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A B S T R A C T   

Electrochemical impedance spectroscopy (EIS) is a powerful technique for studying the interaction at electrode/ 
solution interfaces. The adoption of EIS for obtaining analytical signals in biosensors based on aptamers is 
gaining popularity because of its advantageous characteristics for molecular recognition. Neuropeptide Y (NPY), 
the most abundant neuropeptide in the body, plays a crucial role with its stress-relieving properties. Quantitative 
measurement of NPY is imperative for understanding its role in these and other biological processes. Although 
aptamer-modified electrodes for NPY detection using EIS present a promising alternative, the correlation be-
tween the data obtained and the adsorption process on the electrodes is not fully understood. Various studies 
utilize the change in charge transfer resistance when employing an active redox label. In contrast, label-free 
measurement relies on changes in capacitance. To address these challenges, we focused on the interaction be-
tween aptamer-modified planar electrodes and their target, NPY. We proposed utilizing →ω*Zimag as the 
analytical signal, which facilitated the analysis of the adsorption process using an analogous Langmuir isotherm 
equation. This approach differs from implantable microelectrodes, which adhere to the Freundlich adsorption 
isotherm. Notably, our method obviates the need for a redox label and enables the detection of NPY at con-
centrations as low as 20 pg/mL. This methodology demonstrated exceptional selectivity, exhibiting a signal 
difference of over 20-to-1 against potential interfering molecules.   

1. Introduction 

Most biological sensors monitor the electron transfer kinetics of 
specific molecular targets. Aptamer-based electrochemical sensors 
exemplify this by utilizing a target-specific aptamer, which is covalently 
modified with or without a redox reporter. [1–3] Binding of a target to 
the surface of an electrode modified with label-modified aptamers can 
induce a conformational change in the aptamer, consequently affecting 
the electron transfer correlated to the target’s concentration. [4] Sensors 
leveraging changes in electron transfer rate due to binding typically 
employ voltammetric techniques [5,6] to monitor the sensor’s response 
to the target. [7,8] Electrochemical impedance spectroscopy (EIS) pro-
vides insights not only into the target’s concentration [9] but also its 
adsorption on the surface. EIS measures changes in interfacial surface 
properties by applying sinusoidally oscillating alternating current [10], 
where changes in these properties can indicate target binding through 
electrode capacitance changes. [11,12] 

Neuropeptides, integral to the transmission and modulation of 
neurological signals, [13] require sensitive detection methods with high 
time resolution. They are often released alongside other neurotrans-
mitters, [14] necessitating systems capable of selective measurement 
while filtering out signals from other neurotransmitters. Neuropeptide Y 
(NPY), a key neuropeptide in numerous biological applications, 
including stress response [15] and appetite regulation, [16] has been 
implicated in various disorders, such as post-traumatic stress disorder 
when dysregulated. [17] Hence, developing accurate and reliable 
methods for NPY detection and understanding the processes in its bio-
sensors are crucial. Conventional techniques for NPY detection include 
microdialysis coupled with mass spectrometry [18] and colorimetry. 
[19] Additionally, various molecular recognition elements like anti-
bodies [20,21] have been employed for its measurement. In a recent 
study, J. M. Seibold and colleagues introduced a novel application of 
aptamer-modified microelectrodes for the dynamic measurement of 
NPY, presenting the possibility of achieving superior spatial and 
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temporal resolution. [22] The researchers demonstrated precise mea-
surements of NPY in serum; however, the technique’s lower limit was 
constrained to 20 nM (4704 pg/mL). Moreover, our group recently 
published the first carbon fiber microelectrode sensitive to different NPY 
concentrations as low as 50 ng/mL based on molecularly imprinted 
polypyrrole. [23] All these sensors, however, are based on microelec-
trodes for implanted biosensors. In this paper, however, thanks to the 
use of planar Au electrodes with EIS, we were able to measure NPY as 
low as 20 pg/mL. 

EIS is a popular technique in the development of electrochemical 
aptamer biosensors. [24] Depending on the applied frequencies, it can 
be linked with the adsorption process, allowing for monitoring of target 
interaction with the electrode surface. [9,25] Despite the advantages of 
EIS in biosensing, its application in aptamer biosensor development has 
been limited. [7,26] Numerous aptamer-based biosensors demonstrate 
that aptamers are viable alternatives to antibodies [27] as detection 
elements due to their stability, ease of synthesis, cost-effectiveness, and 
potential for labeling. [28] Their small size also makes them suitable for 
tissue studies. Combining EIS with aptamers can effectively develop 
biosensors for various targets [29–31] in real samples, improving 
selectivity through specific potentials and frequencies. [32] NPY 
detection using EIS represents a promising approach for developing 
sensitive and selective NPY detection assays. 

In this study, we developed an aptamer-modified biosensor to detect 
NPY using planar electrodes. The aptamer was immobilized on the 
surface of a gold (Au) electrode using a standard self-assembled mono-
layer (SAM) formation protocol. EIS was employed to monitor NPY 
binding to the aptamer-modified electrode. We examined NPY adsorp-
tion at varying concentrations on a highly planar surface to understand 
the differences in adsorption behavior compared to previous studies 
involving microelectrodes and to enhance biosensing applications. [33, 
34] Our results indicate a significant change in the electrodes’ capaci-
tance upon NPY binding, even in the picogram per milliliter range. The 
biosensor exhibited high selectivity for NPY without substantial elec-
trochemical interference from other biomolecules like dopamine (DA), 
norepinephrine (NE), and serotonin (5-HT) at concentrations 20 times 
higher. 

2. Methods 

2.1. Au electrode fabrication 

The Au electrodes were fabricated at the Conte Nanotechnology 
Cleanroom Laboratory, a part of the Center of Hierarchical 
Manufacturing at the University of Massachusetts, Amherst. For this 
purpose, 500 µm thick, single-side polished silicon wafers were used. 
These wafers were coated with a layer of approximately 200 nm SiO2 
and deposited using plasma-enhanced chemical vapor deposition for 
electrical isolation. Subsequently, two layers, consisting of 5 nm of ti-
tanium (Ti) and 150 nm of Au, were deposited using a CHA SE-600 
electron beam evaporator. The surface of the Au electrodes was ob-
tained from the deposition process. 

2.2. Physical characterization 

For atomic force microscopy (AFM) imaging, an ezAFM↑ AQUA 
from Nanomagnetics Instruments was employed. Standard silicon can-
tilevers were used, and the instrument was automatically calibrated 
before each sample. AFM images were acquired in water. The changes in 
the composition of the electrode surfaces post-fabrication were analyzed 
using scanning electron microscopy (SEM) coupled with energy- 
dispersive X-ray spectroscopy (EDS). A JSM-6010LA model from JEOL 
was used for SEM-EDS. 

2.3. Electrochemical measurements 

All electrochemical measurements were conducted using a three- 
electrode cell comprising the modified Au electrode as the working 
electrode, a platinum wire as the counter electrode, and an Ag|AgCl 
reference electrode filled with a 3 M KCl solution. Electrochemical 
measurements were performed using a Reference 600↑ Gamry poten-
tiostat, and all data were collected using Gamry Instruments Framework 
software. All potentials in this work are reported versus Ag|AgCl. EIS 
was conducted with an amplitude of 10 mV, an initial frequency of 1 
MHz, and a final frequency of 10 Hz. Data analysis was carried out using 
Gamry Echem and OriginPro 2023b software. The electrochemical 
characterization of the Au electrodes was performed in artificial cere-
brospinal fluid (aCSF) at pH 7.4. The solution was prepared with 150 
mM NaCl, 1.4 mM CaCl₂, 3 mM KCl, 0.8 mM MgCl2, 0.8 mM Na2H-
PO4⋅7H2O, 0.17 mM NaH2PO4⋅2H2O, and 0.5 M Tris in nanopure water 
(18.2 MΩ). Human serum albumin (HSA) was used to study the 
biofouling of the electrodes by mixing 5 g of HSA (Sigma-Aldrich) in 50 
ml of aCSF. NPY (GenScript), along with DA, NE, and 5-HT (Sigma- 
Aldrich), were diluted in aCSF to create standard solutions. The elec-
trochemical cell used had a volume of 15 mL. After adding aliquots of 
NPY, DA, NE, or 5-HT, the cell was stirred for 1 min and left until the 
solution stabilized to mitigate convection effects. 

2.4. Aptamer immobilization 

The Au electrodes were modified by incubating them overnight at 
room temperature in 1.0 μM solutions of a single-stranded DNA aptamer 
(5′-S-S-C6-AGC AGC ACA GAG GTC AGA TGC AAA CCA CAG CCT GAG 
TGG TTA GCG TAT GTC ATT TAC GGA CCT ATG CGT GCT ACC GTG 
AA-3′) purchased to Integrated DNA Technologies. The disulfide bonds 
at the 5′-end were reduced through a 2 hrs. reaction with 200 μM tris(2- 
carboxyethyl)phosphine (TCEP). The modified electrodes were then 
immersed in a 5 mM 6-mercapto-1-hexanol solution in aCSF overnight 
and shielded from light. Before measurements, the electrodes were 
rinsed with deionized (DI) water. 

3. Results and discussion 

3.1. Aptamer self-assembled monolayer deposition 

Aptamer (Apt) immobilization was conducted using a SAM on Au- 
coated silicon wafers. To modify the surface, Apts with a disulfide 
bond at the 5′ end (Apt-S-S-Apt) were employed. Before surface modi-
fication, this disulfide bond was reduced using TCEP as the reducing 
agent. Given that thiols directly react with Au surfaces, the interaction of 
the reduced Apt with the electrode facilitates the formation of an Au-S 
bond, resulting in Apt-modified Au-coated silicon wafer electrodes. 
Literature indicates that this reaction initially involves physisorption, 
where the thiol group adsorbs onto the Au surface. [35,36] Subse-
quently, a chemisorption process occurs, involving the cleavage of the 
S–H bond. The final step in obtaining Apt-modified Au silicon wafer 
electrodes involves the formation of the Au–S bond between the Apt and 
the Au surface, resulting from the deprotonation of thiols. [37] Fig. 1 
illustrates the schematic of the Apt modification on the Au-coated planar 
electrodes. [35] 

3.2. Electrochemical and surface characterization of aptamer-modified 
AU electrodes 

AFM, EDS, cyclic voltammetry (CV), and EIS were employed to 
analyze the NPY aptamer-modified Au electrodes. Tapping mode-AFM 
was used to assess the Au coverage at the electrode surface post- 
fabrication. The Au surface topography exhibited a characteristic 
pattern on the surface of the Au-coated silicon wafers (Fig. 2A), con-
firming the Au deposition by electron beam evaporation at the electrode 
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surface. [38,39] Electron beam evaporation achieved a highly planar 
surface with an average roughness of 1.86 nm and a peak-to-peak dis-
tance of 14.91 nm. Surface modification with an ssDNA Apt of 80 bases, 
including a 6-carbon chain and thiol end, is expected to yield a length 
exceeding 55 nm, based on the average size per base calculated by Q. Chi 
et al. [40] of 0.676 nm and a width of less than 5 nm. [41,42] Consid-
ering the Apt’s size relative to the average surface roughness of 1.86 nm, 
the surface is anticipated to function as a planar electrode where a single 
layer of aptamers binds with uniform energy at each site. Furthermore, 
considering the longest side of NPY (LYS 4 – TYR 36) is approximately 5 
nm, it is anticipated that the binding should not exert a significant 
impact on the electrochemical behavior of the surface functioning as a 
planar electrode. 

EDS (Fig. 2B) confirmed the presence of two distinctive peaks at 
2.120 and 9.712 keV, corresponding to Au on the surface (150 nm). A 
smaller peak for Ti at 4.530 keV, utilized as an adhesion layer (5 nm) to 
prevent Au film detachment, and the silicon peak at 1.750 keV, attrib-
utable to the silicon wafer substrate, were also observed. CV was con-
ducted to ascertain the electrochemical behavior alterations pre- and 
post-aptamer modification (Fig. 2C). The CV analysis was performed 
at a scan rate of 100 mV/s in 5 mM K3Fe(CN)6/K4Fe(CN)6 in 0.1 M KCl 

vs. Ag|AgCl. Post-Apt addition, a slowdown in kinetics was noted, 
characterized by the widening gap between the anodic and cathodic 
current peaks. This variation between the bare and the aptamer- 
modified electrode substantiated the aptamer surface modification on 
the Au-coated silicon wafers. Although short ssDNA chains may enhance 
kinetics on Au electrode surfaces, [39] long aptamers on planar surfaces 
are likely to hinder electron transfer, evidenced by the loss of system 
reversibility even at 100 mV/s. [43] 

EIS is a technique employed to detect changes in electrode interfacial 
properties, providing insights into the interactions of analytes with their 
corresponding probing molecules immobilized on electrode surfaces. 
[44,45] Fig. 2D presents the Nyquist plot for both the bare and 
Apt-modified Au electrodes at a potential of 0.2 V vs. Ag|AgCl. 
Following Apt modification, a heightened charge transfer resistance was 
anticipated, in line with the previously observed loss of electrochemical 
reversibility in CV. This increase in electron transfer resistance can be 
attributed to the surface modification by a long aptamer, which ob-
structs the surface and complicates electron transfer between the elec-
trode and the solution. [46] These findings suggest the formation of a 
densely packed single layer of aptamers on the planar Au electrode. 

Fig. 1. Schematic for modification of the Au surface of the working electrode with ssDNA-aptamer specific for NPY. The binding of NPY to the aptamer-modified 
electrode shows higher adsorption compared to DA, NE, and HT. 

Fig. 2. (A) AFM image of Bare Au Electrode. (B) EDS of the surface-deposited Au. Electrochemical characterization of the aptamer-modified Au electrodes using (C) 
CV and (D) Nyquist plot. 
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3.3. Electrochemical impedance analysis of NPY 

EIS has been extensively utilized to examine biomolecule adsorption 
on electrode surfaces, largely due to its insights into surface character-
istics via double-layer capacitance analysis. [47] Previous studies have 
demonstrated that the adsorption of diverse molecules, such as DA on 
carbon fiber [33] and NPY on platinum [34] microelectrodes, conforms 
to the Freundlich isotherm. This section aims to investigate the 
adsorption of NPY at varying concentrations on a highly planar surface 
to discern differences in adsorption behaviors compared to carbon fiber 
and metal microelectrodes in biosensing applications. 

According to N. K. Mintha Churcer et al. [48] and K. Ensing et al. 
[49] the isoelectric point of NPY is 7.9, and according to L. Thomas et al. 
[50] and M. Dyck et al. [51] the isoelectric point is 7.4. Based to an 
isoelectric point of 7.9, NPY should have a net positive charge with a 
possible localized negative charge. Then, we anticipated an enhanced 
electrode sensitivity when a negative charge was applied to the working 
electrode to promote the adsorption of NPY molecules to the negatively 
charged ssDNA Apts. Because of the dichotomy found in the literature 
with the isoelectric point of NPY, we opted to test both negative and 
positive potentials, thereby addressing all possibilities. To assess the 
potential’s influence on biosensor sensitivity, experiments were con-
ducted at →0.4, 0.0, 0.4, and 0.8 V vs. Ag|AgCl. Lower potentials are 
hypothesized to facilitate NPY adsorption onto the electrode surface, 
thereby encouraging Apt-NPY binding. Conversely, NPY exhibits a 
reduced affinity for the electrode surface at higher potentials. [52] 
Additionally, at 0.8 V vs. Ag|AgCl, guanine oxidation on Au electrodes is 
anticipated. [52,53] Fig. 3 illustrates NPY measurements across these 
varied potentials, with NPY concentrations ranging from 1 to 1000 
pg/mL. The baseline impedance in aCSF without NPY was subtracted 

from each concentration’s data, allowing for the isolation of NPY’s 
specific adsorption effects on impedance. Given EIS’s capacity to mea-
sure the convolution of surface processes, deconvolution is essential 
when examining a particular phenomenon. [54] In this context, NPY’s 
effect on impedance was isolated by subtracting other surface processes 
occurring in aCSF. Consistent with prior research, [33,34] the analytical 
signal used was →ω*Zimag, as this parameter correlates with double-layer 
capacitance [24] following baseline subtraction. Therefore, employing 
→ω*Zimag facilitates the examination of NPY’s specific adsorption to the 
surface. [55] 

Significant variations in behavior were noted at different potentials, 
particularly when comparing lower potentials (→0.4 V and 0.0 V) to 
higher ones (0.4 V and 0.8 V). At →0.4 V, the appearance of two time 
constants, illustrated by two plateaus, was observed, indicating two 
distinct capacitances. This phenomenon is explained by the presence of 
two distinct electrode surface areas, each characterized by specific 
properties. The differentiation is attributed to the specific regions on the 
sensor where NPY is bound to the Apt, forming a molecular association, 
and the contrasting regions where the Apt stands alone, devoid of any 
such binding. The disparities in properties between these two areas 
contribute to the observed variations in the characteristics of the elec-
trode surface. [56] At the lower potentials of →0.4 V and 0.0 V, the 
concentration differences exhibited consistency across various fre-
quencies. However, as the potential increased, the →ω*Zimag values 
showed more pronounced frequency-dependent fluctuations with less 
apparent plateaus. Particularly at 0.4 V and 0.8 V, the sensitivity of NPY 
measurements displayed significant variations contingent on frequency. 
At 0.4 V, the different NPY concentrations mostly overlapped at low 
frequencies, with an increasing divergence between concentrations at 
higher frequencies. A distinct linear relationship between the logarithm 

Fig. 3. →ω*Zimag at different potentials of NPY at aptamer-modified Au electrodes.  
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of concentration and impedance was observed only at high frequencies, 
from 20 kHz to 50 kHz, for the entire concentration range of 1 to 1000 
pg/mL, as depicted in Fig. 4. 

3.4. Adsorption of NPY on planar AU electrodes 

To elucidate the impact of the Apt on the interaction between the 
target molecule and the sensor surface, thereby influencing sensor 
sensitivity, calibration curves were constructed plotting →ωZimag against 
the NPY concentration. As previously mentioned, following background 
subtraction, the →ω*Zimag component provides insights into the surface 
capacitance during the interaction. Prior research has demonstrated that 
→ω*Zimag is indicative of the adsorption capacity of the surface, owing to 
the correlation between surface capacitance and coverage in micro-
electrodes. [33,34] In this study, the relationship between →ω*Zimag and 
surface coverage was explored by testing the linearized form (Eq. (2)) of 
the Langmuir isotherm equation (Eq. (1)) for our planar electrodes. 
[57–59] 

→ωZimag ↓
QAuωapt KAuωapt CNPY

1 ↑ KAuωapt CNPY
(1)  

CNPY

→ωZimag
↓ 1

QAuωapt
CNPY ↑ 1

KAuωapt QAuωapt
(2)  

where CNPY denotes the concentration of NPY at adsorption equilibrium, 
→ω*Zimag is employed to denote the adsorption capacity of NPY on the 
modified surface. KAu/apt signifies the adsorption coefficient of the 
modified surface, and QAu/apt indicates the maximum adsorption ca-
pacity when the modified electrode is saturated. Fig. 5 illustrates a plot 
of CNPY/(→ω*Zimag) vs. CNPY ranging from 1 to 1000 pg/mL, exhibiting a 
linear fit between 2 and 1000 pg/mL. Notably, the lowest concentration 
of 1 pg/mL falls outside this linear fitting. Error bars for the Y-axis were 
included based on n ↓ 3 measurements at each concentration point. The 
analysis revealed that almost all frequencies at each potential could be 
linearly fitted in this manner, conforming to a Langmuir adsorption 
isotherm model. The Langmuir isotherm is characterized by adsorption 
limited to a single molecular layer, depicting the equilibrium between 
the adsorbate (i.e., NPY) and the adsorbent system (i.e., the Apt- 
modified Au-coated silicon wafer electrodes). [57–59] 

3.5. Measurement of NPY 

To evaluate how different potentials and frequencies impact the 
sensitivity of our sensor using EIS, we compared the sensor’s response at 
four tested potentials (→0.4 V, 0.0 V, 0.4 V, and 0.8 V) across three 
distinct frequencies: low (495.8 Hz), medium (5016 Hz), and high (9984 
Hz). This comparison spanned the entire measured range (10 Hz to 
10,000 Hz). Initially, the data was filtered to identify the optimal po-
tential and frequency that exhibited significant differences in 
concentration-response relations. A steeper slope within the significant 
concentration differences was preferred, indicating greater differentia-
tion between concentrations, thereby enhancing measurement sensi-
tivity. All curves demonstrated a robust linear correlation down to 20 
pg/mL when plotted against Log CNPY. While it is possible to calculate a 
detection limit of 0.1 pg/mL using 3.3 times the slope divided by the 
standard deviation, the dynamic range constrains the quantification to 
fall within the range of 20 to 1000 pg/mL. Continuous surface processes 
such as biofouling due to adsorption at the electrode surface were 
observed at 0.0 V, 0.4 V, and 0.8 V, thereby changing the capacitance 
with time. These processes altered measurements over time in aCSF, 
increasing measurement errors. Notably, the sensor’s response time, 
achieved through agitation between measurements, is less than 1 min 
following our established procedure. Fig. 6A illustrates this by showing 
three calibration curves at 10 Hz conducted at →0.4 V and 0.8 V vs. Ag| 
AgCl, taken 5 min apart. Notably, the measurement drift was more 
pronounced at 0.8 V than at →0.4 V, leading to higher data acquisition 
errors. The lowest error combined with the best slope was observed at 
low frequencies at a potential of →0.4 V versus Ag|AgCl. Fig. 6B presents 
the NPY measurements at various concentrations from 1 to 1000 pg/mL, 
with a linear relationship discernible only between 20 and 1000 pg/mL 
when plotting →ω*Zimag versus Log CNPY. For comparative selectivity 
analysis, the impedance of potentially co-released molecules (DA, NE, 
and 5-HT) is shown at a concentration of 5 nM, significantly (20↔) 
higher than the maximum NPY concentration tested (1000 pg/mL↗0.24 
nM). Moreover, Figure S1 shows complete measurements of NPY 
ranging from 1 (↗0.24 pM) to 1000 pg/mL (↗0.24 nM), compared with 
dopamine (DA), norepinephrine (NE), and serotonin (5-HT) at signifi-
cantly higher concentrations ranging from 1 to 100 nM. 

3.6. Measurement of npy in aCSF with 10 % hsa 

While NPY can be extracted from biological fluids to measure its 
concentration without effects of non-specific adsorption of other pro-
teins, [60] we evaluated the effect of biofouling on the detection of NPY. 
We repeated the measurements in a solution of aCSF with 10 % HSA to 
observe the effect of high protein concentrations. Human CSF and serum 
have upper concentrations of HSA of 0.045 % (45 mg/dl) [61] and 5.5 % 
(5.5 g/dl) [61,62], respectively, in adults. Furthermore, the normal 
concentration of total protein in CSF and serum are about 0.07 % [61,63, 
64] and 9 % [62], respectively, in adults. Therefore, in this project, we 
used a concentration of 10 % HSA to study the effect of protein 
biofouling on the surface of the electrode. Fig. 7 shows NPY measure-
ments at various concentrations from 1 to 1000 pg/mL, with a linear 
relationship only between 5 and 500 pg/mL when plotting →ω*Zimag 
versus Log CNPY. An increase in capacitance (→ω*Zimag), a shift of line-
arity to lower concentrations, and an increase in standard deviation was 
observed in all replicates measured. Because EIS is sensitive to 
non-specific adsorptions, a change in the impedance was expected while 
behaving similarly with a different, typically smaller, dynamic range. 
[12,22] 

4. Conclusions 

In this study, we explored the development of a label-free method for 
detecting NPY using EIS in aptamer-modified, highly planar electrodes. 
The biosensors demonstrated selectivity against potentially interfering 

Fig. 4. Measurement of NPY adsorption at high frequencies at 0.4 V vs Ag| 
AgCl. Linear fittings show the intercept and slope, all with R2 ε 0.99. 
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molecules such as DA, NE, and 5-HT, even in scenarios where these 
molecules were present in a 20-to-1 concentration ratio compared to 
NPY. This indicates that surface adsorption is a critical factor in mole-
cule detection. We advocated using →ω*Zimag as the analytical signal for 
NPY measurement, owing to its correlation with both capacitance and 
adsorption phenomena. Utilizing →ω*Zimag, we proposed that the 
adsorption of NPY on aptamer-modified planar electrodes adheres to the 
Langmuir isotherm model. This finding contrasts with previously re-
ported results, which indicated that microelectrodes follow the 
Freundlich isotherm model. Our findings revealed that, while NPY 

adsorption can be detected at concentrations as low as 2 pg/mL, a linear 
relationship between →ω*Zimag and Log CNPY allows quantifying NPY 
concentrations starting from 20 pg/mL if NPY is extracted. In aCSF with 
10 % HSA, we found a smaller dynamic range with linearity shifted to as 
low as 5 pg/mL and a lower upper limit of 500 pg/mL due to the non- 
specific adsorption of HSA. The optimal conditions for our biosensor 
were determined to be using a potential of →0.4 V vs Ag|AgCl at low 
frequencies such as 10 Hz. 

Fig. 5. Langmuir adsorption isotherm of the impedimetric concentrations of NPY at (A) →0.4 V, (B) 0.0 V, (C) 0.4 V, and (D) 0.8 V vs Ag|AgCl.  

Fig. 6. (A) Drift at →0.4 V (circles) and 0.8 V (squares) vs Ag|AgCl in three measurements taken 5 min apart. (B) NPY measurements at different concentrations from 
1 to 1000 pg/mL with a linear relationship between 20 and 1000 pg/mL when plotted as →ω*Zimag vs Log CNPY. For comparison, measurements of 5 nM of DA, NE, 
and 5-HT is shown as horizontal lines. 
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