Check for
Updates

KODA: Knit-Program Optimization by Dependency Analysis

Megan Hofmann
Khoury College of Computer Sciences, Northeastern University
Boston, Massachusetts, USA

ABSTRACT

Digital knitting machines have the capability to reliably manufac-
ture seamless, textured, and multi-material garments, but these
capabilities are obscured by limiting CAD tools. Recent innova-
tions in computational knitting build on emerging programming
infrastructure that gives full access to the machine’s capabilities
but requires an extensive understanding of machine operations and
execution. In this paper, we contribute a critical missing piece of
the knitting-machine programming pipeline-a program optimizer.
Program optimization allows programmers to focus on developing
novel algorithms that produce desired fabrics while deferring con-
cerns of efficient machine operations to the optimizer. We present
KODA, the Knit-program Optimization by Dependency Analysis
method. KODA re-orders and reduces machine instructions to re-
duce knitting time, increase knitting reliability, and manage boiler-
plate operations that adjust the machine state. The result is a system
that enables programmers to write readable and intuitive knitting
algorithms while producing efficient and verified programs.

CCS CONCEPTS

« Human-centered computing;

KEYWORDS
Program Optimization, Machine Knitting, Digital Fabrication

ACM Reference Format:

Megan Hofmann. 2024. KODA: Knit-Program Optimization by Dependency
Analysis. In The 37th Annual ACM Symposium on User Interface Software
and Technology (UIST 24), October 13—16, 2024, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3654777.3676405

1 INTRODUCTION

Despite the advanced manufacturing technologies available to tex-
tile designers, there is still a substantial gap between what fabrics
machines can make and what designers can readily create using
computer-aided textile design tools [54]. In the space of machine
knitting, an emerging area of research is developing systems that
give designers full access to the capabilities of these machines rather
than limiting them to template garments (e.g., hats, socks, sweaters).
With these tools, designers can knit 3D models [18, 35, 37], create ac-
tuating devices [2, 11, 20, 43], and design soft sensors [1, 27, 39, 40].

However, the infrastructure for building these knitting CAD tools
is still in its infancy. While knit designers are primarily concerned

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676405

with exploring the complex space of knitted structures, knit pro-
grammers must develop algorithms that translate these structures
into machine-level instructions. Machine languages such as Knitout
[30, 31] give programmers full access to the capabilities of the ma-
chine and a higher-level programming interface in general-purpose
languages such as Python and JavaScript [46] to build their knitting
algorithms. More recently, the KnitScript programming language
[15, 17] provides a more direct conduit for knit programmers to
generate machine code in a domain-specific language that conveys
the state of the machine and handles knitting-specific errors.

But, this is where the infrastructure ends—hardware-specific
languages that assume the programmer can manage both the com-
plexity of the space of knitted objects and the low-level hardware
constraints and efficiency considerations that make fabrication
feasible. In practice, many advances in machine knitting have ex-
plored different approaches to efficient machine knitting [24-26],
while explorations of the novel and exciting materials these ef-
ficient knitting algorithms may enable are frequently limited to
simple swatches and objects that cannot be combined to form more
advance garments and objects.

In this paper, we address a critical gap in knit-programming
infrastructure: efficiency. While the full space of knitted materials
requires various solutions and domain-specific tools, our aim is
to develop a unifying optimization method that reduces a set of
knitting machine instructions into an efficient program that may
increase the reliability of the knitting process. By optimizing low-
level code, our approach is compatible with a wide range of systems.
This enables programmers to disregard efficiency and focus on
developing tools that unlock the machine knitting’s potential.

We present KODA (Knit-program Optimization by Dependency
Analysis), a system for optimizing knitting machine code that is
compatible with the Knitout machine language [30, 31] and higher
level programming languages that generate knitout (e.g., [15, 46]).
KODA includes three components. First, we provide an expanded
knitgraph representation that covers the complexity of knit objects,
including loop and stitch placement, float arrangements between
multiple yarns, and braided wales. Second, we develop a depen-
dency graph representation of knitted programs that models the
relationships between knitting operations and the knitted struc-
tures they produce. This dependency graph is constructed through
a single pass through a knitting program. Third, we provide a knit-
program optimization method that uses dependency analysis to
identify an efficient program that will produce the same knitted
structure. We evaluate this system through a series of benchmark
knitting programs and demonstrate that the system produces se-
mantically correct programs that are often substantially more effi-
cient, increase knitting reliability, and fabricate correctly.

https://orcid.org/0003-2283-8587
https://doi.org/10.1145/3654777.3676405
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3654777.3676405
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676405&domain=pdf&date_stamp=2024-10-11

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

2 RELATED WORK

There is growing interest in novel machine knitting techniques
(e.g., [2-4, 12, 20, 27, 28]) due to emerging opportunities to create
novel and impactful textile technologies such as medical devices
[9, 22, 33, 50], assistive technologies [44, 47], soft-robotics [21, 42,
43], and wearables [7, 38, 49]. This growing interest has led to
the development of new programming infrastructure for automatic
knitting machines, generalized representations of knitted structures
[16, 37, 51], and knit-scheduling methods [24-26].

2.1 Knit-Programming Infrastructure

Programming, while less accessible than design tools, is a powerful
tool for digital fabrication. Programming language concepts can
support diverse areas such as carpentry [48, 52], quilt patterning
[23], and knitting self-embedded structures [53]. Unlike other do-
mains, programming is often the only way to take full advantage
of machine knitting. Many recent advances in machine knitting
rely on McCann et al’s [31] knitting assembly language, Knitout
[30]. Knitout is rarely written directly; usually, it is generated by
programs written with APIs for general-purpose languages (e.g.,
[46]) or the domain-specific scripting language, KnitScript [15, 17].
Using these programming tools, we can reason about the knitting
process algorithmically and develop new knitted structures.

2.2 Program Dependency Analysis

Unfortunately, the most understandable and reusable code is rarely
the most efficient. In practice, efficient code may introduce errors in
edge cases and execute in a way that wastes computing resources.
Fortunately, program verification and optimization are mature ar-
eas of software engineering. Despite the plethora of established
programming optimization methods, new domain-specific opti-
mization problems are a frequent source of innovation in domains
that rely on domain-specific languages (e.g., [6, 41]). While knit
programming implies novel physical constraints, it may benefit
from tried and true optimization methods.

One such method is dependence analysis [8, 19, 36], which mod-
els a program as a set of interdependent nodes in a directed graph.
For manufacturing, this graph is an acyclic graph. All programs
executed by following paths through this graph will produce a
program with the same semantics as an original. For example, de-
pendence analysis has been used to optimize programs by removing
dead-code [13]-statements that do not affect the program execu-
tion. Not only would removing dead code from a knitting program
improve execution time, but it may also reduce wear and tear on
the knit object by limiting the wear and tear on the yarn incurred
with every operation. Similarly, dependency analysis has been used
to schedule parallel programming [5]. In the context of machine
knitting, this approach may identify clusters of operations that can
be scheduled in parallel.

3 SYSTEM OVERVIEW

To bridge the gap between the intuitive knitting algorithms and
the efficient programs that are needed to reliably knit, we present
the KODA method for Knit-program Optimization by Dependency
Analysis. KODA is built on three components: an expanded knit-
graph representation of knitted structures, a dependency graph

Hofmann

structure that models semantically identical programs that produce
those structures, and a dependency analysis method that clusters
operations into an efficient ordering of carriage passes.

KODA improves the efficiency of knitout programs [30] that are
compiled into instructions for a variety of knitting machines. KODA
does not optimize higher-level knitting programs (e.g., KnitScript
[15, 17]). However, by optimizing the intermediary knitout code
produced by these tools, we have created an optimizer that is com-
patible with a wide range of knit-programming pipelines.

4 EXPANDING KNITGRAPHS

To optimize a knitting program that produces a specific knitted
structure, we must have a complete representation of that structure.
We expand on the loop-based knitgraph structure defined by Hof-
mann et al. [16]. As in prior work, we define a knitgraph K(L, S)
as a set of loops, L, connected by the set of stitch-edges S where
the stitch-edge sy, indicates that the loop u is pulled through the
loop v to form a stitch. We expand on this knitgraph structure to
represent two missing characteristics of knitted objects. First, we
adapt Lin and McCann’s [24] Artin-Braid representation of loop-
crossings to represent how loops are tangled and crossed to form
cables and decreases. Second, we define a new yarn representation
that models both loops and their relative position to floats in the
yarns. For convenient reference, Table 1 provides a summary of
relevant knitting terms and the notation we use in this paper.

4.1 Loop and Wale Braids

Knitted structures are not necessarily grid-like; crossing loops form
unique knitted structures such as decreases and cables. In knitting,
a wale refers to a series of loops connected by stitches, such as
the stitches that form columns in a rib pattern. Lin and McCann
demonstrated [24] that we can represent crossing wales as a braid
where each wale is a strand of the braid. Each strand in the braid
can cross over or under its neighboring strands. The opportunity
to cross wale strands occurs at each loop along the wale.

We represent all of the crossings of wales in the knitgraph using
a braid-graph B (L, B) which includes a node for every loop in the
knitgraph and a set of directed edges B. A crossing edge b, , € B
implies that the loop u is passed to the right and crosses the loop v.
The loop u can cross either over o (i.e., b}; ,) or under v (i.e., by,). We
use the convention that edges are directed by rightward crossings.
Thus an edge from b}, , also implies that o is crossed leftward under
u, and b,, , implies that v is crossed leftward over u.

4.2 Float

Prior representations of knitgraphs assume only one yarn in the
structure. However, multiple yarns are required for multi-material
structures. In these cases, a knitted structure is defined both by the
order of loops formed on the yarn and the position of loops relative
to the floats between them. Modeling floats assists in managing
slack [31], which constrains the placement of loops on the needle
bed. Once a float is formed, the length of yarn between them is finite
and should those loops be transferred further away from each other
the yarn may tear or bend needles. Managing slack constraints is
critical to many transfer planning algorithms (e.g., [26, 32, 34]).

KODA: Knit-Program Optimization by Dependency Analysis

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Table 1: The set of notation we use to describe knitted structures and the knitgraphs that represent them.

Term Definition Example Notation Section
. . I € L: The loop [is in the set of loops LL.
Loop A loop of yarn (i.e., fiber) that make up a knitted structure. 1 @ g Tk oo ot By (Bl g 4
Stitches are formed by pulling a loop through other loops.
Stitch A stitch-edge is a directed edge in a knitgraph that represents that) .
Edge one loop u is pulled through another loop v. Suo € S: The loop v is pulled through the loop u. 4
The set of stitch-edges in a knitGraph is denoted S.
A horizontal row of stitches in a knit fabric,
Course usually, but not always connected to the same yarn. NA NA
Wal A wale is an ordered set of stitches where the child loop NA 41
ae of each stitch is pulled through the next in the wale. :
Wale Loops can cross over each other causing wales to cross. bz’u € B: the loop u crosses the loop o.
. . . . by, »: The loop u crosses over the loop . 4.1
crossing This is modeled as crossings in a braid structure. =
by, »: The loop u crosses under the loop v.
A yarn is a fiber that makes up the loops in a knitted structure. : . . .
Yarn In a knitgraph, a yarn is a set of loops in their knitting order. y € ¥:The yarn y is in the set of yarns used in a knitgraph. 4.2
A float is the length of yarn between two connected loops. ; < .IFT,B'};;}elisﬂ:?ltoj; tlzrg;rf}:ﬁes(le(t)sf gotiti}?enlf)}:)e);arn Y.
Float Directed edges represent floats between loops on the same yarn. Lk P P o 4.2
lgiis [Fies st o s e G ey ey firv: The set of loops that the float from u to o crosses over.
’ : : fup: The set of loops that the float from u to v crosses under.
n;: A needle a the ith index on a needle bed.
N : The ordered set of needl the front bed.
The mechanism that forms, holds, knits and transfers loops. frons? “€ oTdered set ol needies on e tron: be
Needle Needles are arranged on a front and back needle bed Npack: The ordered set of needles on the back bed. 43
& ’ Ly: The set of loops held on the needle n.
Lin,n;1: The set of loops held on needles from indices i to j.
oot T A set of operations executed on the knitting machine by NA 62

passing a carriage that actuates needles across the needle beds.

To capture these relationships, each knitgraph has a set of yarns,
Y, representing the yarn-wise ordering of loops. Unlike prior work,
we expand on the definition of a yarn to model both loops and
floats—the yarn lengths between loops. A yarn, y, is a graph with
loops as nodes (i.e., I € y) and directed float edges connecting each
loop, f € Fy. The direction of a float edge determines the time
ordering of loops. That is, if a loop u is formed with the yarn y and
then loop v is formed with y, then there will be a float f;, ;. If there
is a path from a loop u to v along a yarn, then the loop v must be
knit after the loop u. We refer to the first loop formed on y as its
head and the last loop formed on the yarn as its tail.

The length of a float is set by the distance between the needles
that form the loops. Float length is used to define slack constraints.
Transferring loops to new needles that are further apart than the
length of their connecting float will stretch the float beyond and
risks tearing the yarn. Some stretch in a float is possible, depending
on machine settings and the fiber. Thus, the original float length and
a stretch tolerance define the upper limit on the distance between
the needles holding the loops connected by a float.

Just as the loops in wales can cross over each other, loops can
cross over or under floats. Careless placement of floats produces
unseemly colorwork with strands crossing over the desired image.
To represent these relationships, we give each float-edge, f,,.», two
properties. First, we denote the set of loops the float passes over as
firo- Conversely, f,-, denotes the set of loops the float passes under.

4.3 Forming Knitgraphs

Knitted structures are formed by executing a small set of operations
in a knitting program. Lin et al. [25] provide a formal definition of
the operations of a knitting machine and each of their effects on the

state of the machine. We generate our knitgraph structure using
a virtual knitting machine that models these processes. We use a
virtual machine model from the KnitScript interpreter [15, 17].

A knitting machine consists of front and back beds of aligned
needles. The set of all needles is denoted N, and we refer to the
front and back beds as N, and Npgcp, respectively. Needles in
each bed have increasing indices from zero on the left to the right.
Each needle can form, hold, and transfer the loops in the knitted
structure. We denote the set of loops currently held on a needle n
as L, and the set loops held on all needles over a range between
two needles ng and ny as I € L[y n,]- The machine has a set of
yarn carriers that hold and position the yarns while knitting.

Knitting operations orchestrate the actions of needles and yarns
and can update a knitted structure in three ways: making a loop
(algorithm 1), stitching a loop through loops on a needle (algorithm 2),
and moving loops from one needle to another (algorithm 3).

4.3.1 Forming New Loops. Algorithm 1 describes the updates to
a knitgraph for making a new loop on a specified needle with a
specified yarn. First, the loop is formed and added to the loop set
of the knitgraph and the yarn. Next, if the yarn has prior loops, we
form a new float edge between the last loop made on the yarn and
the new loop. This float passes over loops formed on the back bed,
and under loops formed on the front bed.

4.3.2 Stitching Loops. Algorithm 2 describes the updates to a knit-
graph caused by pulling a loop through the loops on a given needle
(i.e., stitching), which forms stitch edges to the given loop.

4.3.3 Moving Loops. Algorithm 3 describes the updates to a knit-
graph caused by moving a loop on one needle to another needle in

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

1 Input n: The needle to form the loop on.
2 Input y: The yarn to form the loop at the end of.
3 Output [: The loop formed.
4 | « new tail loop on y;
5 add [to Lg;
if y has a loop Iy prior to] then

add fly,l to Fy;

if I is currently on a needle ny then

fl:,l —{le Lnyn} UNgronss

10 fl;l —{le Ln,n}t U Npacks

11 end

o

N1

o

©

12 end

13 return [;
Algorithm 1: Make_Loop

[

Input [: The loop to pull through other loops in the stitch.

)

Input L,: The loops on a needle to be stitched.
Output S;: The set of stitch-edges produced.
Sp & {s1,1Vln € Ln};

add S; to Sk;

return S;;

©w

'S

«

a

Algorithm 2: Stitch_Loops

an xfer or split operation. Moving loops affect both the placement
of floats and the crossing of wales in the knitgraph.

[

Input [: The loop on needle n and formed on the yarn y.

N

Input 7i: The needle to place the loop on.

©w

Output B;: The resulting set of crossing edges.
if 31, e Ly and on ny|fl,,,l € Fy then

£ty Al € Lnyn} UNfrons;

fi7y e Al € Ly} UNpes

7 end

if 3, ey cind on ”y|fl,ly € Fy then
flj‘ly —{l€Ln,n}t UNgons

10 fﬁy —{ie Lnyn}t Y Npacks

11 end

2 By — {}

13 if 3l € IALkaSIS,l € Sk then

'S

@

=)

®

©

14 for [€ IAL[n,ﬁ] do

15 if 3l € Lklasl;,l* € Sk then

16 ‘ add [x ito Bl; /*see Equation 1%/
17 end

18 end

19 add B; to Bg;

20 end

21 return Bj;

Algorithm 3: Move_Loop

First, we consider the placement of floats. Moving a loop repo-
sitions both the float it ends and the float it starts. This new float

Hofmann

position may over-stretch the yarn, violating slack constraints. If
the distance between the new start and end needles is greater than
the length of a stretched float, an error is reported to the user. If all
of the loops involved in a float are held on needles, this will shift
the float past a new set of needles. The float will now be positioned
relative to the loops on those needles. Thus, we update the over-
and under-sets of each float using the same process that defined
them when making a loop (see algorithm 1 lines 9-10).

Next, we consider the crossing of wales. Moving a loop, between
two needles may cause it to cross loops held on needles between
the transferring needles. Two loops can only cross if they are not
the beginning of a wale. The prior loops in the wale will anchor
the location of the wale and cause the crossing loop to form a braid.
That is, each crossing loop must be stitched through at least one
other loop (i.e., 3ls|s;,; € Sk). Similar to Lin and McCann [24], we
use the convention of recording rightward crossings. Thus, moving
a loop rightward will create crossing edges over back bed loops and
under front bed loops. If the loop is moving leftward, the orientation
of the edge is reversed. To simplify notation, we define the cross
operator between two loops as a shorthand for determining the
orientation of a crossing edge between two loops (Equation 1).

by, ifny < nyand ny € Npgep

by, ifnu <nyandny, € Ny,

1)

uxo=4 0
by, ifny > nyand ny € Npgep

Cou

ifn, > nyandny € Neront

4.3.4 Interpreting Operations on Knitgraphs. From these three up-
date methods, we can interpret knitting operations (knit, tuck, xfer,
split) as updates to a knitgraph and update the state of the virtual
knitting machine. We can render a knitgraph generated by a spe-
cific knitting program by interpreting machine operations using
these update processes.

A tuck instruction forms a new loop on a specified needle for each
yarn in the specified carrier set. Knit instructions similarly form a
new loop and then stitch it through the loops on the specified needle.
The original loops on the needle are dropped from the needle,
leaving the new loops behind. Xfer operations move loops on one
specified needle to a different specified needle on the opposite bed.
Finally, the split operation makes a new loop (like tucking), stitches
that new loop through its predecessors on the needle (like knitting),
but unlike knitting, moves those predecessors to another target
needle on the opposite bed (like transferring).

1 Input n: The needle to tuck on.

2 Input carriers: The set of carriers to tuck with.
3 Output L;,.x: The loops formed.

4 Lyyck <3

5 for y € carriers do

6 I « Make_New_Loop(n, y);

7 add [to Ly;
8 add [to L;ycr;
9 end

=
15}

return L ;
tuck Algorithm 4: Tuck

KODA: Knit-Program Optimization by Dependency Analysis

Input n: The needle to knit on.

[

Input carriers: The set of carriers to knit with.

[N}

Output Ly, ;;, Sgpir:The loops and stitch-edges formed.

©w

4 Lipir < 0;
Sknir < 0
6 Lprior — Lp;
7 Ly « 0
for y € carriers do
| « Make_Loop(n, y);
10 add Stitch_Loops(l, Lprior) to Sgpirs
1 add [to Ly;
12 add I to Lpi;
13 end

3

© ®

14 return Ly,;s, Sgpiss
Algorithm 5: Knit

Input n: The needle to transfer loops from.

[

N}

Input 7: The needle to transfer loops to.

@

Output B, r,,: The wale crossings formed.

'S

By fer < 0;
forl, e L, do
‘ add Move_Loop(ln, #) to Bypix ferits

o @

7 end
s L, «— 0;
9 add Lprior to Lp;

10 return B ;
xfer Algorithm 6: Xfer

Input n: The needle to split on.

[

Input 7i: The needle to transfer old loops to.

[N}

©

Input carriers: The set of carriers to split with.

'S

Output Ly, Sspiirs Bspiir: The loops, stitch-edges, and
wale crossings formed.
Lsplit —0;

«

o

Ssplit < 0;

=

Lprior — Lp;
Bgpiir — Xfer(n, A);

®

9 for y € carriers do

10 I « Make_Loop(n, y);

1 add Stitch_Loops(l, Lyrior) to Sspiir;

12 add [to Ly;

13 add I to Lpy;¢3

14 end

15 return Lsplit> Ssplit’ Bsplit‘;
Algorithm 7: Split

5 KNITTING DEPENDENCY GRAPH

There may be many programs that produce any given knitted struc-
ture. We use dependency graphs to represent the space of programs
that can produce the knitted structure created by a source program.
Conceptually, a dependency graph is a directed acyclic graph where
each node is a machine operation. An edge from one operation, u,
to another operation, v, implies that v cannot be executed until u

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

has been executed. Thus, any topological ordering of the depen-
dency graph will produce a knitted structure with the included
dependencies. We define a set of dependencies between knitting
operations based on our knitgraph representation to ensure these
dependency graphs produce a consistent knitted structure.

Given a program, P, with an ordered set of machine operations
that form the knitgraph K, we create a dependency graph G(P, D)
where each edge d;, , € D indicates that the operation v € P must
occur after the operation u € P. Any topological ordering of the
dependency graph, P, will produce the same knitgraph, K.

We form a dependency graph as we execute the original program.
Note that each knitting operation (i.e., algorithms 5-7) returns the
components of the knitgraph that it generated or updated. As we
execute each operation in the program, we add the operation as a
node to the dependency graph and associate it with the resulting
structures (e.g., loops, stitches, and wale-crossings) that the opera-
tion created in the knitgraph. Each operation can have the following
properties: the set of loops it formed (and the floats we can infer
from this), the set of loops it positioned either by forming or moving
(and the floats we can infer from this), the stitch-edges it created,
and the wale-crossings it created. Each loop in the knitgraph is
associated with the operation that formed it, the last operation to
position it, and the last operation that passed a float across it. So, for
each new operation, we can find a dependency to other operations
that involve the same loops or edges connected to those loops.

1 tuck - f2 y; forms loop 1

2 tuck - f1 y; forms loop 2

3 knit + f1 y; forms loop 3

4 rack 1

5 xfer f1 b2; moves loop 3 to right
6 rack o

7 knit + f2 y; forms loop 4

8 rack -1

9 xfer f2 b1l; moves loop 4 to left

10 rack @

11 xfer b1 f1; moves loop 4 to front

12 xfer b2 f2; moves loop 3 to front

13 knit - f2 y; forms loop 5

14 knit - f1 y; forms loop 6

(a) Twist Program (b) Knitgraph

Figure 1: A knitting program that twists two stitches and the
resulting knitgraph. Loop nodes are notated with their time-
order index. Blue edges represent yarn-edges between loops,
forming floats. Purple edges show stitch edges, connecting
loops together. Green edges show wale crossing edges.

Consider an example illustrated in Figure 1. Suppose we execute
a tuck operation, t1, that returns the loop I;. We associate this loop
with t; and add it as a node in the dependency graph. Then we
execute another tuck, tz, with the same yarn that returns I, and
forms the float f}, ;,. We associate this new loop with the second
tuck operation and add it to the dependency graph. Observe that
fi, 1, involves the loop I; with t; marked as its creating operation.
From this, we can infer a dependency from t; to t; and add this
edge to the dependency graph. Next, suppose we execute a knit
operation k3 that forms a new loop I3 and stitches it through I, and

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

returns this as the stitch-edge sy, ;,. We associate the stitch edge and
new loop with the operation k3 and form a dependency between ¢,
and ks that ensures that t; forms I before I, is knit by k3. Also note
that because there is a path from t; to k3, any topological ordering
will ensure that both tucked loops are formed before knitting.

To ensure we capture all of the features in the knitgraph, we
detect five dependency types after executing each operation in
the program and updating the knitgraph: Yarn-order, Loop-Position,
Float-Position, Stitch, and Wale-Crossing dependencies.

5.1 Yarn-Order Dependency

Yarn-order dependencies ensure the loops of each yarn are formed
in the correct order. For example, the dependency created between
two tuck operations that use the same yarn (e.g., t; and t; in Fig-
ure 2a). When executing a program, we check for yarn-order de-
pendencies whenever an operation produces a new loop. We then
look to see if there is any float in the knitgraph that leads to the
returned loop. If there is, the proceeding loop will be associated
with whatever operation created the loop. We can then create a
yarn-order dependency between these two operations.

5.2 Loop-Position Dependency

Similar to yarn-order dependencies, we must keep track of the
relationship between operations on loops and the position of those
loops on needles. For example, Figure 2b shows the operation k3
forms the loop I3, and the transfer operation x5 moves this loop to
a new needle. We identify a Loop-Position dependency from k3 to
x5 because they are both operating on the loop /3. The subsequent
transfer of the loop I3 by transfer x;2 will only create a loop-position
dependency between x5 and x12 because after executing x5 the loop
I3 resets its last moving operation from k3 to xs.

5.3 Stitch Dependencies

Stitch dependencies ensure stitches are formed in the wale-wise
order of the original program. The formation of a dependency
between t2 and k3 in Figure 3a shows how stitch dependencies are
formed. Note that these dependencies can be created even if there
are many intermediate steps between forming a loop and stitching
through it. For example, k7 produces the loop 4 and stitches it

(a) Yarn-Order

(b) Loop-Position

Figure 2: The yarn-order and loop-position dependency
graphs for the twist program in Figure 1a. Operation nodes
are labeled with their abbreviated operation type and line
number (e.g., t; for the tuck on line 1).

Hofmann

(a) Stitch (b) Wale-Crossing
Figure 3: The stitch and wale-crossing dependency graphs
for the twist program in Figure 1a.

through the I; formed by ¢;. Despite the many operations executed
between them, we identify the stitch dependencies from ¢ to k7.

5.4 Wale-Crossing Dependencies

When an operation moves a loop, it may form a wale-crossing edge.
For example, the transfer operation x9 moves the loop I3 to the left
and creates a wale-crossing where Iy crosses rightward under I3
(i.e., bl:, 13). This creates a wale-crossing dependency between the
operation that last placed l4, x5, and the operation x9. An example
wale-crossing dependency is shown in Figure 3b.

5.5 Float-Position Dependencies

1 knit - f6 b
2 knit - f5 b
3 knit - b4 b
4 knit - b3 b
5 knit - f2 b
6 knit - f1 b

7 xfer b3 f3
8 xfer b4 f4

9 knit - f6 r

10 knit - f5 r

1 knit - f2 r

12 knit - f1 r

L oo
15 knit + f1 b 4 4
16 knit + f2 b

17 knit + b3 b

18 knit + b4 b

19 knit + f5 b

20 knit + f6 b

(a) Program (c) Dependency Graph
Figure 4: Colorwork rib where the red yarn floats over the

blue purled loops. Float-position dependencies are orange.

Both when a loop is formed and when it is moved, the floats
associated with that loop may pass over or under loops on other
needles. With each of these operations, we associate the operation
with the loops that the float passes over. When those floats are
operated on, either by stitching or moving, we create a dependency
between the last operation to affect the float and the operation
acting on the loop positioned either in front of or behind the float.

KODA: Knit-Program Optimization by Dependency Analysis

Figure 4 shows a sample program that knits with two yarns
b (blue) and r (red). The blue yarn forms a ribbed structure with
columns of knit and purl loops (formed on the back bed). The red
yarn passes the float between loops Is and Iy in front of the blue
purled loops I3 and I4. To do this, the blue purls are transferred to
the front bed (i.e., x7, xg) and then returned to the back bed to be
knit (x13, x14). The knit operation k11 forms this float, creating a
float-position dependency between the k11 and the transfers.

6 KNITTING DEPENDENCY ANALYSIS

A dependency graph describes the space of knit programs that will
produce the knitted structure produced by the original program.
However, not all topological orderings of the dependency graph
will produce an efficient knit program. We provide an optimization
method that uses dependency analysis and leverages information
about the machine knitting process to find an efficient program.
This optimization process has two stages: transfer dependency reduc-
tion and carriage-pass dependency analysis. Dependency reduction
allows us to reduce the number of operations in a knitting program
without modifying the knitted structure. Carriage-pass dependency
analysis enables us to order the remaining operations to make
efficient use of machine resources.

6.1 Transfer Dependency Reduction

Given a knitting program with only tucks and knits, removing any
operation would remove a loop from the knitgraph and substantially
alter the structure. The place to look for operations that can be
removed is in transfer operations. It is possible to undo the effect
of wale crossings in a knitted structure. This would have the added
benefit of making the optimized program more reliable because
every transfer operation risks dropping the transferred loop or
straining and tearing the yarn. A trivial example is transferring a
loop and then transferring it to the original needle.

Suppose we execute the transfer x = xfer f2 b2 and then the
transfer x~! = xfer b2 f2. The operation x ! inverts wale-crossings
formed by the x operation. Clearly, a more efficient knitting pro-
gram would omit these two operations. However, suppose between
x and x~! we knit two loops to form a float across the transferring
needles (i.e., P = {x, ko =knit - f4r, t; =knit - f1 r, x1}. Figure 8c
show the differences in the loop and float positions when these
transfers are removed (Figure 8a) and included (Figure 8b). The
difference between the resulting knitted samples illustrates why it
is critical that knitgraphs represent both wale and float crossings
and that these relationships are reflected in the dependency graph.

To identify the transfer that can be removed, we define an in-
verted transfer series and a method for identifying them in a de-
pendency graph. A transfer series is an ordered set of transfer
operations where only the first transfer depends on any operations
outside the series, and only the last transfer is dependent on opera-
tions outside the transfer series. A transfer series can be inverted if
all of the effects of the first transfer in the series are undone by the
time the last transfer in the series occurs. That is, the transfer series
undoes all wale and float crossings it creates, and the transferred
loops arrive at their original position. In this case, a transfer series
can be removed from the dependency graph.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

1 Input G(P, D): The dependency graph produced by
execution of the program P.

2 Input X: A transfer series in the graph G that ends
with the operation x.

3 Ogyce < {0 € P|3dy,, € D};

4 if |Ogycc| == 1 or o € Ogyee is a transfer then
5 add o to X;

6 if X is invertable then

7 remove X from G;

8 return 0;

9 else

10 ‘ return Extend_Transfer_Series(G, X);
11 end
12 else

13 ‘ return X;
14 end

Algorithm 8: Extend Transfer Series

To find all invertible transfer series in the dependency graph,
we iterate over every transfer operation in the original program
execution order. Given a transfer x, we form a new transfer series
X = {x}. We then attempt to extend the transfer series based on its
successor operations in the dependency graph (algorithm 8). If x
has only one successor and it is a transfer operation, we can add
that successor to the transfer series and extend it to the following
successors. Once we have found an invertible transfer series, we
remove the series from the dependency graph. Series that cannot
be inverted are critical to the knitting program, and we retain them.

(a) Shift Two Needles (b) Shift Eight Needles

Figure 5: Two Y-shapes with the right tube shifted to the
right every four courses. These KnitScript programs were
optimized with KODA. No necessary transfers were removed.

6.1.1 Maintaining Slack. Notably, a critical change in state that can
go unnoticed is changes that affect slack constraints. If a transfer
series moves floats in order to maintain slack, the xfer series cannot
be inverted, even if the loops arrive at the original destination. This
is an example of why representing floats, in addition to loops, in
the knitgraph structure is critical to dependency analysis.
Consider how a knitter may organize transfers to spread out two
connected tubes forming a Y shape (Figure 5). When shifting the
right tube to the right, a naive knitter will transfer each loop on
the front side of the tube across to the opposite bed, rack to the
desired shifting distance, and then back over to the newly shifted

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

positions. Then, they will repeat this with the back of the tube.
However, if the desired shifting distance is greater than the allowed
slack between the front and back loops, this will stretch the yarn
too much. Instead, the shift must be completed in multiple smaller
shifts (e.g., racking 1 or 2 needles at most). While this may appear
to result in many redundant transfers, each transfer creates float-
position dependencies with their neighbors. Because these float-
position dependencies are not invertible, these critical transfers are
maintained after transfer reduction.

6.2 Carriage-Pass Dependency Analysis

The time a knitting program takes to execute is defined by the
number of carriage passes that must be completed. The carriage is
an actuator that moves across the needle beds, actuating needles
in a sequence of operations. To execute a knitting program in or-
der, the carriage will move from needle to needle in one carriage
pass until it reaches an operation on a needle the carriage has al-
ready passed. To complete the next operation, the carriage pass will
end, and a new carriage pass will start in the opposite direction.
Carriage passes are also limited to specific operation types. Knits
and tucks can be performed in their own pass, but splits and xfers
must be on independent passes. The state of the machine, such
as the active yarn carrier or the alignment of the beds (i.e., their
racking), can only be changed between carriage passes. For exam-
ple, the program in Figure 1a is executed in seven carriage passes:
{t1, 2}, {ks}. {xs}, {k7}, {xo}, {x11, x12}, and {k13, k14}.

Carriage passes are critical to knitting time because knitting a
set of operations all in one carriage passes is substantially faster
than knitting them in individual carriage passes. Thus, we define
the execution time of a knitting program by the number of carriage
passes executed. This can vary even with a constant operation set.

Given a knitting operation, o, the carriage pass c¢ can receive o if
it meets three criteria. First, the racking of o0 must match the racking
of ¢ (i.e., the needles share the same alignment). While interpreting
a program into a dependency graph, we label each operation with
the racking at which it was executed. Second, we consider if the
type of operation is compatible with c. Knit and tuck operations can
be executed in the same carriage pass. However, splits can only be
executed in carriage passes with other splits, and transfers can only
be executed in carriage passes with other transfers. Third, o must
continue the order of ¢ without changing directions. Knit, tuck,
and split operations must be knit in a specified direction. If 0 has a
specified direction (i.e., + or -), c must operate in the same direction.
We can only add o to c if the needle o operates on comes after
the needle operated on by the last operation in ¢ in that direction.
Transfer passes can freely re-order transfers, so the direction does
not matter. By convention, we execute a transfer pass by sorting
from the leftmost needle to the rightmost needle.

6.2.1 Carriage-Pass Formation. To reduce the number of carriage
passes produced by a knitting program, we analyze the depen-
dencies in the dependency graph and form a new Carriage-Pass
dependency graph that reduces the set of topological orderings
of the program. By clustering operations into carriage passes, we
reduce the space of the program’s topological orderings and are
likely to find a more efficient solution.

Hofmann

A Carriage-Pass dependency graph is similar to our program
dependency graph in that it represents the dependencies between
operations in a program. However, instead of nodes representing
individual operations, they represent carriage passes, which are a
collection of operations that can be executed in a specific sequence.
Thus, we define a carriage pass dependency graph G(C, D) by a set
of carriage passes C and the directed dependency edges between
them, D. An edge d;,, € D indicates that there is at least one
dependency between an operation in the carriage pass u and an
operation in the carriage pass v.

1 Input Gp(P, Dp): The dependency graph produced by
execution of the program P.

Output G¢ (B, D¢): The dependency graph between
carriage-passes that cluster the operations in P.

)

3 Bc-pen — 0;
4 foro € Pdo
5 Odescendants < Descendent operations of o in Gp;
6 co «— 0;
7 for ¢ € Bopen do
8 if ¢ can receive 0 and ¢ N 0gescendants = 0 then
9 add o to the end of ¢;
10 Co < C;
11 Break;
12 end
13 end
14 if ¢, = 0 then
15 co «— {o};
16 add ¢, to Bopen;
17 end
18 for 6 € P|3ds, € Dp do
19 ¢—C¢eBloeg
20 add d; . to Dc;
21 if d; . is a yarn-order dependency then
22 ‘ remove ¢ from Bopen;
23 end
24 end
25 end

26 return G¢(B, D¢);
Algorithm 9: Carriage Pass Dependency Analysis

We start forming a carriage-pass dependency graph by creating
an empty set of open carriage passes. This set holds all carriage
passes that can receive new operations. We then iterate through the
operations in the original program, searching for an open carriage
pass to receive them. For an operation o, we greedily search for an
open-carriage pass, c, that can be extended by o without creating
a cycle in the carriage pass dependency graph. A cycle would be
formed if there is a path from the operation o to any operation in
the carriage pass c in the program dependency graph. Note that
the graph must remain acyclic to find a topological ordering of
carriage passes. If no carriage pass can receive o, then we will
create a new open carriage pass. After o is added to a carriage pass,
we update the dependencies. For each predecessor operation on
which o depends, we find its carriage pass. If that predecessor is not

KODA: Knit-Program Optimization by Dependency Analysis

in 0’s carriage pass, we add a dependency between the predecessor
and o’s carriage passes.

This process creates an increasingly large set of carriage passes.
In the worst case, this is equal to the number of operations in the
program. All transfer passes remain open and can receive new
operations. However, a carriage pass involving a yarn (knits, tucks,
splits) closes when a new carriage pass is formed with a yarn-order
dependency between them.

6.2.2 Managing Machine State. An experienced knit programmer
may be wondering where in the dependency graph we introduce all
of the knitting operations that do not operate on needles or directly
modify the knitgraph. For example, the rack operations required
to change the alignment of needle beds before transferring or the
carrier managing operations (e.g., inhook, outhook, releasehook)
that introduce and cut the yarns. After we clustered operations
into carriage passes, we re-introduced these types of non-knitting
instructions to the carriage-pass dependency graph. Essentially, we
treat the pause between carriage passes where these operations are
executed as another carriage-pass dependency that will influence
the topological ordering of the final optimized program.

Each carriage pass is dependent on a specific state of the knitting
machine. Each operation in a carriage pass must be executed at the
same racking. So, we introduce a new racking operation that each
carriage pass depends on. Next, all operations that involve yarns
(i-e., knit, tuck, split) require the yarn to be activated by an inhook
operation. For each yarn, we create an inhook operation with the
carrier that holds that yarn and add a dependency to the carriage
pass that holds the first operation to form a loop with the yarn
(i.e., the yarn’s head). Inhook operations activate the yarn-inserting-
hook that holds the head of the yarn until it has been stabilized by
forming multiple loops. This hook blocks needles near the first loop
formed on the yarn and prevents split and transfer passes. Thus,
when we identify a transfer pass or a pass that contains one of these
blocked needles, we add a dependency to a releasehook operation
that releases the hook and unlocks the needles. Finally, the yarns in
a knitgraph must be cut free from the machine after the last loop of
each yarn is formed. Thus, if a carriage pass is followed by no other
carriage passes with yarn-order dependencies, we can introduce a
new dependency to an outhook operation. The outhook operation
requires the yarn-inserting-hook. So, if no releasehook was already
introduced by blocked needles, we introduce a new releasehook
operation and make the outhook dependent on it.

The resulting carriage-pass dependency graph describes a re-
duced space of knitting programs that will produce the original
knitted structure but may more efficiently use carriage passes to
cluster operations. We find an optimized program in this depen-
dency graph using a topological sort. We implement our graph
structures using the Network X Graph library in Python and use
their topological sorting method [14, 29]. We take a final pass on
this resulting program to remove redundant rack operations. Fi-
nally, we identify each releasehook operation and attempt to shift
it earlier in the final execution order. A releasehook may not be
required until it blocks a needle, but ideally, it is released after a
carriage pass that forms enough loops to hold the yarn stable in the
knitgraph (e.g., ten loops) and before the next carriage pass that

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

moves in the same direction as the carriage pass that used the yarn
after an inhook operation.

The final program is clear of unnecessary operations, ordered to
efficiently use carriage passes, handles carriers and racking, and will
produce the same knitgraph as the original program. In the follow-
ing section, we describe a set of demonstrative knitting programs
that we use to evaluate the efficacy of the KODA method.

7 DEMONSTRATION

Many knitted structures are created by pairing stitch operations
with a series of transfers that reposition the resulting loop for the
next stitch. The simplest example, as described by Lin et al. [25], is
forming a knit stitch (on the front bed) and a purl stitch (on the back
bed). To switch between knits and purls, a loop must first be knit
and then transferred to the opposite bed. More complex structures,
such as decreases and cables, are formed by transferring loops to the
opposite bed and then transferring them to the original bed at a new
needle. When hand-knitting, these stitch and transfer operations
are handled one at a time. However, the knits and transfers should
be clustered in carriage passes to machine knit these efficiently.
In the following set of demonstrations, we describe how program-
mers may write programs based on this hand-knitting intuition
while producing inefficient results. In the following section, we
will evaluate KODA by optimizing the programs produced in these
demonstrations for semantic correctness, fabrication correctness,
manufacturing efficiency, and computational complexity.

7.1 Lace and Decreases

knit + f1 y; Pass 1

xfer f2 b2; Pass 2 1 xfer f2 b2; Pass 1

rack 1; 2 xfer f5 b5; Pass 1

xfer b2 f3; Pass 3 3 rack 1;

rack 0; 4 xfer b2 f3; Pass 2

tuck + f2 y; Pass 4 5 rack -1;

knit + f3 y; Pass 4 6 xfer b5 f4; Pass 3

xfer f5 b5; Pass 5 7 rack 0;

rack -1; 8 knit + f1 y; Pass 4

xfer b5 f4; Pass 6 9 tuck + f2 y; Pass 4

rack 0; 10 knit + f3 y; Pass 4

knit + f4 y,; Pass 7 11 knit + f4 y; Pass 4

tuck + f5 y; Pass 7 12 tuck + f5 y; Pass 4
(a) Intuitive Method (b) Efficient Method

" .

(c Swath hoto
Figure 6: Example code of a method forming two paired de-
creases using an approach similar to hand knitting and an
efficient method based on the slider algorithm [26].

1

w

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Lace patterns are made by pairing decreases and increases to
create holes in the fabric. This introduces complex wale structures
where new wales start in the middle of knitting and merge at de-
creases. Figure 6c shows an example lace pattern of alternating
left and right decreases paired with increases that form eyelets.
Decreases are formed by moving a loop onto a neighboring loop
and then knitting through the stacked loops. Hand knitters will
complete these transfers and knits all at once and may intuitively
program them in this way (Figure 6a). However, to efficiently knit
multiple decreases in a single course of knitting—as in lace patterns-
the transfers needed to stack loops should be consolidated into
one pass, followed by a knitting pace to complete all the decreases
(Figure 6b).

As described in Lin et al’s [26] schoolbus method, an optimal
approach to stacking loops into decreases is to consolidate transfers
across to the opposite bed and consolidate stacking transfers based
on the racking. For example, leftward (r=1) and rightward (r=-1)
transfers require two separate transfer passes for stacking—-totaling
three transfer passes. Decreases across multiple racking magnitudes
will require a minimum of one transfer pass for each racking and
the additional holding transfer pass.

7.2 Cables and Wale-Crossings

xfer f2 b2; Pass 2

xfer f3 b3; Pass 2

rack 1; 1 xfer f2 b2; Pass 1

xfer b2 f3; Pass 3 2 xfer f3 b3; Pass 1

rack -1; 3 xfer f4 b4; Pass 1

xfer b3 f2; Pass 4 4 xfer f5 b5; Pass 1

rack 9; 5 rack 1;

knit + f2 y; Pass 5 6 xfer b2 f3; Pass 2

knit + f3 y; Pass 5 7 rack -1;

xfer f4 b4; 8 xfer b3 f1; Pass 3

xfer f5 b5; Pass 6 9 xfer b5 f4; Pass 3

rack -1; 10 rack 1;

xfer b5 f4; Pass 7 1 xfer b4 f5; Pass 4

rack 1; 12 rack 0;

xfer b4 f5; Pass 8 13 knit + f2 y; Pass 5

rack 9; 14 knit + f3 y; Pass 5

knit + f4 y; Pass 9 15 knit + f4 y; Pass 5

knit + f5 y; Pass 9 16 knit + f5 y; Pass 5
(a) Intuitive Method

(b) Efficient Method

Figure 7: Example code of a method forming two alternating
cables using an approach similar to hand knitting and an
efficient method that consolidates transfers.

Hofmann

Cables are similar to lace patterns in that they introduce complex
wale structures. Cables braid wales by crossing them at specific
locations. Figure 7c shows an example cable pattern of alternating
leftward and rightward cables crossing two loops over a third loop.
Like decreases, hand knitters will form cables by crossing their loops
and then immediately knitting across them (Figure 7a). However,
the transfers that rearrange these loops should be consolidated
when knitting multiple cables in a single course (Figure 7b).

A right-leaning cable is formed in three carriage passes: trans-
ferring a set of loops to the opposite bed, then transferring the
left half of the loops to the freed needles on the right side of the
cable, then transferring the right loops to the left side. Switching
the order of left and right transfers will switch this to a left-leaning
cable. Like forming decreases, cables can be inefficiently formed
(cable-by-cable) or efficiently clustered into carriage passes. In the
optimal case, if there are both left and right-leaning cables in a
course, this will require five carriage passes.

(b) Float with Transfers () Result with Transfers

Figure 8: Demonstration of the effect redundant transfers
have on the float positions of yarns.

7.3 Colorwork and Float Arrangement

While lace and cable patterns introduce complexity in the wales
of a knitted structure, colorwork introduces complexity in float
placement. Colorwork is created using multiple yarns. The floats
between each yarn must be carefully placed relative to the loops
formed on the other yarn. A common hand-knitting colorwork
technique called Fair-Isle is done by knitting needles with different
color yarns to form intricate, detailed color patterns. While knitting,
the hand knitter will pull all of the yarns through the pattern—
meticulously handling the placement of floats. To do this on a
knitting machine, a naive programmer may move the carriers in
tandem, transferring loops to cover floats as needed (Figure 9a).
Consider a rib pattern made of alternating columns of knit
stitches and purl stitches. Adding colorwork to these patterns can
be done by knitting with a second yarn only on the columns of knit
stitches. However, as we show in Figure 8, the placement of the
pulled stitches will alter the float placement of the fabric. Figure 9¢
shows an example of the colorwork rib pattern where the red yarn
is only knit on front bed stitches and floats under the blue purl
stitches. To do this correctly, the purled stitches must first be trans-
ferred to the front bed. Then, the colored stitches can be knit on the
knit wales. After, the purled stitches can be transferred back to the

o NS B N T R S

o o

KODA: Knit-Program Optimization by Dependency Analysis

xfer f2 b2; Pass 1 1 xfer f2 b2; Pass 1
knit + b2 blue; Pass 2 2 xfer f4 b4; Pass 1
xfer b2 f2; Pass 3 3 knit + b2 blue; Pass 2
xfer f4 b4; Pass 3 4 knit + b4 blue; Pass 2
knit + b4 blue; Pass 4 5 xfer b2 f2; Pass 3
xfer b4 f4; Pass 5 6 xfer b4 f4; Pass 3
knit + f1 red; Pass 6 7 knit + f1 red; Pass 4
knit + f3 red; Pass 6 8 knit + f3 red; Pass 4
knit + f5 red; Pass 6 9 knit + f5 red; Pass 4

(a) Intuitive Method (b) Efficient Method

h
Figure 9: Example code that forms alternating columns of
blue purls and red knits using an approach similar to hand
knitting and an efficient method that consolidates transfers.

back bed in preparation for continuing to knit the rib pattern. These
transfers can be inefficiently executed stitch-by-stitch or optimally
clustered into knitting and transfer passes (Figure 9b).

8 OPTIMIZATION BENCHMARKS

For our optimization method to be effective, it must meet three
criteria. First, it must be semantically correct; that is, the resulting
knitted structure should be identical to the original program’s.
Second, the optimized program should fabricate correctly without
dropping stitches or tearing yarns. Third, the optimizer should
reduce or maintain execution time measured by carriage passes.
We have produced a set of benchmark swatch programs based
on our demonstration swatches to evaluate these criteria. Each
program is written in the higher-level knitting language, KnitScript
[15, 17]!. The width in stitches and height in the courses of the
swatch are parameterized. We provide three benchmark categories:
lace, cable, and colorwork. For each category, we have developed
three programs. The first is an inefficient, stitch-by-stitch approach
to knitting these structures in a regular pattern. The second is an
optimal program that generates the same structure. The third is an
inefficient program that generates the swatch stitch-by-stitch but
randomizes the placement of these structures (see Figure 10).
Additionally, we include a randomized program that uses all
techniques (i.e., lace, cables, and colorwork) in one pattern (see
Figure 10d). An experienced knit programmer can define an optimal
program for structure by recognizing the opportunity to cluster
transfer operations into carriage passes. However, combining these
methods increases the complexity of transfer planning substantially.
This demonstrates the benefit of program optimizers—they allow
programmers to write intuitive solutions rather than efficient code.

KnitScript code to generate these benchmarks is available in the KODA code base at
https://github.com/mhofmann-Khoury/koda-knitout

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Thus, we provide a final benchmark program that randomly selects
a structure to apply to each cluster of six stitches.

9 EVALUATION

We generated swatches using both the inefficient and ground-truth
benchmarks to validate our optimizer. We then optimized each
inefficient swatch program. We make three comparisons between
swatches to verify semantic correctness, correct fabrication, and
carriage-pass efficiency. We verify semantic correctness by compar-
ing the knitgraph of the un-optimized program and the optimized
program. Any variation in the knitgraphs would result in different
knitted structures and violate the requirements of our optimizer.
Samples are correctly fabricated if the ground-truth program and
optimized swatches are knit without torn yarns or dropped loops
and appear identical. The inefficient swatches could not be reliably
knit despite multiple attempts. We measure the efficiency of each
program in carriage passes counted in the Apex 4 software [45].

We generated two data sets of swatch programs from our bench-
marks that show the effect of optimization on program efficiency
across varied swatch sizes and randomized patterns.

9.1 Standardized Swatch Generation by Size

For the first data set, we generated the standardized lace, cable,
and colorwork patterns in a range of sizes. Each swatch is knit
to be a square with the same number of stitches and courses. We
increment the size parameter by six stitches, ensuring that there is
sufficient space for added repetitions of the lace, cable, and color
work patterns. Figure 11 shows the effect of swatch size on carriage
pass count. We see that size causes an exponential increase in the
number of carriage passes for the unoptimized programs. This
is because as the size increases, the number of lace, cable, and
color work structures increases exponentially. When made stitch
by stitch, this causes an exponential increase in transfer passes.
Alternately, the optimized swatch programs increase their carriage
passes linearly. This is because the optimal solution will cluster
transfers across stitch structures and the number of carriage passes
only increases relative to the number of courses in the swatch.

9.2 Randomized Swatch Generation

Our next data set uses the randomized swatch benchmarks. We
fixed the size of the swatches to 82 stitches by 82 courses. When
optimized, most swatches of this size can be knit in under 5 minutes
and allow for a wide variation of knitted structures. We knit ten
unique randomized swatches for each randomized benchmark (i.e.,
lace, cable, colorwork, mixed patterns). Table 2 summarizes the
mean and standard deviation of carriage pass counts across each of
these benchmarks in the unoptimized and optimized case.

Note that the resulting number of carriage passes was fixed af-
ter optimization for the lace and cable work patterns. For these
benchmarks, the optimizer successfully clustered the transfers re-
quired between courses regardless of the position of decreases or
cables in each course. This results from the greedy carriage pass
consolidation approach. When there are multiple carriage passes
for the multiple yarns in a course, the optimal transfer passes are
sometimes split across each yarn’s carriage pass. This results in a

https://github.com/mhofmann-Khoury/koda-knitout

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

(c)‘Cable (d) Mixed Lace, Cables, and Color

Figure 10: Example randomized swatches.

sub-optimal program; however, there are still significant reductions
in carriage passes overall.

9.3 Semantic Correctness

For each pair of inefficient and optimized swatch programs, we
compared the resulting knitgraph produced by executing the pro-
gram on our virtual knitting machine. Across all pairs in both data
sets, the resulting knitgraphs always matched exactly. This shows
that the optimizer produced semantically correct results.

9.4 Fabrication Correctness

We attempted to knit the inefficient programs for each standard-
ized benchmark with a size of 82 stitches by 82 courses. However,
despite multiple attempts and adjustments of machine parameters
such as loop length and knitting speed, we were unsuccessful at
producing swatches without numerous yarn tears and dropped
stitches. This is despite the fact that the knitted structures are valid,
the instructions violate no machine constraints (e.g., slack con-
straints), and the machine-specific software raised no warnings.
This demonstrates that program efficiency can be critical to reli-
able fabrication, not just a measure of manufacturing time. Instead
of comparing the fabricated results of our optimized swatches to
the inefficient programs, we compared them to the fabricated re-
sults of the ground-truth programs for standardized lace, cable, and
colorwork.

We knitted each pair of optimized and ground-truth swatches
with 82 stitches by 82 courses. We knit these swatches on a Shima
Seiki SWG91IN2 15 gauge v-bed knitting machine using Puma
Stretch 2/28 NM yarns [10], a carriage speed of .8 m/s, and a stitch
size of 40. All samples were knitted without error, and we could
not identify any variation between the optimized and ground-truth
swatches. We knit three random samples for each benchmark in
our randomized data set under the same conditions. Because we
have no ground truth for these samples and the inefficient solutions
were not knittable, we cannot verify the fabrication correctness of
these samples. However, the resulting swatches were consistent in
appearance and knitted without error. No loops appear dropped,
no yarns are torn, and no floats are misplaced.

Hofmann

9.5 Efficiency After Optimization

== Lace == wm= Cable Colorwork
5000 ,
’
/’
4000 pa
7’
@ 7’
" P B
@ 3000 - .
o L N
) e et
& 2000 v .
8 o e
1000 T et

10 18 26 34 42 50 58 66 74 82

a o
S o
S o
\
\

FN
S
S
\
\Y

Carriage Passes
N w
(=3 (=3
o o
\
\
\
\

10 18 26 34 42 50 58 66 74 82

2000

-
o
=3
o

1000

Optimization Time (ms)
13
(=3
o
\ g

0 =
10 18 26 34 42 50 58 66 74 82
Swatch Size: Courses and Stitches

(c) Time to Optimize Program in milliseconds.

Figure 11: Effect of swatch size in stitches and courses on car-
riage pass counts across standardized pattern benchmarks.

The substantial reduction in carriage passes across all generated
swatches shows that the optimizer can consistently improve the
efficiency of knitting programs by clustering operations in carriage
passes. For the standardized benchmark patterns, the number of
carriage passes after optimization was often equal to the number
of carriage passes produced by the optimal ground-truth programs.
This does not necessarily imply that the optimizer will always
produce an optimal program. The tendency to find an optimal
program may depend on the types of structures being knit. For
example, we saw consistent results when optimizing lace and cable
patterns but variance when knitting with colorwork. When multiple
techniques are used in one program, the optimizer performs the
most poorly. However, most programs reduced the carriage pass
counts by half in these cases.

KODA: Knit-Program Optimization by Dependency Analysis

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Table 2: Summary of optimization statistics across 10 randomized swatch programs for each pattern type.

Unoptimized Optimized Percentage of Optimization
Pattern
Tvpe Carriage Passes Carriage Passes Original Program Time (ms)
yp Mean StD Mean StD Mean StD Mean StD
Lace 1748.0 0.0 353.8 0.6 20.24 0.04 11723 67.3
Cable 2568.0 0.0 534.0 0.0 20.79 0.00 2340.3 349.2
Colorwork 915.6 28.7 605.2 14.2 66.12 1.31 2258.7 165.7
Mixed 1994.4 41.7 1009.6 24.0 50.64 1.71 3087.8 317.9

9.6 Computation Time: Scalability and Usability

Beyond the manufacturing consequences of inefficient knitting,
the principal benefit of program optimization is manufacturing
time. To be usable and useful to programmers, this benefit must be
weighed against the computing time needed to optimize a program.
As shown in Figure 11c and Table 2, across all of our benchmark
tests, the optimizer never took longer than four seconds to optimize
a knitting program. The computational complexity of our depen-
dency analysis method is dependent on the number of operations in
a program (i.e., |P|) and the number of dependency edges between
them (i.e., [D])—O(|P|x |DJ). This is shown in the exponential trend
in optimization times shown in Figure 11c; as the number of stitches
and courses—and thus operations—increases, the optimization time
increases. The computational complexity increases faster for pat-
terns with more dependencies, such as the float dependencies in
the colorwork benchmarks. Regardless, these computation times
are still insignificant compared to the gained speed in knitting-a
mechanical and physical process, where carriage passes happen on
an order of seconds and a reduction of carriage passes by even half
can save minutes on small samples and hours on full garments.

10 DISCUSSION AND LIMITATIONS

Knit program optimization is only a small part of the knit program-
ming infrastructure needed to hasten the creation of novel knitting
CAD tools. This work exists alongside advances in domain-specific
languages [17, 31], other approaches to transfer planning [24-26],
and the creation of new knit structures that are not encapsulated
by knitgraphs. However, we aim for KODA to be a valuable tool in
this pipeline that enables knit programmers to focus on creating
novel structures rather than writing efficient programs. This may
enable new knit programmers who are not deeply familiar with the
idiosyncrasies of knitting machines to build efficient and reliable
programs. It may also enable researchers to explore knitting algo-
rithms where an efficient solution is unknown or too complex to
create in a readable knit program.

We identify three key limitations of the KODA system. First,
KODA does not necessarily produce an optimal program. Second,
our method does not encapsulate the placement of floats while
they are on the carriers (e.g., miss instructions), which may lead
to inefficient kickbacks. Third, KODA requires an original knit
program and does not handle machine scheduling where a knitgraph
is converted into a set of instructions.

10.1 KODA and Optimum Knitting

Finding an optimal order of knitting operations for each knit pro-
gram would be ideal. KODA will produce this optimal set of oper-
ations in many cases (e.g., lace and cable benchmarks). However,

we cannot guarantee that it will produce the optimal results. When
clustering operations into carriage passes (see algorithm 9), we
make a greedy decision to merge an operation into the first open
carriage pass that we discover. This will only produce one carriage
pass for operations involving a yarn. However, there may be multi-
ple open transfer passes that can accept the operation for transfers.
Unfortunately, which transfer pass would produce the most effi-
cient program cannot be determined at this stage, and the system
would need to build multiple carriage pass dependencies based on
all possible transfer passes that could receive the transfer. Across
all of these carriage pass dependency graphs, we could identify the
most efficient one because it has the fewest final carriage passes.
An efficient way of identifying these could involve methods from
general-purpose programming optimization such as e-Graphs (e.g.,
[52]). This remains an area for future work.

Transfer Dependency reduction is one way to reduce the number
of open transfer passes during carriage pass consolidation. When
there are many redundant transfers, this may increase the efficacy
of our greedy method. However, we find that the benefits of transfer
reduction are often limited since an entire carriage pass of transfers
must be reduced to have an effect on the final manufacturing time
of a knitting program. Unlike carriage pass consolidation, which
can readily undo common knitting approaches used by novice pro-
grammers (e.g., transferring decreases immediately before knitting),
transfer reduction is not directly tied to common knit programming
approaches. While not represented in our benchmarks, we expect
that transfer reduction is more beneficial when connecting multiple
transfer algorithms together. For example, Hofmann et al’s [17]
sheet-layering algorithm, embedded in the KnitScript language [15],
introduces transfer passes between knitting operations to maintain
a programmer-defined state of floats crossings. However, it is com-
mon to immediately undo these transfers when knitting patterns
that use transfer for purling, lace, and cables. Transfer reduction
can undo these redundant operations created by using two separate
coding techniques in one knitting program, allowing programmers
to use these tools more intuitively.

10.2 Modeling Loose Yarns

Our expanded knitgraph representation ignores the state of the
yarn until it has been fixed into the knit structure by forming a loop.
However, knit programmers often use miss operations to position
a yarn relative to the knit structure for more precise control over
floats being formed. Purposeful tangling and detangling of yarns
can be done using these operations that are lost during optimization.
Notably, this tangling is only done between active carriers, and the
final placement of floats in the knitgraph cannot be changed. Future

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

work should incorporate the yarn-carrier dependencies in addition
to the dependencies in the knitgraph.

10.3 Beyond Scheduled Knitting

Optimizing a given knit program (i.e., schedule) is feasible with
KODA because we use the original order of operations to form a
knitgraph and dependency graph. However, converting a given
knitgraph (e.g., one produced by a design tool) into an optimal
program without this existing schedule requires more advanced
methods for knit-scheduling. Prior work has explored this for some
limited types of knit structures (e.g., 3D surfaces [37], textures [16]),
but capturing the full space of knitted structures in a single knit-
ting algorithm may not be feasible. Indeed, we did not benchmark
KODA against the outputs of existing tools because, to make man-
ufacturing feasible, a great deal of effort has been spent to make
the output of these programs efficient. This highlights the value of
a system like KODA. Program optimization allows researchers to
search for flexible machine knitting algorithms that will serve as
the basis for knitting CAD tools. KODA frees programmers from
hardware-specific constraints and efficient knitting practices.

11 CONCLUSION

We present KODA (Knit program Optimization by Dependency
Analysis). KODA is a knit-program optimization method that can
increase the efficiency of a knit program written in the low-level
knitout language while maintaining the original knitted structure.
KODA relies on an expanded knitgraph representation that encapsu-
lates the complex relationships between loops, stitches, wales, and
floats in a knitted structure. We can model the resulting knitgraph
and the dependencies between operations that formed it through a
single pass of a knitting program. By analyzing the dependencies
between transfer operations in the graph, we can identify redun-
dant operations that can be removed. By merging operations into
dependent carriage passes, we can organize the knit program into
more efficient sets of operations, and from this, we can find an
optimized instruction order. We provide four sets of benchmark
swatch programs that generate complex randomized structures and
conduct an evaluation that shows that KODA can reduce ineffi-
cient programs into efficient solutions that are reliable for machine
knitting.

ACKNOWLEDGMENTS

This work was funded by NSF Grants 2327137 and 2341880. This
work could not have been completed without the endless patience
of students who used KnitScript and the earliest versions of KODA
in their coursework and research.

REFERENCES

[1] Roland Aigner, Mira Alida Haberfellner, and Michael Haller. 2022. SpaceR:
Knitting Ready-Made, Tactile, and Highly Responsive Spacer-Fabric Force Sensors
for Continuous Input. In Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology (Bend, OR, USA) (UIST °22). Association
for Computing Machinery, New York, NY, USA, Article 68, 15 pages. https:
//doi.org/10.1145/3526113.3545694

Lea Albaugh, Scott Hudson, and Lining Yao. 2019. Digital Fabrication of
Soft Actuated Objects by Machine Knitting. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1-13.
https://doi.org/10.1145/3290605.3300414

N,

B3

G

[10

[11

[12

[13

[14

[15

(17

[20

]

]

]

]

Hofmann

Lea Albaugh, Scott E Hudson, and Lining Yao. 2023. Physically Situated Tools
for Exploring a Grain Space in Computational Machine Knitting. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI "23). Association for Computing Machinery, New York, NY, USA,
Article 736, 14 pages. https://doi.org/10.1145/3544548.3581434

Lea Albaugh, James McCann, Scott E. Hudson, and Lining Yao. 2021. Engineering
Multifunctional Spacer Fabrics Through Machine Knitting. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI °21). Association for Computing Machinery, New York, NY, USA, Article
498, 12 pages. https://doi.org/10.1145/3411764.3445564

Todd M. Austin and Gurindar S. Sohi. 1992. Dynamic dependency analysis of
ordinary programs. SIGARCH Comput. Archit. News 20, 2 (apr 1992), 342-351.
https://doi.org/10.1145/146628.140395

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578—
594. https://www.usenix.org/conference/osdi18/presentation/chen

Tiago M. Fernandez-Caramés and Paula Fraga-Lamas. 2018. Towards The In-
ternet of Smart Clothing: A Review on IoT Wearables and Garments for Cre-
ating Intelligent Connected E-Textiles. Electronics 7, 12 (2018), 405. https:
//doi.org/10.3390/electronics7120405

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program
dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst.
9, 3 (jul 1987), 319-349. https://doi.org/10.1145/24039.24041

Ada Ferri, Maria Rosaria Plutino, and Giuseppe Rosace. 2019. Re-
cent trends in smart textiles: Wearable sensors and drug release
systems. AIP Conference Proceedings 2145, 1 (08 2019), 020014.
https://doi.org/10.1063/1.5123575 arXiv:https://pubs.aip.org/aip/acp/article-
pdf/doi/10.1063/1.5123575/14193705/020014_1_online.pdf

Silk City Fibers. 2024. Puma Stretch Cone Yarn, NM 2/28. https://www.
silkcityfibers.com/products/puma-stretch-cone-yarn [Online; accessed 1. Apr.
2024].

Jack Forman, Ozgun Kilic Afsar, Sarah Nicita, Rosalie Hsin-Ju Lin, Liu Yang,
Megan Hofmann, Akshay Kothakonda, Zachary Gordon, Cedric Honnet, Kristen
Dorsey, Neil Gershenfeld, and Hiroshi Ishii. 2023. FibeRobo: Fabricating 4D
Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal
Elastomers. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology (San Francisco, CA, USA) (UIST ’23). Association for
Computing Machinery, New York, NY, USA, Article 19, 17 pages. https://doi.
org/10.1145/3586183.3606732

Gozde Goncu-Berk, Burak Karacan, and Ilke Balkis. 2022. Embedding 3D Printed
Filaments with Knitted Textiles: Investigation of Bonding Parameters. Clothing
and Textiles Research Journal 40, 3 (2022), 171-186. https://doi.org/10.1177/
0887302X20982927 arXiv:https://doi.org/10.1177/0887302X20982927

Roman Haas, Rainer Niedermayr, Tobias Roehm, and Sven Apel. 2020. Is Static
Analysis Able to Identify Unnecessary Source Code? ACM Trans. Softw. Eng.
Methodol. 29, 1, Article 6 (jan 2020), 23 pages. https://doi.org/10.1145/3368267
Aric Hagberg, Pieter J. Swart, and Daniel A. Schult. 2008. Exploring network
structure, dynamics, and function using NetworkX. https://www.osti.gov/biblio/
960616

Megan Hofmann. 2023. knit-script. https://pypi.org/project/knit-script [Online;
accessed 1. Jul. 2023].

Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott E.
Hudson, James McCann, and Jennifer Mankoff. 2019. KnitPicking Textures:
Programming and Modifying Complex Knitted Textures for Machine and Hand
Knitting. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for
Computing Machinery, New York, NY, USA, 5-16. https://doi.org/10.1145/
3332165.3347886

Megan Hofmann, Lea Albaugh, Tongyan Wang, Jennifer Mankoff, and Scott E
Hudson. 2023. KnitScript: A Domain-Specific Scripting Language for Advanced
Machine Knitting. In Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology (San Francisco, CA, USA) (UIST °23). Association
for Computing Machinery, New York, NY, USA, Article 21, 21 pages. https:
//doi.org/10.1145/3586183.3606789

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff,
and Adriana Schulz. 2021. Computational Design of Knit Templates. ACM Trans.
Graph. 41, 2, Article 16 (dec 2021), 16 pages. https://doi.org/10.1145/3488006
Ken Kennedy and John R. Allen. 2001. Optimizing compilers for modern archi-
tectures: a dependence-based approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Jin Hee (Heather) Kim, Kunpeng Huang, Simone White, Melissa Conroy, and
Cindy Hsin-Liu Kao. 2021. KnitDermis: Fabricating Tactile On-Body Interfaces
Through Machine Knitting. In Designing Interactive Systems Conference 2021
(Virtual Event, USA) (DIS "21). Association for Computing Machinery, New York,
NY, USA, 1183-1200. https://doi.org/10.1145/3461778.3462007

https://doi.org/10.1145/3526113.3545694
https://doi.org/10.1145/3526113.3545694
https://doi.org/10.1145/3290605.3300414
https://doi.org/10.1145/3544548.3581434
https://doi.org/10.1145/3411764.3445564
https://doi.org/10.1145/146628.140395
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.3390/electronics7120405
https://doi.org/10.3390/electronics7120405
https://doi.org/10.1145/24039.24041
https://doi.org/10.1063/1.5123575
https://arxiv.org/abs/https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.5123575/14193705/020014_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.5123575/14193705/020014_1_online.pdf
https://www.silkcityfibers.com/products/puma-stretch-cone-yarn
https://www.silkcityfibers.com/products/puma-stretch-cone-yarn
https://doi.org/10.1145/3586183.3606732
https://doi.org/10.1145/3586183.3606732
https://doi.org/10.1177/0887302X20982927
https://doi.org/10.1177/0887302X20982927
https://arxiv.org/abs/https://doi.org/10.1177/0887302X20982927
https://doi.org/10.1145/3368267
https://www.osti.gov/biblio/960616
https://www.osti.gov/biblio/960616
https://pypi.org/project/knit-script
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1145/3586183.3606789
https://doi.org/10.1145/3586183.3606789
https://doi.org/10.1145/3488006
https://doi.org/10.1145/3461778.3462007

KODA: Knit-Program Optimization by Dependency Analysis

[21] Jin Hee (Heather) Kim, Shreyas Dilip Patil, Sarina Matson, Melissa Conroy, and
Cindy Hsin-Liu Kao. 2022. KnitSkin: Machine-Knitted Scaled Skin for Locomotion.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI "22). Association for Computing Machinery, New
York, NY, USA, Article 391, 15 pages. https://doi.org/10.1145/3491102.3502142
[22] Jin Hee (Heather) Kim, Joan Stilling, Michael O’Dell, and Cindy Hsin-Liu Kao.
2023. KnitDema: Robotic Textile as Personalized Edema Mobilization Device. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI '23). Association for Computing Machinery, New York,
NY, USA, Article 472, 19 pages. https://doi.org/10.1145/3544548.3581343
[23] Mackenzie Leake, Gilbert Bernstein, Abe Davis, and Maneesh Agrawala. 2021.
A mathematical foundation for foundation paper pieceable quilts. ACM Trans.
Graph. 40, 4, Article 65 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.
3459853
Jenny Lin and James McCann. 2021. An Artin Braid Group Representation of
Knitting Machine State with Applications to Validation and Optimization of Fab-
rication Plans. In 2021 IEEE International Conference on Robotics and Automation
(ICRA). Institute of Electrical and Electronics Engineers, New York, NY, USA,
1147-1153. https://doi.org/10.1109/ICRA48506.2021.9562113
Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert
Bernstein, and James Mccann. 2023. Semantics and Scheduling for Machine
Knitting Compilers. ACM Trans. Graph. 42, 4, Article 143 (jul 2023), 26 pages.
https://doi.org/10.1145/3592449
[26] Jenny Lin, Vidya Narayanan, and James McCann. 2018. Efficient Transfer
Planning for Flat Knitting. In Proceedings of the 2nd Annual ACM Sympo-
sium on Computational Fabrication (Cambridge, Massachusetts) (SCF ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 1, 7 pages.
https://doi.org/10.1145/3213512.3213515
Yiyue Luo, Kui Wu, Tomas Palacios, and Wojciech Matusik. 2021. KnitUI: Fab-
ricating Interactive and Sensing Textiles with Machine Knitting. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI "21). Association for Computing Machinery, New York, NY, USA,
Article 668, 12 pages. https://doi.org/10.1145/3411764.3445780
[28] Yiyue Luo, Kui Wu, Andrew Spielberg, Michael Foshey, Daniela Rus, Tomas
Palacios, and Wojciech Matusik. 2022. Digital Fabrication of Pneumatic Actuators
with Integrated Sensing by Machine Knitting. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI °22). Association for Computing Machinery, New York, NY, USA, Article
175, 13 pages. https://doi.org/10.1145/3491102.3517577
[29] Udi Manber. 1989. Introduction to Algorithms: A Creative Approach. Addison-
Wesley Longman Publishing Co., Inc., United States. https://doi.org/10.5555/
534662
James McCann. 2020. The "Knitout" (k) File Format. https://textiles-lab.github.
io/knitout/knitout.html [Online; accessed 24. Feb. 2023].
[31] James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik,
Jennifer Mankoff, and Jessica Hodgins. 2016. A Compiler for 3D Machine Knitting.
ACM Trans. Graph. 35, 4, Article 49 (jul 2016), 11 pages. https://doi.org/10.1145/
2897824.2925940
James McCann, Vidya Narayanan, and Gabrielle Ohlson. 2017. Autoknit: A
Public-Domain Reimplementation of "Automatic Machine Knitting of 3D Meshes".
https://github.com/textiles-lab/autoknit.
[33] M. McKnight, T. Agcayazi, H. Kausche, T. Ghosh, and A. Bozkurt. 2016. Sensing
textile seam-line for wearable multimodal physiological monitoring. In 2016 38th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE, New York, NY, USA, 311-314. https://doi.org/10.1109/
EMBC.2016.7590702
Rahul Mitra, Erick Jimenez Berumen, Megan Hofmann, and Edward Chien. 2024.
Singular Foliations for Knit Graph Design. In ACM SIGGRAPH 2024 Conference
Papers (Denver, CO, USA) (SIGGRAPH ’24). Association for Computing Machinery,
New York, NY, USA, Article 38, 11 pages. https://doi.org/10.1145/3641519.3657487
Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien. 2023. Helix-
Free Stripes for Knit Graph Design. In ACM SIGGRAPH 2023 Conference Pro-
ceedings (<conf-loc>, <city>Los Angeles</city>, <state>CA</state>, <coun-
try>USA</country>, </conf-loc>) (SSIGGRAPH ’23). Association for Computing
Machinery, New York, NY, USA, Article 75, 9 pages. https://doi.org/10.1145/
3588432.3591564
[36] S.Muchnick. 1997. Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, San Francisco, CA. https://books.google.com/books?id=Pq7pHwG1_
OkC
[37] Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mc-
cann. 2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3,
Article 35 (aug 2018), 15 pages. https://doi.org/10.1145/3186265
[38] Rita Paradiso, Laura Caldani, and Maria Pacelli. 2014. Chapter 3.1 - Knitted
Electronic Textiles. In Wearable Sensors, Edward Sazonov and Michael R. Neuman
(Eds.). Academic Press, Oxford, 153-174. https://doi.org/10.1016/B978-0-12-
418662-0.00003-9
Andreas Pointner, Thomas Preindl, Sara Mlakar, Roland Aigner, Mira Alida Haber-
fellner, and Michael Haller. 2022. Knitted Force Sensors. In Adjunct Proceedings

[24

[25

[27

[30

(32

[34

[35

[39

[40

(41

[42

[43

[44

[45

[46

[47

(48

[50

[51

[52

[54

]

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

of the 35th Annual ACM Symposium on User Interface Software and Technology
(Bend, OR, USA) (UIST "22 Adjunct). Association for Computing Machinery, New
York, NY, USA, Article 77, 3 pages. https://doi.org/10.1145/3526114.3558656
Andreas Pointner, Thomas Preindl, Sara Mlakar, Roland Aigner, and Michael
Haller. 2020. Knitted RESi: A Highly Flexible, Force-Sensitive Knitted Textile
Based on Resistive Yarns. In ACM SIGGRAPH 2020 Emerging Technologies (Virtual
Event, USA) (SIGGRAPH °20). Association for Computing Machinery, New York,
NY, USA, Article 21, 2 pages. https://doi.org/10.1145/3388534.3407292
Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Ama-
rasinghe, and Frédo Durand. 2023. Decoupling Algorithms from Schedules for
Easy Optimization of Image Processing Pipelines. In Seminal Graphics Papers:
Pushing the Boundaries, Volume 2 (1 ed.). Association for Computing Machinery,
New York, NY, USA, Article 39, 12 pages. https://doi.org/10.1145/3596711.3596751
Vanessa Sanchez, Kausalya Mahadevan, Gabrielle Ohlson, Moritz A. Graule,
Michelle C. Yuen, Clark B. Teeple, James C. Weaver, James McCann, Katia Bertoldi,
and Robert J. Wood. 2023. 3D Knitting for Pneumatic Soft Robotics. Advanced
Functional Materials n/a, n/a (2023), 2212541. https://doi.org/10.1002/adfm.
202212541 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202212541
Vanessa Sanchez, Conor J. Walsh, and Robert J. Wood. 2021. Textile Tech-
nology for Soft Robotic and Autonomous Garments. Advanced Functional
Materials 31, 6 (2021), 2008278. https://doi.org/10.1002/adfm.202008278
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202008278
Margaret Ellen Seehorn, Gene S-H Kim, Aashaka Desai, Megan Hofmann, and
Jennifer Mankoff. 2022. Enhancing Access to High Quality Tangible Information
through Machine Embroidered Tactile Graphics. In Proceedings of the 7th Annual
ACM Symposium on Computational Fabrication (Seattle, WA, USA) (SCF ’22).
Association for Computing Machinery, New York, NY, USA, Article 23, 3 pages.
https://doi.org/10.1145/3559400.3565586

Shima Seiki. 2023. SHIMA SEIKI | Computerized Flat Knitting Machines, Design
System/Software, CAD/CAM Systems. https://www.shimaseiki.com [Online;
accessed 24. Feb. 2023].

textiles lab. 2023. knitout-frontend-js. https://github.com/textiles-lab/knitout-
frontend-js [Online; accessed 5. Apr. 2023].

Tongyan Wang, Jennifer Mankoff, and Megan Hofmann. 2022. Fabricating
Accessible Designs with Knitting Machines. In Proceedings of the 7th Annual
ACM Symposium on Computational Fabrication (Seattle, WA, USA) (SCF '22). As-
sociation for Computing Machinery, New York, NY, USA, Article 25, 3 pages.
https://doi.org/10.1145/3559400.3565584

Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey L. Lipton, Zachary
Tatlock, and Adriana Schulz. 2019. Carpentry compiler. ACM Trans. Graph. 38, 6,
Article 195 (nov 2019), 14 pages. https://doi.org/10.1145/3355089.3356518

Kui Wu, Marco Tarini, Cem Yuksel, James McCann, and Xifeng Gao. 2022. Wear-
able 3D Machine Knitting: Automatic Generation of Shaped Knit Sheets to Cover
Real-World Objects. IEEE Transactions on Visualization and Computer Graphics
28,9 (2022), 3180-3192. https://doi.org/10.1109/TVCG.2021.3056101

Kai Yang, Beckie Isaia, Laura J.E. Brown, and Steve Beeby. 2019. E-Textiles for
Healthy Ageing. Sensors 19, 20 (2019), 4463. https://doi.org/10.3390/s19204463
Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
Meshes for Modeling Knitted Clothing with Yarn-Level Detail. ACM Trans. Graph.
31, 4, Article 37 (jul 2012), 12 pages. https://doi.org/10.1145/2185520.2185533
Haisen Zhao, Max Willsey, Amy Zhu, Chandrakana Nandi, Zachary Tatlock,
Justin Solomon, and Adriana Schulz. 2022. Co-Optimization of Design and
Fabrication Plans for Carpentry. ACM Trans. Graph. 41, 3, Article 32 (mar 2022),
13 pages. https://doi.org/10.1145/3508499

Amy Zhu, Adriana Schulz, and Zachary Tatlock. 2023. Exploring Self-Embedded
Knitting Programs with Twine. In Proceedings of the 11th ACM SIGPLAN Inter-
national Workshop on Functional Art, Music, Modelling, and Design (Seattle, WA,
USA) (FARM 2023). Association for Computing Machinery, New York, NY, USA,
25-31. https://doi.org/10.1145/3609023.3609805

Jingwen Zhu and Hsin-Liu (Cindy) Kao. 2022. Scaling E-Textile Production: Un-
derstanding the Challenges of Soft Wearable Production for Individual Creators.
In Proceedings of the 2022 ACM International Symposium on Wearable Computers
(Cambridge, United Kingdom) (ISWC °22). Association for Computing Machinery,
New York, NY, USA, 94-99. https://doi.org/10.1145/3544794.3558475

https://doi.org/10.1145/3491102.3502142
https://doi.org/10.1145/3544548.3581343
https://doi.org/10.1145/3450626.3459853
https://doi.org/10.1145/3450626.3459853
https://doi.org/10.1109/ICRA48506.2021.9562113
https://doi.org/10.1145/3592449
https://doi.org/10.1145/3213512.3213515
https://doi.org/10.1145/3411764.3445780
https://doi.org/10.1145/3491102.3517577
https://doi.org/10.5555/534662
https://doi.org/10.5555/534662
https://textiles-lab.github.io/knitout/knitout.html
https://textiles-lab.github.io/knitout/knitout.html
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2897824.2925940
https://github.com/textiles-lab/autoknit
https://doi.org/10.1109/EMBC.2016.7590702
https://doi.org/10.1109/EMBC.2016.7590702
https://doi.org/10.1145/3641519.3657487
https://doi.org/10.1145/3588432.3591564
https://doi.org/10.1145/3588432.3591564
https://books.google.com/books?id=Pq7pHwG1_OkC
https://books.google.com/books?id=Pq7pHwG1_OkC
https://doi.org/10.1145/3186265
https://doi.org/10.1016/B978-0-12-418662-0.00003-9
https://doi.org/10.1016/B978-0-12-418662-0.00003-9
https://doi.org/10.1145/3526114.3558656
https://doi.org/10.1145/3388534.3407292
https://doi.org/10.1145/3596711.3596751
https://doi.org/10.1002/adfm.202212541
https://doi.org/10.1002/adfm.202212541
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202212541
https://doi.org/10.1002/adfm.202008278
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202008278
https://doi.org/10.1145/3559400.3565586
https://www.shimaseiki.com
https://github.com/textiles-lab/knitout-frontend-js
https://github.com/textiles-lab/knitout-frontend-js
https://doi.org/10.1145/3559400.3565584
https://doi.org/10.1145/3355089.3356518
https://doi.org/10.1109/TVCG.2021.3056101
https://doi.org/10.3390/s19204463
https://doi.org/10.1145/2185520.2185533
https://doi.org/10.1145/3508499
https://doi.org/10.1145/3609023.3609805
https://doi.org/10.1145/3544794.3558475

	Abstract
	1 Introduction
	2 Related Work
	2.1 Knit-Programming Infrastructure
	2.2 Program Dependency Analysis

	3 System Overview
	4 Expanding Knitgraphs
	4.1 Loop and Wale Braids
	4.2 Float
	4.3 Forming Knitgraphs

	5 Knitting Dependency Graph
	5.1 Yarn-Order Dependency
	5.2 Loop-Position Dependency
	5.3 Stitch Dependencies
	5.4 Wale-Crossing Dependencies
	5.5 Float-Position Dependencies

	6 Knitting Dependency Analysis
	6.1 Transfer Dependency Reduction
	6.2 Carriage-Pass Dependency Analysis

	7 Demonstration
	7.1 Lace and Decreases
	7.2 Cables and Wale-Crossings
	7.3 Colorwork and Float Arrangement

	8 Optimization Benchmarks
	9 Evaluation
	9.1 Standardized Swatch Generation by Size
	9.2 Randomized Swatch Generation
	9.3 Semantic Correctness
	9.4 Fabrication Correctness
	9.5 Efficiency After Optimization
	9.6 Computation Time: Scalability and Usability

	10 Discussion and Limitations
	10.1 KODA and Optimum Knitting
	10.2 Modeling Loose Yarns
	10.3 Beyond Scheduled Knitting

	11 Conclusion
	Acknowledgments
	References

