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ABSTRACT
What does it mean for a model to be a better model? One
conceptualization, indeed a common one in Educational Data
Mining, is that a better model is the one that fits the data
better, that is, higher prediction accuracy. However, of-
tentimes, models that maximize prediction accuracy do not
provide meaningful parameter estimates, making them less
useful for building theory and practice. Here we argue that
models that provide meaningful parameters are better mod-
els and, indeed, often also provide higher prediction accu-
racy. To illustrate our argument, we investigate the Per-
formance Factor Analysis (PFA) model and the Additive
Factors Model (AFM). PFA often has higher prediction ac-
curacy than the AFM. However, PFA’s parameter estimates
are ambiguous and confounded. We propose more inter-
pretable models (AFMh and PFAh) designed to address the
confounded parameters and use synthetic data to demon-
strate PFA’s parameter interpretability issues. The results
from the experiment with 27 real-world datasets also sup-
port our claims and show that more interpretable models
will also produce better predictions.
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Additive Factors Model, Performance Factors Analysis, Stu-
dent Modeling, Model Comparison, Knowledge Tracing

1. INTRODUCTION
In Educational Data Mining (EDM), the conventional wis-
dom suggests that a superior model exhibits a better fit to
the data. However, this perspective overlooks a critical as-
pect: models that prioritize prediction accuracy sometimes
fall short in providing interpretable and meaningful param-
eter estimates. Yet, having interpretable and meaningful
model parameters is crucial for scientific and practical ap-
plications of the models we develop. An example of an appli-
cation of meaningful parameter estimates is when Koedinger
et al. observed irregular slopes in learning curves for area
planning which led to the discovery of a better Knowledge

Component (KC) model [6]. For this purpose, prediction
accuracy is merely a means to an end, not the goal itself.
An exception might be black-box models used for their en-
hanced predictive capabilities within recommender systems
to great practical outcomes.

Unfortunately, recent trends in EDM research have only pre-
dominantly concentrated on model prediction accuracy, of-
ten neglecting the importance of the meaningfulness of the
parameters. Our goal in this paper is to demonstrate that
meaningful parameter estimation is not a necessary conse-
quence of more accurate model prediction. One prominent
example is the Deep Knowledge Tracing (DKT) model [12],
a knowledge tracing model based on Recurrent Neural Net-
works (RNNs) [15], which has been shown to achieve high
prediction accuracy in many datasets, but the parameters
in its networks are nearly uninterpretable. In this work, we
perform this demonstration in the context of two popular
models of student learning: the Performance Factors Anal-
ysis (PFA) [11] and the Additive Factors Model (AFM) [2].
While PFA tends to produce better predictions than AFM,
PFA’s parameter estimates are not meaningful because their
interpretation is ambiguous. As we will explain in more de-
tail below, interpreting the slope parameters in PFA is diffi-
cult because it could mean individual differences in learning
rates or differences in prior knowledge or difficulty of spe-
cific student-KC combinations but it could also mean differ-
ent learning rates from successful and unsuccessful attempts,
or even “unlearning” from errors. Conversely, AFM’s slope
is consistently and unambiguously interpretable as learning
rate [4].

To demonstrate how PFA’s parameters are confounded, we
proposed and evaluated two alternative models (AFMh and
PFAh) designed to unconfound the interaction between KCs
and students. We demonstrated the capabilities of these
alternative models with synthetic data generated from dif-
ferent models and configurations. Then, we conducted an
experiment with 27 real-world datasets from Datashop [3],
and found that PFA outperforms AFM in 17 datasets, but
our further analysis with the new alternative models showed
that PFA’s parameters are indeed difficult to interpret. We
also argue for the importance of parameter interpretability
by comparing AFM and PFA with these alternative models
AFMh and PFAh to demonstrate their meaningful interpre-
tations leading to potential insights and applications. In
particular, we are interested in these research questions:
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• RQ1: Can we demonstrate confounding parameters in
PFA?

• RQ2: Do h models have meaningful parameters and
also produce better predictions?

2. RELATED WORK
2.1 DataShop
In this work, we use a variety of real-world datasets across
different domains from the DataShop repository [3]. DataShop
is an open data repository of the Pittsburgh Science of Learn-
ing Center (http://learnlab.org/datashop) for educational
data with associated visualization and analysis tools, which
has data from thousands of students derived from interac-
tions with on-line course materials and intelligent tutoring
systems, such as CTAT [1].

In DataShop terminology, KCs are used to represent pieces
of knowledge, concepts or skills that students need to solve
problems or particular steps in problems [5]. When a specific
set of KCs are mapped to a set of instructional tasks (usually
steps in problems) they form a KC Model, which is a specific
kind of student model.

2.2 AFM and PFA
The Additive Factors Model (AFM) [2] is a logistic regres-
sion that extends item response theory by incorporating a
growth or learning term. The model gives the probability
pij , in log-odds, that a student i will get a problem step j,
with related KCs (k) specified by qjk, correct based on the
student’s baseline ability (θi), the baseline difficulty of the
related KCs on the problem step (βk), and the learning rate
of the KCs (γk). The learning rate represents the improve-
ment on a KC with each additional practice opportunity, so
it is multiplied by the number of practice opportunities (Tik)
that the student already had on the KC:

log(
pij

1− pij
) = θi +Σk(qjkβk + qjkγkTik) (1)

The Performance Factor Analysis (PFA) [11] is an exten-
sion of the AFM model that splits the number of practice
opportunities (Tik) into the number of successful opportuni-
ties (sik), where students successfully complete the problem
steps, and the number of failed opportunities (fik), where
students make errors. Both (sik) and (fik) have their own
slopes, γk and ρk:

log(
pij

1− pij
) = θi +Σkqjk(βk + γksik + ρkfik) (2)

While PFA tends to produce better predictions than AFM,
its parameters are not particularly meaningful [8], particu-
larly because their slope interpretation is ambiguous. One
interpretation, which is consistent with the intention of PFA,
is that these parameters capture individual differences in
student mastering that are particular to KCs (i.e. student-
KC interactions). Namely, students who make more errors
on a KC than otherwise expected will master that KC more
slowly than otherwise expected.

An alternative, and perhaps more straightforward, interpre-
tation is that the success slope (S-slope; γk) and failure slope
(F-slope, ρk) represent different learning rates for prior ini-
tially successful versus failed practice opportunities. An in-
dication supporting this notion is the occasional occurrence
of a negative F-slope, which, under the second interpreta-
tion, can be interpreted as students being unable to learn
from unsuccessful attempts [8]. This interpretation could
be problematic since it implies that a true novice does not
learn (or even unlearns) from making errors. This seems
unlikely given modeling and empirical evidence that mak-
ing errors can contribute significantly to positive learning,
as long as feedback is provided [9, 16, 13].

In this work, we aim to demonstrate how the parameters in
PFA are confounded and propose an extension of the exist-
ing models designed to unconfound the interactions between
KCs and students from the PFA’s slopes.

3. AFMh AND PFAh MODELS
In order to unconfound the student-KC interaction from the
success and failure slopes, we need to add additional vari-
ables to the models to capture the student-KC interaction.
A straightforward approach is to add a variable for each
student-KC pair to capture the interaction, but this can lead
to overparameterization. Instead, we introduce a success-
history variable (hik), which is a ratio between a number of
successful past attempts at solving a KC (sik) and a number
of total past attempts at solving that KC (tik). The intu-
ition behind the success-history variable is that a student
who has better prior knowledge of a particular KC would
yield higher success rates for the KC. We formulated hik

such that its value will be 0.5 at the first opportunity be-
cause hik should be distinguishable in the case of consecutive
failed attempts at the beginning. If hik started at 0, its value
would remain 0 regardless of the number of failed attempts
at the beginning, which could be problematic for the model:

hik =
sik + 1

tik + 2
(3)

We incorporated the hik variables into AFM and PFA mod-
els to create AFMh and PFAh models, in the term qjkηkhk.
The equations for AFMh (Eq. 3) and PFAh (Eq. 4) are
below.

log(
pij

1− pij
) = θi +Σkqjk(βk + γkTik + ηkhik) (4)

log(
pij

1− pij
) = θi +Σkqjk(βk + γksik + ρkfik + ηkhik) (5)

4. EXPERIMENTS
We conducted two experiments, on synthetic data and real
student data, to evaluate the performance of new models
(AFMh and PFAh) compared to the standard models (AFM
and PFA). We used Bayesian information criterion (BIC)
[10] as the main metric to compare model performance. Our



Table 1: The expected best-fitting model for each dataset
configuration. PFA is expected to be the best-fitting model
when there are different learning rates and no student-KC
interactions, but if there are strong student-KC interactions,
PFAh is expected to be the best-fitting model. Similarly, if
there is a single learning rate and no student-KC interactions,
AFM is expected to be the best-fitting model, but if there are
strong student-KC interactions, AFMh is expected to be the
best-fitting model.

No Interaction With Interaction

1-slope (i.e. 1

learning rates)
AFM AFMh

2-slopes (i.e. 2

learning rates)
PFA PFAh

hypothesis is that if there are strong student-KC interac-
tions, the h models will outperform the standard models,
and if there are different learning rates for successful and
failed attempts, PFA-based models (i.e. PFA and PFAh)
will be better-fitting models, but if there is a single learn-
ing rate (i.e. slope), AFM-based models will perform better.
Our hypotheses are summarized in Table 1. Additionally, if
PFA parameters are indeed confounded by both the student-
KC interactions and two learning rates, we expect PFA to
outperforms AFM in configurations with either student-KC
interactions or 2 learning rates (or both). In other words,
all configurations except a single learning rate with no inter-
action. Consequently, if the h variables are in fact able to
unconfound them by capturing the student-KC interactions,
PFAh and AFMh will outperform PFA in their correspond-
ing configuration.

4.1 Experiment 1: Synthetic Data

4.1.1 Methods

In this experiment, we aim to validate the efficacy of our
newly developed model in capturing the interaction dynam-
ics between students and KCs. To achieve this, we evalu-
ate this model on synthetic data with known characteris-
tics by sampling model parameters such as student inter-
cepts, KC intercepts, and KC slopes from normal distribu-
tions with statistical properties similar to those observed in
real-student data. We generated synthetic datasets based
on either the AFM or PFA models, serving as the ground
truth for student error rates and correctness [14]. Specifi-
cally, AFM will generate datasets that are assumed a single
learning rate (i.e. slope), but PFA will generate datasets
that are assumed different learning rates for successful and
failed attempts. To emulate the student-KC interactions
observed in real-world scenarios, we introduced variability
by augmenting datasets with student-KC interaction effects.
This was achieved by sampling values from a normal distri-
bution, reflecting the variance in student performance spe-
cific to each KC. Overall, we created 18 dataset groups en-
compassing varying the number of students (10, 20, and
50), the number of KCs (8, 16, and 32), and the strength
of the student-KC interactions (SD = 0.2 and 1.2), where
each configuration was used to generate 4 datasets based

on each generation models (AFM, PFA, AFM+Interaction,
and PFA+Interaction) to form a 2x2 experimental design,
corresponding to Table 1. The standard deviations used to
simulate student-KC interactions were selected based on the
standard deviations of student intercepts from all real stu-
dents in our datasets estimated using AFM. We used this
value as an estimate of the likely amount of variation in
student intercepts in a dataset, which could be used as a
proxy for reasonable variation in student-KC interactions.
We evaluate all four models (AFM, PFA, AFMh, and PFAh)
on each dataset. Table 2 and Table 3 show the BIC scores
for each model on each dataset in this experiment and sum-
marize the best-fitting models by BIC score.

4.1.2 Results

As shown in Table 2, when the student-KC interaction is
weak (SD = 0.2), AFM and PFA are the best-fitting mod-
els in all datasets depending on the generating model (i.e.
AFM is the best-fitting model when the generating model is
AFM, and PFA is the best-fitting model when the generating
model is PFA). However, when the student-KC interaction
is strong (SD = 1.2), the model corresponding to the gen-
eration method is the best-fitting model in all datasets, ex-
cept one (student=10, KC=32, method=PFA+Interaction),
as shown in Table 3. In other words, when there is a rea-
sonably strong interaction between students and KCs, the
models with the h variable consistently outperform the stan-
dard models. Moreover, the result shows that PFA consis-
tently outperforms AFM when there are student-KC inter-
actions, even when the base generation model is AFM, in
which AFMh also consistently outperforms PFA. This sup-
ports our hypothesis that PFA parameters are confounded
by both the student-KC interactions and two learning rates,
but the h variable will be able to unconfound them by cap-
turing the student-KC interactions. Overall, these results
also demonstrate the capability of the h models to capture
the dynamics of student-KC interactions.

4.2 Experiment 2: Real Student Data

4.2.1 Methods

We conducted an experiment with 27 real-world dataset
from Datashop across different domains (e.g., geometry, frac-
tions, physics, statistics, English articles, Chinese vocabu-
lary), educational levels (e.g., grades 5 to 12, college, adult
learners), and settings (e.g., in class vs. out of class as home-
work). We evaluated all four models (AFM, PFA, AFMh,
and PFAh) on each dataset. Table 4 shows the BIC score
obtained when fitting each model on each dataset in this
experiment.

4.2.2 Results

Table 4 shows the BIC score of each model on each real-
student dataset. When comparing between AFM and PFA,
PFA outperforms AFM in 17 out of 27 datasets, replicating
prior evidence. However, when comparing among all four
models, PFA is the best-fitting model in only one dataset
(where the difference in BIC score is relatively small), while
AFM is the best-fitting model in 4 datasets. AFMh and
PFAh are the best-fitting models in 11 datasets each. Among
the 17 datasets that PFA outperforms AFM, AFMh is the
best-fitting model in 5 datasets. In fact, AFMh outperforms



Table 2: BIC scores of all 4 models for each synthetic dataset with interaction SD = 0.2. Light grey highlights the best-fitting
model among the models. AFM is always the best-fitting model when the generation model is AFM regardless of student-
KC interactions. Similarly, PFA is always the best-fitting model when the generation model is PFA regardless of student-KC
interactions.

Student KC Generation Interaction AFM PFA AFMh PFAh Best

Yes 1590.290 1627.946 1598.361 1636.017 AFM
AFM

No 1630.425 1662.996 1634.406 1669.617 AFM

Yes 2091.749 1436.743 1538.479 1444.813 PFA
8

PFA
No 2072.443 1514.381 1607.171 1522.153 PFA

Yes 3818.870 3880.883 3827.027 3885.613 AFM
AFM

No 3808.662 3868.290 3817.426 3877.054 AFM

Yes 4010.223 2807.466 2893.398 2815.151 PFA
16

PFA
No 3949.252 2840.803 2913.090 2849.557 PFA

Yes 6114.022 6196.097 6121.329 6205.297 AFM
AFM

No 6042.236 6125.623 6051.586 6135.080 AFM

Yes 7925.592 6382.965 6676.408 6392.397 PFA

10

32

PFA
No 7823.461 6348.209 6673.301 6357.680 PFA

Yes 4791.102 4837.957 4799.797 4846.721 AFM
AFM

No 4601.883 4653.242 4610.647 4662.006 AFM

Yes 6755.818 6403.026 6700.326 6411.790 PFA
8

PFA
No 6728.999 6445.256 6715.965 6453.907 PFA

Yes 6520.145 6597.033 6529.602 6606.491 AFM
AFM

No 6334.954 6405.390 6342.483 6410.950 AFM

Yes 9840.107 8331.947 8969.829 8338.121 PFA
16

PFA
No 10059.017 8498.802 9050.723 8508.260 PFA

Yes 10894.995 10989.292 10905.136 10999.442 AFM
AFM

No 10614.447 10714.491 10624.598 10723.488 AFM

Yes 17967.629 14766.013 15470.549 14776.163 PFA

20

32

PFA
No 18373.613 14781.398 15415.666 14791.548 PFA

Yes 7752.478 7813.250 7762.159 7822.930 AFM
AFM

No 7465.130 7529.155 7474.811 7538.835 AFM

Yes 8978.669 6766.349 7572.593 6776.029 PFA
8

PFA
No 9386.140 7121.818 8032.094 7131.499 PFA

Yes 17436.148 17535.014 17446.522 17545.388 AFM
AFM

No 17380.842 17468.669 17390.404 17478.980 AFM

Yes 23980.442 17452.077 19262.037 17462.450 PFA
16

PFA
No 23881.545 17732.729 19555.968 17743.103 PFA

Yes 28246.575 28398.769 28257.642 28409.835 AFM
AFM

No 28505.827 28648.146 28515.574 28658.121 AFM

Yes 33787.825 30985.826 31862.632 30996.893 PFA

50

32

PFA
No 35348.852 32002.575 32923.707 32013.642 PFA



Table 3: BIC scores of all 4 models for each synthetic dataset with interaction SD = 1.2. Light grey highlights the best-
fitting model among the models. AFM is always the best-fitting model when the generation model is AFM without student-KC
interaction, but AFMh is the best-fitting model when there are student-KC interactions. Similarly, PFA is always the best-fitting
model when the generation model is PFA without student-KC interaction, but PFAh is usually the best-fitting model when there
are student-KC interactions.

Student KC Generation Interaction AFM PFA AFMh PFAh Best

Yes 1051.481 1094.670 1059.552 1102.728 AFM
AFM

No 1117.250 1110.974 1095.651 1121.092 AFMh

Yes 2086.542 1736.834 1768.927 1744.905 PFA
8

PFA
No 2442.974 1779.640 1788.976 1778.851 PFAh

Yes 2209.120 2267.256 2217.864 2276.020 AFM
AFM

No 2412.882 2359.565 2333.930 2359.085 AFMh

Yes 3741.063 3585.428 3684.478 3594.192 PFA
16

PFA
No 4298.942 3809.425 3870.989 3807.412 PFAh

Yes 6362.627 6444.527 6371.700 6453.985 AFM
AFM

No 7290.315 6785.575 6770.986 6784.784 AFMh

Yes 10103.516 8081.974 8434.942 8091.431 PFA

10

32

PFA
No 10653.994 8404.126 8559.083 8410.545 PFA

Yes 2387.151 2438.373 2395.171 2447.137 AFM
AFM

No 2811.167 2698.942 2661.740 2695.280 AFMh

Yes 5208.531 4508.708 4661.685 4515.641 PFA
8

PFA
No 5448.687 4676.877 4718.731 4649.611 PFAh

Yes 5605.182 5687.103 5614.639 5696.560 AFM
AFM

No 6109.225 5905.782 5833.515 5876.967 AFMh

Yes 10155.346 7978.861 8504.096 7988.318 PFA
16

PFA
No 11099.476 8051.809 8196.360 8011.967 PFAh

Yes 11602.318 11720.229 11612.225 11730.379 AFM
AFM

No 12897.355 11902.381 11796.091 11832.277 AFMh

Yes 18625.785 14559.687 15284.133 14569.251 PFA

20

32

PFA
No 20953.855 14522.347 14889.161 14501.333 PFAh

Yes 9270.245 9337.691 9279.925 9347.372 AFM
AFM

No 10248.059 9472.805 9301.816 9334.143 AFMh

Yes 13377.323 10083.043 10708.542 10092.723 PFA
8

PFA
No 14207.732 9690.340 9895.612 9638.426 PFAh

Yes 16027.836 16120.648 16038.208 16130.733 AFM
AFM

No 17820.780 16525.557 16326.445 16361.036 AFMh

Yes 19711.027 15708.241 16163.369 15718.614 PFA
16

PFA
No 23266.309 16106.685 16374.813 15996.808 PFAh

Yes 24554.830 24708.746 24565.897 24719.813 AFM
AFM

No 27686.058 25585.924 25288.177 25326.152 AFMh

Yes 47960.208 38961.412 40581.090 38972.479 PFA

50

32

PFA
No 52031.370 40238.448 40847.476 40038.740 PFAh



Figure 1: SD of Residuals vs ηk. The residuals and ηk are
positively correlated.

PFA in 24 out of 27 datasets, in contrast to PFAh which out-
performs PFA in only 13 out of 27 datasets. Generally, the
results demonstrate that the h models usually fit the data
better compared to the standard models because they are
the best-fitting models in 22 out of 27 datasets.

5. DISCUSSION
5.1 RQ1: Confounding Parameters in PFA
From both synthetic datasets and real-student datasets, we
demonstrated that PFA is usually a better fitting model
compared to AFM, 45 out of 72 in synthetic datasets (63%)
and 17 out of 27 in real-student datasets (63%). However,
we argued that the interpretation of the parameters in PFA
is not meaningful because their slope interpretation is am-
biguous between individual differences in student mastering
that are particular to KCs (i.e. student-KC interactions)
and different learning rates, which in turn makes PFA’s su-
periority questionable. The results from both experiments
and our alternative models support this hypothesis.

In the synthetic data experiment, we demonstrated the ca-
pability of AFMh and PFAh to capture the interactions be-
tween students and KCs, as those models outperform stan-
dard AFM and PFA when interactions are incorporated in
the synthetic datasets. Particularly, PFAh effectively han-
dles the confounding slopes in PFA because the added ηk
captures interactions and the slopes capture different rates
of learning from errors and successes. It is worth noting
that PFA also outperforms AFM in all datasets with strong
interactions where the generation method is not AFM with-
out interaction, including AFM with interaction. In other
words, PFA is a better fitting model when the generation
method includes either student-KC interactions or indepen-
dent slopes for errors and successes (or both), which attests
that the PFA parameters are indeed confounded.

This claim is further validated by the experiment with the
real-student datasets. Of the 27 datasets, PFA produces bet-
ter predictions than AFM on 17 of them – so, indeed, PFA
is generally a more predictive model even if it is less inter-
pretable than AFM. However, for 16 of these 17 datasets,
either of the new more meaningful models, AFMh (5 out of
17) or PFAh (11 out of 17), yields better predictions than
PFA. In other words, PFA is rarely the best-fitting model

Table 4: BIC scores of all 4 models on 27 real-student
datasets. Light grey highlights a better-fitting model between
AFM and PFA. Dark grey highlights the best-fitting model
among all 4 models.

DS AFM PFA AFMh PFAh

99 14568.873 14564.965 14506.087 14522.619

104 6965.241 6978.620 6957.865 6987.335

115 20752.969 20612.962 20722.641 20622.806

253 14598.394 14585.407 14563.883 14585.933

271 1277.940 1305.424 1283.093 1309.691

308 3072.037 3115.442 3079.713 3120.485

1980 6920.579 6944.683 6917.875 6951.888

372 6283.754 6213.442 6207.816 6222.314

1899 5541.982 5555.805 5534.952 5564.308

392 29177.451 29005.429 29006.499 28994.564

394 5580.649 5557.175 5550.959 5565.836

445 4964.794 4971.661 4945.798 4978.275

562 57459.694 56460.229 56410.123 56355.453

563 58377.219 57007.220 56876.034 56840.820

564 67622.473 66165.224 66035.163 65999.477

565 60111.965 57395.729 57057.449 56987.445

566 64040.573 63603.997 63459.030 63470.794

567 49015.532 48010.910 48117.234 48009.947

605 3355.982 3381.284 3361.952 3388.193

1935 8034.666 8052.826 8027.439 8060.300

1330 49749.563 49698.893 49623.904 49622.238

447 87354.605 85040.246 84523.160 84499.571

531 110398.18 106320.62 106032.06 105714.36

1943 127785.50 120277.02 118027.78 117993.15

1387 3298.273 3324.936 3300.726 3330.990

1007 3720.511 3738.319 3688.687 3723.710

4555 36957.404 36506.379 36365.781 36349.639

when we compare it with the models that are designed to
separately capture the student-KC interactions. Moreover,
even though PFA outperforms AFM in the majority of the
datasets, when compared with PFAh and AFMh, it is the
best model only in one dataset (6%). On the contrary, AFM
is the best model in four datasets (40%). Generally, the re-
sults also show that it is possible for a model to be both
interpretable and produce better predictions, as evidenced
by AFMh and PFAh.

5.2 RQ2: Meaningful Parameters
We return to the claim that the significance of model param-
eters and their interpretability supersedes goodness-of-fit or
prediction accuracy. The results with real-student datasets
demonstrate that AFMh and PFAh are usually better fit-
ting models compared to standard AFM or PFA, but the
question remains: do these models hold meaningful inter-



pretations, particularly concerning the h parameter?

It is essential to distinguish between the hik variable and its
associated estimated parameters, ηk. Defined in Eq. 3, the
h variable denotes the ratio of successful past attempts and
total past attempts, positing that students with higher prior
knowledge in a specific KC exhibit comparatively higher h
values. hik is deterministically calculated from the data. On
the other hand, its parameter, ηk, is estimated from fitting
the model to the data and indicates the relative influence of
the variable on predicting the outcome.

In a meaningful model, parameter estimates typically offer
clear interpretations. For instance, in AFM, the student in-
tercept represents the student’s prior knowledge, while the
KC intercept reflects the difficulty of the KC. But what in-
sights does ηk offer?

To answer this question, we investigated the relationship be-
tween ηk and the residuals, the difference between the actual
outcomes and the model predictions, for each student on cor-
responding KCs. Particularly, we investigated ds99 dataset,
where ηk ranges from -0.46 to 3.95 (µ = 1.12). Let’s first
look at the hik variables. When the KC has a strong vari-
ance for the interactions, which means some students are
really strong while some students are really weak on the
KC, we will also expect a high variance for hik of that KC.
In contrast, when the student-KC interactions have a weak
variance, hik will also be expected to have a low variance.
As a result, ηk should be correlated with the variance of the
corresponding student-KC interactions. The result from the
real-student data, as shown in Fig. 1, supports this hypoth-
esis and shows that the variance of the residuals and ηk are
in fact correlated.

Consequently, the ηk can be interpreted as representing the
variance of student-KC interactions of the associated KC.
In other words, when ηk is high, some students are really
good at the KC while other students are not. For example,
number-letter is a KC with a relatively high ηk from the En-
glish Article Tutor. The number-letter KC describes a skill
that involves selecting an English article (i.e. ”a” or ”an”) to
fill in the blank. Examples of problems with number-letter

KC are ”This is the first time that I’ve received ’99’ on
a test.” or ”My name begins with ’L’.”. Some, perhaps
otherwise struggling, students may learn this skill faster be-
cause they happen to focus on the sound of the letter in
the following noun and whether it is a vowel or consonant
sound. Other, perhaps otherwise good, students may learn
this skill slower because they focus on the written letter and
whether it is a vowel or consonant. This latter encoding
sometimes works, so it is non-trivial to reject in early induc-
tion if a learner thinks of it, However, it produces errors and
slows down learning overall. On the other hand, when ηk is
low, most students are relatively similarly good at that given
KC, so the differences in their performance will depend on
their overall characteristics, such as student intercepts (prior
knowledge). The corollary of this finding is that when ηk is
low, students are performing as expected from the model’s
prediction (Fig. 2) due to the small variances of residuals.
Conversely, students are not performing as expected on the
KCs when ηk is large (Fig. 2). Taken together, these results
demonstrate that the h models are not only better fitting

Figure 2: Actual Outcomes vs Predicted Outcomes
(ηk=0.16). When ηk is low, students are performing as ex-
pected from the model’s prediction.

Figure 3: Actual Outcomes vs Predicted Outcomes
(ηk=3.35). When ηk is high, students are not performing
as expected from the model’s prediction.

models, but their parameters are also meaningful and inter-
pretable. To illustrate the usefulness of the meaningful in-
terpretations, the above suggests a change in the KC model
and associated instruction so that the number-letter KC be-
comes unambiguous and the variance of students’ learning
is reduced.

The implications of an interpretable knowledge tracing model
with better predictive power are immense, especially with
practical applications. For example, Liu et al. demonstrate
that meaningful interpretations of AFM parameters (e.g.
learning rates for knowledge components’ slopes) can lead
to new scientific insights (e.g. improved cognitive models
discovery) and results in useful practical applications (e.g.
an intelligent tutoring system redesign) [7]. Similarly, our
work has many potential practical applications, such as im-
proved ITS design, better student tracing, and overall im-
provements to the use of model parameters to make decisions
about student learning and mastery.

6. CONCLUSIONS AND FUTURE WORK
In this work, we argued that models with high prediction
accuracy do not necessarily exhibit meaningful parameter



estimates, which are important for scientific and practical
applications. We demonstrated our claim in the context of
PFA using both synthetic data and real-student data. The
result supported our hypothesis that while PFA is a better
fitting model compared to AFM, its parameters’ interpreta-
tion is ambiguous. Further, we proposed new models AFMh
and PFAh, introducing a success-history variable (hk) de-
signed to capture student-KC interactions, to the existing
models. We evaluated their capabilities also with synthetic
data and real-student data and demonstrated that the new
models are both more interpretable and better fitting com-
pared to PFA.

While hk works reasonably well as a proxy of student-KC
interactions, in future work it might be important to test a
model with straightforward student:KC interaction terms;
though, there might be a possibly intractable number of
parameters. In addition, other possible configurations of
hk variables could be interesting to experiment with, such
as formulating hk to be centered at 0 instead of 0.5 or using
logarithmic form.
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