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We use a novel experimental setup to obtain the vertical velocity and acceleration statistics of snowflakes settling in
atmospheric surface-layer turbulence, for Taylor microscale Reynolds numbers (Re ) between 400 and 67,000, Stokes
number (St) between 0.12 and 3.50 and a broad range of snowflake habits. Despite the complexity of snowflake
structures and the non-uniform nature of the turbulence, we find that mean snowflake acceleration distributions can be
uniquely determined from the value of St. Ensemble-averaged snowflake root-mean-square (rms) accelerations scale
nearly linearly with St. Normalized by the rms value, the acceleration distribution is nearly exponential, with a scaling
factor for the (exponent) of -3/2 that is independent of Re, and St. Kurtosis scales with Re, , albeit weakly compared to
fluid tracers in turbulence. Gravitational drift with sweeping is observed for St < 1. Surprisingly, the same exponential
distribution describes a pseudo-acceleration calculated from fluctuations of snowflake terminal fall speed in still air.
This equivalence suggests an underlying connection between how turbulence determines the trajectories of particles
and the microphysics determining the evolution of their shapes and sizes.

I. INTRODUCTION

The terminal velocity V; of a falling particle is determined
by a balance between the gravitational force and fluid drag.
No comprehensive theory has yet been developed to de-
scribe how particles settle within flows that are oscillating or
turbulent!, where particles do not necessarily act as pure fluid
tracers but instead can cross Lagrangian fluid trajectories®™.
Numerical simulations and laboratory experiments show that
both negative and positive perturbations from the terminal ve-
locity are possible, termed ‘loitering’ and ‘sweeping’, respec-
tively. Particles of fixed size falling in isotropic turbulence
can have an average ensemble settling velocity V, many times
slower or faster than V;°.

The question of how turbulent motions affect inertial par-
ticles has been considered in fields as diverse as planet
formation®, pulverized coal ash deposition’, spore transport®,
wildfire brand transport”, and natural particle deposition in the
oceans!®!!. Snowflakes in a turbulent atmosphere represent
a particularly complex example. Predictions of weather and
climate models, hurricane trajectories, cloud lifetimes, and at-
mospheric convective dynamics, all have been found to have
strong sensitivity to representations of how fast snowflakes
fall, but only by considering spread in V; rather than V,,'>-18,

This seeming omission owes in part to the challenge of
determining how precipitation particles with high structural
variability'® respond to air currents, as well as the non-
uniform nature of atmospheric flows?. In still air, the speed
at which frozen precipitation particles settle has been shown
to be modified by their turbulent wakes which induces such
phenomena as flutter, spiraling and drifting?' . Adding the
complication that the atmosphere is turbulent — which is al-
ways the case to some degree — there are few observational
studies available to provide guidance. Those that have in-
vestigated the problem did so by imaging snowflake passage
through a light sheet. They inferred that sweeping motions

dominate particle dynamics rather than loitering?®?’. No-
tably, however, assessment of the snowflake inertial proper-
ties was limited by an absence of concurrent measurements of
snowflake density and mass.

Turbulence intensity and the interactions between turbu-
lence and inertial particles are commonly defined using two
dimensionless parameters: the turbulent Taylor microscale
Reynolds number R), = u’A/v, where ' is the root-mean-
squared (rms) along-wind velocity and A is the Taylor length
scale of turbulence, and the Stokes number St = T, / Ty,
where 7, and 7, are the particle-response time scale and
Kolmogorov time scale, respectively. Note that Taylor mi-
croscales computed using three-dimensional sonic anemome-
ters should be viewed with caution, as the measurement scale
of the anemometer can be of the same order as the microscale.
However, the integral length scale L, of the largest eddies in
the flow can also be estimated based on the temporal auto-
correlation function of the streamwise turbulent velocity fluc-
tuations, which offers a more reliable length-scale parame-
ter for experimentally characterizing turbulence in the atmo-
spheric surface layer. The particle settling timescale is given
by 7, = V;/g, where V; accounts for non-linear drag associ-
ated with particle Reynolds numbers greater than unity and g
is the acceleration due to gravity. The Kolmogorov timescale
is determined from 7, = (v/€)!/? where v is the kinematic vis-
cosity and € the dissipation rate of turbulence kinetic energy.
Two additional nondimensional parameters include a modi-
fied version of the Stokes number Sv = V;/u’ and the density
ratio B = 3ps/(ps+2ps), where py and py are the surround-
ing air and snowflake densities?®, respectively. Computation
of py is non-trivial 2% and the method used herein is described
in detail in%.

In this work, we present an experimental study of the La-
grangian dynamics of the vertical acceleration, extreme ac-
celeration, kurtosis, and acceleration variance statistics for a
wide range of measured snowflake sizes and densities for at-
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mospheric turbulence with Reynolds numbers spanning 400 to
67,000 and ensemble mean Stokes numbers between 0.12 and
3.50. The structure of this paper is as follows: in Section II,
we describe the experimental facility and data analysis. The
classification of snowflakes is described in Section III. The re-
sults are presented in Section IV, followed by a conclusion in
Section IV.

1l.  EXPERIMENTS AND DATA ANALYSIS

For the study here, we introduce to studies of snowflake
settling a new device developed for the direct measurement of
hydrometeor mass, size, and density — the Differential Emis-
sivity Imaging Disdrometer (DEID)! (See Appendix A). Dur-
ing a series of field experiments conducted at a high-elevation
mountain location in Utah between October 2020 and April
202132, the DEID was deployed alongside measurements of
air temperature, relative humidity and turbulence, and placed
directly beneath a particle tracking system consisting of a laser
light sheet and a single-lens reflex (SLR) camera. All mea-
surements were made at a nominal height of 2 m above the
top of the snowpack level (see Fig. la), and the schematic
of the experimental setup is illustrated in Fig. 1b. The par-
ticle tracking system consisted of a laser sheet with a sam-
pling volume of 10 cm x 18 cm x 7 cm oriented normal to
the viewing angle of a Nikon D850 SLR camera. Snowflake
tracking was performed using a Particle Tracking Velocimetry
(PTV) technique®*3* to measure particle vertical velocities V,,
in the laser light sheet for concentrations between 1500 m~3
and 2800 m~3 (Fig. Ala) and Particle Streak Velocimetry
(PSV)* for concentrations between 710m~3 and 1460 m—3
as illustrated in Fig. Ala. The SLR camera recorded 1920
pixel x 1080 pixel images with a spatial resolution of ~ 160
wum pixel ! at 120 fps within a vertical laser sheet created us-
ing three 10 W, 520 nm diode lasers and a collimator lens. A
laser-beam spread angle of ~ 6.8° allowed for a light sheet
with near constant thickness of ~7 cm throughout the region
of interest. A single focal length Nikon AF-S VR Micro -
Nikkor 105 mm f/2.8G IF-ED lens permitted a depth of field
greater than the thickness of the laser sheet.

Particle vertical velocities V, and accelerations a, were
measured within the laser sheet, which could be subsequently
compared to estimates of particle terminal velocities in still
air V; derived from DEID microphysical measurements and
well-known aerodynamic formulations3®37 (see Appendix B)

11l.  CLASSIFICATION OF SNOWFLAKE HABIT

Snowflake images from the particle tracking system and the
DEID are used together to classify snow-crystal type follow-
ing the method outline by®® following the international clas-
sification for seasonal snow on the ground® . Mathematically,
SDI is defined as the ratio of a snowflake’s area directly mea-
sured by the DEID, A; to the melted area of a spherical water

3-D sonic lllumination

anemometer

(b) Hotplate

FIG. 1. (a) Experimental setup for measurement of the microphys-
ical properties of snowflakes and their motions. (1) 20m tower (2)
Infrared camera (3) DEID Hotplate (4) Three 10-W lasers and op-
tical lens (5) D850 Nikon SLR camera (6) 3D sonic anemometer
(7) Data logger/computer and (8) Relative humidity and temperature
sensor. (b) Schematic of setup used for measurement of turbulence
and snowflake velocity.

droplet, A,, with the same mass (Eq. 1),

Ay
SDI = —. 1
A, M
The melted area of a spherical droplet is estimated using the
snowflake’s mass and can be expressed as

9 23
A=y (g) . @

Here, m is the mass of the snowflake, and p,, the density of
liquid water, which is taken to be 1000 kg m 3.

An SDI = 1 corresponds to a spherical rain drop, and high
values of SDI indicate a more complex snowflake structure
and hence lower snowflake density. The range of SDI for six
snowflake types is illustrated in Fig. 2 and the range of SDI for
the five cases shown in Table II. The probability distribution
function of SDI for five cases is plotted in Fig. 3.

IV. RESULTS

Ten case studies are considered here, each lasting between
approximately 3 and 15 minutes, encompassing a total sam-
ple of 533,000 snowflake particles. As summarized in the
Table I, our measurements cover a particularly broad range
of turbulence and microphysical conditions compared to prior
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FIG. 2. Binary snowflake images obtained from a particle tracking
system, along with the range of associated SDI for each category.
Each type consists of five samples.
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FIG. 3. Probability distribution of SDI for five cases summarized in
Table II along with the associated range of values of SDI shown in
Fig. 2.

studies of interactions between particles and turbulence: most
notably three orders of magnitude in Rj and three orders of
magnitude in S, with values of R, between 400 and 67,000
and values of St between 0.01 to 12.00, and also the first di-
rect measurements of snowflake density varying between 9
and 285 kg m—330. Snowflake effective diameter Degy ranged
from 0.5 mm to 11.9mm (see Fig. A2a) and aspect ratios be-
tween 1.0 and 9.3. Snowflake settling velocity V, and terminal
velocity V; ranged from -2.13 to 4.21 ms~! and from 0.06 to
3.24 ms~! respectively and PDFs of V, and V; for a particular
case is shown in Fig. A2b. Five representative case studies are
considered here, each lasting between approximately 3 and 15
minutes, encompassing a total sample of 335,000 snowflake
particles. As summarized in the Table II, the mean values of
each parameter include values of R, between 400 and 67,000,

values of St between 0.12 to 3.51, integral length scales L,
varying from 11 m to 198 m, and mean snowflake densities
between 54 and 87 kg m—3. Snowflake mean settling veloc-
ities ranged from 0.11 to 0.76 ms~' and their mean terminal
velocities from 0.43 t0 0.64 ms™!.

Figure 4a shows examples of snowflake dynamics in tur-
bulence. Falling particles may be unperturbed by turbulent
eddies when they are dense with low values of 8 and high
values of St, but can display quite chaotic trajectories when
B is high and St is low (following trajectories associated with
turbulent eddies more faithfully). Settling velocities in Fig. 4b
shows not only sweeping as was previously observed?®? but
also significant loitering. The highly asymmetric nature of the
settling-velocity distribution relative to terminal velocities (in
still air) suggests that the effect of turbulence on snowflake
velocities does not simply average to zero. In other words, it
cannot be assumed that the terminal velocity is a satisfactory
ensemble approximation of the mean settling velocity.
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FIG. 4. (a) The trajectories of snowflakes with three distinct values
of B, arms, and St but the &~ same area sampled during a three-minute
period where R; = 690 £49. The trajectory shown by a black line
covers a duration of 0.7 7 and the red line a duration of 28 7. Ar-
rows indicate the starting position of each snowflake. (b) The prob-
ability distribution function of the relative difference of snowflake
settling velocity to the terminal velocity during a three-minute event
with approximately N = 300,000 snow particles in turbulence with
Ry =2500 + 200 and St,, = 0.64 £0.26. Note that positive values
of V; andV,, indicate downward snowflake motion.
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Here, we are primarily concerned with evaluating the mech-
anisms that determine departures from the terminal velocity,
or snowflake vertical accelerations. Experimentally, these ac-
celerations a,, can be calculated from fluctuations in snowflake
velocities observed using particle tracking, calculated here by
differentiating a third-order polynomial fit to the times series
of snowflake velocities and evaluated over a duration equiv-
alent to the Kolmogorov time scale ‘c,,‘m (see Appendix B).
The Kolmogorov time scale ranges from 0.02 s to 0.24 s de-
pending on turbulence levels. Figure 5 shows measured accel-
eration distributions normalized with respect to the rms value

Qyrms = <a3>1/ 2 for five case-study periods characterized by
Rj varying from 400 to 67000 and St varying from 0.12
to 3.50. The distribution closely approximates a Laplacian,
namely an exponential distribution symmetric about Oms~2.
The exponent slope with respect to |ay|/ayms is nearly 3/2
(Fig. 5a ), for all Ry and St, a scaling noted previously in
Lagrangian simulations looking at spherical particles with
Re; ~ O(100)*1.

More notably, we find that an equivalent Laplacian dis-
tribution represents another pseudo-acceleration (d;) calcu-
lated from a second-order polynomial fit to Eulerian fluctua-
tions in the ensemble-mean snowflake terminal velocities (V;).
That is, G, is an acceleration calculated from a time series of
ensemble-averaged terminal velocities of snowflakes that have
fallen onto the hotplate (Appendix B).

This result is particularly surprising given that a priori the
terminal velocity would be seen as being independent of lo-
cal turbulence. It is determined uniquely by spatial and tem-
poral variability in snowflake mass, size, and density, and is
therefore primarily a function of microphysical growth pro-
cesses in clouds aloft. Even though the Lagrangian accelera-
tions collapse onto a single distribution curve, the cumulative
distribution in Fig. 5b indicates that ~ 10% more of the nor-
malized accelerations are greater than unity for the highest R,
compared to the lowest R, . Hence, the likelihood of extreme

TABLE I. Minimum and maximum values of snowflake and turbu-
lence parameters measured using the DEID, a sonic anemometer and
particle tracing velocimetry. U - mean wind speed, A - Taylor mi-
croscale, € - turbulence kinetic energy dissipation rate, R - Reynolds
number based on the Taylor microscale, D - snowflake diameter,
ps - snowflake density, AR - aspect ratio, V; - snowflake terminal
velocity, V,, - snowflake measured vertical fall velocity, St - Stokes
number, and Sv - modified version of the Stokes number.

Parameter Minimum Maximum
U (msT) 0.09 6.52
A (mm) 23 632
£ (cm?/s%) 0.15 316.
R, 400 67000
Degt (mm) 0.5 11.9
ps (kg m—3) 9 285
AR 1.0 93
V; (ms™h) 0.06 324
Vy(ms™1) -2.13 421
St 0.01 12
Sv 0.03 18

accelerations is significantly greater for the largest Reynolds
numbers.

The observed universality in the mathematical relationships
characterizing the temporal Lagrangian velocity variability of
individual snowflakes and Eulerian terminal velocity variabil-
ity of snowflake ensembles is consistent across the full range
of turbulence and snowflake events measured (Fig. 5a). Gen-
erally, the slope of a log-log plot of the Laplacian distribution
with respect to the positive value |a,|/ayms is —1.5£0.05,
where the normalization of the Laplacian distribution scales
with turbulence intensity as ayms o< R} and @y, ms o< 57098
(see Fig. 6). The nearly linear increase of snowflake ay, s
with the mean of the St distribution in Fig. 6a appears to be at
odds with prior studies (e.g., Bec et al.*!) that show Ay ms de-
creasing with increasing St for a fixed value of R . Note, how-
ever, that for calculations of St in Fig. 6, the mean 7, varies
far less than 7; so the results primarily reflect variability in
turbulence through R, . More detailed particle-by-particle ex-
periments will be required to examine how a,, s varies with
St for the case that R is fixed but individual snowflake ter-
minal velocities — and 7, — vary more extensively than seen in
the mean values presented here. The maximum of the normal-

TABLE II. Snowflake and turbulence characteristics measured using
the DEID, a sonic anemometer, and particle tracing velocimetry for
five case studies: Case 1, February 16, 2021; Case 2, December 12,
2020; Case 3, January 4, 2021; Case 4, December 18, 2020; Case
5, March 16, 2021. U - mean wind speed, 0, - standard deviation
of streamwise velocity fluctuations, o, - standard deviation of ver-
tical velocity fluctuations, L, - integral length scale computed from
streamwise velocity fluctuations, A - Taylor microscale, € - turbu-
lence kinetic energy dissipation rate, R, - Reynolds number based on
the Taylor microscale, D - snowflake diameter, p; - snowflake den-
sity, AR - aspect ratio, V; - snowflake terminal velocity, V, - snowflake
measured vertical fall velocity, St - Stokes number, and Sv - modified
version of the Stokes number, At - duration of each case, T - ambient
temperature, RH - relative humidity, N - total number of snowflakes
in each case.

Parameters  casel case2 case3 case4 case5
U(ms™T) 2.26 1.73 1.18 0.72 0.29
oums™hH  1.62 0.96 0.72 0.42 0.11
o, (ms™') 042 0.47 0.21 0.26 0.06
L(m) 198 92 161 41 11
A (mm) 632 411 378 201 65
£ (cm?/s3) 356 467 130 48 7
Ry 67000 24000 22000 5800 400
Degr (mm) 2.1 1.5 12 14 1.5
ps (kg m—3) 87 68 79 64 54
AR 1.28 1.30 1.17 1.21 1.34

Vi(ms™') 057 0.47 0.43 0.48 0.64
Voms™) 011 0.21 0.18 0.53 0.76

St 3.51 1.68 1.54 0.64 0.12
Sv 0.21 0.28 0.38 1.02 2.85
SDI [2.1,23.5] [2.0,19.6] [3.9,34.9] [6.9,29.5] [3.4,22.5]
At (min) 3 15 7 6 7
T (°C) -10 -11 -5 -7 -6
RH (min) 96 97 95 95 96

N (min) 126,000 129,689 34,000 21,000 25,000
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ized distribution of acceleration is only weakly dependent on
turbulence intensity, increasing by ~ 2% over three orders of
magnitude in R; .

An interesting exception to the Laplacian vertical accelera-
tion distribution is how fat tails that encompass ~ 1% of the
total ensemble appear to be related to particularly porous hy-
drometeors that occupy the bottom 1% of the density distribu-
tion, having an average density of 12.9kgm=3 or B = 0.102.

R, =400, N = 25,000
R, = 5800, N = 21,000

A
A
R, =22000, N = 34,000
A
A
A

R, = 54000, N = 129,689

0.1

R, = 67000, N = 126,000

% ar =100, 24,069],N = 172,000
\, — Laplacian fit
& 0.01
2 .
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bOB DD obD =
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805 e

0.3+ = 67000
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0.2
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m

S

FIG. 5. (a) Normalized vertical acceleration distributions. Probabil-
ity distribution of vertical accelerations a, binned by 0.1 m s~2 and
normalized by @, ms for a range of Reynolds numbers R and Stokes
numbers St calculated for periods ranging in duration from approxi-
mately 3 minutes to 15 minutes. Eulerian pseudo-accelerations (d;)
calculated from the ensemble mean terminal velocity inferred from
DEID measurements of particle size, mass, and density. The solid
line represents a Laplacian fit for the case where R; = 67000 and St
= 3.50. The solid-line fit characterizes the normalized vertical ac-
celeration with a Laplacian function P(a) = Cjexp(—C,|a|) where
4 = a/dms, Cy is the maximum of the probability distribution func-
tion, and C; = 1.5+0.05, or approximately 3/2. We define the Lapla-
cian distribution’s scaling (exponent) as —C5, the slope of the posi-
tive domain of the normalized acceleration distribution curve plotted
on a log-log scale. Hence the scaling exponent is -3/2. The results
point to universality of an acceleration frequency distribution scaling
as -3/2 £ 0.05 a/ayms. (b) Normalized cumulative distribution func-
tion of vertical accelerations.

The maximum Lagrangian snowflake acceleration (extreme
a,) measured during this study was an astonishing 142 ms~2,
15 times the a,ms value, and ~ 14 times the acceleration of
gravity. While the 1.85 mm particle diameter of this “lucky"”
snowflake was unremarkable, the associated snowflake den-
sity had a low value of 12.7 kg m™3. For the measured
snowflake ensemble, extreme values of a, scaled as O.27R9L'56
(Fig. 6b). The observations indicate that such extreme ac-
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FIG. 6. (a) Shows the root-mean-squared vertical acceleration ay,rms
as a function of St. (b) Extreme values of the Lagrangian acceleration
(ay) vs. Reynolds number and (c) the flatness K vs. Reynolds num-
ber color-coded for acceleration and Stokes number (Sz, Sv). Bars
represent systematic and random uncertainties in the extreme values
of ayms, ay and in K due to measurement error in V.
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celerations appear when typically low-density snowflakes be-
come trapped in a vortex and then are later kicked out (Fig.
4a).

Departures from Gaussian and Laplacian distributions have
previously been associated with intermittent particle acceler-
ations. Unusually rare but large particle-acceleration events
arise due to turbulence*?. Their frequency can be repre-
sented mathematically by the acceleration distribution flatness
or kurtosis K =< a} > / < a2 >2, or the fourth moment of
the normalized acceleration distribution. K = 3 for a Gaus-
sian distribution and K = 6 for a Laplacian distribution. For
snowflakes, we observed that flatness scales monotonically
with turbulence, but only weakly so. Specifically, flatness
ranges from approximately 5 to 12 following the functional
forms K = 1.95R)1¢ and K = 9.025:%% (Fig. 6c).

As a reference point, fluid tracers with large values of 8
have values of K that are an order of magnitude larger* be-
cause the response to turbulence is stronger. In idealized
laboratory experiments, K = 4R)-#14044 for fluid tracers and
K = 6R? for micro-bubbles*. Numerical simulations sug-
gest that heavy spherical particles with large values of St re-
spond more slowly than near-fluid tracers to variations in the
fluid flow. They cannot attain extremely high accelerations
due to inertial filtering*'. Values of K still scale weakly with
turbulence intensity, but maintain a value near the Laplacian
value of 6, nearly independent of particle size and density*®*7,
at least for weaker turbulence with R; < 100. Instead they
suggest that the acceleration distributions of snowflakes, as
dense particles responding to non-idealized turbulent flows,
are consistent with prior numerical studies pointing to low
flatness. They further extend the applicability of assuming
a near-Laplacian distribution to particles that are irregularly
shaped and to values of R, as high as 67,000.

Wl >1 Wl <025
35 - St<i - St>1
V>V, V<V
30
v v
25
v VY v
v
20 St
o 0.12 1 3.50 v SRy M2
I — ]
506 1 g, 021 v
10 v
5
> Fluid tracer particles
Y R M
100 1000 10000 100000

FIG. 7. The Heisenberg-Yaglom constant ag for snowflakes as a
function of Ry, Sty and Sv. For comparison, fluid tracer particles in
homogeneous turbulence obtained by‘“)'44 (circles) and*® (squares)
and measured by hot-wire anemometer in air*® (triangle). The error
bars represent the systematic and random errors in measurements of
snowflake acceleration variance.

With respect to values of a,ms, we observe snowflakes
have a nearly linear scaling with St that deviates consider-
ably from prior results describing a, s for fluid tracers. The
Heisenberg-Yaglom formula is widely used to express La-
grangian root-mean-square particle accelerations in terms of
the acceleration at the dissipative spatial scale, that is a% =
v=1/2g3/230 The general expectation is that a2,,,; = aod?.
The Kolmogorov constant ag represents the non-dimensional
variance of the particle acceleration, and is equal to unity
for Gaussian fluctuations!. Deviations from unity arise due
to intermittency in turbulence and particle properties*®>2.
Here, values of ay are calculated over a fit interval time
(Tf)40 (see Fig. A3b). Fig. 7 indicates that for the case
that St < 1 values of ap are many times higher than those
described previously for fluid tracers in isotropic homoge-
neous turbulence*%#448:49.53  We hypothesize this discrep-
ancy owes to gravitational drift (the ratio of snowflake fall
speed to the characteristic speed of air velocity fluctuations)
and sweeping>*>. For St < 1, we see high observed ratios of
snowflake settling speed to the characteristic speed of the air-
velocity fluctuations |V, |/« > 1, and also for average settling
speeds relative to terminal fall speeds V, /V, > 1.

Fig. 7 shows also, for the case of heavier particles with
St > 1 (or Sv < 1), that ap decreases with Rj, scaling as
ap o< R;I/ 2. This result lies in sharp contrast with prior ex-
perimental and numerical work for fluid particles in homo-
geneous turbulence showing that aq increases monotonically
with R;, albeit only when considering turbulence levels with
R; < O (10%). For snowflakes in this Stokes-number regime,
gravitational drift is weaker, and is associated with measured
[Vy|/u' < 0.25 and loitering with V,,/V, < 1).

At St ~ 0(1) and R, > 0(10%), heavier particles start de-
taching from the fluid streamlines. As a result, ap decreases
with further increases in R, . Note that the change in St is only
due to a change in turbulence levels because particle charac-
teristic time scales are approximately the same in all cases.
The acceleration variance constant is known to deviate from
unity due to intermittency®®. Our results show that intermit-
tency in Lagrangian acceleration has a different trend for val-
ues of St lower and higher than unity and for R; ~ ¢(10*).
An explanation for this phenomenon remains an open prob-
lem.

V. CONCLUSION

Summarizing, highly-asymmetric snowflakes settling in
complex irregular turbulent flows behave very differently
from fluid tracers but nonetheless obey remarkably simple
mathematical relations. They exhibit sweeping for St < 1 with
high constant values of the Kolmogorov constant ag, and loi-
tering for St > 1 with ap scaling as R, 12, Spanning over three
orders of magnitude of variation in the turbulent Reynolds
number, Lagrangian vertical velocity fluctuations have a uni-
versal frequency distribution of exp[—3a,/ (2ay,ms)], inde-
pendent of R, where a,, s scales linearly with Sz. Stated an-
other way, snowflake acceleration distributions could in prin-
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ciple be uniquely inferred given only a measure of the Stokes
number. Moreover, the ensemble-mean terminal velocity — a
quantity that is a function only of snowflake mass and shape
— has the same fluctuation statistics. The similarity in scaling
relationships would not have been observed had the particle
properties been prescribed, as for example they would be in
laboratory or numerical simulations. In field measurements,
the observation was only made possible through the use of
a novel disdrometer designed for measurement of snowflake
microphysical properties.

Snow scientist U. Nakaya famously termed snow crystals
photographed at the ground “letters from the sky”>” because
their delicate structures carry information about temperature
and humidity fluctuations higher up in the clouds where crys-
tal basal and prism facets competed for water vapor deposi-
tion. The observed correspondence between acceleration and
pseudo-acceleration distributions may simply point to a simi-
lar message. In general, faster updrafts in clouds lead to larger
snowflakes that fall with higher terminal velocities because
more time is available to sustain snowflake growth through ag-
gregation and supercooled cloud droplet riming. In this vein,
given the shape of acceleration distributions is invariant with
turbulence levels, it seems possible that snowflake terminal
velocity variability measured at the ground simply reflects that
within turbulent clouds higher up®®. It remains to be shown
what precise mechanism leads to such a close correspondence
between snowflake Lagrangian accelerations and terminal ve-
locity pseudo-accelerations, or for that matter why the precise
value of the scaling in the exponent is —3/2.
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FIG. Al. Methodology for calculation of the snowflake veloci-
ties (a) Particle Tracking Velocimetery (PTV) procedure compar-
ing snowflake position between two frames and a Particle Streak
Velocimetery (PSV) procedure for tracking individual snowflakes
within one frame. xj, y; is the centroid of a snowflake at time 7},
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view of the laser system and DEID showing co-location of these two
instruments for matching snowflake velocity measurements to their
microphysical properties.
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Appendix A: Microphysical measurement of snowflakes
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FIG. A2. (a) Nearly equivalent size distributions of snowflakes with
respect to D4y measured by the D850 Nikon camera in the x-z plane
and of D, s measured by the DEID in the x-y plane. (b) Distribu-
tions of actual fall velocity (V,) measured in the x-z plane, where
negative upward velocity represents loitering and of the terminal ve-
locity (V;) is estimated from the x-y plane using DEID measurements
of hydrometeor microphysical properties. The shaded region encom-
passes the bottom = 0.1% of the frequency distribution.

Details of the microphysical measurements are given in
Singh et al.3!. Briefly, the DEID disdrometer consists of
an infrared camera pointed at a low-emissivity heated metal
plate®’*. To compute a snowflake’s area on the hotplate, the
DEID makes use of the contrasting thermal emissivities of wa-
ter (> 0.95) and aluminum (< 0.1). While the brightness tem-
perature of the water and aluminum rapidly equilibrate, the
two materials have different brightness temperatures. As a
result, hydrometeors appear as bright regions on a dark back-
ground in the thermal-camera imagery and geometric quan-
tities such as snowflake area as easy to calculate. For this
study, the DEID’s spatial resolution is approximately 200 um
pixel . Measurement of the mass of an individual hydrome-
teor uses gray-scale imagery of the particle area, the tempera-
ture difference between the hydrometeor on the plate and the
hotplate, and the evaporation time. Individual snowflake mass
is determined assuming that the heat gained by a hydrometeor
is equivalent to the heat lost by the hotplate during the com-
plete evaporation. Our wind-tunnel studies found that mass
measurements are nearly independent of environmental con-
ditions, including wind, relative humidity, and ambient tem-
perature.

Appendix B: Terminal velocity estimation

The DEID provides direct measurements of the mass of in-
dividual hydrometeors (m), their circumscribed area (A), and
their area on the plate (A,). See®!-*® for details. A is calculated
using the smallest circle or ellipse drawn around the area (A, ).
The equivalent circular diameter of a snowflake (D, ) is de-
fined as A, = (71:/4)D§ff. From these parameters, individual
snowflake-equivalent still-air terminal velocities can be esti-
mated using an aerodynamic formula°:

_Re-m 7 )
"= 20, @

where p, and n are the density and dynamic viscosity of air,
respectively. The Reynolds number is parameterized as

(B

Re =8.5[(1+0.1519x /212 _ 1], (B2)

where X is determined from atmospheric environment data
and snow particle properties as

_ gmgpa (Ae )1/4_

by (B3)

A

A modification to Eq. B2 was suggested by*’, for all natural
ice particles, where

R, =8.5[(1+0.48x"/2)1/2 12, (B4)

The estimated V; using Eq. B4 is reduced by ~ 15% com-
pared to%.

Appendix C: Acceleration calculation

Snowflake accelerations are estimated using two different
techniques: (1) Lagrangian tracking of individual snowflake
trajectories in the air (a,), and (2) as a pseudo-acceleration
obtained from a time series of the ensemble-mean snowflake
terminal velocities measured using snowflakes that have fallen
onto the DEID hotplate (4;). Method (1) follows a previ-
ously developed approach for determining Lagrangian parti-
cle accelerations**+; a snowflake’s trajectory z(¢) can be low-
pass filtered by fitting to a third-order polynomial. The filtered
position of the i snowflake at time 7 is defined as

zi(t):ai+bit+cy’t2+dit3, (Cl)

where a;, b;, ¢; and d; are polynomial coefficients. The La-
grangian velocity and acceleration are respectively the first
and second time derivatives of the snowflake trajectory, given
by

Vyi(t) = bi+2cit + 3dit® (C2)
and

ai(t) = 2¢; + 6dit. (C3)
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The instantaneous particle acceleration (a,) is calculated from
the second time-derivative of a snowflake’s trajectory using a
fitted third-order polynomial over a time interval of 77, equiv-
alent to the Kolmogorov time scale 7, = (v/e)'/? determined
as a function of the kinematic viscosity v and the measured
turbulence kinetic energy dissipation rate € computed using
frequency-based energy spectral densities S(f) of the stream-
wise velocity®® such that S(f) = ax(U/2m)23e2/3 =513,
where o = 0.55, f is the frequency, and U is the mean stream-
wise velocity. A comparison of the variability associated
with using different methods used to compute €, including the
above-listed method, is provided by?>!. Adopting this tech-
nique, no qualitative differences have been observed in the
normalized acceleration distribution for fitting times over the
range 0.5 Ty < Ty < 27y and we find results similar t0*’.

For method (2), pseudo-accelerations (d;) are computed
over time intervals of T, = T, applied to mean terminal ve-
locity variability, obtained from the time series of the spa-
tial mean of the terminal velocities (V;) of snowflakes mea-
sured after they have passed through the laser sheet and are
deposited on the hotplate. Variability in V; is measured at the
hotplate sampling rate of 15 Hz, from which a time series of
mean terminal velocities is fitted using a second-order poly-
nomial over the time interval 7y = 7, which differentiated to
estimate pseudo-accelerations (d;). The same fitting proce-
dure is used as to compute a,.. (V;)(¢) at time 7 is estimated as
follows

1 N
(Vi) (6) = 5 X Vi (C4)
i=1

V,.,i is the terminal velocity of the i"" snowflake and N is total
number of snowflakes that fell on the hotplate at time 7. We
refer to this as an Eulerian velocity and acceleration because
the snowflakes are not tracked as they fall, as in method (1),
rather an ensemble velocity value is obtained for a single area
of interest defined by the sampling hotplate where snowflakes
land and melt.

Appendix D: Smoothing method for snowflake trajectories

The frequency at which data are measured and the corre-
sponding displacement of particles from one frame to the next
(Fig, A3c) affect uncertainties in the acceleration measure-
ment. In particle tracking, two different methods of fitting
the snowflake trajectories can be used, a polynomial of third
order or Gaussian kernel, are used to smooth snowflake tra-
jectories in atmospheric turbulent flows for the purpose of
calculating accelerations. The polynomial of third order ap-
proach yields values for the scaling of the Laplacian distribu-
tion of the normalized acceleration and ay s that are 2.6%
and 7.6% smaller than the Gaussian kernel method, respec-
tively based on a time interval of 7. In the paper, we only
show results obtained by smoothing the snowflake trajectories
with a third-order polynomial. The frame-by-frame accelera-
tion for a sample snowflake trajectory is shown in Fig. A3a.
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FIG. A3. (a) Frame-by-frame acceleration of a single trajectory of
a snowflake estimated with three different third-order polynomial fit
times: 30 frames (solid), 35 frames (dashed) and 40 frames (dash-
dotted). 7y is equivalent to 35 frames. (b) Normalized acceleration
variance aq of the vertical acceleration component as a function of
fit interval 7, normalized by the Kolmogorov time 7. The data are
taken at R; = 400+ 38. The solid line shows the exponential fit ex-
trapolated to 7;/7y — 0 to provide an estimate of the normalized
acceleration variance ag. We calculate normalized acceleration vari-
ance ap over a fit interval time 7y following the approach described
by Voth et al. *. (c) Sample image of a snowflake trajectory.

Appendix E: Systematic and Random error analysis

To obtain uncertainties in the analyses, 554,371 snowflake
measurements are considered. Direct measurements made by
the DEID include snowflake area, temperature, and evapo-
ration time, for which the respective uncertainties are 1.0%,
0.3%, and 1.0%3'. The uncertainties in derived quantities
(using a standard propagation of uncertainty analysis) such
as equivalent diameter (Defr), mass (m), density (ps), and ter-
minal velocity (V;) are 0.5%, 3.3%, 4.8%, and 3.5%, respec-
tively, neglecting theoretical uncertainties in the formulation
used for calculating V; that are ~ 15%3%37. The percentage
uncertainty in the settling velocity (V;,) associated with deter-
mination of the particle’s position owing to camera pixel and
time resolution is 6.3%, leading to uncertainties in dy ms of
9.4% and average uncertainties in the flatness parameter of
12%, calculated using the jackknife algorithm®2,
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