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ABSTRACT 
Logistic Knowledge Tracing (LKT) is a framework for combining 
various predictive features into student models that are adaptive, 
interpretable, explainable, and accurate. While the name logistic 
knowledge tracing was coined for our R package that implements 
this methodology for making student models, logistic knowledge 
tracing originates with much older models such as Item Response 
Theory (IRT), the Additive Factors Model (AFM), and Perfor-
mance Factors Analysis (PFA), which exemplify a type of model 
where student performance is represented by the sum of multiple 
components each with some sort of feature computed for the com-
ponent. Features may range from the simple presence or absence of 
the component to complex functions of the prior history of the com-
ponent. The LKT package provides a simple interface to this 
methodology, allowing old models to be specified or new models 
to be created by mixing and matching components with features. 
We will provide concrete examples of how the LKT framework can 
provide interpretable results on real-world datasets while being 
highly accurate.  

Keywords 
Keywords are your own designated keywords. Choose around 3–5 
keywords, separated by commas. 

1. INTRODUCTION
The task of knowledge tracing has become ubiquitous in educa-
tional data mining and intelligent learning system design. While 
there is still no great agreement on the best way to do knowledge 
tracing, it has become a popular method, and knowledge tracing 
models of some sort occur in most adaptive learning systems due 
to the need for a model to capture the complexity of learning well 
enough to react to it with pedagogical decisions, i.e., instruction. 

Knowledge tracing originates in the cognitive modeling of the early 
60s but has since spawned many varieties. Early models were often 
described in terms of Markov models, and Bayesian Knowledge 
Tracing dominated for many years [e.g., 7]. Over the years, more 
options have been revealed [25]. More recently, deep learning ap-
proaches have also been shown to be accurate for predicting 
learning [26]. 

This tutorial will not spend much time on various models but ex-
plore how to understand, use, and deploy logistic regression models 
of knowledge tracing. This family of knowledge tracing models 
that includes logistic knowledge tracing is very broad because the 
underlying method is simply regression, and the contributions of 
different factors of learning can be included by simply adding them 
as predictors in the regression [4, 5, 11, 12, 15, 20, 22]. This leads 
to several issues to consider, which will be discussed in this tutorial. 

1.1 Content and Timeline 
1.1.1 Features of components as predictors (30 mins) 
The basis of prior LKT models is revealed as features (e.g., a count 
of the prior instances) for a component of the data (e.g., a column 
identifier). Each feature is computed for all levels (e.g., KCs) in the 
identifier column, which occurs per student [16, 17, 23, 24]. 

1.1.1.1 Components 
Components is the term used to describe the factors of the data that 
are used to “compute” a predictor, like for the student overall or a 
particular KC or item. Computing a predictor for a component 
might mean simply fitting an intercept to each of its levels. Still, it 
could also be complex and involve parameterized curvilinear ef-
fects as a function of the component's prior history. The possible 
computations for a component are described as “features”. 

1.1.1.2 Feature types 
Features are simple and not-so-simple functions of the component 
and its history. They can be usefully grouped into 3 types. Static 
features are simple, including the intercepts of student, item, or 
knowledge component. Dynamic features are more interesting and 
are most typified by the “lineafm” feature popularized in the 
DataShop project [14]. Lineafm is a linear effect of the count of 
prior learning events for a component. Most dynamic and adaptive 
features are computed for each component separately for each stu-
dent since we typically look for changes due to prior learning or 
adaptation as a function of prior performance within the student. 
Adaptive features are typified by PFA [20] variants, where the fea-
ture uses counts of success and/or failures to adjust the predictions 
for a KC or item. Adaptive features are quite powerful at the student 
level and can be used to provide a dynamic estimate of achieve-
ment. 

1.1.1.3 Non-linear parameters in features 
Many curvilinear features are allowed, where the feature computed 
for the component-based using 1 or more non-linear parameters 
that are solved for by nesting the logistic regression in a gradient 
descent optimizer. One useful dynamic feature is recency, typically 
applied for items or KCs by computing the t-d as the feature where 
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t is the time since the KC or item was last encountered. More com-
plex temporal features are available.  

1.1.2 Data preparation (30 mins Phil) 
Describe the requirements for getting models to run, including all 
preprocessing. This will include discussing time-based features and 
their requirements for time-formatted data. You may bring data that 
follows the requirements explained here: https://cran.r-pro-
ject.org/web/packages/LKT/vignettes/Basic_Operations.html, or 
use the embedded data built into the package. For those with their 
data, we will help with various formatting problems and provide 
advice about special cases of data formats and how conversions can 
occur. 

1.1.3 Previous classes of LKT model (30 mins Luke) 
We will review the many varieties of LKT models that have been 
seen in prior work (e.g., primitive like AFM [3] or PFA[20]). We 
will examine the function inputs and outputs of LKT and see exam-
ples of many features in past work. We will create and fit the AFM 
and PFA models using your data or the embedded data. Then, we 
will add the recency feature to illustrate it and how to add non-lin-
ear features to the logistic regression model.  

1.1.4 Searching for optimal feature & Crossvalida-
tion (30 mins Luke) 

LKT is under continuous development as part of the Optimal 
Learning Lab at the University of Memphis. In 2023, we introduced 
two methods for model search: stepwise feature search and LASSO 
feature search [17]. These methods are quite powerful, and we will 
review the results of this paper, which showed that LKT models 
can do better than some deep learning approaches. Using your data 
or the embedded data, we will illustrate how to crossvalidate results 
from complex models using the LKT functions to compute the test 
fold feature for held-out data.  

1.1.5 Creating new features (30 mins Phil) 
We will go under the hood with the LKT codebase and illustrate 
how to add a feature. We will give a hands-on tutorial where we 
create a new feature in your data and use it in LKT as part of the 
model we have been developing throughout the tutorial. This will 
illustrate how you can do feature engineering in the context of and 
using LKT. LKT is open-source, and we are glad to add any new 
stable and useful features to the R package on the CRAN reposi-
tory.  

1.1.6 Application to Optimal Learning (30 mins Luke 
and Phil) 

We will walk through a concrete example of using a fitted LKT 
model for practice scheduling. In the MoFaCTS LKT model, pre-
dictions are used in combination with a decision rule to sequence 
practice. We will walk through the code flow and examine how it 
solves the problems: what to learn next, when to increase spacing, 
and when to introduce new items for learning. We will show how 
the output can be used in combination with decision rules to guide 
a student’s practice sequence. We will discuss how the model's fea-
tures influence the interpretation of the model output and its 
potential use in an ITS. 

1.1.7 Application to proficiency reporting (30 mins 
Luke) 

Another primary use is reporting proficiency (to teachers, students, 
or administrators). For reporting proficiency, we will demonstrate 
how the output of the knowledge tracing model can be used to 

group students according to shared ability or provide proficiency 
estimates that are superior to cumulative averages. Grouping stu-
dents requires transforming the model outputs into category labels 
(e.g., “Needs work”, “on track”, “proficient”) as well as pedagogi-

cal theory to guide what other factors should determine student 
grouping. Finally, practice items are sometimes related to multiple 
skills simultaneously. We will show how this situation can be ac-
counted for with LKT. 

2. FORMAT 
The tutorial will be lecture and discussion, but we hope to go at a 
pace where prepared participants (with R and R-studio on their 
computers) can follow along executing examples in real-time to ob-
tain any tailored assistance with software and interpretation of 
results. 

3. PRESENTERS 
Philip Pavlik is an Associate Professor at the Institute for Intelligent 
Systems at the University of Memphis (ppavlik@memphis.edu). 
His research program, which began in January 2001, has focused 
on the effects of practice and forgetting on performance in declara-
tive memory tasks [18]. The ultimate goals of this research are to 
create accurate mathematical models of practice and forgetting that 
can be used to understand the factors governing recall performance 
and to use these models to improve performance in educational set-
tings. This work applies economics and cognitive psychology 
principles to look for how to schedule practice for maximal benefit 
for the student [9, 10, 23, 27]. 

Pavlik's approach is informed by his training at Carnegie Mellon, 
where he worked with researchers John Anderson and Ken 
Koedinger. As a graduate student working with John Anderson, 
Pavlik developed new learning models and applied them to instruc-
tional strategy optimization [19]. This work continued with Ken 
Koedinger, co-director of the 10-year Pittsburgh Science of Learn-
ing Center [20]. 

At the University of Memphis, Pavlik leads the Optimal Learning 
Lab, which applies cognitive theory and methods to educational 
contexts. He and his students have investigated learning in various 
domains, including mathematics, language learning, statistics, mu-
sical learning, and anatomy and physiology. In this work, he 
develops software and tools for educational applications, such as 
the Mobile Fact and Concept Training System (MoFaCTS)[21], 
which serves as a testbed for educational interventions, and the R 
package logistic knowledge tracing (LKT)[17, 24], which aims to 
make student modeling more efficient and accurate.  

Luke Eglington is a Staff Learning Scientist at Amplify Education 
(leglington@amplify.com). Luke completed his PhD at Dartmouth 
College with supervisor Dr. Sean Kang.  As a postdoctoral fellow 
at the University of Memphis, he worked with Dr. Philip Pavlik to 
develop novel knowledge tracing models and methods of using 
them to optimally sequence practice. His research initially focused 
on the effects of retrieval practice [8], spacing [13], and interleav-
ing [28] on student learning and metacognition. More recently, he 
has investigated how best to build knowledge-tracing models [7, 
10, 18, 25] and how to use them to sequence practice optimally [9]. 
He is also interested in developing methods for better use of the 
outputs of KT models, such as adaptive student grouping, practice 
decision rules, and human-interpretable (and actionable) reports. 

Meng Cao is a Ph.D. candidate working with Dr. Pavlik in the Op-
timal Learning Lab at the University of Memphis 
(mcao@memphis.edu). Her research primarily focuses on 
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optimizing training sequences for Mandarin tone learning and cat-
egory learning. In her work, she has extended the Performance 
Factors Analysis Model (PFA) by integrating prior practice diffi-
culty and categorization theories, aiming to determine the optimal 
item difficulty [2]. This strategic incorporation facilitates the appli-
cation of the PFA model in adaptive training systems for 
personalized item selection during practice sessions. More recently, 
she has extended to integrating attentional factors into the PFA 
model [1]. This inquiry seeks to understand the nuanced impact of 
interleaving and blocking in category learning.  

Wei Chu is a fifth-year Ph.D. candidate working with Dr. Pavlik in 
the Optimal Learning Lab at the University of Memphis 
(wchu@memphis.edu). Her research focused on applications of the 
spacing effect and testing effect in the context of second language 
learning. More recently, she has explored how to track learners’ 
correct response time fluctuations to improve the predictive accu-
racy of the Performance Factors Analysis model, utilizing the 
logistic knowledge tracing (LKT) package [6].  

4. TARGET AUDIENCE 
The target audience is rather broad since we intend to give a de-
tailed explanation of the LKT methodology before discussing how 
to implement such models. For this reason, we welcome anyone 
interested in quantitative student models of skill or knowledge 
learning. We expect no more than 25 participants. 
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