 0.4) 0.069 0.053 0.055 0.325 0.388 0.510
(Kazan et al., 2023) (· = 1) 0.046 0.051 0.047 0.259 0.324 0.342

Table 7: Privatized Mann–Whitney test under ·-DP. Parameters for the simulation are
n = 100, · = 1, ³ = 0.05. For Repro Sample and (Couch et al., 2019), the privacy budget
· is split into ·m and ·U = · 2 ·m for privatizing m = min(n1, n2) and U , the non-private

Mann–Whitney test statistic. For calculating the type I error, we use xi
iid> Unif(0, 1), i =

1, . . . , n; For calculating the power, we use xi
iid> Unif(0, 1), i = 1, . . . ,m, and xj

iid> Beta(2, 5),
j = m+ 1, . . . , n. The results are over 1000 replicates.

Type I error Power
m = 20 m = 30 m = 50 m = 20 m = 30 m = 50

Repro Sample (·2m = 0.1) 0.041 0.039 0.054 0.456 0.642 0.822
Repro Sample (·2m = 0.2) 0.039 0.037 0.056 0.477 0.657 0.812
Repro Sample (·2m = 0.5) 0.038 0.037 0.051 0.427 0.581 0.727
(Couch et al., 2019) (·2m = 0.1) 0.097 0.069 0.051 0.609 0.727 0.827
(Couch et al., 2019) (·2m = 0.2) 0.083 0.057 0.051 0.597 0.721 0.813
(Couch et al., 2019) (·2m = 0.5) 0.071 0.051 0.053 0.520 0.638 0.728
(Kazan et al., 2023) (· = 1) 0.042 0.043 0.035 0.351 0.411 0.475

Table 8: Privatized Mann–Whitney test under ·-GDP. Parameters for the simulation are
n = 100, · = 1, ³ = 0.05. For Repro Sample and (Couch et al., 2019), the privacy budget ·
is split into ·m and ·U =

√

·2 2 ·2m for privatizing m = min(n1, n2) and U , the non-private

Mann–Whitney test statistic. For calculating the type I error, we use xi
iid> Unif(0, 1), i =

1, . . . , n; For calculating the power, we use xi
iid> Unif(0, 1), i = 1, . . . ,m, and xj

iid> Beta(2, 5),
j = m+ 1, . . . , n. The results are over 1000 replicates.
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Search m (m unknown) Fix m (m known)
Type I error Power Time (s) Type I error Power Time (s)

R = 100 0.023 0.397 8.227 0.052 0.519 3.195
R = 200 0.030 0.441 12.849 0.054 0.526 2.270
R = 500 0.035 0.464 31.645 0.052 0.530 3.645
R = 1000 0.039 0.477 63.392 0.049 0.529 4.511
R = 2000 0.042 0.488 128.635 0.050 0.527 8.219
R = 5000 0.042 0.494 321.166 0.052 0.532 21.554

Table 9: Comparison of different R in the repro sample method for the privatized
Mann–Whitney test under ·-GDP. Parameters for the simulation are n = 100, · = 1,
³ = 0.05, m = 20, ·2m = 0.2. The privacy budget · is split into ·m and ·U =

√

·2 2 ·2m for
privatizing m = min(n1, n2) and U , the non-private Mann–Whitney test statistic. Using the
repro method requires the search of m, and we compare it to the case that m = 20 is given

as prior knowledge. For calculating the type I error, we use xi
iid> Unif(0, 1), i = 1, . . . , n;

For calculating the power, we use xi
iid> Unif(0, 1), i = 1, . . . ,m, and xj

iid> Beta(2, 5),
j = m+ 1, . . . , n. The results are over 1000 replicates.
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