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ABSTRACT 
Digital knitting machines have the capability to reliably manufac-
ture seamless, textured, and multi-material garments, but these 
capabilities are obscured by limiting CAD tools. Recent innova-
tions in computational knitting build on emerging programming 
infrastructure that gives full access to the machine’s capabilities 
but requires an extensive understanding of machine operations and 
execution. In this paper, we contribute a critical missing piece of 
the knitting-machine programming pipeline–a program optimizer. 
Program optimization allows programmers to focus on developing 
novel algorithms that produce desired fabrics while deferring con-
cerns of efcient machine operations to the optimizer. We present 
KODA, the Knit-program Optimization by Dependency Analysis 
method. KODA re-orders and reduces machine instructions to re-
duce knitting time, increase knitting reliability, and manage boiler-
plate operations that adjust the machine state. The result is a system 
that enables programmers to write readable and intuitive knitting 
algorithms while producing efcient and verifed programs. 
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1 INTRODUCTION 
Despite the advanced manufacturing technologies available to tex-
tile designers, there is still a substantial gap between what fabrics 
machines can make and what designers can readily create using 
computer-aided textile design tools [54]. In the space of machine 
knitting, an emerging area of research is developing systems that 
give designers full access to the capabilities of these machines rather 
than limiting them to template garments (e.g., hats, socks, sweaters). 
With these tools, designers can knit 3D models [18, 35, 37], create ac-
tuating devices [2, 11, 20, 43], and design soft sensors [1, 27, 39, 40]. 

However, the infrastructure for building these knitting CAD tools 
is still in its infancy. While knit designers are primarily concerned 
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with exploring the complex space of knitted structures, knit pro-
grammers must develop algorithms that translate these structures 
into machine-level instructions. Machine languages such as Knitout 
[30, 31] give programmers full access to the capabilities of the ma-
chine and a higher-level programming interface in general-purpose 
languages such as Python and JavaScript [46] to build their knitting 
algorithms. More recently, the KnitScript programming language 
[15, 17] provides a more direct conduit for knit programmers to 
generate machine code in a domain-specifc language that conveys 
the state of the machine and handles knitting-specifc errors. 

But, this is where the infrastructure ends—hardware-specifc 
languages that assume the programmer can manage both the com-
plexity of the space of knitted objects and the low-level hardware 
constraints and efciency considerations that make fabrication 
feasible. In practice, many advances in machine knitting have ex-
plored diferent approaches to efcient machine knitting [24–26], 
while explorations of the novel and exciting materials these ef-
fcient knitting algorithms may enable are frequently limited to 
simple swatches and objects that cannot be combined to form more 
advance garments and objects. 

In this paper, we address a critical gap in knit-programming 
infrastructure: efciency. While the full space of knitted materials 
requires various solutions and domain-specifc tools, our aim is 
to develop a unifying optimization method that reduces a set of 
knitting machine instructions into an efcient program that may 
increase the reliability of the knitting process. By optimizing low-
level code, our approach is compatible with a wide range of systems. 
This enables programmers to disregard efciency and focus on 
developing tools that unlock the machine knitting’s potential. 

We present KODA (Knit-program Optimization by Dependency 
Analysis), a system for optimizing knitting machine code that is 
compatible with the Knitout machine language [30, 31] and higher 
level programming languages that generate knitout (e.g., [15, 46]). 
KODA includes three components. First, we provide an expanded 
knitgraph representation that covers the complexity of knit objects, 
including loop and stitch placement, foat arrangements between 
multiple yarns, and braided wales. Second, we develop a depen-
dency graph representation of knitted programs that models the 
relationships between knitting operations and the knitted struc-
tures they produce. This dependency graph is constructed through 
a single pass through a knitting program. Third, we provide a knit-
program optimization method that uses dependency analysis to 
identify an efcient program that will produce the same knitted 
structure. We evaluate this system through a series of benchmark 
knitting programs and demonstrate that the system produces se-
mantically correct programs that are often substantially more ef-
cient, increase knitting reliability, and fabricate correctly. 
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2 RELATED WORK 
There is growing interest in novel machine knitting techniques 
(e.g., [2–4, 12, 20, 27, 28]) due to emerging opportunities to create 
novel and impactful textile technologies such as medical devices 
[9, 22, 33, 50], assistive technologies [44, 47], soft-robotics [21, 42, 
43], and wearables [7, 38, 49]. This growing interest has led to 
the development of new programming infrastructure for automatic 
knitting machines, generalized representations of knitted structures 
[16, 37, 51], and knit-scheduling methods [24–26]. 

2.1 Knit-Programming Infrastructure 
Programming, while less accessible than design tools, is a powerful 
tool for digital fabrication. Programming language concepts can 
support diverse areas such as carpentry [48, 52], quilt patterning 
[23], and knitting self-embedded structures [53]. Unlike other do-
mains, programming is often the only way to take full advantage 
of machine knitting. Many recent advances in machine knitting 
rely on McCann et al.’s [31] knitting assembly language, Knitout 
[30]. Knitout is rarely written directly; usually, it is generated by 
programs written with APIs for general-purpose languages (e.g., 
[46]) or the domain-specifc scripting language, KnitScript [15, 17]. 
Using these programming tools, we can reason about the knitting 
process algorithmically and develop new knitted structures. 

2.2 Program Dependency Analysis 
Unfortunately, the most understandable and reusable code is rarely 
the most efcient. In practice, efcient code may introduce errors in 
edge cases and execute in a way that wastes computing resources. 
Fortunately, program verifcation and optimization are mature ar-
eas of software engineering. Despite the plethora of established 
programming optimization methods, new domain-specifc opti-
mization problems are a frequent source of innovation in domains 
that rely on domain-specifc languages (e.g., [6, 41]). While knit 
programming implies novel physical constraints, it may beneft 
from tried and true optimization methods. 

One such method is dependence analysis [8, 19, 36], which mod-
els a program as a set of interdependent nodes in a directed graph. 
For manufacturing, this graph is an acyclic graph. All programs 
executed by following paths through this graph will produce a 
program with the same semantics as an original. For example, de-
pendence analysis has been used to optimize programs by removing 
dead-code [13]–statements that do not afect the program execu-
tion. Not only would removing dead code from a knitting program 
improve execution time, but it may also reduce wear and tear on 
the knit object by limiting the wear and tear on the yarn incurred 
with every operation. Similarly, dependency analysis has been used 
to schedule parallel programming [5]. In the context of machine 
knitting, this approach may identify clusters of operations that can 
be scheduled in parallel. 

3 SYSTEM OVERVIEW 
To bridge the gap between the intuitive knitting algorithms and 
the efcient programs that are needed to reliably knit, we present 
the KODA method for Knit-program Optimization by Dependency 
Analysis. KODA is built on three components: an expanded knit-
graph representation of knitted structures, a dependency graph 

structure that models semantically identical programs that produce 
those structures, and a dependency analysis method that clusters 
operations into an efcient ordering of carriage passes. 

KODA improves the efciency of knitout programs [30] that are 
compiled into instructions for a variety of knitting machines. KODA 
does not optimize higher-level knitting programs (e.g., KnitScript 
[15, 17]). However, by optimizing the intermediary knitout code 
produced by these tools, we have created an optimizer that is com-
patible with a wide range of knit-programming pipelines. 

4 EXPANDING KNITGRAPHS 
To optimize a knitting program that produces a specifc knitted 
structure, we must have a complete representation of that structure. 
We expand on the loop-based knitgraph structure defned by Hof-
mann et al. [16]. As in prior work, we defne a knitgraph � (L, S)
as a set of loops, L, connected by the set of stitch-edges S where 
the stitch-edge ��,� indicates that the loop � is pulled through the 
loop � to form a stitch. We expand on this knitgraph structure to 
represent two missing characteristics of knitted objects. First, we 
adapt Lin and McCann’s [24] Artin-Braid representation of loop-
crossings to represent how loops are tangled and crossed to form 
cables and decreases. Second, we defne a new yarn representation 
that models both loops and their relative position to foats in the 
yarns. For convenient reference, Table 1 provides a summary of 
relevant knitting terms and the notation we use in this paper. 

4.1 Loop and Wale Braids 
Knitted structures are not necessarily grid-like; crossing loops form 
unique knitted structures such as decreases and cables. In knitting, 
a wale refers to a series of loops connected by stitches, such as 
the stitches that form columns in a rib pattern. Lin and McCann 
demonstrated [24] that we can represent crossing wales as a braid 
where each wale is a strand of the braid. Each strand in the braid 
can cross over or under its neighboring strands. The opportunity 
to cross wale strands occurs at each loop along the wale. 

We represent all of the crossings of wales in the knitgraph using 
a braid-graph �� (L, B) which includes a node for every loop in the 
knitgraph and a set of directed edges B. A crossing edge ��,� ∈ B 
implies that the loop � is passed to the right and crosses the loop � . 
The loop � can cross either over � (i.e., �+ �,� ). We �,� ) or under � (i.e., �− 

use the convention that edges are directed by rightward crossings. 
Thus an edge from �+ �,� also implies that � is crossed leftward under 
�, and �− 

�,� implies that � is crossed leftward over �. 

4.2 Float 
Prior representations of knitgraphs assume only one yarn in the 
structure. However, multiple yarns are required for multi-material 
structures. In these cases, a knitted structure is defned both by the 
order of loops formed on the yarn and the position of loops relative 
to the foats between them. Modeling foats assists in managing 
slack [31], which constrains the placement of loops on the needle 
bed. Once a foat is formed, the length of yarn between them is fnite 
and should those loops be transferred further away from each other 
the yarn may tear or bend needles. Managing slack constraints is 
critical to many transfer planning algorithms (e.g., [26, 32, 34]). 
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Table 1: The set of notation we use to describe knitted structures and the knitgraphs that represent them. 

Term Defnition Example Notation Section 

Loop A loop of yarn (i.e., fber) that make up a knitted structure. 

Stitch 
Edge 

Course 

Wale 

Stitches are formed by pulling a loop through other loops. 
A stitch-edge is a directed edge in a knitgraph that represents that 
one loop � is pulled through another loop � . 
The set of stitch-edges in a knitGraph is denoted S. 
A horizontal row of stitches in a knit fabric, 
usually, but not always connected to the same yarn. 
A wale is an ordered set of stitches where the child loop 
of each stitch is pulled through the next in the wale. 

Wale 
crossing 

Loops can cross over each other causing wales to cross. 
This is modeled as crossings in a braid structure. 

Yarn A yarn is a fber that makes up the loops in a knitted structure. 
In a knitgraph, a yarn is a set of loops in their knitting order. 

Float 
A foat is the length of yarn between two connected loops. 
Directed edges represent foats between loops on the same yarn. 
Floats, like wales, can cross over each other loops. 

Needle The mechanism that forms, holds, knits and transfers loops. 
Needles are arranged on a front and back needle bed. 

Carriage Pass A set of operations executed on the knitting machine by 
passing a carriage that actuates needles across the needle beds. 

� ∈ L: The loop � is in the set of loops L. 4
� ∈ �: The loop � is formed by the yarn �. 

��,� ∈ S: The loop � is pulled through the loop �. 4 

NA NA 

NA 4.1 

4.1 

4.2 

��,� ∈ B: the loop � crosses the loop � . 
�+ �,� : The loop � crosses over the loop � . 
�− 
�,� : The loop � crosses under the loop � . 

� ∈ Y: The yarn � is in the set of yarns used in a knitgraph. 

� ∈ F� : The foat � is in the set of foats on the yarn �. 
��,� : There is a foat from the loop � to the loop � . 4.2 

� − 
�,� : The set of loops that the foat from � to � crosses under. 
��,� 
+ : The set of loops that the foat from � to � crosses over. 

�� : A needle a the �th index on a needle bed. 
N� ���� : The ordered set of needles on the front bed. 
N���� : The ordered set of needles on the back bed. 4.3 
L� : The set of loops held on the needle �. 
L[�� ,� � ] : The set of loops held on needles from indices � to � . 

NA 6.2 

To capture these relationships, each knitgraph has a set of yarns, 
Y, representing the yarn-wise ordering of loops. Unlike prior work, 
we expand on the defnition of a yarn to model both loops and 
foats–the yarn lengths between loops. A yarn, �, is a graph with 
loops as nodes (i.e., � ∈ �) and directed foat edges connecting each 
loop, � ∈ F� . The direction of a foat edge determines the time 
ordering of loops. That is, if a loop � is formed with the yarn � and 
then loop � is formed with �, then there will be a foat ��,� . If there 
is a path from a loop � to � along a yarn, then the loop � must be 
knit after the loop �. We refer to the frst loop formed on � as its 
head and the last loop formed on the yarn as its tail. 

The length of a foat is set by the distance between the needles 
that form the loops. Float length is used to defne slack constraints. 
Transferring loops to new needles that are further apart than the 
length of their connecting foat will stretch the foat beyond and 
risks tearing the yarn. Some stretch in a foat is possible, depending 
on machine settings and the fber. Thus, the original foat length and 
a stretch tolerance defne the upper limit on the distance between 
the needles holding the loops connected by a foat. 

Just as the loops in wales can cross over each other, loops can 
cross over or under foats. Careless placement of foats produces 
unseemly colorwork with strands crossing over the desired image. 
To represent these relationships, we give each foat-edge, ��,� , two 
properties. First, we denote the set of loops the foat passes over as 
��,� 
+ . Conversely, ��,� − denotes the set of loops the foat passes under. 

4.3 Forming Knitgraphs 
Knitted structures are formed by executing a small set of operations 
in a knitting program. Lin et al. [25] provide a formal defnition of 
the operations of a knitting machine and each of their efects on the 

state of the machine. We generate our knitgraph structure using 
a virtual knitting machine that models these processes. We use a 
virtual machine model from the KnitScript interpreter [15, 17]. 

A knitting machine consists of front and back beds of aligned 
needles. The set of all needles is denoted N, and we refer to the 
front and back beds as N� ���� and N���� , respectively. Needles in 
each bed have increasing indices from zero on the left to the right. 
Each needle can form, hold, and transfer the loops in the knitted 
structure. We denote the set of loops currently held on a needle � 
as L� and the set loops held on all needles over a range between 
two needles �0 and �1 as � ∈ L[�0,�1 ] . The machine has a set of 
yarn carriers that hold and position the yarns while knitting. 

Knitting operations orchestrate the actions of needles and yarns 
and can update a knitted structure in three ways: making a loop 
(algorithm 1), stitching a loop through loops on a needle (algorithm 2), 
and moving loops from one needle to another (algorithm 3). 

4.3.1 Forming New Loops. Algorithm 1 describes the updates to 
a knitgraph for making a new loop on a specifed needle with a 
specifed yarn. First, the loop is formed and added to the loop set 
of the knitgraph and the yarn. Next, if the yarn has prior loops, we 
form a new foat edge between the last loop made on the yarn and 
the new loop. This foat passes over loops formed on the back bed, 
and under loops formed on the front bed. 

4.3.2 Stitching Loops. Algorithm 2 describes the updates to a knit-
graph caused by pulling a loop through the loops on a given needle 
(i.e., stitching), which forms stitch edges to the given loop. 

4.3.3 Moving Loops. Algorithm 3 describes the updates to a knit-
graph caused by moving a loop on one needle to another needle in 
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1 Input �: The needle to form the loop on. 
2 Input �: The yarn to form the loop at the end of. 
3 Output � : The loop formed. 
4 � ← new tail loop on �; 
5 add � to L� ; 
6 if � has a loop �� prior to � then 
7 add ��� ,� to F� ; 
8 if �� is currently on a needle �� then 
9 � + ← {�̂  ∈ L�� ,� } ∪ N� ���� ;�� ,� 

10 � − ← {�̂  ∈ L�� ,� } ∪ N���� ;�� ,� 
11 end 
12 end 
13 return � ; 

Algorithm 1: Make_Loop 

1 Input � : The loop to pull through other loops in the stitch. 
2 Input L� : The loops on a needle to be stitched. 
3 Output S� : The set of stitch-edges produced. 
4 S� ← {��� ,� ∀�� ∈ L� }; 
5 add S� to S� ; 
6 return S� ; Algorithm 2: Stitch_Loops 

an xfer or split operation. Moving loops afect both the placement 
of foats and the crossing of wales in the knitgraph. 

1 Input � : The loop on needle � and formed on the yarn �. 
2 Input �̂: The needle to place the loop on. 
3 Output B� : The resulting set of crossing edges. 
4 if ∃�� ∈ L� and on �� |��� ,� ∈ F� then 
5 � + ← {�̂  ∈ L�� ,� } ∪ N� ���� ;�� ,� 
6 � − ← {�̂  ∈ L�� ,� } ∪ N���� ;�� ,� 
7 end 
8 if ∃�� ∈ L� and on �� |��,�� ∈ F� then 
9 � + ← {�̂  ∈ L�� ,� } ∪ N� ���� ;�,�� 

10 � − ← {�̂  ∈ L�� ,� } ∪ N���� ;�,�� 

11 end 
12 B� ← {}; 
13 if ∃�� ∈ L� |∃��� ,� ∈ S� then 
14 for �̂  ∈ L[�,�̂ ] do 
15 if ∃�̂� ∈ L� |∃��̂� , 

∈ S� then�̂  
16 add � × �̂  to B� ; /*see Equation 1*/ 

17 end 
18 end 
19 add B� to B� ; 
20 end 
21 return B� ; Algorithm 3: Move_Loop 

First, we consider the placement of foats. Moving a loop repo-

Hofmann 

position may over-stretch the yarn, violating slack constraints. If 
the distance between the new start and end needles is greater than 
the length of a stretched foat, an error is reported to the user. If all 
of the loops involved in a foat are held on needles, this will shift 
the foat past a new set of needles. The foat will now be positioned 
relative to the loops on those needles. Thus, we update the over-
and under-sets of each foat using the same process that defned 
them when making a loop (see algorithm 1 lines 9-10). 

Next, we consider the crossing of wales. Moving a loop, between 
two needles may cause it to cross loops held on needles between 
the transferring needles. Two loops can only cross if they are not 
the beginning of a wale. The prior loops in the wale will anchor 
the location of the wale and cause the crossing loop to form a braid. 
That is, each crossing loop must be stitched through at least one 
other loop (i.e., ∃�� |��� ,� ∈ S� ). Similar to Lin and McCann [24], we 
use the convention of recording rightward crossings. Thus, moving 
a loop rightward will create crossing edges over back bed loops and 
under front bed loops. If the loop is moving leftward, the orientation 
of the edge is reversed. To simplify notation, we defne the cross 
operator between two loops as a shorthand for determining the 
orientation of a crossing edge between two loops (Equation 1). 

�+ �− 
 
�,� if �� < �� and �� ∈ N����  
�,� if �� < �� and �� ∈ N� ���� 

� × � = (1)
�+ �,� if �� > �� and �� ∈ N���� � − �,� if �� > �� and �� ∈ N� ���� 

4.3.4 Interpreting Operations on Knitgraphs. From these three up-
date methods, we can interpret knitting operations (knit, tuck, xfer, 
split) as updates to a knitgraph and update the state of the virtual 
knitting machine. We can render a knitgraph generated by a spe-
cifc knitting program by interpreting machine operations using 
these update processes. 

A tuck instruction forms a new loop on a specifed needle for each 
yarn in the specifed carrier set. Knit instructions similarly form a 
new loop and then stitch it through the loops on the specifed needle. 
The original loops on the needle are dropped from the needle, 
leaving the new loops behind. Xfer operations move loops on one 
specifed needle to a diferent specifed needle on the opposite bed. 
Finally, the split operation makes a new loop (like tucking), stitches 
that new loop through its predecessors on the needle (like knitting), 
but unlike knitting, moves those predecessors to another target 
needle on the opposite bed (like transferring). 

1 Input �: The needle to tuck on. 
2 Input ��������: The set of carriers to tuck with. 
3 Output L���� : The loops formed. 
4 L���� ←; 
5 for � ∈ carriers do 
6 � ← Make_New_Loop(�, �); 
7 add � to L� ; 
8 add � to L���� ; 
9 end 

10 return L���� ; Algorithm 4: Tuck 

sitions both the foat it ends and the foat it starts. This new foat 
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1 Input �: The needle to knit on. 
2 Input ��������: The set of carriers to knit with. 
3 Output L���� , S���� :The loops and stitch-edges formed. 
4 L���� ← ∅; 
5 S���� ← ∅; 
6 L����� ← L� ; 
7 L� ← ∅; 
8 for � ∈ carriers do 
9 � ← Make_Loop(�, �); 

10 add Stitch_Loops(� , L����� ) to S���� ; 
11 add � to L� ; 
12 add � to L���� ; 
13 end 
14 return L���� , S���� ; 

Algorithm 5: Knit 

1 Input �: The needle to transfer loops from. 
2 Input �̂: The needle to transfer loops to. 
3 Output B� � �� : The wale crossings formed. 
4 B� � �� ← ∅; 
5 for �� ∈ L� do 
6 add Move_Loop(��, �̂) to B���� � ���� ; 
7 end 
8 L� ← ∅; 
9 add L����� to L�̂ ; 

10 return B� � �� ; Algorithm 6: Xfer 

1 Input �: The needle to split on. 
2 Input �̂: The needle to transfer old loops to. 
3 Input ��������: The set of carriers to split with. 
4 Output L����� , S����� , B����� : The loops, stitch-edges, and 

wale crossings formed. 
5 L����� ← ∅; 
6 S����� ← ∅; 
7 L����� ← L� ; 
8 B����� ← Xfer(�, �̂); 
9 for � ∈ carriers do 
10 � ← Make_Loop(�, �); 
11 add Stitch_Loops(� , L����� ) to S����� ; 
12 add � to L� ; 
13 add � to L����� ; 
14 end 
15 return L����� , S����� , B����� ; 

Algorithm 7: Split 

5 KNITTING DEPENDENCY GRAPH 
There may be many programs that produce any given knitted struc-
ture. We use dependency graphs to represent the space of programs 
that can produce the knitted structure created by a source program. 
Conceptually, a dependency graph is a directed acyclic graph where 
each node is a machine operation. An edge from one operation, �, 
to another operation, � , implies that � cannot be executed until � 

has been executed. Thus, any topological ordering of the depen-
dency graph will produce a knitted structure with the included 
dependencies. We defne a set of dependencies between knitting 
operations based on our knitgraph representation to ensure these 
dependency graphs produce a consistent knitted structure. 

Given a program, P, with an ordered set of machine operations 
that form the knitgraph � , we create a dependency graph � (P, D)
where each edge ��,� ∈ D indicates that the operation � ∈ P must 
occur after the operation � ∈ P. Any topological ordering of the 
dependency graph, P̂, will produce the same knitgraph, � . 

We form a dependency graph as we execute the original program. 
Note that each knitting operation (i.e., algorithms 5-7) returns the 
components of the knitgraph that it generated or updated. As we 
execute each operation in the program, we add the operation as a 
node to the dependency graph and associate it with the resulting 
structures (e.g., loops, stitches, and wale-crossings) that the opera-
tion created in the knitgraph. Each operation can have the following 
properties: the set of loops it formed (and the foats we can infer 
from this), the set of loops it positioned either by forming or moving 
(and the foats we can infer from this), the stitch-edges it created, 
and the wale-crossings it created. Each loop in the knitgraph is 
associated with the operation that formed it, the last operation to 
position it, and the last operation that passed a foat across it. So, for 
each new operation, we can fnd a dependency to other operations 
that involve the same loops or edges connected to those loops. 

1 tuck - f2 y; forms loop 1 
2 tuck - f1 y; forms loop 2 
3 knit + f1 y; forms loop 3 
4 rack 1 
5 xfer f1 b2 ; moves loop 3 to right 
6 rack 0 
7 knit + f2 y; forms loop 4 
8 rack -1 
9 xfer f2 b1 ; moves loop 4 to left 
10 rack 0 
11 xfer b1 f1 ; moves loop 4 to front 
12 xfer b2 f2 ; moves loop 3 to front 
13 knit - f2 y; forms loop 5 
14 knit - f1 y; forms loop 6 

l1l2

l3l4

l5l6

(a) Twist Program (b) Knitgraph 
Figure 1: A knitting program that twists two stitches and the 
resulting knitgraph. Loop nodes are notated with their time-
order index. Blue edges represent yarn-edges between loops, 
forming foats. Purple edges show stitch edges, connecting 
loops together. Green edges show wale crossing edges. 

Consider an example illustrated in Figure 1. Suppose we execute 
a tuck operation, �1, that returns the loop �1. We associate this loop 
with �1 and add it as a node in the dependency graph. Then we 
execute another tuck, �2, with the same yarn that returns �2 and 
forms the foat ��1,�2 . We associate this new loop with the second 
tuck operation and add it to the dependency graph. Observe that 
��1,�2 involves the loop �1 with �1 marked as its creating operation. 
From this, we can infer a dependency from �1 to �2 and add this 
edge to the dependency graph. Next, suppose we execute a knit 
operation �3 that forms a new loop �3 and stitches it through �2 and 
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returns this as the stitch-edge ��2,�3 . We associate the stitch edge and 
new loop with the operation �3 and form a dependency between �2 
and �3 that ensures that �2 forms �2 before �2 is knit by �3. Also note 
that because there is a path from �1 to �3, any topological ordering 
will ensure that both tucked loops are formed before knitting. 

To ensure we capture all of the features in the knitgraph, we 
detect fve dependency types after executing each operation in 
the program and updating the knitgraph:Yarn-order, Loop-Position, 
Float-Position, Stitch, andWale-Crossing dependencies. 

5.1 Yarn-Order Dependency 
Yarn-order dependencies ensure the loops of each yarn are formed 
in the correct order. For example, the dependency created between 
two tuck operations that use the same yarn (e.g., �1 and �2 in Fig-
ure 2a). When executing a program, we check for yarn-order de-
pendencies whenever an operation produces a new loop. We then 
look to see if there is any foat in the knitgraph that leads to the 
returned loop. If there is, the proceeding loop will be associated 
with whatever operation created the loop. We can then create a 
yarn-order dependency between these two operations. 

5.2 Loop-Position Dependency 
Similar to yarn-order dependencies, we must keep track of the 
relationship between operations on loops and the position of those 
loops on needles. For example, Figure 2b shows the operation �3 
forms the loop �3, and the transfer operation �5 moves this loop to 
a new needle. We identify a Loop-Position dependency from �3 to 
�5 because they are both operating on the loop �3. The subsequent 
transfer of the loop �3 by transfer �12 will only create a loop-position 
dependency between �5 and �12 because after executing �5 the loop 
�3 resets its last moving operation from �3 to �5. 

5.3 Stitch Dependencies 
Stitch dependencies ensure stitches are formed in the wale-wise 
order of the original program. The formation of a dependency 
between �2 and �3 in Figure 3a shows how stitch dependencies are 
formed. Note that these dependencies can be created even if there 
are many intermediate steps between forming a loop and stitching 
through it. For example, �7 produces the loop �4 and stitches it 

t1t2

k3 k7

k14 k13

x5
x9

x11
x12

t1t2

k3 k7

x5
x9

x11
x12

k14 k13

(a) Yarn-Order (b) Loop-Position 
Figure 2: The yarn-order and loop-position dependency 
graphs for the twist program in Figure 1a. Operation nodes 
are labeled with their abbreviated operation type and line 
number (e.g., �1 for the tuck on line 1). 
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(a) Stitch (b) Wale-Crossing 
Figure 3: The stitch and wale-crossing dependency graphs 
for the twist program in Figure 1a. 
through the �1 formed by �1. Despite the many operations executed 
between them, we identify the stitch dependencies from �1 to �7. 

5.4 Wale-Crossing Dependencies 
When an operation moves a loop, it may form a wale-crossing edge. 
For example, the transfer operation �9 moves the loop �3 to the left 
and creates a wale-crossing where �4 crosses rightward under �3 
(i.e., �− ). This creates a wale-crossing dependency between the 

�4,�3
operation that last placed �4, �5, and the operation �9. An example 
wale-crossing dependency is shown in Figure 3b. 

5.5 Float-Position Dependencies 
1 knit - f6 b 
2 knit - f5 b 
3 knit - b4 b 
4 knit - b3 b 
5 knit - f2 b 
6 knit - f1 b 
7 xfer b3 f3 
8 xfer b4 f4 
9 knit - f6 r 
10 knit - f5 r 
11 knit - f2 r 
12 knit - f1 r 
13 xfer f3 b3 
14 xfer f4 b4 
15 knit + f1 b 
16 knit + f2 b 
17 knit + b3 b 
18 knit + b4 b 
19 knit + f5 b 
20 knit + f6 b 

(a) Program 
Figure 4: Colorwork rib where the red yarn foats over the 
blue purled loops. Float-position dependencies are orange. 

Both when a loop is formed and when it is moved, the foats 
associated with that loop may pass over or under loops on other 
needles. With each of these operations, we associate the operation 
with the loops that the foat passes over. When those foats are 
operated on, either by stitching or moving, we create a dependency 
between the last operation to afect the foat and the operation 
acting on the loop positioned either in front of or behind the foat. 

l2 l1

l3l4

l5l6

l14 l15
l13l12

l10l11

l8 l7l9l10 fl8,l9

(b) Knitgraph 

k2 k1k3k4k5k6

k19 k20k18k17k16k15

k10 k9k11k12
x8x7

x14x13

(c) Dependency Graph 
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Figure 4 shows a sample program that knits with two yarns 
� (blue) and � (red). The blue yarn forms a ribbed structure with 
columns of knit and purl loops (formed on the back bed). The red 
yarn passes the foat between loops �8 and �9 in front of the blue 
purled loops �3 and �4. To do this, the blue purls are transferred to 
the front bed (i.e., �7, �8) and then returned to the back bed to be 
knit (�13, �14). The knit operation �11 forms this foat, creating a 
foat-position dependency between the �11 and the transfers. 

6 KNITTING DEPENDENCY ANALYSIS 
A dependency graph describes the space of knit programs that will 
produce the knitted structure produced by the original program. 
However, not all topological orderings of the dependency graph 
will produce an efcient knit program. We provide an optimization 
method that uses dependency analysis and leverages information 
about the machine knitting process to fnd an efcient program. 
This optimization process has two stages: transfer dependency reduc-
tion and carriage-pass dependency analysis. Dependency reduction 
allows us to reduce the number of operations in a knitting program 
without modifying the knitted structure. Carriage-pass dependency 
analysis enables us to order the remaining operations to make 
efcient use of machine resources. 

6.1 Transfer Dependency Reduction 
Given a knitting program with only tucks and knits, removing any 
operation would remove a loop from the knitgraph and substantially 
alter the structure. The place to look for operations that can be 
removed is in transfer operations. It is possible to undo the efect 
of wale crossings in a knitted structure. This would have the added 
beneft of making the optimized program more reliable because 
every transfer operation risks dropping the transferred loop or 
straining and tearing the yarn. A trivial example is transferring a 
loop and then transferring it to the original needle. 

Suppose we execute the transfer � = xfer f2 b2 and then the 
transfer � −1 = xfer b2 f2. The operation � −1 inverts wale-crossings 
formed by the � operation. Clearly, a more efcient knitting pro-
gram would omit these two operations. However, suppose between 
� and � −1 we knit two loops to form a foat across the transferring 
needles (i.e., P = {� , �0 =knit - f4 r, �1 =knit - f1 r, � −1}. Figure 8c 
show the diferences in the loop and foat positions when these 
transfers are removed (Figure 8a) and included (Figure 8b). The 
diference between the resulting knitted samples illustrates why it 
is critical that knitgraphs represent both wale and foat crossings 
and that these relationships are refected in the dependency graph. 

To identify the transfer that can be removed, we defne an in-
verted transfer series and a method for identifying them in a de-
pendency graph. A transfer series is an ordered set of transfer 
operations where only the frst transfer depends on any operations 
outside the series, and only the last transfer is dependent on opera-
tions outside the transfer series. A transfer series can be inverted if 
all of the efects of the frst transfer in the series are undone by the 
time the last transfer in the series occurs. That is, the transfer series 
undoes all wale and foat crossings it creates, and the transferred 
loops arrive at their original position. In this case, a transfer series 
can be removed from the dependency graph. 
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1 Input � (P, D): The dependency graph produced by 
execution of the program P. 

2 Input X: A transfer series in the graph � that ends 
with the operation � . 

3 O���� ← {� ∈ P|∃��,� ∈ D}; 
4 if |O���� | == 1 or � ∈ O���� is a transfer then 
5 add � to X; 
6 if X is invertable then 
7 remove X from G; 
8 return ∅; 
9 else 
10 return Extend_Transfer_Series(�, X); 
11 end 
12 else 
13 return X; 
14 end 

Algorithm 8: Extend Transfer Series 

To fnd all invertible transfer series in the dependency graph, 
we iterate over every transfer operation in the original program 
execution order. Given a transfer � , we form a new transfer series 
X = {� }. We then attempt to extend the transfer series based on its 
successor operations in the dependency graph (algorithm 8). If � 
has only one successor and it is a transfer operation, we can add 
that successor to the transfer series and extend it to the following 
successors. Once we have found an invertible transfer series, we 
remove the series from the dependency graph. Series that cannot 
be inverted are critical to the knitting program, and we retain them. 

(a) Shift Two Needles (b) Shift Eight Needles 

Figure 5: Two Y-shapes with the right tube shifted to the 
right every four courses. These KnitScript programs were 
optimized with KODA. No necessary transfers were removed. 

6.1.1 Maintaining Slack. Notably, a critical change in state that can 
go unnoticed is changes that afect slack constraints. If a transfer 
series moves foats in order to maintain slack, the xfer series cannot 
be inverted, even if the loops arrive at the original destination. This 
is an example of why representing foats, in addition to loops, in 
the knitgraph structure is critical to dependency analysis. 

Consider how a knitter may organize transfers to spread out two 
connected tubes forming a Y shape (Figure 5). When shifting the 
right tube to the right, a naive knitter will transfer each loop on 
the front side of the tube across to the opposite bed, rack to the 
desired shifting distance, and then back over to the newly shifted 
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positions. Then, they will repeat this with the back of the tube. 
However, if the desired shifting distance is greater than the allowed 
slack between the front and back loops, this will stretch the yarn 
too much. Instead, the shift must be completed in multiple smaller 
shifts (e.g., racking 1 or 2 needles at most). While this may appear 
to result in many redundant transfers, each transfer creates foat-
position dependencies with their neighbors. Because these foat-
position dependencies are not invertible, these critical transfers are 
maintained after transfer reduction. 

6.2 Carriage-Pass Dependency Analysis 
The time a knitting program takes to execute is defned by the 
number of carriage passes that must be completed. The carriage is 
an actuator that moves across the needle beds, actuating needles 
in a sequence of operations. To execute a knitting program in or-
der, the carriage will move from needle to needle in one carriage 
pass until it reaches an operation on a needle the carriage has al-
ready passed. To complete the next operation, the carriage pass will 
end, and a new carriage pass will start in the opposite direction. 
Carriage passes are also limited to specifc operation types. Knits 
and tucks can be performed in their own pass, but splits and xfers 
must be on independent passes. The state of the machine, such 
as the active yarn carrier or the alignment of the beds (i.e., their 
racking), can only be changed between carriage passes. For exam-
ple, the program in Figure 1a is executed in seven carriage passes: 
{�1, �2}, {�3}, {�5}, {�7}, {�9}, {�11, �12}, and {�13, �14}. 

Carriage passes are critical to knitting time because knitting a 
set of operations all in one carriage passes is substantially faster 
than knitting them in individual carriage passes. Thus, we defne 
the execution time of a knitting program by the number of carriage 
passes executed. This can vary even with a constant operation set. 

Given a knitting operation, � , the carriage pass � can receive � if 
it meets three criteria. First, the racking of � must match the racking 
of � (i.e., the needles share the same alignment). While interpreting 
a program into a dependency graph, we label each operation with 
the racking at which it was executed. Second, we consider if the 
type of operation is compatible with � . Knit and tuck operations can 
be executed in the same carriage pass. However, splits can only be 
executed in carriage passes with other splits, and transfers can only 
be executed in carriage passes with other transfers. Third, � must 
continue the order of � without changing directions. Knit, tuck, 
and split operations must be knit in a specifed direction. If � has a 
specifed direction (i.e., + or -), � must operate in the same direction. 
We can only add � to � if the needle � operates on comes after 
the needle operated on by the last operation in � in that direction. 
Transfer passes can freely re-order transfers, so the direction does 
not matter. By convention, we execute a transfer pass by sorting 
from the leftmost needle to the rightmost needle. 

6.2.1 Carriage-Pass Formation. To reduce the number of carriage 
passes produced by a knitting program, we analyze the depen-
dencies in the dependency graph and form a new Carriage-Pass 
dependency graph that reduces the set of topological orderings 
of the program. By clustering operations into carriage passes, we 
reduce the space of the program’s topological orderings and are 
likely to fnd a more efcient solution. 

Hofmann 

A Carriage-Pass dependency graph is similar to our program 
dependency graph in that it represents the dependencies between 
operations in a program. However, instead of nodes representing 
individual operations, they represent carriage passes, which are a 
collection of operations that can be executed in a specifc sequence. 
Thus, we defne a carriage pass dependency graph � (C, D) by a set 
of carriage passes C and the directed dependency edges between 
them, D. An edge ��,� ∈ D indicates that there is at least one 
dependency between an operation in the carriage pass � and an 
operation in the carriage pass � . 

1 Input �� (P, D� ): The dependency graph produced by 
execution of the program P. 

2 Output �� (B, D� ): The dependency graph between 
carriage-passes that cluster the operations in P. 

3 B���� ← ∅; 
4 for � ∈ P do 
5 ������������ ← Descendent operations of � in �� ; 
6 �� ← ∅; 
7 for � ∈ B���� do 
8 if � can receive � and � ∩ ������������ = ∅ then 
9 add � to the end of � ; 

10 �� ← � ; 
11 Break; 
12 end 
13 end 
14 if �� = ∅ then 
15 �� ← {�}; 
16 add �� to B���� ; 
17 end 
18 for �̂ ∈ P|∃� ̂�,� ∈ D� do 
19 �̂  ← �̂  ∈ B|�̂ ∈ �̂ ; 
20 add ��,�ˆ to D� ; 
21 if ��,�ˆ is a yarn-order dependency then 
22 remove �̂  from B���� ; 
23 end 
24 end 
25 end 
26 return �� (B, D� ); 

Algorithm 9: Carriage Pass Dependency Analysis 

We start forming a carriage-pass dependency graph by creating 
an empty set of open carriage passes. This set holds all carriage 
passes that can receive new operations. We then iterate through the 
operations in the original program, searching for an open carriage 
pass to receive them. For an operation � , we greedily search for an 
open-carriage pass, � , that can be extended by � without creating 
a cycle in the carriage pass dependency graph. A cycle would be 
formed if there is a path from the operation � to any operation in 
the carriage pass � in the program dependency graph. Note that 
the graph must remain acyclic to fnd a topological ordering of 
carriage passes. If no carriage pass can receive � , then we will 
create a new open carriage pass. After � is added to a carriage pass, 
we update the dependencies. For each predecessor operation on 
which � depends, we fnd its carriage pass. If that predecessor is not 
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in �’s carriage pass, we add a dependency between the predecessor 
and �’s carriage passes. 

This process creates an increasingly large set of carriage passes. 
In the worst case, this is equal to the number of operations in the 
program. All transfer passes remain open and can receive new 
operations. However, a carriage pass involving a yarn (knits, tucks, 
splits) closes when a new carriage pass is formed with a yarn-order 
dependency between them. 

6.2.2 Managing Machine State. An experienced knit programmer 
may be wondering where in the dependency graph we introduce all 
of the knitting operations that do not operate on needles or directly 
modify the knitgraph. For example, the rack operations required 
to change the alignment of needle beds before transferring or the 
carrier managing operations (e.g., inhook, outhook, releasehook) 
that introduce and cut the yarns. After we clustered operations 
into carriage passes, we re-introduced these types of non-knitting 
instructions to the carriage-pass dependency graph. Essentially, we 
treat the pause between carriage passes where these operations are 
executed as another carriage-pass dependency that will infuence 
the topological ordering of the fnal optimized program. 

Each carriage pass is dependent on a specifc state of the knitting 
machine. Each operation in a carriage pass must be executed at the 
same racking. So, we introduce a new racking operation that each 
carriage pass depends on. Next, all operations that involve yarns 
(i.e., knit, tuck, split) require the yarn to be activated by an inhook 
operation. For each yarn, we create an inhook operation with the 
carrier that holds that yarn and add a dependency to the carriage 
pass that holds the frst operation to form a loop with the yarn 
(i.e., the yarn’s head). Inhook operations activate the yarn-inserting-
hook that holds the head of the yarn until it has been stabilized by 
forming multiple loops. This hook blocks needles near the frst loop 
formed on the yarn and prevents split and transfer passes. Thus, 
when we identify a transfer pass or a pass that contains one of these 
blocked needles, we add a dependency to a releasehook operation 
that releases the hook and unlocks the needles. Finally, the yarns in 
a knitgraph must be cut free from the machine after the last loop of 
each yarn is formed. Thus, if a carriage pass is followed by no other 
carriage passes with yarn-order dependencies, we can introduce a 
new dependency to an outhook operation. The outhook operation 
requires the yarn-inserting-hook. So, if no releasehook was already 
introduced by blocked needles, we introduce a new releasehook 
operation and make the outhook dependent on it. 

The resulting carriage-pass dependency graph describes a re-
duced space of knitting programs that will produce the original 
knitted structure but may more efciently use carriage passes to 
cluster operations. We fnd an optimized program in this depen-
dency graph using a topological sort. We implement our graph 
structures using the Network X Graph library in Python and use 
their topological sorting method [14, 29]. We take a fnal pass on 
this resulting program to remove redundant rack operations. Fi-
nally, we identify each releasehook operation and attempt to shift 
it earlier in the fnal execution order. A releasehook may not be 
required until it blocks a needle, but ideally, it is released after a 
carriage pass that forms enough loops to hold the yarn stable in the 
knitgraph (e.g., ten loops) and before the next carriage pass that 
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moves in the same direction as the carriage pass that used the yarn 
after an inhook operation. 

The fnal program is clear of unnecessary operations, ordered to 
efciently use carriage passes, handles carriers and racking, and will 
produce the same knitgraph as the original program. In the follow-
ing section, we describe a set of demonstrative knitting programs 
that we use to evaluate the efcacy of the KODA method. 

7 DEMONSTRATION 
Many knitted structures are created by pairing stitch operations 
with a series of transfers that reposition the resulting loop for the 
next stitch. The simplest example, as described by Lin et al. [25], is 
forming a knit stitch (on the front bed) and a purl stitch (on the back 
bed). To switch between knits and purls, a loop must frst be knit 
and then transferred to the opposite bed. More complex structures, 
such as decreases and cables, are formed by transferring loops to the 
opposite bed and then transferring them to the original bed at a new 
needle. When hand-knitting, these stitch and transfer operations 
are handled one at a time. However, the knits and transfers should 
be clustered in carriage passes to machine knit these efciently. 

In the following set of demonstrations, we describe how program-
mers may write programs based on this hand-knitting intuition 
while producing inefcient results. In the following section, we 
will evaluate KODA by optimizing the programs produced in these 
demonstrations for semantic correctness, fabrication correctness, 
manufacturing efciency, and computational complexity. 

7.1 Lace and Decreases 

1 knit + f1 y; Pass 1 
2 xfer f2 b2; Pass 2 1 xfer f2 b2 ; Pass 1 
3 rack 1; 2 xfer f5 b5 ; Pass 1 
4 xfer b2 f3; Pass 3 3 rack 1; 
5 rack 0; 4 xfer b2 f3 ; Pass 2 
6 tuck + f2 y; Pass 4 5 rack -1; 
7 knit + f3 y; Pass 4 6 xfer b5 f4 ; Pass 3 
8 xfer f5 b5; Pass 5 7 rack 0; 
9 rack -1; 8 knit + f1 y; Pass 4 
10 xfer b5 f4; Pass 6 9 tuck + f2 y; Pass 4 
11 rack 0; 10 knit + f3 y; Pass 4 
12 knit + f4 y; Pass 7 11 knit + f4 y; Pass 4 
13 tuck + f5 y; Pass 7 12 tuck + f5 y; Pass 4 

(a) Intuitive Method (b) Efcient Method 

(c) Swatch Photo 

Figure 6: Example code of a method forming two paired de-
creases using an approach similar to hand knitting and an 
efcient method based on the slider algorithm [26]. 
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Lace patterns are made by pairing decreases and increases to 
create holes in the fabric. This introduces complex wale structures 
where new wales start in the middle of knitting and merge at de-
creases. Figure 6c shows an example lace pattern of alternating 
left and right decreases paired with increases that form eyelets. 
Decreases are formed by moving a loop onto a neighboring loop 
and then knitting through the stacked loops. Hand knitters will 
complete these transfers and knits all at once and may intuitively 
program them in this way (Figure 6a). However, to efciently knit 
multiple decreases in a single course of knitting–as in lace patterns– 
the transfers needed to stack loops should be consolidated into 
one pass, followed by a knitting pace to complete all the decreases 
(Figure 6b). 

As described in Lin et al’s [26] schoolbus method, an optimal 
approach to stacking loops into decreases is to consolidate transfers 
across to the opposite bed and consolidate stacking transfers based 
on the racking. For example, leftward (r=1) and rightward (r=-1) 
transfers require two separate transfer passes for stacking—-totaling 
three transfer passes. Decreases across multiple racking magnitudes 
will require a minimum of one transfer pass for each racking and 
the additional holding transfer pass. 

7.2 Cables and Wale-Crossings 

1 xfer f2 b2 ; Pass 2 
2 xfer f3 b3 ; Pass 2 
3 rack 1; 1 xfer f2 b2 ; Pass 1 
4 xfer b2 f3 ; Pass 3 2 xfer f3 b3 ; Pass 1 
5 rack -1; 3 xfer f4 b4 ; Pass 1 
6 xfer b3 f2 ; Pass 4 4 xfer f5 b5 ; Pass 1 
7 rack 0; 5 rack 1; 
8 knit + f2 y; Pass 5 6 xfer b2 f3 ; Pass 2 
9 knit + f3 y; Pass 5 7 rack -1; 
10 xfer f4 b4 ; 8 xfer b3 f1 ; Pass 3 
11 xfer f5 b5 ; Pass 6 9 xfer b5 f4 ; Pass 3 
12 rack -1; 10 rack 1; 
13 xfer b5 f4 ; Pass 7 11 xfer b4 f5 ; Pass 4 
14 rack 1; 12 rack 0; 
15 xfer b4 f5 ; Pass 8 13 knit + f2 y; Pass 5 
16 rack 0; 14 knit + f3 y; Pass 5 
17 knit + f4 y; Pass 9 15 knit + f4 y; Pass 5 
18 knit + f5 y; Pass 9 16 knit + f5 y; Pass 5 

(a) Intuitive Method (b) Efcient Method 

(c) Swatch Photo 
Figure 7: Example code of a method forming two alternating 
cables using an approach similar to hand knitting and an 
efcient method that consolidates transfers. 
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Cables are similar to lace patterns in that they introduce complex 
wale structures. Cables braid wales by crossing them at specifc 
locations. Figure 7c shows an example cable pattern of alternating 
leftward and rightward cables crossing two loops over a third loop. 
Like decreases, hand knitters will form cables by crossing their loops 
and then immediately knitting across them (Figure 7a). However, 
the transfers that rearrange these loops should be consolidated 
when knitting multiple cables in a single course (Figure 7b). 

A right-leaning cable is formed in three carriage passes: trans-
ferring a set of loops to the opposite bed, then transferring the 
left half of the loops to the freed needles on the right side of the 
cable, then transferring the right loops to the left side. Switching 
the order of left and right transfers will switch this to a left-leaning 
cable. Like forming decreases, cables can be inefciently formed 
(cable-by-cable) or efciently clustered into carriage passes. In the 
optimal case, if there are both left and right-leaning cables in a 
course, this will require fve carriage passes. 

0 1 2 3 4 5

0 1 2 3 4 5

(a) Float without Transfers (c) Result without Transfers 

0 1 2 3 4 5

0 1 2 3 4 5

(b) Float with Transfers (d) Result with Transfers 
Figure 8: Demonstration of the efect redundant transfers 
have on the foat positions of yarns. 

7.3 Colorwork and Float Arrangement 
While lace and cable patterns introduce complexity in the wales 
of a knitted structure, colorwork introduces complexity in foat 
placement. Colorwork is created using multiple yarns. The foats 
between each yarn must be carefully placed relative to the loops 
formed on the other yarn. A common hand-knitting colorwork 
technique called Fair-Isle is done by knitting needles with diferent 
color yarns to form intricate, detailed color patterns. While knitting, 
the hand knitter will pull all of the yarns through the pattern— 
meticulously handling the placement of foats. To do this on a 
knitting machine, a naive programmer may move the carriers in 
tandem, transferring loops to cover foats as needed (Figure 9a). 

Consider a rib pattern made of alternating columns of knit 
stitches and purl stitches. Adding colorwork to these patterns can 
be done by knitting with a second yarn only on the columns of knit 
stitches. However, as we show in Figure 8, the placement of the 
pulled stitches will alter the foat placement of the fabric. Figure 9c 
shows an example of the colorwork rib pattern where the red yarn 
is only knit on front bed stitches and foats under the blue purl 
stitches. To do this correctly, the purled stitches must frst be trans-
ferred to the front bed. Then, the colored stitches can be knit on the 
knit wales. After, the purled stitches can be transferred back to the 
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1 xfer f2 b2 ; Pass 1 
2 knit + b2 blue ; Pass 2 
1 xfer f2 b2 ; Pass 1 

2 xfer f4 b4 ; Pass 1 
3 xfer b2 f2 ; Pass 3 3 knit + b2 blue ; Pass 2 
4 xfer f4 b4 ; Pass 3 4 knit + b4 blue ; Pass 2 
5 knit + b4 blue ; Pass 4 5 xfer b2 f2 ; Pass 3 
6 xfer b4 f4 ; Pass 5 6 xfer b4 f4 ; Pass 3 
7 knit + f1 red ; Pass 6 7 knit + f1 red ; Pass 4 
8 knit + f3 red ; Pass 6 8 knit + f3 red ; Pass 4 
9 knit + f5 red ; Pass 6 9 knit + f5 red ; Pass 4 

(a) Intuitive Method (b) Efcient Method 

(c) Swatch Photo 
Figure 9: Example code that forms alternating columns of 
blue purls and red knits using an approach similar to hand 
knitting and an efcient method that consolidates transfers. 

back bed in preparation for continuing to knit the rib pattern. These 
transfers can be inefciently executed stitch-by-stitch or optimally 
clustered into knitting and transfer passes (Figure 9b). 

8 OPTIMIZATION BENCHMARKS 
For our optimization method to be efective, it must meet three 
criteria. First, it must be semantically correct; that is, the resulting 
knitted structure should be identical to the original program’s. 
Second, the optimized program should fabricate correctly without 
dropping stitches or tearing yarns. Third, the optimizer should 
reduce or maintain execution time measured by carriage passes. 

We have produced a set of benchmark swatch programs based 
on our demonstration swatches to evaluate these criteria. Each 
program is written in the higher-level knitting language, KnitScript 
[15, 17]1. The width in stitches and height in the courses of the 
swatch are parameterized. We provide three benchmark categories: 
lace, cable, and colorwork. For each category, we have developed 
three programs. The frst is an inefcient, stitch-by-stitch approach 
to knitting these structures in a regular pattern. The second is an 
optimal program that generates the same structure. The third is an 
inefcient program that generates the swatch stitch-by-stitch but 
randomizes the placement of these structures (see Figure 10). 

Additionally, we include a randomized program that uses all 
techniques (i.e., lace, cables, and colorwork) in one pattern (see 
Figure 10d). An experienced knit programmer can defne an optimal 
program for structure by recognizing the opportunity to cluster 
transfer operations into carriage passes. However, combining these 
methods increases the complexity of transfer planning substantially. 
This demonstrates the beneft of program optimizers—they allow 
programmers to write intuitive solutions rather than efcient code. 
1KnitScript code to generate these benchmarks is available in the KODA code base at 
https://github.com/mhofmann-Khoury/koda-knitout 
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Thus, we provide a fnal benchmark program that randomly selects 
a structure to apply to each cluster of six stitches. 

9 EVALUATION 
We generated swatches using both the inefcient and ground-truth 
benchmarks to validate our optimizer. We then optimized each 
inefcient swatch program. We make three comparisons between 
swatches to verify semantic correctness, correct fabrication, and 
carriage-pass efciency. We verify semantic correctness by compar-
ing the knitgraph of the un-optimized program and the optimized 
program. Any variation in the knitgraphs would result in diferent 
knitted structures and violate the requirements of our optimizer. 
Samples are correctly fabricated if the ground-truth program and 
optimized swatches are knit without torn yarns or dropped loops 
and appear identical. The inefcient swatches could not be reliably 
knit despite multiple attempts. We measure the efciency of each 
program in carriage passes counted in the Apex 4 software [45]. 

We generated two data sets of swatch programs from our bench-
marks that show the efect of optimization on program efciency 
across varied swatch sizes and randomized patterns. 

9.1 Standardized Swatch Generation by Size 
For the frst data set, we generated the standardized lace, cable, 
and colorwork patterns in a range of sizes. Each swatch is knit 
to be a square with the same number of stitches and courses. We 
increment the size parameter by six stitches, ensuring that there is 
sufcient space for added repetitions of the lace, cable, and color 
work patterns. Figure 11 shows the efect of swatch size on carriage 
pass count. We see that size causes an exponential increase in the 
number of carriage passes for the unoptimized programs. This 
is because as the size increases, the number of lace, cable, and 
color work structures increases exponentially. When made stitch 
by stitch, this causes an exponential increase in transfer passes. 
Alternately, the optimized swatch programs increase their carriage 
passes linearly. This is because the optimal solution will cluster 
transfers across stitch structures and the number of carriage passes 
only increases relative to the number of courses in the swatch. 

9.2 Randomized Swatch Generation 
Our next data set uses the randomized swatch benchmarks. We 
fxed the size of the swatches to 82 stitches by 82 courses. When 
optimized, most swatches of this size can be knit in under 5 minutes 
and allow for a wide variation of knitted structures. We knit ten 
unique randomized swatches for each randomized benchmark (i.e., 
lace, cable, colorwork, mixed patterns). Table 2 summarizes the 
mean and standard deviation of carriage pass counts across each of 
these benchmarks in the unoptimized and optimized case. 

Note that the resulting number of carriage passes was fxed af-
ter optimization for the lace and cable work patterns. For these 
benchmarks, the optimizer successfully clustered the transfers re-
quired between courses regardless of the position of decreases or 
cables in each course. This results from the greedy carriage pass 
consolidation approach. When there are multiple carriage passes 
for the multiple yarns in a course, the optimal transfer passes are 
sometimes split across each yarn’s carriage pass. This results in a 

https://github.com/mhofmann-Khoury/koda-knitout


UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Hofmann 

(a) Randomized Lace (b) Colorwork 

(c) Cable (d) Mixed Lace, Cables, and Color 

Figure 10: Example randomized swatches. 

sub-optimal program; however, there are still signifcant reductions 
in carriage passes overall. 

9.3 Semantic Correctness 
For each pair of inefcient and optimized swatch programs, we 
compared the resulting knitgraph produced by executing the pro-
gram on our virtual knitting machine. Across all pairs in both data 
sets, the resulting knitgraphs always matched exactly. This shows 
that the optimizer produced semantically correct results. 

9.4 Fabrication Correctness 
We attempted to knit the inefcient programs for each standard-
ized benchmark with a size of 82 stitches by 82 courses. However, 
despite multiple attempts and adjustments of machine parameters 
such as loop length and knitting speed, we were unsuccessful at 
producing swatches without numerous yarn tears and dropped 
stitches. This is despite the fact that the knitted structures are valid, 
the instructions violate no machine constraints (e.g., slack con-
straints), and the machine-specifc software raised no warnings. 
This demonstrates that program efciency can be critical to reli-
able fabrication, not just a measure of manufacturing time. Instead 
of comparing the fabricated results of our optimized swatches to 
the inefcient programs, we compared them to the fabricated re-
sults of the ground-truth programs for standardized lace, cable, and 
colorwork. 

We knitted each pair of optimized and ground-truth swatches 
with 82 stitches by 82 courses. We knit these swatches on a Shima 
Seiki SWG91N2 15 gauge v-bed knitting machine using Puma 
Stretch 2/28 NM yarns [10], a carriage speed of .8 m/s, and a stitch 
size of 40. All samples were knitted without error, and we could 
not identify any variation between the optimized and ground-truth 
swatches. We knit three random samples for each benchmark in 
our randomized data set under the same conditions. Because we 
have no ground truth for these samples and the inefcient solutions 
were not knittable, we cannot verify the fabrication correctness of 
these samples. However, the resulting swatches were consistent in 
appearance and knitted without error. No loops appear dropped, 
no yarns are torn, and no foats are misplaced. 

9.5 Efciency After Optimization 
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(a) Un-optimized Swatch Programs 
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(b) Optimized Swatch Programs 

Swatch Size: Courses and Stitches

O
pt

im
iz

at
io

n 
Ti

m
e 

(m
s)

0

500

1000

1500

2000

10 18 26 34 42 50 58 66 74 82

(c) Time to Optimize Program in milliseconds. 

Figure 11: Efect of swatch size in stitches and courses on car-
riage pass counts across standardized pattern benchmarks. 

The substantial reduction in carriage passes across all generated 
swatches shows that the optimizer can consistently improve the 
efciency of knitting programs by clustering operations in carriage 
passes. For the standardized benchmark patterns, the number of 
carriage passes after optimization was often equal to the number 
of carriage passes produced by the optimal ground-truth programs. 
This does not necessarily imply that the optimizer will always 
produce an optimal program. The tendency to fnd an optimal 
program may depend on the types of structures being knit. For 
example, we saw consistent results when optimizing lace and cable 
patterns but variance when knitting with colorwork. When multiple 
techniques are used in one program, the optimizer performs the 
most poorly. However, most programs reduced the carriage pass 
counts by half in these cases. 
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Table 2: Summary of optimization statistics across 10 randomized swatch programs for each pattern type. 
Unoptimized Optimized Percentage of OptimizationPattern Carriage Passes Carriage Passes Original Program Time (ms) Type Mean StD Mean StD Mean StD Mean StD 

Lace 1748.0 0.0 353.8 0.6 20.24 0.04 1172.3 67.3 
Cable 2568.0 0.0 534.0 0.0 20.79 0.00 2340.3 349.2 
Colorwork 915.6 28.7 605.2 14.2 66.12 1.31 2258.7 165.7 
Mixed 1994.4 41.7 1009.6 24.0 50.64 1.71 3087.8 317.9 

9.6 Computation Time: Scalability and Usability 
Beyond the manufacturing consequences of inefcient knitting, 
the principal beneft of program optimization is manufacturing 
time. To be usable and useful to programmers, this beneft must be 
weighed against the computing time needed to optimize a program. 
As shown in Figure 11c and Table 2, across all of our benchmark 
tests, the optimizer never took longer than four seconds to optimize 
a knitting program. The computational complexity of our depen-
dency analysis method is dependent on the number of operations in 
a program (i.e., |P|) and the number of dependency edges between 
them (i.e., |D|)—� ( |P| × |D|). This is shown in the exponential trend 
in optimization times shown in Figure 11c; as the number of stitches 
and courses–and thus operations–increases, the optimization time 
increases. The computational complexity increases faster for pat-
terns with more dependencies, such as the foat dependencies in 
the colorwork benchmarks. Regardless, these computation times 
are still insignifcant compared to the gained speed in knitting–a 
mechanical and physical process, where carriage passes happen on 
an order of seconds and a reduction of carriage passes by even half 
can save minutes on small samples and hours on full garments. 

10 DISCUSSION AND LIMITATIONS 
Knit program optimization is only a small part of the knit program-
ming infrastructure needed to hasten the creation of novel knitting 
CAD tools. This work exists alongside advances in domain-specifc 
languages [17, 31], other approaches to transfer planning [24–26], 
and the creation of new knit structures that are not encapsulated 
by knitgraphs. However, we aim for KODA to be a valuable tool in 
this pipeline that enables knit programmers to focus on creating 
novel structures rather than writing efcient programs. This may 
enable new knit programmers who are not deeply familiar with the 
idiosyncrasies of knitting machines to build efcient and reliable 
programs. It may also enable researchers to explore knitting algo-
rithms where an efcient solution is unknown or too complex to 
create in a readable knit program. 

We identify three key limitations of the KODA system. First, 
KODA does not necessarily produce an optimal program. Second, 
our method does not encapsulate the placement of foats while 
they are on the carriers (e.g., miss instructions), which may lead 
to inefcient kickbacks. Third, KODA requires an original knit 
program and does not handle machine scheduling where a knitgraph 
is converted into a set of instructions. 

10.1 KODA and Optimum Knitting 
Finding an optimal order of knitting operations for each knit pro-
gram would be ideal. KODA will produce this optimal set of oper-
ations in many cases (e.g., lace and cable benchmarks). However, 

we cannot guarantee that it will produce the optimal results. When 
clustering operations into carriage passes (see algorithm 9), we 
make a greedy decision to merge an operation into the frst open 
carriage pass that we discover. This will only produce one carriage 
pass for operations involving a yarn. However, there may be multi-
ple open transfer passes that can accept the operation for transfers. 
Unfortunately, which transfer pass would produce the most ef-
cient program cannot be determined at this stage, and the system 
would need to build multiple carriage pass dependencies based on 
all possible transfer passes that could receive the transfer. Across 
all of these carriage pass dependency graphs, we could identify the 
most efcient one because it has the fewest fnal carriage passes. 
An efcient way of identifying these could involve methods from 
general-purpose programming optimization such as e-Graphs (e.g., 
[52]). This remains an area for future work. 

Transfer Dependency reduction is one way to reduce the number 
of open transfer passes during carriage pass consolidation. When 
there are many redundant transfers, this may increase the efcacy 
of our greedy method. However, we fnd that the benefts of transfer 
reduction are often limited since an entire carriage pass of transfers 
must be reduced to have an efect on the fnal manufacturing time 
of a knitting program. Unlike carriage pass consolidation, which 
can readily undo common knitting approaches used by novice pro-
grammers (e.g., transferring decreases immediately before knitting), 
transfer reduction is not directly tied to common knit programming 
approaches. While not represented in our benchmarks, we expect 
that transfer reduction is more benefcial when connecting multiple 
transfer algorithms together. For example, Hofmann et al’s [17] 
sheet-layering algorithm, embedded in the KnitScript language [15], 
introduces transfer passes between knitting operations to maintain 
a programmer-defned state of foats crossings. However, it is com-
mon to immediately undo these transfers when knitting patterns 
that use transfer for purling, lace, and cables. Transfer reduction 
can undo these redundant operations created by using two separate 
coding techniques in one knitting program, allowing programmers 
to use these tools more intuitively. 

10.2 Modeling Loose Yarns 
Our expanded knitgraph representation ignores the state of the 
yarn until it has been fxed into the knit structure by forming a loop. 
However, knit programmers often use miss operations to position 
a yarn relative to the knit structure for more precise control over 
foats being formed. Purposeful tangling and detangling of yarns 
can be done using these operations that are lost during optimization. 
Notably, this tangling is only done between active carriers, and the 
fnal placement of foats in the knitgraph cannot be changed. Future 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Hofmann 

work should incorporate the yarn-carrier dependencies in addition 
to the dependencies in the knitgraph. 

10.3 Beyond Scheduled Knitting 
Optimizing a given knit program (i.e., schedule) is feasible with 
KODA because we use the original order of operations to form a 
knitgraph and dependency graph. However, converting a given 
knitgraph (e.g., one produced by a design tool) into an optimal 
program without this existing schedule requires more advanced 
methods for knit-scheduling. Prior work has explored this for some 
limited types of knit structures (e.g., 3D surfaces [37], textures [16]), 
but capturing the full space of knitted structures in a single knit-
ting algorithm may not be feasible. Indeed, we did not benchmark 
KODA against the outputs of existing tools because, to make man-
ufacturing feasible, a great deal of efort has been spent to make 
the output of these programs efcient. This highlights the value of 
a system like KODA. Program optimization allows researchers to 
search for fexible machine knitting algorithms that will serve as 
the basis for knitting CAD tools. KODA frees programmers from 
hardware-specifc constraints and efcient knitting practices. 

11 CONCLUSION 
We present KODA (Knit program Optimization by Dependency 
Analysis). KODA is a knit-program optimization method that can 
increase the efciency of a knit program written in the low-level 
knitout language while maintaining the original knitted structure. 
KODA relies on an expanded knitgraph representation that encapsu-
lates the complex relationships between loops, stitches, wales, and 
foats in a knitted structure. We can model the resulting knitgraph 
and the dependencies between operations that formed it through a 
single pass of a knitting program. By analyzing the dependencies 
between transfer operations in the graph, we can identify redun-
dant operations that can be removed. By merging operations into 
dependent carriage passes, we can organize the knit program into 
more efcient sets of operations, and from this, we can fnd an 
optimized instruction order. We provide four sets of benchmark 
swatch programs that generate complex randomized structures and 
conduct an evaluation that shows that KODA can reduce inef-
cient programs into efcient solutions that are reliable for machine 
knitting. 
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