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ABSTRACT

What does it mean for a model to be a better model? One
conceptualization, indeed a common one in Educational Data
Mining, is that a better model is the one that fits the data
better, that is, higher prediction accuracy. However, of-
tentimes, models that maximize prediction accuracy do not
provide meaningful parameter estimates, making them less
useful for building theory and practice. Here we argue that
models that provide meaningful parameters are better mod-
els and, indeed, often also provide higher prediction accu-
racy. To illustrate our argument, we investigate the Per-
formance Factor Analysis (PFA) model and the Additive
Factors Model (AFM). PFA often has higher prediction ac-
curacy than the AFM. However, PFA’s parameter estimates
are ambiguous and confounded. We propose more inter-
pretable models (AFMh and PFAh) designed to address the
confounded parameters and use synthetic data to demon-
strate PFA’s parameter interpretability issues. The results
from the experiment with 27 real-world datasets also sup-
port our claims and show that more interpretable models
will also produce better predictions.
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1. INTRODUCTION

In Educational Data Mining (EDM), the conventional wis-
dom suggests that a superior model exhibits a better fit to
the data. However, this perspective overlooks a critical as-
pect: models that prioritize prediction accuracy sometimes
fall short in providing interpretable and meaningful param-
eter estimates. Yet, having interpretable and meaningful
model parameters is crucial for scientific and practical ap-
plications of the models we develop. An example of an appli-
cation of meaningful parameter estimates is when Koedinger
et al. observed irregular slopes in learning curves for area
planning which led to the discovery of a better Knowledge
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Component (KC) model [6]. For this purpose, prediction
accuracy is merely a means to an end, not the goal itself.
An exception might be black-box models used for their en-
hanced predictive capabilities within recommender systems
to great practical outcomes.

Unfortunately, recent trends in EDM research have only pre-
dominantly concentrated on model prediction accuracy, of-
ten neglecting the importance of the meaningfulness of the
parameters. Our goal in this paper is to demonstrate that
meaningful parameter estimation is not a necessary conse-
quence of more accurate model prediction. One prominent
example is the Deep Knowledge Tracing (DKT) model [12],
a knowledge tracing model based on Recurrent Neural Net-
works (RNNs) [15], which has been shown to achieve high
prediction accuracy in many datasets, but the parameters
in its networks are nearly uninterpretable. In this work, we
perform this demonstration in the context of two popular
models of student learning: the Performance Factors Anal-
ysis (PFA) [11] and the Additive Factors Model (AFM) [2].
While PFA tends to produce better predictions than AFM,
PFA’s parameter estimates are not meaningful because their
interpretation is ambiguous. As we will explain in more de-
tail below, interpreting the slope parameters in PFA is diffi-
cult because it could mean individual differences in learning
rates or differences in prior knowledge or difficulty of spe-
cific student-KC combinations but it could also mean differ-
ent learning rates from successful and unsuccessful attempts,
or even “unlearning” from errors. Conversely, AFM’s slope
is consistently and unambiguously interpretable as learning
rate [4].

To demonstrate how PFA’s parameters are confounded, we
proposed and evaluated two alternative models (AFMh and
PFAh) designed to unconfound the interaction between KCs
and students. We demonstrated the capabilities of these
alternative models with synthetic data generated from dif-
ferent models and configurations. Then, we conducted an
experiment with 27 real-world datasets from Datashop [3],
and found that PFA outperforms AFM in 17 datasets, but
our further analysis with the new alternative models showed
that PFA’s parameters are indeed difficult to interpret. We
also argue for the importance of parameter interpretability
by comparing AFM and PFA with these alternative models
AFMh and PFAh to demonstrate their meaningful interpre-
tations leading to potential insights and applications. In
particular, we are interested in these research questions:



e RQ1: Can we demonstrate confounding parameters in
PFA?

e RQ2: Do h models have meaningful parameters and
also produce better predictions?

2. RELATED WORK
2.1 DataShop

In this work, we use a variety of real-world datasets across

different domains from the DataShop repository [3]. DataShop

is an open data repository of the Pittsburgh Science of Learn-
ing Center (http://learnlab.org/datashop) for educational
data with associated visualization and analysis tools, which
has data from thousands of students derived from interac-
tions with on-line course materials and intelligent tutoring
systems, such as CTAT [1].

In DataShop terminology, KCs are used to represent pieces
of knowledge, concepts or skills that students need to solve
problems or particular steps in problems [5]. When a specific
set of KCs are mapped to a set of instructional tasks (usually
steps in problems) they form a KC Model, which is a specific
kind of student model.

2.2 AFM and PFA

The Additive Factors Model (AFM) [2] is a logistic regres-
sion that extends item response theory by incorporating a
growth or learning term. The model gives the probability
pij, in log-odds, that a student ¢ will get a problem step 7,
with related KCs (k) specified by gk, correct based on the
student’s baseline ability (6;), the baseline difficulty of the
related KCs on the problem step (8%), and the learning rate
of the KCs (y%). The learning rate represents the improve-
ment on a KC with each additional practice opportunity, so
it is multiplied by the number of practice opportunities (T;x)
that the student already had on the KC:

log(lfii;__) = 0i + Zk(qkBr + ¢irvrTin) (1)
ij

The Performance Factor Analysis (PFA) [11] is an exten-
sion of the AFM model that splits the number of practice
opportunities (T;) into the number of successful opportuni-
ties (sik), where students successfully complete the problem
steps, and the number of failed opportunities (fix), where
students make errors. Both (s;x) and (fix) have their own
slopes, v, and pg:

lOg(%) =0; + Ziqiu (B + visik + pefir)  (2)
ij

While PFA tends to produce better predictions than AFM,
its parameters are not particularly meaningful [8], particu-
larly because their slope interpretation is ambiguous. One
interpretation, which is consistent with the intention of PFA,
is that these parameters capture individual differences in
student mastering that are particular to KCs (i.e. student-
KC interactions). Namely, students who make more errors
on a KC than otherwise expected will master that KC more
slowly than otherwise expected.

An alternative, and perhaps more straightforward, interpre-
tation is that the success slope (S-slope; i) and failure slope
(F-slope, pi) represent different learning rates for prior ini-
tially successful versus failed practice opportunities. An in-
dication supporting this notion is the occasional occurrence
of a negative F-slope, which, under the second interpreta-
tion, can be interpreted as students being unable to learn
from unsuccessful attempts [8]. This interpretation could
be problematic since it implies that a true novice does not
learn (or even unlearns) from making errors. This seems
unlikely given modeling and empirical evidence that mak-
ing errors can contribute significantly to positive learning,
as long as feedback is provided [9, 16, 13].

In this work, we aim to demonstrate how the parameters in
PFA are confounded and propose an extension of the exist-
ing models designed to unconfound the interactions between
KCs and students from the PFA’s slopes.

3. AFMh AND PFAh MODELS

In order to unconfound the student-KC interaction from the
success and failure slopes, we need to add additional vari-
ables to the models to capture the student-KC interaction.
A straightforward approach is to add a variable for each
student-KC pair to capture the interaction, but this can lead
to overparameterization. Instead, we introduce a success-
history variable (h;x), which is a ratio between a number of
successful past attempts at solving a KC (s;) and a number
of total past attempts at solving that KC (t;k). The intu-
ition behind the success-history variable is that a student
who has better prior knowledge of a particular KC would
yield higher success rates for the KC. We formulated h;y
such that its value will be 0.5 at the first opportunity be-
cause h;x should be distinguishable in the case of consecutive
failed attempts at the beginning. If h;j, started at 0, its value
would remain 0 regardless of the number of failed attempts
at the beginning, which could be problematic for the model:

sik + 1
hik = 3
P e+ 2 ®)

We incorporated the h;; variables into AFM and PFA mod-
els to create AFMh and PFAh models, in the term g;jrnihi.
The equations for AFMh (Eq. 3) and PFAh (Eq. 4) are
below.

109(71 fZ; -) = 0i + Zkqiu(Be + e Tie +mihic)  (4)
ij
109(1 il; -) = 0i + Zkqjn(Br + vesic + pr fir + ihik)  (5)
ij

4. EXPERIMENTS

We conducted two experiments, on synthetic data and real
student data, to evaluate the performance of new models
(AFMh and PFAh) compared to the standard models (AFM
and PFA). We used Bayesian information criterion (BIC)
[10] as the main metric to compare model performance. Our



Table 1: The expected best-fitting model for each dataset
configuration. PFA is expected to be the best-fitting model
when there are different learning rates and no student-KC
interactions, but if there are strong student-KC interactions,
PFAL is expected to be the best-fitting model. Similarly, if
there is a single learning rate and no student-KC interactions,
AFM is expected to be the best-fitting model, but if there are
strong student-KC interactions, AFMh is expected to be the
best-fitting model.

No Interaction | With Interaction

1-slope (i.e. 1 AFM AFMh

learning rates)

2-slopes (i.e. 2 PFA PFAhL

learning rates)

hypothesis is that if there are strong student-KC interac-
tions, the A models will outperform the standard models,
and if there are different learning rates for successful and
failed attempts, PFA-based models (i.e. PFA and PFAh)
will be better-fitting models, but if there is a single learn-
ing rate (i.e. slope), AFM-based models will perform better.
Our hypotheses are summarized in Table 1. Additionally, if
PFA parameters are indeed confounded by both the student-
KC interactions and two learning rates, we expect PFA to
outperforms AFM in configurations with either student-KC
interactions or 2 learning rates (or both). In other words,
all configurations except a single learning rate with no inter-
action. Consequently, if the h variables are in fact able to
unconfound them by capturing the student-KC interactions,
PFAh and AFMh will outperform PFA in their correspond-
ing configuration.

4.1 Experiment 1: Synthetic Data
4.1.1 Methods

In this experiment, we aim to validate the efficacy of our
newly developed model in capturing the interaction dynam-
ics between students and KCs. To achieve this, we evalu-
ate this model on synthetic data with known characteris-
tics by sampling model parameters such as student inter-
cepts, KC intercepts, and KC slopes from normal distribu-
tions with statistical properties similar to those observed in
real-student data. We generated synthetic datasets based
on either the AFM or PFA models, serving as the ground
truth for student error rates and correctness [14]. Specifi-
cally, AFM will generate datasets that are assumed a single
learning rate (i.e. slope), but PFA will generate datasets
that are assumed different learning rates for successful and
failed attempts. To emulate the student-KC interactions
observed in real-world scenarios, we introduced variability
by augmenting datasets with student-KC interaction effects.
This was achieved by sampling values from a normal distri-
bution, reflecting the variance in student performance spe-
cific to each KC. Overall, we created 18 dataset groups en-
compassing varying the number of students (10, 20, and
50), the number of KCs (8, 16, and 32), and the strength
of the student-KC interactions (SD = 0.2 and 1.2), where
each configuration was used to generate 4 datasets based

on each generation models (AFM, PFA, AFM+Interaction,
and PFA+Interaction) to form a 2x2 experimental design,
corresponding to Table 1. The standard deviations used to
simulate student-KC interactions were selected based on the
standard deviations of student intercepts from all real stu-
dents in our datasets estimated using AFM. We used this
value as an estimate of the likely amount of variation in
student intercepts in a dataset, which could be used as a
proxy for reasonable variation in student-KC interactions.
We evaluate all four models (AFM, PFA, AFMh, and PFAh)
on each dataset. Table 2 and Table 3 show the BIC scores
for each model on each dataset in this experiment and sum-
marize the best-fitting models by BIC score.

4.1.2 Results

As shown in Table 2, when the student-KC interaction is
weak (SD = 0.2), AFM and PFA are the best-fitting mod-
els in all datasets depending on the generating model (i.e.
AFM is the best-fitting model when the generating model is
AFM, and PFA is the best-fitting model when the generating
model is PFA). However, when the student-KC interaction
is strong (SD = 1.2), the model corresponding to the gen-
eration method is the best-fitting model in all datasets, ex-
cept one (student=10, KC=32, method=PFA+Interaction),
as shown in Table 3. In other words, when there is a rea-
sonably strong interaction between students and KCs, the
models with the h variable consistently outperform the stan-
dard models. Moreover, the result shows that PFA consis-
tently outperforms AFM when there are student-KC inter-
actions, even when the base generation model is AFM, in
which AFMh also consistently outperforms PFA. This sup-
ports our hypothesis that PFA parameters are confounded
by both the student-KC interactions and two learning rates,
but the h variable will be able to unconfound them by cap-
turing the student-KC interactions. Overall, these results
also demonstrate the capability of the h models to capture
the dynamics of student-KC interactions.

4.2 Experiment 2: Real Student Data
4.2.1 Methods

We conducted an experiment with 27 real-world dataset
from Datashop across different domains (e.g., geometry, frac-
tions, physics, statistics, English articles, Chinese vocabu-
lary), educational levels (e.g., grades 5 to 12, college, adult
learners), and settings (e.g., in class vs. out of class as home-
work). We evaluated all four models (AFM, PFA, AFMh,
and PFAh) on each dataset. Table 4 shows the BIC score
obtained when fitting each model on each dataset in this
experiment.

4.2.2  Results

Table 4 shows the BIC score of each model on each real-
student dataset. When comparing between AFM and PFA,
PFA outperforms AFM in 17 out of 27 datasets, replicating
prior evidence. However, when comparing among all four
models, PFA is the best-fitting model in only one dataset
(where the difference in BIC score is relatively small), while
AFM is the best-fitting model in 4 datasets. AFMh and
PFA are the best-fitting models in 11 datasets each. Among
the 17 datasets that PFA outperforms AFM, AFMh is the
best-fitting model in 5 datasets. In fact, AFMh outperforms



Table 2: BIC scores of all 4 models for each synthetic dataset with interaction SD = 0.2. Light grey highlights the best-fitting
model among the models. AFM is always the best-fitting model when the generation model is AFM regardless of student-
KC interactions. Similarly, PFA is always the best-fitting model when the generation model is PFA regardless of student-KC
interactions.

Student | KC | Generation | Interaction AFM PFA AFMh PFAh Best
AFM Yes 1590.290 1627.946 1598.361 1636.017 | AFM

8 No 1630.425 1662.996 1634.406 1669.617 | AFM

PFA Yes 2091.749 1436.743 1538.479 1444.813 | PFA

No 2072.443 1514.381 1607.171 1522.153 | PFA

AFM Yes 3818.870 | 3880.883 | 3827.027 | 3885.613 | AFM

10 16 No 3808.662 | 3868.290 | 3817.426 | 3877.054 | AFM
PFA Yes 4010.223 2807.466 2893.398 | 2815.151 | PFA

No 3949.252 | 2840.803 2913.090 | 2849.557 | PFA

AFM Yes 6114.022 | 6196.097 | 6121.329 | 6205.297 | AFM

39 No 6042.236 | 6125.623 | 6051.586 | 6135.080 | AFM

PFA Yes 7925.592 | 6382.965 | 6676.408 | 6392.397 | PFA

No 7823.461 6348.209 | 6673.301 6357.680 | PFA

AFM Yes 4791.102 | 4837.957 | 4799.797 | 4846.721 | AFM

8 No 4601.883 | 4653.242 | 4610.647 | 4662.006 | AFM

PTA Yes 6755.818 | 6403.026 | 6700.326 | 6411.790 | PFA

No 6728.999 | 6445.256 | 6715.965 | 6453.907 | PFA

AFM Yes 6520.145 | 6597.033 | 6529.602 | 6606.491 | AFM

2 16 No 6334.954 | 6405.390 | 6342.483 | 6410.950 | AFM
PFA Yes 9840.107 | 8331.947 | 8969.829 | 8338.121 | PFA

No 10059.017 | 8498.802 | 9050.723 | 8508.260 | PFA

AFM Yes 10894.995 | 10989.292 | 10905.136 | 10999.442 | AFM

39 No 10614.447 | 10714.491 | 10624.598 | 10723.488 | AFM

PFA Yes 17967.629 | 14766.013 | 15470.549 | 14776.163 | PFA

No 18373.613 | 14781.398 | 15415.666 | 14791.548 | PFA

AFM Yes 7752.478 7813.250 7762.159 7822.930 | AFM

8 No 7465.130 7529.155 7474.811 7538.835 | AFM

PFA Yes 8978.669 | 6766.349 7572.593 | 6776.029 | PFA

No 9386.140 7121.818 | 8032.094 7131.499 | PFA

AFM Yes 17436.148 | 17535.014 | 17446.522 | 17545.388 | AFM

50 16 No 17380.842 | 17468.669 | 17390.404 | 17478.980 | AFM
PFA Yes 23980.442 | 17452.077 | 19262.037 | 17462.450 | PFA

No 23881.545 | 17732.729 | 19555.968 | 17743.103 | PFA

AFM Yes 28246.575 | 28398.769 | 28257.642 | 28409.835 | AFM

39 No 28505.827 | 28648.146 | 28515.574 | 28658.121 | AFM

PFA Yes 33787.825 | 30985.826 | 31862.632 | 30996.893 | PFA

No 35348.852 | 32002.575 | 32923.707 | 32013.642 | PFA




Table 3: BIC scores of all 4 models for each synthetic dataset with interaction SD = 1.2. Light grey highlights the best-
fitting model among the models. AFM is always the best-fitting model when the generation model is AFM without student-KC
interaction, but AFMh is the best-fitting model when there are student-KC interactions. Similarly, PFA is always the best-fitting
model when the generation model is PFA without student-KC interaction, but PFAh is usually the best-fitting model when there
are student-KC interactions.

Student | KC | Generation | Interaction AFM PFA AFMh PFAh Best
AFM Yes 1051.481 1094.670 1059.552 1102.728 | AFM
8 No 1117.250 1110.974 1095.651 1121.092 | AFMh
PFA Yes 2086.542 1736.834 1768.927 1744.905 | PFA
No 2442.974 1779.640 1788.976 1778.851 | PFAh
AFM Yes 2209.120 | 2267.256 2217.864 | 2276.020 | AFM
10 16 No 2412.882 2359.565 2333.930 | 2359.085 | AFMh
PFA Yes 3741.063 | 3585.428 | 3684.478 | 3594.192 | PFA
No 4298.942 3809.425 3870.989 | 3807.412 | PFAh
AFM Yes 6362.627 | 6444.527 | 6371.700 | 6453.985 | AFM
32 No 7290.315 6785.575 | 6770.986 | 6784.784 | AFMh
PFA Yes 10103.516 | 8081.974 | 8434.942 | 8091.431 | PFA
No 10653.994 | 8404.126 | 8559.083 | 8410.545 | PFA
AFM Yes 2387.151 2438.373 2395.171 2447.137 | AFM
8 No 2811.167 | 2698.942 2661.740 | 2695.280 | AFMh
PFA Yes 5208.531 4508.708 | 4661.685 | 4515.641 | PFA
No 5448.687 | 4676.877 | 4718.731 4649.611 | PFAh
AFM Yes 5605.182 5687.103 5614.639 5696.560 | AFM
20 16 No 6109.225 5905.782 5833.515 5876.967 | AFMh
PFA Yes 10155.346 | 7978.861 8504.096 7988.318 | PFA
No 11099.476 | 8051.809 8196.360 | 8011.967 | PFAh
AFM Yes 11602.318 | 11720.229 | 11612.225 | 11730.379 | AFM
32 No 12897.355 | 11902.381 | 11796.091 | 11832.277 | AFMh
PFA Yes 18625.785 | 14559.687 | 15284.133 | 14569.251 | PFA
No 20953.855 | 14522.347 | 14889.161 | 14501.333 | PFAhQ
AFM Yes 9270.245 9337.691 9279.925 | 9347.372 | AFM
8 No 10248.059 | 9472.805 | 9301.816 | 9334.143 | AFMh
PFA Yes 13377.323 | 10083.043 | 10708.542 | 10092.723 | PFA
No 14207.732 9690.340 | 9895.612 | 9638.426 | PFAh
AFM Yes 16027.836 | 16120.648 | 16038.208 | 16130.733 | AFM
50 16 No 17820.780 | 16525.557 | 16326.445 | 16361.036 | AFMh
PFA Yes 19711.027 | 15708.241 | 16163.369 | 15718.614 | PFA
No 23266.309 | 16106.685 | 16374.813 | 15996.808 | PFAh
AFM Yes 24554.830 | 24708.746 | 24565.897 | 24719.813 | AFM
32 No 27686.058 | 25585.924 | 25288.177 | 25326.152 | AFMh
PFA Yes 47960.208 | 38961.412 | 40581.090 | 38972.479 | PFA
No 52031.370 | 40238.448 | 40847.476 | 40038.740 | PFAh
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Figure 1: SD of Residuals vs 7. The residuals and 7, are
positively correlated.

PFA in 24 out of 27 datasets, in contrast to PFAh which out-
performs PFA in only 13 out of 27 datasets. Generally, the
results demonstrate that the h models usually fit the data
better compared to the standard models because they are
the best-fitting models in 22 out of 27 datasets.

5. DISCUSSION
5.1 RQ1: Confounding Parameters in PFA

From both synthetic datasets and real-student datasets, we
demonstrated that PFA is usually a better fitting model
compared to AFM, 45 out of 72 in synthetic datasets (63%)
and 17 out of 27 in real-student datasets (63%). However,
we argued that the interpretation of the parameters in PFA
is not meaningful because their slope interpretation is am-
biguous between individual differences in student mastering
that are particular to KCs (i.e. student-KC interactions)
and different learning rates, which in turn makes PFA’s su-
periority questionable. The results from both experiments
and our alternative models support this hypothesis.

In the synthetic data experiment, we demonstrated the ca-
pability of AFMh and PFAh to capture the interactions be-
tween students and KCs, as those models outperform stan-
dard AFM and PFA when interactions are incorporated in
the synthetic datasets. Particularly, PFAh effectively han-
dles the confounding slopes in PFA because the added 7y
captures interactions and the slopes capture different rates
of learning from errors and successes. It is worth noting
that PFA also outperforms AFM in all datasets with strong
interactions where the generation method is not AFM with-
out interaction, including AFM with interaction. In other
words, PFA is a better fitting model when the generation
method includes either student-KC interactions or indepen-
dent slopes for errors and successes (or both), which attests
that the PFA parameters are indeed confounded.

This claim is further validated by the experiment with the
real-student datasets. Of the 27 datasets, PFA produces bet-
ter predictions than AFM on 17 of them — so, indeed, PFA
is generally a more predictive model even if it is less inter-
pretable than AFM. However, for 16 of these 17 datasets,
either of the new more meaningful models, AFMh (5 out of
17) or PFAL (11 out of 17), yields better predictions than
PFA. In other words, PFA is rarely the best-fitting model

Table 4: BIC scores of all 4 models on 27 real-student
datasets. Light grey highlights a better-fitting model between
AFM and PFA. Dark grey highlights the best-fitting model
among all 4 models.

DS AFM PFA AFMh PFAh

99 14568.873 | 14564.965 14522.619
104 6965.241 | 6978.620 6987.335
115 | 20752.969 20722.641 | 20622.806
253 14598.394 | 14585.407 14585.933
271 1305.424 1283.093 1309.691
308 3115.442 | 3079.713 | 3120.485
1980 | 6920.579 | 6944.683 6951.888
372 6283.754 | 6213.442 6222.314
1899 | 5541.982 | 5555.805 5564.308
392 | 29177.451 | 29005.429 | 29006.499

394 5580.649 | 5557.175 5565.836
445 4964.794 | 4971.661 4978.275
562 | 57459.694 | 56460.229 | 56410.123

563 | 58377.219 | 57007.220 | 56876.034

564 | 67622.473 | 66165.224 | 66035.163

565 | 60111.965 | 57395.729 | 57057.449

566 | 64040.573 | 63603.997 63470.794
567 | 49015.532 | 48010.910 | 48117.234

605 3381.284 | 3361.952 | 3388.193
1935 | 8034.666 | 8052.826 8060.300
1330 | 49749.563 | 49698.893 | 49623.904

447 | 87354.605 | 85040.246 | 84523.160

531 110398.18 | 106320.62 | 106032.06

1943 | 127785.50 | 120277.02 | 118027.78

1387 3324.936 | 3300.726 | 3330.990
1007 | 3720.511 3738.319 3723.710
4555 | 36957.404 | 36506.379 | 36365.781

when we compare it with the models that are designed to
separately capture the student-KC interactions. Moreover,
even though PFA outperforms AFM in the majority of the
datasets, when compared with PFAh and AFMh, it is the
best model only in one dataset (6%). On the contrary, AFM
is the best model in four datasets (40%). Generally, the re-
sults also show that it is possible for a model to be both
interpretable and produce better predictions, as evidenced
by AFMh and PFAh.

5.2 RQ2: Meaningful Parameters

We return to the claim that the significance of model param-
eters and their interpretability supersedes goodness-of-fit or
prediction accuracy. The results with real-student datasets
demonstrate that AFMh and PFAh are usually better fit-
ting models compared to standard AFM or PFA, but the
question remains: do these models hold meaningful inter-



pretations, particularly concerning the h parameter?

It is essential to distinguish between the h;, variable and its
associated estimated parameters, 7. Defined in Eq. 3, the
h variable denotes the ratio of successful past attempts and
total past attempts, positing that students with higher prior
knowledge in a specific KC exhibit comparatively higher h
values. h;j is deterministically calculated from the data. On
the other hand, its parameter, 7y, is estimated from fitting
the model to the data and indicates the relative influence of
the variable on predicting the outcome.

In a meaningful model, parameter estimates typically offer
clear interpretations. For instance, in AFM, the student in-
tercept represents the student’s prior knowledge, while the
KC intercept reflects the difficulty of the KC. But what in-
sights does n, offer?

To answer this question, we investigated the relationship be-
tween 7, and the residuals, the difference between the actual
outcomes and the model predictions, for each student on cor-
responding KCs. Particularly, we investigated ds99 dataset,
where 7 ranges from -0.46 to 3.95 (u = 1.12). Let’s first
look at the h;; variables. When the KC has a strong vari-
ance for the interactions, which means some students are
really strong while some students are really weak on the
KC, we will also expect a high variance for h;; of that KC.
In contrast, when the student-KC interactions have a weak
variance, h;; will also be expected to have a low variance.
As a result, 1 should be correlated with the variance of the
corresponding student-KC interactions. The result from the
real-student data, as shown in Fig. 1, supports this hypoth-
esis and shows that the variance of the residuals and 7, are
in fact correlated.

Consequently, the n, can be interpreted as representing the
variance of student-KC interactions of the associated KC.
In other words, when 7 is high, some students are really
good at the KC while other students are not. For example,
number-letter is a KC with a relatively high 7 from the En-
glish Article Tutor. The number-letter KC describes a skill
that involves selecting an English article (i.e. 7a” or ”an”) to
fill in the blank. Examples of problems with number-letter
KC are "This is the first time that I've received __ 99’ on
a test.” or "My name begins with __ ’L’.”. Some, perhaps
otherwise struggling, students may learn this skill faster be-
cause they happen to focus on the sound of the letter in
the following noun and whether it is a vowel or consonant
sound. Other, perhaps otherwise good, students may learn
this skill slower because they focus on the written letter and
whether it is a vowel or consonant. This latter encoding
sometimes works, so it is non-trivial to reject in early induc-
tion if a learner thinks of it, However, it produces errors and
slows down learning overall. On the other hand, when 7y, is
low, most students are relatively similarly good at that given
KC, so the differences in their performance will depend on
their overall characteristics, such as student intercepts (prior
knowledge). The corollary of this finding is that when 7y, is
low, students are performing as expected from the model’s
prediction (Fig. 2) due to the small variances of residuals.
Conversely, students are not performing as expected on the
KCs when 7y, is large (Fig. 2). Taken together, these results
demonstrate that the h models are not only better fitting
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Figure 2: Actual Outcomes vs Predicted Outcomes
(7%=0.16). When 7, is low, students are performing as ex-
pected from the model’s prediction.
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Figure 3: Actual Outcomes vs Predicted Outcomes
(7%=3.35). When 7 is high, students are not performing
as expected from the model’s prediction.

models, but their parameters are also meaningful and inter-
pretable. To illustrate the usefulness of the meaningful in-
terpretations, the above suggests a change in the KC model
and associated instruction so that the number-letter KC be-
comes unambiguous and the variance of students’ learning
is reduced.

The implications of an interpretable knowledge tracing model
with better predictive power are immense, especially with
practical applications. For example, Liu et al. demonstrate
that meaningful interpretations of AFM parameters (e.g.
learning rates for knowledge components’ slopes) can lead
to new scientific insights (e.g. improved cognitive models
discovery) and results in useful practical applications (e.g.
an intelligent tutoring system redesign) [7]. Similarly, our
work has many potential practical applications, such as im-
proved ITS design, better student tracing, and overall im-
provements to the use of model parameters to make decisions
about student learning and mastery.

6. CONCLUSIONS AND FUTURE WORK

In this work, we argued that models with high prediction
accuracy do not necessarily exhibit meaningful parameter



estimates, which are important for scientific and practical
applications. We demonstrated our claim in the context of
PFA using both synthetic data and real-student data. The
result supported our hypothesis that while PFA is a better
fitting model compared to AFM, its parameters’ interpreta-
tion is ambiguous. Further, we proposed new models AFMh
and PFAh, introducing a success-history variable (hy) de-
signed to capture student-KC interactions, to the existing
models. We evaluated their capabilities also with synthetic
data and real-student data and demonstrated that the new
models are both more interpretable and better fitting com-
pared to PFA.

While hj works reasonably well as a proxy of student-KC
interactions, in future work it might be important to test a
model with straightforward student:KC interaction terms;
though, there might be a possibly intractable number of
parameters. In addition, other possible configurations of
hyi variables could be interesting to experiment with, such
as formulating hy to be centered at 0 instead of 0.5 or using
logarithmic form.
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