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Abstract— Space-division multiple access (SDMA) plays an
important role in modern wireless communications. Its per-
formance depends on the channel properties, which can be
improved by reconfigurable intelligent surfaces (RISs). In this
work, we jointly optimize SDMA precoding at the base station
(BS) and RIS configuration. We tackle difficulties of mutual
coupling between RIS elements, scalability to more than 1000
RIS elements, and high requirement for channel estimation.
We first derive an RIS-assisted channel model considering mutual
coupling, then propose an unsupervised machine learning (ML)
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approach to optimize the RIS with a dedicated neural network
(NN) architecture RISnet, which has good scalability, desired
permutation-invariance, and a low requirement for channel
estimation. Moreover, we leverage existing high-performance
analytical precoding scheme to propose a hybrid solution of
ML-enabled RIS configuration and analytical precoding at BS.
More generally, this work is an early contribution to combine
ML technique and domain knowledge in communication for
NN architecture design. Compared to generic ML, the problem-
specific ML can achieve higher performance, lower complexity
and permutation-invariance.

Index Terms— Mutual coupling, partial channel state infor-
mation, ray-tracing channel model, reconfigurable intelligent
surfaces, space-division multiple access, unsupervised machine
learning.

I. INTRODUCTION

HE space-division multiple access (SDMA) technique

plays an important role in modern multi-user wireless
communications. Its performance depends heavily on the
channel condition. For example, a high channel gain realizes
a high signal-to-noise ratio (SNR), a high-rank multiple-input-
multiple-output (MIMO) channel matrix makes it possible to
serve multiple users [2]. In the past, the wireless channel
has been considered as given. However, in recent years, the
reconfigurable intelligent surface (RIS) [3] has been proposed
to manipulate the channel property. In this paper, we consider
the problem of joint optimization of precoding at the base
station (BS) and configuration of the RIS.

In the literature, multiple precoding techniques have been
proposed for SDMA at the BS, including maximum ratio
transmission (MRT), zero-forcing (ZF), minimum mean square
error (MMSE) precoding [4], and weighted minimum mean
square error (WMMSE) precoding with proved equivalence to
weighted sum-rate (WSR) maximization [5]. The joint opti-
mization of precoding and RIS configuration was performed
with block coordinate descent (BCD) [6], majorization-
minimization (MM) [7], [8] and alternating direction method
of multipliers (ADMM) [9] algorithms to maximize the
WSR in SDMA. In addition, Riemannian manifold conjugate
gradient (RMCG) and Lagrangian method were applied to
optimize multiple RISs and BSs to serve cell-edge users [10].
Successive refinement algorithm and exhaustive search were
applied for passive beamforming improvement [11]. The active
RISs was optimized with the successive convex approximation
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(SCA) algorithm to maximize the SNR [12]. The gradient-
based optimization was applied to optimize the effective rank
and the minimum singular value [13]. A novel alternating
optimization (AO) scheme is proposed to minimize the
transmit power subject to the data rate requirement [14].
A multi-layer refracting RIS is proposed for simultaneous
wireless information and power transfer (SWIPT) to overcome
severe large-scale fading [15].

In general, the above analytical iterative methods do not
scale well with the number of RIS elements. No more
than 100 elements were assumed in [6], [7], [8], [9], [10],
[11], and [12] and up to 400 RIS elements were assumed
in [13], which is far from the vision of more than 1000 RIS
elements [16] and the requirement in many scenarios to realize
a necessary link budget [17]. Another common important
limitation of the analytical optimization approaches is that
suboptimal approximations were applied to make the problem
solvable [6], [9], [11]. Moreover, the required numbers of
iterations make the proposed iterative algorithms difficult to
be implemented in real time since the computation time is
longer than the channel coherence time.

A noticeable effort is to apply machine learning (ML) to
optimize the RIS, which bypasses the difficulty of analytical
solution via the universal approximation property of the
neural network (NN) [18]. Recently, deep learning (DL) and
reinforcement learning (RL) were applied and compared for
RIS optimization [19]. Long short-term memory (LSTM) and
deep Q-network (DQN) were applied to optimize RIS for non-
orthogonal multiple access (NOMA) [20]. RL was applied
to maximize the sum-rate in SDMA [21], and NOMA [21],
[22] and energy efficiency in NOMA [23]. The achievable rate
was predicted and the RIS was configured with DL [24]. The
RIS was configured directly with received pilot signals [25].
The mapping from received pilot signal to the phase shifts
was optimized [26]. Due to the separation of training and
testing phases, the trained ML model was able to be applied
in real time. However, the scalability with the number of RIS
elements was still limited [20], [21], [22], [25], [26], [27].

The second common limitation of many works on RIS is
the full channel state information (CSI) assumption (e.g., [6],
[8], [9], [11], [12]). Due to the large number of elements,
the full CSI of all elements is very difficult to obtain in real
time. Possible countermeasures are, e.g., codebook-based RIS
optimization [17], [28]. However, the beam training is still a
major limitation.

The third common limitation of many works is the
assumption of perfect RIS without mutual coupling. Due to
the small distance between two adjacent elements, there might
exist certain mutual coupling in the RIS. In the literature,
a single-input single-output (SISO) RIS-assisted system was
optimized [29]. A mutual impedance-based communication
model considering mutual coupling was presented [30].
A mutual coupling aware characterization and performance
analysis of the RIS was introduced [31]. The RIS architecture
was modeled and characterized using scattering parameter
network analysis [32]. A closed-form expression of RIS-
assisted MIMO channel model in a general sense, i.e.,
considering RIS mutual coupling, with the direct channel from
BS to users and without the unilateral approximation [33], is
still an open problem.
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Summarizing the state-of-the-art, we identify three limita-
tions of current RIS research: the insufficient consideration of
mutual coupling, the poor scalability to consider more than
1000 RIS elements and the unrealistic assumption of full CSI.

In this work, we propose a dedicated NN architecture RISnet
and an unsupervised ML approach to address these limitations.
Our contribution is four-fold as follows.

e We derive an RIS channel model considering the
mutual coupling between RIS elements. The derivation is
based on the scattering parameter network analysis [32].
A closed-form expression is derived without unilateral
approximation.

e We propose an NN architecture RISnet for RIS
configuration. The number of RISnet parameters is
independent of the number of RIS elements, enabling
a high scalability such that we can configure 1296 RIS
elements within a few milliseconds. Compared to it, most
conventional approaches in the literature assume no more
than 100 RIS elements, as explained above. Furthermore,
the RISnet is permutation-invariant, i.e., any permutation
of users in the input has no impact on the RIS phase
shifts because permutation of users has no impact on the
SDMA problem.

« In addition to the scalability, the CSI is extremely difficult
to obtain due to the large number of RIS elements.
We propose an improved RISnet, where only a few RIS
elements (in our paper, 16 out of 1296) are equipped
with RF chains and can estimate the channel with the
pilot signals from users. We demonstrate that RISnet
can configure the phase shifts of all RIS elements with
the partial CSI of a few RIS elements if the channel
is sparse, which holds mostly in reality. In this way,
a good compromise between hardware complexity and
performance is achieved.

e We combine ML-enabled RIS configuration and ana-
Iytical precoding. In this way, the performance of
BS precoding is guaranteed because of the proven
performance of analytical precodings, the difficulty of
training is reduced because we do not need to optimize
precoding.

We combine domain knowledge in communication and ML for
NN architecture and training process design. It not only solves
the RIS configuration problem, but can also inspire solutions
to other problems. According to [34], incorporating domain
knowledge is considered as one of the three grand challenges
in ML. We show that an NN architecture tailored for the
considered problem is superior in scalability, complexity,
performance and robustness.

This work is based on our preliminary result [1]. Compared
to it, we consider the mutual coupling between the RIS
elements in this work. The mutual coupling is unavoidable
due to the short distance between RIS elements. However,
it has not been considered in most literature because the
resulting optimization problem is too difficult. In addition,
we maximize the WSR in this work instead of sum-rate
in [1], where the weights are input of the RISnet. In this
way, we significantly improve the flexibility to choose an
operational point according to the requirement. Furthermore,
we further propose a parallel implementation scheme with
tensor operations, which allows for very efficient training and
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BS User U7

Fig. 1. The system model of RIS-assisted downlink multi-user broadcasting.

inference (application) in a GPU. The permutation-invariance
is strictly proved. We also discuss possibilities to combine
analytical precoding techniques with ML, depending on the
differentiability of the analytical method.

Notations: ()T denotes the pseudo-inverse operation, |a|
and arg(a) are amplitude and phase of complex number a,
respectively, T[-, 7, k] denotes the vector of the elements with
position (74, k) in the second and third dimensions in the three-
dimensional tensor T, 1%%¢ is the matrix of all ones with
shape a x a, and I*** is the identity matrix with shape a x a,
i.e., all diagonal elements of I**“ are ones, all off-diagonal
elements are zeros. We also define E¢*¢ = 19%® — J*X@,

II. THE RIS CHANNEL MODEL CONSIDERING
MuTtUAL COUPLING

We consider a RIS-aided multi-user multiple-input-single-
output (MISO) scenario, as depicted in Figure 1. The channel
from BS to RIS is denoted as H € CN*M  where N is the
number of RIS elements and M is the number of BS antennas.
The channel from RIS to users is denoted as G € CU*N,
where U is the number of users. The direct channel from BS
to users directly is denoted as D € CV*M,

Denote the precoding matrix as V. € CM*U and
the signal processing matrix of the RIS as the diagonal
matrix ® € CV*Y  where the diagonal element in row n and
column 7 is ¢, = /¥, with ¢, € [0,27) being the phase
shift of RIS element n. Conventionally, the channel C between
BS and users is [6]

C =D+ G®H, ey
and the signal received at the users is
y =CVx+n, ()

where x € CY*! is the transmitted symbols, y € CV*! is the
received symbols, and n € CY*1 is the noise.

An implicit assumption of (1) is that the RIS elements do
not have mutual coupling. However, this assumption might not
hold due to the small distance between RIS elements. In the
following, we assume transmitter and receiver without mutual
coupling and an RIS with mutual coupling.

Our derivation is a generalization of Section III in [32].
We define the S-parameter matrix S for the signal transmission
system shown in Figure 1 and partition it as

Srr  Str  Srr
S=|S;r Srr Sir |, 3
Srr Srr Srr

where index T stands for transmitter, I stands for RIS and R
stands for receiver. The diagonal blocks S, S;; and Sy are
the S-matrices of transmitter, RIS and receiver, respectively.
The off-diagonal blocks St;, Srr and S;g are the channels
between transmitter and RIS, transmitter and receivers, and
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RIS and receivers, respectively, i.e., the channels H, D and G
in Figure 1, respectively. We also have the diagonal reflection
coefficient matrix A, which is defined as

Ar 0 0
0@ 0
0 0 Ap

A= ; “4)

where Ar, ® and Apg are the reflection coefficient
matrices of transmitter, RIS and receiver, respectively. Define
T = S(I — AS)~! and partition T as

Tr7r Trr Trr
Tir Tir Tir (%)
Trr Trr Trr

T =

in the same way as (3). According to [32], the channel matrix
is given by

C=(Ar+D)Trr(I+ ArTrr + Trp) L. 6)

Although (6) is the most general form of the channel, it
is too complicated for the optimization due to the matrix
multiplication and inversion. In the following, we simplify (6)
assuming no mutual coupling at transmitter and receiver, i.e.,
St =0 and Spr =0, and mutual coupling at RIS, i.e.,
S;r # 0, the S-parameter matrix is

0 Str Srtr
S=|Sir Sir Sir|. )
Srr  Srr 0

We further assume transmitter and receiver with perfect
impedance matching, i.e., A7 =0 and Ap = 0, we have

0 0 O
A=|0 & of. (8)
0 0 O

Combining (7) and (8), we have

0 0 0
AS = | ®S;r ®S;; P®S;p|. )
0 0 0
Applying the Neumann series, we have
(I-AS)™' =) (AS)" (10)
k=0

Combining (9) and (10), we obtain the first line of (11), as
shown at the bottom of the next page. Applying the Neumann
series again in the opposite direction, we obtain the second
line of (11).

Combine (7), (5), and (11), we have

Trr = Srr(I— ®Sr;) '®S;r (12)
and
Trr = Srr + Sri(I— ®S;7) ' ®S;7. (13)
According to (6), the channel matrix is
C = (Sgr + Srr(I— ®S;;) ' ®S/r)
~(I+S7r(I—®S;) '®S;7)™t  (14)

where the term Sr;(I— ®S;;)"'®S;r stands for the
second order reflection from transmitter to RIS and back
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to transmitter, which is negligible compared to I in most
communication systems.' If we ignore this term, we have

C =Sgr +Srr(I— ®S;;) ' ®S;r. (15)

Replacing S;7, Sgpr and Si; with more conventional H, D
and G, respectively, in the channel model context, we have

C=D+G(I—-®S;;) '®H. (16)

In particular, if the RIS does not have mutual coupling, we
have S;; = 0 and (16) is reduced to (1). In this work, we apply
the model from [30] to obtain the S;; matrix.

Remark 1: Our channel model (16) is the same as
the channel model (80) in [33]. However, the derivation
in [33] requires the unilateral assumption, i.e., the channel
from receiver to transmitter is ignored, which contradicts
the channel reciprocity, i.e., channel gain from transmitter
to receiver is equal to channel gain from receiver to
transmitter. The reciprocity is an essential property of wireless
channels. We obtain the same channel model without the
unilateral assumption, making our derivation scientifically
more rigorous.

Remark 2: The matrix inverse in (16) has a prohibitively
high complexity. Therefore, we define X = G(I — ®S;;)~!
and obtain X by solving the linear equation system
X(I— ®S;;) = G. The differentiable LU decomposition is
applied to solve the equation system, which has a significantly
lower computation complexity. The channel model (16)
becomes C = D + X®H.

II1. PROBLEM FORMULATION

With the derived channel model from Section II, we can
formulate the communication system optimization problems
with SDMA, which uses the same resource block to serve
multiple users. Therefore, it realizes a higher spectrum effi-
ciency compared to earlier multiple access (MA) techniques,
such as time domain multiple access (TDMA), frequency
domain multiple access (FDMA) and code domain multiple
access (CDMA) [35]. Moreover, SDMA gains popularity due
to the high spatial resolution of modern massive multi-antenna
systems [4]. Therefore, we choose SDMA a high-performance
and future-oriented MA technique. In SDMA, the interference
from other users is considered as noise and the objective is to

According to the physics of electromagnetic wave propagation, i.e., the
Friis transmission equation, only a small portion of the transmitted energy
reaches the receiver due to the significant free-space path loss over distance.
For instance, at a frequency of 3.5 GHz and a propagation distance of 20 m,
the channel gain is approximately (\/(47d))? = 1.2 x 1077, where A
is the wavelength and d is the propagation distance. The square of this gain,
representing second-order reflections or higher-order effects, is approximately
1.44 x 10~1'4, diminishing to negligible levels. Consequently, the term
Str(I — ®S;7)~1®Sr is orders of magnitude smaller than T and can
be ignored.
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maximize the signal-to-interference-plus-noise ratio (SINR).
we define L = CV with L € CY*V, The SINR of user u
is computed as |luu|2/(zv¢u |luw|? + 02), where [, is the
element in row u and column v of L and o2 is the noise power.
Following the canonical problem formulation of SDMA [5],
we aim to maximize the WSR of all users. The problem is
formulated as

S [
max f = ;wu log, (1 + ST 02> (17a)
st. Tr (VVH) < BEr,, (17b)
|pn| =1 forn=1,...,N, (17¢)
|pnn| =0 forn,n’ =1,...,N and n#n’, (17d)

where w, in (17a) is the weight of user u, (17b) states that
the total transmit power cannot exceed the maximum transmit
power E1,., ¢,y in (17c) is the diagonal element in row n and
column n of ®. This constraint ensures that the RIS does not
amplify the received signal (i.e., passive RIS). Constraint (17d)
enforces that ® is diagonal. Note that [,,,, depends on both
V and ®. Therefore, both V and ® are the optimization
variables.

Remark 3: The maximal number of served users is the rank
of channel C. If the direct channel D is weak, the rank of C
depends mainly on the rank of G(I—®S;;)'®H. Since the
rank of the product of matrices is smaller than or equal to the
lowest rank of the factors, the rank of C depends strongly on
ranks of G and H. If they are rank-deficient, it is impossible
to serve as many users as the BS antenna numbers.

In the following sections, we propose the unsupervised ML
approach to solve Problem (17).

Remark 4: In In Section IV, two approaches with full
CSI and partial CSI are proposed. They share the same
problem formulation (17). The only difference is the available
information: With full CSI as the algorithm input, the
objective (17a) can be computed in a deterministic way and
the problem is easier to solve. However, the full CSI is difficult
to obtain. With partial CSI, the information is incomplete to
calculate the objective, because the CSI computation requires
the full CSI, and the problem is more difficult to solve.
However, the partial CSI is easier to obtain given limited
resource for channel estimation, as will be explained in more
detail in in Section I'V-C2.

IV. UNSUPERVISED MACHINE LEARNING WITH RISNET
A. The Framework of Unsupervised ML for Optimization

We first present the framework of unsupervised ML for
optimization. Given a problem representation I' (in our case,
CSI and user weights w,, in (17a)), we look for a solution ®
(the RIS phase shifts) that maximizes objective f in (17a),

o I 0 0
(I—AS)™" =) (AS)" = | 02, ((®S11)F 1) ®S1p 352 (S1)" 202, (®S10)F ") ®S1m
pr 0 0 I
I 0 0

0 0

(I—®S;;) '®S;r (I—®S;;)~ ! (I—®S;;) '®Sir

Y
I
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which is fully determined by I' and ®, and it can be written as
f(I', ®). We define an NN Ny, which is parameterized by 6
(i.e., @ contains all trainable weights and biases in Ny) and
maps from I to ®, i.e., ® = Ny(T'). We write the objective as
f(T,®) = f(T, Ny(I'); 0). Note that it is emphasized that f
depends on #. We then collect massive data of I" in a training
set D and formulate the problem as

max K = Y (T, Ny(T); 0).
0 IreD

(18)

In this way, Ny is optimized for the emsemble of I' € D
(training) using gradient ascent:

0 —0+nVeK, (19)

where 7 is the learning rate. If Ny is well trained,
®' = Ny(I) is also a good solution for I ¢ D (testing),
like a human uses experience to solve new problems of the
same type” [36].

Although (18) is a general approach, it would benefit from
the problem-specific domain knowledge. In the following
sections, we first define the features. Next, we propose
the RISnet architecture, and finally, we present the joint
optimization of BS precoding and RIS configuration.

B. Channel Estimation and Feature Definition

To begin with the ML approach, we first define the features
as input of RISnet. As depicted in in Figure 1, there are
three channel matrices H, G and D, among which H is
assumed to be constant because BS and RIS are stationary
and the environment is relatively invariant, G and D depend
on the user positions. Therefore, they need to be estimated and
used as input of Ny. To estimate channel matrix G, user u
transmits a pilot signal p,, which is known to the RIS. The
received pilot signal iS vy, = gunp + t, Where g, is the
channel gain between user u and RIS element n, and ¢ is
the thermal noise. The estimated value of g,, is therefore
Vyn/pu. Note that we first assume that every RIS element
has the ability to estimate the channels in Section IV-C1. This
assumption is good for the optimization but requires expensive
hardware. In Section IV-C2, we assume that only a few RIS
elements are equipped with hardware for channel estimation
with the pilot signals from users, which requires significantly
less complicated hardware, but sets a more difficult challenge
for the optimization. The estimation of the channel matrix D
is less challenging since the BS antennas are significantly
less than the RIS elements. We can use a channel estimation
method described in [6] to estimate D. With the estimated
channel matrices, we would like to define a feature =, for
user u and RIS element n. Since g, in row u and column n
of G is the channel gain from RIS element n to user u,
we can simply include amplitude and phase of g,,, in v,,,.>
On the other hand, elements in D cannot be mapped to RIS
elements because D is the channel from the BS directly to
the users. Therefore, we define J = DH™, and (16) becomes
y = (GI—®S;;)'®+J)HVx + n, ie., signal x is
precoded with V, transmitted through channel H to the

2A complete retraining is only required when the input states are
fundamentally changed, e.g., change of deployment environment.
3The NN does not take complex numbers as input.
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RIS, and through channel G(I — ®S;;)~1® + J to the users.
Element j,, of J can be interpreted as the channel gain
from RIS element n to user w. The channel feature of
user v and RIS element n can then be defined as ~,,, =
(|gun|7arg(gun)z‘jun|aarg(]‘un))T € R**!. The complete
feature of all RIS elements and users is the aggregation of
Yur for all u and n and user weights. The concrete structure
is described in the following Section IV-C.

C. The RISnet Architecture

We design a specific NN architecture for RIS configuration
according to our domain knowledge in wireless communi-
cation. Observing (16), we notice that the optimal phase
shift of every RIS element depends on its own channel gain
and a common goal of the whole RIS, which should be
shared among all RIS elements to enable their cooperation.
Correspondingly, we define a local feature of every RIS
element and a common global feature of all RIS elements.
The RISnet consists of L layers. In each layer, we design
information processing units to generate local features and
global features for every RIS element and user, which are
stacked as the input of the next layer, such that a proper
information flow can be created for a sophisticated decision
on ®. The idea is comparable to using convolutional layers to
capture local pattern in computer vision and using attention
mechanism to model context in nature language processing,
but for a much more specific problem with many RIS elements
serving multiple users together.

By using the same information processing units for all RIS
elements, the number of trainable parameters is independent
of the number of RIS elements. With this approach, RISnet
can configure more than 1000 elements with an adequate
complexity, allowing for low complexity in training and high
efficiency in inference (application).

Another important consideration from domain knowledge in
communication is the permutation-invariance. From (17a), we
notice that a permutation of the users does not have an impact
on the objective function in SDMA. The optimal decision
on ® should therefore be independent from the user order.
This property is called permutation-invariance. We define a
permutation matrix P € {0,1}Y*V to describe an arbitrary
permutation, where each row and each column has only one
1. For example, let us define

1 0 O
P=(0 0 1
0 1 0

PG permutes the second and third row of G while the first
row remains unchanged.

Definition 1: A neural network Ny is permutation-invariant
if Np(PT') = Ny(T') for any permutation matrix P.

It is desirable that RISnet is permutation-invariant for (17)
to reflect the nature of SDMA.

A third consideration for RISnet design is that even if
RISnet has a good scalability for more than one thousand
RIS elements, the full CSI of all RIS elements is extremely
difficult to acquire. Therefore, it is very beneficial to have an
input, which is easier to acquire than the full CSI.
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1) RISnet Architecture With Full CSI: In the following, we
present the RISnet architecture with the above-described high
scalability with respect to (w.r.t.) RIS elements, permutation-
invariance and low requirement for CSI input. The RISnet
has multiple layers. Both input and output of a layer are
three-dimensional tensors, where the first dimension is the
feature, the second dimension is the RIS element and the third
dimension is the user. In the first layer, the vector f,, 1 =
I'[-, n, u] is the feature of RIS element n and user u, defined as
the concatenation of user weight w,, and channel feature -,
(defined in Section IV-B). The input and output feature format
is shown in Figure 2.

As described at the beginning of this section, the decision
on the optimal phase shift of every RIS element depends on
both the local feature of the current RIS element and the global
feature of the whole RIS. Therefore, for each RIS element and
user, we define 4 classes of information processing units:

o current user and current RIS element (cc),

o current user and all RIS elements (ca),

o other users and current RIS element (oc),

o other users and all RIS elements (o0a).
Denote the input feature of user v and RIS element n in layer 7

as f,, ;, the output feature of user v and RIS element n in
layer ¢ is calculated as

fun,i+1
ReLU(WS°f,, ; + be©)
(2, ReLU(WE=£,,0 ; + be?)) /N
= (S RELU(WE s 4+ B5%) ) /(U

(Zu’¢u > ReLU(WP £y i + b?) ) J(N(U
(20)

for i < L, where WS¢ € R%*Fi is a matrix with trainable
weights of class cc in layer ¢ with the input feature
dimension P; in layer ¢ (i.e., £, ; € RPi*1) and output feature
dimension (); in layer ¢ of class cc, bg® € R@i*1 ig trainable
bias of class cc in layer ¢. Similar definitions and same
dimensions apply to classes ca, oc and oa.

For class cc in layer i (the first line of (20)), the output
feature of user u and RIS element n is computed by applying
a conventional fully connected layer (a linear transform with
weights W< and bias b$® and the ReLU activation) to input
f.n.i- The difference to the conventional fully connected NN
is that the information processing is applied to feature of every
RIS element and user individually, instead of the whole input
of all RIS elements and users.

For class ca in layer 7 (the second line of (20)), we first
apply the conventional linear transform and ReLU activation
to f,,,/ ; like class cc, where n = 1,..., N, then compute the
mean value of all RIS elements. Therefore, the output feature
of class ca for user v and all RIS elements is the same.

For classes oc and oa (the third and fourth lines of (20)),
the output features are averaged over all elements and/or other
users, similar to class ca.

We can infer from the above description that f,,,, ;41 € R4Qi
for all u and n because the output feature comprises of four
classes. Therefore P;;1 = 4(@);. The whole output feature
Fi; 1 € RY*QixXUxXN jg 3 three dimensional tensor, where
elements with index u and n in second and third dimensions
are f,,, ;1. Observe (20), we note that the same information
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Feature ca ca Feature ca
Feature oc oc Feature oc
Feature oa 0%25 oa Feature oa ng\
RIS Element RIS Element
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Information

Feature cc
Processing Phase
Feature ca & Shifts
Feature oc Summation RIS Element
Feature oa 0%@‘

RIS Element

Input tensor Info. proc. Output tensor

(c) Final layer

Fig. 2. Information processing (info. proc.) in RISnet. The symmetric
information processing along the dimension of users makes RISnet invariant
to user permutation.

processing units are applied to all users and RIS elements.
Therefore, the number of trainable parameters is independent
from the number of RIS elements, which enables a high
scalability to configure more than 1000 RIS elements. For the
final layer, we use one information processing unit. Features of
different users are summed up to be the phase shifts because all
the users share the same phase shift. Element ¢,,,, in row n and
column n of ® is defined as ¢,,, = el¥», where ¥ is the n-th
output of RISnet. Since |¢!?| = 1 for any ¢, constraint (17¢) is
satisfied. Since all off-diagonal elements of ® are initialized as
0 and stay constant during the optimization, constraint (17d)
is satisfied. The information processing of a layer is illustrated
in Figure 2.

Another important merit of RISnet for SDMA is the
permutation-invariance.

Theorem 1: The RISnet is permutation-invariant.

Proof: The permutation-invariance can be intuitively
achieved in the following way: Feature cc and Feature ca
(current user and current/all RIS element(s)) depend only on
the input feature of current user and are independent from user
order. Feature oc and Feature oa (other users and current/all
RIS element(s)) depend only on the input feature of other
users and are also independent from user order. Since the
summation of features over all users in the last layer of RISnet
is permutation-invariant, the RISnet is permutation-invariant.
A rigid proof is available in Appendix. |

Remark 5: RISnet can be considered as a highly specialized
graph neural network (GNN), which performs inference on
a graph with vertices and edges between vertices. In our
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case, a vertex is a combination of RIS element and user. The
class cc is the local feature of the vertex. Three sets of edges
represent classes ca, oc and oa, where edges connect all RIS
elements of the same user, users of the same RIS element,
and all RIS elements and users, respectively. The messages
passed from neighboring vertices in classes ca, oc and oa
are described by lines two, three and four of (20), respectively.
The aggregation of messages from neighboring vertices is the
averaging operations in (20). The local feature and the global
features are combined in the feature dimension as the input
for the next layer.

2) RISnet Architecture With Partial CSI: Although the
above-presented architecture has a high scalability due to the
reuse of information processing units for all RIS elements and
users, the channel estimation is still difficult. In particular,
the estimation of G is especially challenging due to the large
number of RIS elements (unlike D) and high variance since
it depends on the user location (unlike H). If every RIS
element has the ability to estimate CSI from the pilot signal,
the hardware would be very complex. However, using the
domain knowledge in channel modeling, we notice that if the
propagation paths in the channel are mostly line-of-sight (LoS)
or specular, i.e., the channel is “sparse”, then the CSI of a few
RIS elements contains sufficient information about the user
location, which can be used to infer the full CSI of all RIS
elements. This fact suggests that we can use partial CSI of G
as input to RISnet. The partial CSI is defined as channel gains
between RIS and user of a few selected RIS elements equipped
with hardware for channel estimation, i.e., a few selected
columns of G. The partial CSI can be estimated with received
pilot signals from users. Since only a few RIS elements have
hardware for channel estimation, the whole RIS has a low
hardware complexity. Instead of performing an explicit full
CSI prediction like an image super-resolution, we perform an
implicit full CSI prediction, i.e., an end-to-end learning from
partial CSI to a complete RIS configuration. In this section, we
propose an RIS architecture where only a few RIS elements are
equipped with hardware to estimate the CSI with pilot signals
from the users, as described in Section IV-B. Compared to
an RIS which can estimate full CSI, the proposed hardware
architecture has a significantly lower complexity due to the
small number of RIS elements with channel estimation ability.
This hardware structure is similar to hybrid RIS [37], in which
a few active elements with RF chains can amplify signals,
but is simpler for implementation because the elements only
estimate the channel rather than amplifying the signal, which
justifies the feasibility of the proposed hardware architecture.

RIS elements with the hardware of channel estimation from
received pilot signals of users are defined as anchor elements.
They are uniformly placed on the RIS, because we would like
to make the partial CSI as representative to the full CSI as
possible. The geometric consideration will become clear in
the following description.

The input channel features in this section consist of features
of all users and anchor elements. The RISnet expands from the
anchor elements to all RIS elements. A layer in RISnet that
expands from anchor elements is called an expansion layer.
The basic idea of the expansion layer is to apply the same
information processing unit to an adjacent RIS element with
the same relative position to the anchor element, as shown in
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Info. proc. 8
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Fig. 3. Application of 9 information processing units to expand from one
anchor RIS element to 9 RIS elements, where f5 is the channel feature of
RIS element 5. Information processing unit 5 is comparable to the information
processing units of RISnet with full CSI. Indices of user and layer are omitted
for simplicity since the expansion is for RIS elements.

Figure 3, where element 5 is an anchor element. The expansion
layer computes features of all 9 elements with only feature of
element 5 (f5). Therefore, each class, i.e., cc, ca, oc, oa for
SDMA and c, a for NOMA, has 9 information processing
units, which outputs features of the same RIS element and the
adjacent 8 elements.

Concretely, the output of RIS element n using information
processing unit j is computed as

fuu(n,j),iJrl
(32, ReLU(W§S i 4+ b59)) /N
= (Zh#u&iUﬁV%Q%J+b%D/HJ—D :

(i s RELU(WES furr4b53) ) /(N (U 1)
2D

where v(n,j) is the RIS element index when applying
information processing unit j for input of RIS element n.
According to Figure 3 and assuming that the RIS element
index begins with 1 at the upper left corner, increases first
along the row and then changes to the next row (i.e., the index
in row w and column A is h + (w — 1) - H, with H being the
number of columns of the RIS array), we have

n—H-2+j j=1,23,
n—>5+j j=4,5,6,
n+H-8+j j=1,8,09.

v(n,j) = (22)

In (21), we use the four information processing units
defined in (20) to process feature of RIS element n and user .
Unlike in (20), where the output is feature of RIS element n
and user wu, the output in (21) is feature of RIS element v(n, j)
and user u. For example, for j = 2, the output feature is for the
element above element n (see (22)). In this way, we generate
features of 9 RIS elements out of the feature of 1 element.

By defining two such expansion layers, the numbers of
anchor elements are increased by a factor of 9 in both row
and column. If we have 16 anchor elements (4 x 4) with CSI,
we can generate phase shifts of 1296 (36 x 36) RIS elements.
The process of expanding anchor elements is illustrated in
Figure 4, where the blue RIS elements in Figure 4(a) can
estimate the channel from the pilot signals from the users.
Such RIS elements are only 1/81 of all RIS elements. The
whole RISnet architecture is shown in Figure 5.

Remark 6: The RIS elements with the channel estimation
capability are fixed once the RIS hardware is designed. Since
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(a) First expansion (b) Second expansion

Fig. 4. Expansion of considered RIS elements. Blue: anchor RIS elements.
Lower left corner: example of the expansion to extend the anchor RIS
elements from the blue element to the adjacent elements (light blue elements
in Subfigure (a) and all elements in Subfigure (b)).

[Normal layer (16 RIS elements)]

[Narmal layer (16 RIS elemems)}

[Expansion layer (144 RIS elements)]

[Normal layer (144 RIS elemenls)]

[Normal layer (144 RIS elemems)}

[Expansion layer (1296 RIS elements)J E : E : : E S

[Normal layer (1296 RIS elemems)]

[Normal layer (1296 RIS elemems)]

Fig. 5. The RlISnet architecture with partial CSI, where the information
processing of normal layers is given by (20) and the information processing
of expansion layers is given by (21). Note that this process is only possible
with uniformly placed anchor elements.

the hardware design does not change constantly, we assume
known and fixed RIS elements with CSI. If the RIS layout is
modified, the NN architecture must be modified accordingly.
For example, if we want that one element is expanded to
the adjacent 36 elements instead of 9, we should define
36 information processing units (see Figure 4). This is an
example of problem-specific ML that the NN architecture is
determined according to the hardware structure.

During the model training, the full CSI is still required to
compute the objectives (17a).* However, phase shifts of all
RIS elements ® are computed with the partial CSI after the
training in the application, which implies that only the partial
CSI on the anchor elements is required in application.

3) Efficient Parallel Implementation With Tensor Opera-
tions: Although (20) and (21) are the most intuitive way to
understand the information flow in RISnet, the computation
is done per RIS element (and user), which can only be
implemented in a loop and has a low computation efficiency.
In order to utilize the parallel computing in a GPU, it would
be desirable to implement the information processing as tensor
operations instead of computation per RIS element (and user).
Let F{{, be the output of information processing unit ca in

4The full CSI can be obtained, e. g., by off-line channel measurement before
the operation.
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layer ¢, the second row of the right hand side of (20) can be
rewritten as

(z':il [" n, u] = (Z ReLU(Wfafun’,i + bfa)) /N (23)

It is easy to prove that (23) is equivalent to

2, = ReLU(WS°F,; + bg?) - 1V*N/N, (24)

where the multiplication between W¢* and F; is done in
the first dimension (the feature dimension) of F; and the
multiplication between ReLU(W$F; +bg?) and 1>V takes
place in the last two dimensions (users and RIS elements) of
ReLU(W$?F; 4 bg?). In this way, (23) is computed for all
RIS elements and users without a loop using tensor operations.
Similarly, the third row of the right hand side of (20) can be
rewritten as

o lmau] = Y ReLU(Wfy s +b5°) | /(U - 1).

u’ #u
(25)
It is straightforward to prove that (25) is equivalent to
i1 = EVV . ReLU(W{°F; + bj°) /(U —1).  (26)

Other operations in (20)—(21) can also be parallelized in
similar ways. Therefore, the RISnet can be implemented in
a computation-efficient way.

D. Joint Optimization of BS Precoding and RIS
Configuration

Problem (17) involves joint optimization of BS precod-
ing and RIS configuration. Using domain knowledge in
communication, we identify WMMSE precoding [5] as a
high-performance analytical precoding scheme. We apply it in
order to guarantee precoding performance and reduce training
difficulty since we do not need to optimize precoding.

The WMMSE precoding [5] is briefly elaborated as follows:
It is first proved that the WSR maximization problem is
equivalent to a weighted sum mean squared error (MSE)
minimization problem. Following this observation, an iterative
algorithm is proposed. In each iteration, the weight of
each user’s MSE is updated. Subsequently, the precoding
matrix for each user is computed. The iteration is terminated
if the MSE weights converge. In particular, a factor puy
(equation (18) in [5]) is computed numerically in the
precoding matrix computation in order to meet the transmit
power constraint (17b). Therefore, the WMMSE precoder is
indifferentiable and cannot be part of the objective because the
NN is trained with gradient ascent. As a result, we apply AO,
where we fix the NN and compute the precoding matrix V
using the RIS configuration generated by the current RISnet
for each data sample in D, then treat V as constants and train
the NN for the given precoding.

The framework of the hybrid approach of joint optimization
is illustrated in in Figure 6.

The training objective is (17a). Note that although
constraints (17b)—(17d) do not appear in the objective, (17b) is
fulfilled by the WMMSE algorithm (see equation (18) in [5]),
(17¢) is satisfied because |e/?| =1 for any ¢ € R, (17d) is
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RIS configuration ® with RISnet}

Fig. 6. Hybrid solution of analytical precoding and ML-enabled RIS
configuration.

‘ RIS

‘ Users ‘

BS

Fig. 7. The considered scenario: an intersection in an urban environment.

guaranteed because all the off-diagonal elements stay constant
throughout training and inference.

Summarizing the above descriptions, the algorithms to train
the NN is formulated as Algorithm 1.

Algorithm 1 Neural Network Training With AO
1: Initialize the permutation-invariant RISnet Njy.

2: repeat
3: Randomly choose data samples in a batch.
4 Compute WMMSE precoding matrix according to [5]

for every data sample, where the precoding matrix is
considered as constants for training.

Compute phase shifts @ with current Np.

Compute objective (17a) with CSI, user weights,
precoding (considered as constants) and phase shifts.

7: Compute gradient of (17a) w.r.t. § with backward
propagation.
8: Perform an optimization with the ADAM optimizer

according to the gradient.
9: until WSR stops increasing.

V. TRAINING AND TESTING RESULTS

The training and testing results are presented in this section.
The open-source DeepMIMO data set [38] is applied to
generate channel data. The chosen urban scenario is shown
in in Figure 7, where the LoS channel from BS to users are
blocked by a building. Only a weak direct channel is available
through reflections on buildings and ground. Furthermore, the
channel from BS to RIS has multiple multi-path components
(MPCs) such that the MIMO channel matrix has a high rank to
support multiple users in SDMA. Finally, we choose users at
least 8m from each other to realize a full-rank channel matrix
from RIS to users, since the rank of the cascaded channel
matrix is less than or equal to the lowest rank of the factors
in the product, see Remark 3. The user grouping is assumed
given. We note that it is an open topic to assign users according
to channel/user positions.

Important assumptions and parameter settings are listed in
Table I. It is to note that the performance is sensitive to the
learning rate.
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TABLE I
SCENARIO AND MODEL PARAMETERS

Parameter Value
Number of BS antennas 9
RIS size 36 x 36 elements

3.5 GHz
0.5 wavelength
0.25 wavelength

Carrier frequency
Distance between adjacent antennas at BS
Distance between adjacent antennas at RIS

Number of users 4

Learning rate 8x107*-1.5x%x10"3
Batch size 512

Optimizer ADAM

Number of data samples in training set 10240

Number of data samples in testing set 1024

As described in Section IV-C2, the effectiveness of RIS
configuration with partial CSI depends on the channel model:
the partial CSI contains sufficient information to configure the
whole RIS if the channel consist of a few LoS or specular
propagation paths. In this case, the channel gains at different
RIS elements are strongly correlated spatially because all
these channel gains are due to these specular propagation
paths. On the contrary, if the channel has infinitely many and
infinitely weak propagation paths due to scattering, the channel
gains at different RIS elements are spatially independent and
identically distributed (i.i.d.) [39]. We assume three channel
models to assess the feasibility of applying partial CSI for RIS
configuration:

o Deterministic ray-tracing channel from DeepMIMO
simulator, which is most feasible to infer the full CSI
from the partial CSI.

o Deterministic ray-tracing channel plus i.i.d. scattering
gains on each RIS element. It is less feasible to infer
the full CSI from the partial CSI with this model.

e Li.d. channel model due to scattering of infinitely many
infinitely weak propagation paths, where the inference of
full CSI from partial CSI is impossible.

A. Training Behavior

Figure 8 illustrates the improvement of WSR in training
and testing with full and partial CSIs, where the user weights
are uniformly randomly generated and sum up to one, and the
data for testing is independently generated from the data for
training. It can be observed that training and testing with the
same setup realize similar performances, suggesting a good
generalizability of the trained model. From Figure 8(a), we
observe that similar performances are achieved with full and
partial CSI when the channel is generated by the ray-tracing
simulation and is therefore deterministic, suggesting that the
partial CSI is sufficient and the difficulty of channel estimation
can be relieved significantly. With the deterministic channel
and i.i.d. scattering gain (Figure 8(b)), the realized WSR with
partial CSI is lower than with full CSI, because the full CSI
cannot be recovered from the partial CSI due to the spatially
ii.d. scattering gain. However, the difference between full
and partial CSIs is insignificant, suggesting that the proposed
approach is robust against i.i.d. scattering gain. If the channel
is spatially fully i.i.d. (Figure 8(c)), the WSR with full CSI
is improved significantly, whereas the WSR with partial CSI
stays almost constant. This is because we cannot recover full
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Fig. 8. Realized WSR with SDMA in training and testing.

CSI from partial CSI due to the independent channel gains at
different RIS elements.

According to [40], the wireless channel is sparse in many
typical scenarios, i.e., the signal arrives the receiver via a
few distinct MPCs and the spatially i.i.d. scattering effect is
very limited. This fact is the foundation of many compressed
sensing based channel estimation [41], [42]. Since most real
wireless channels are similar to deterministic channel model
with or without i.i.d. scattering gain (i.e., like Figure 8(a) and
Figure 8(b) rather than Figure 8(c)), the proposed method with
partial CSI is believed to work well not only in simulation,
but also in reality.

B. Comparison With Baselines

Next, we compare our proposed approach with baselines.
Since RIS optimization considering mutual coupling for
SDMA is still an open topic, we assume an RIS without mutual
coupling and use deep reinforcement learning (DRL) [21],
random phase shift, and BCD algorithm [6] as baselines for
comparison. The problem formulation is with full CSI and
without mutual coupling. As a fair comparison with the same
problem formulation, we also train RISnet assuming no mutual
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Fig. 9. Comparison between proposed approach with baselines. The proposed
approach outperforms all baselines with the exception of partial CSI and i.i.d.
channel gain.

coupling, i.e., using (1) as the channel model. Figure 9 shows
the performance comparison of the proposed approach and the
baselines. We have the following observations:

o The proposed RISnet outrforms baseline algorithms DRL,
random phase shift and BCD algorithm significantly.
The only exception is RISnet with i.i.d. channel gain
and partial CSI, as explained below. A main reason
for the better performance of the proposed approach
is that DRL with a fully connected NN and BCD
algorithm have a poor scalability with the number of RIS
elements.

e The proposed RISnet with partial CSI works well with
deterministic ray-tracing channel model (Figure 9(a)),
and deterministic channel model plus i.i.d. channel gain
(Figure 9(b)). The observation holds for both setups with
and without mutual coupling. This is because the partial
CSI contains sufficient information to recover the full
CSI. On the contrary, the full CSI cannot be recovered
from the partial CSI with i.i.d. channel gain. Therefore,
the performance with partial CSI and i.i.d. channel gain
is poor.
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Fig. 10. Comparison between testing results considering mutual coupling of
trained models without (first two rows) and with (last two rows) consideration
of mutual coupling. This result justifies the necessity to consider mutual
coupling if it exists because the model mismatch results in significant
performance loss.

C. Necessity to Consider Mutual Coupling

In this section, we demonstrate the necessity to consider
mutual coupling by testing RISnet trained without mutual
coupling to problem with mutual coupling. As shown in
Figure 10, the model mismatch (i.e., model trained without
mutual coupling and tested with mutual coupling) results in
a significant degradation particularly for RISnet with partial
CSI, which justifies the necessity of explicit consideration of
mutual coupling if it exists in the RIS hardware.

D. Performance With Different Numbers of Anchor Elements

In this section, we investigate the impact of the anchor
element number on the performance. We consider a RIS with
16 anchor elements with the ability of channel estimation,
as depicted in Figure 4, and a RIS with 4 anchor elements.
We expect that the RIS with 4 anchor elements is more
vulnerable to i.i.d. scattering gain due to the less input
information. The realized WSR is shown in Figure 11. The two
RISs are roughly equally good with deterministic channels and
roughly equally bad with i.i.d. channel gain. However, the RIS
with 16 anchor elements (more partial CSI) performs much
better than the RIS with 4 anchor elements (less partial CSI),
as we expect. This result suggests that the required number of
anchor elements depends on the channel property: The more
ii.d. scattering gain, the more required anchor elements and
more expensive hardware. The optimal choice of the hardware
depends on the propagation environment.
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Fig. 11. Comparison between training results with different numbers of
anchor elements. More anchor elements have higher hardware complexity but
are more robust to i.i.d. channel gain.

E. Complexity Analysis

In addition to performance, another major advantage of
RISnet is the low complexity in real-time application. Accord-
ing to (24) and (26), the information processing of a layer
is considered as cascading operation of tensor multiplication
and addition of complexity O(QPKN) + O(QKN), where
P is the input feature dimension and @ is the output feature
dimension, the ReLU activation of complexity O(QKN)
(because the activation function is performed element-wise),
and the averaging operation of complexity O(N), O(U) and
O(NU) for class ca, oc and oa, respectively. Asymptotically,
the complexity of RISnet inference is O(QPKN). On the
other hand, the asymptotical complexity of the BCD algorithm
is O(U?N?) [6]. The asymptotical complexity of a fully
connected NN applied in [21] is O(UN?) since the input
dimension is proportional to UN (number of users times
number of RIS elements) and the output dimension is V.
We can see clearly that the complexity of RISnet inference
grows linearly with the number of RIS elements N, while
the complexities of baseline approaches [6], [21] grow
quadratically with N. This observation confirms the high
scalability of the proposed RISnet.

Practically, RISnet can configure a RIS with 1296 ele-
ments within 0.07 second on an off-the-shelf laptop
with Apple M3 Pro processor, while reference [6] needs
253 seconds and reference [21] needs 0.23-second. The reason
of the fast inference is that the most computation complexity
is in training, which takes about 8 hours. Once the training is
finished, the inference (application) with a trained RISnet is
very efficient. Compared to a fully connected NN, where the
number of trainable parameters is proportional to the product
of input and output dimensions, the number of trainable
parameters of RISnet is independent from the input and
output dimensions. This comparison shows the advantage
of complexity and real-time performance of the proposed
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RISnet. In future applications, we can leverage the hardware
developed for heavy ML applications such as large language
models (LLMs) and autonomous driving in a much smaller
scale, because the proposed RISnet has about 10* trainable
parameters, which is one million times less than current
LLMs [43], making an efficient real-time application feasible
with low-cost hardware.

VI. CONCLUSION

The SDMA technique is crucial in multi-user wireless
communication system. Its performance depends strongly on
the channel property, which can be improved by the RIS. In the
previous research, scalability of RIS elements, unrealistic
assumption of full CSI and ignorance of mutual coupling
between adjacent RIS elements are the main limitations of
realizing RIS in reality. In this work, we have focused on
deriving scalable solutions with unsupervised ML for RIS
configuration while making realistic assumptions regarding
CSI knowledge and mutual coupling between adjacent RIS
elements. We integrate domain-knowledge in communication
and ML techniques to design a problem-specific NN archi-
tecture RISnet, which is permutation-invariant to user input.
We further showed that partial CSI is sufficient to achieve
a similar performance to full CSI if the channel comprises
of a few specular propagation paths (i.e., the channel gain is
not dominated by i.i.d. components due to scattering). Finally,
we demonstrated that the proposed approach outperforms the
baselines significantly and it is necessary to explicitly consider
the mutual coupling. Beyond this work, problem-specific ML
combining domain knowledge and ML techniques provides
unique opportunity to improve performance, complexity and
equivariance compared to generic ML. This work can be
extended by considering rate-splitting multiple access (RSMA)
and beyond-diagonal RIS.

Code and data in this paper are available under
github.com/bilepeng/risnet_mutual_partial.

APPENDIX
PROOF OF THEOREM 1

We first prove that every layer except the last layer is
permutation-equivariant, i.e., if F; = P - F;, where P is an
arbitrary permutation matrix and the multiplication is between
P and the last two dimensions of F;, F;;; = M(F,;) and
F;, , = M(F}), where M is alayer, we have F; | = P-F; ;.

We first consider class cc, the output of information
processing unit cc of layer ¢ given the permuted input is

1% = ReLU(W{°P - F; + b¢°) 27)
= ReLU(P - WE°F; + bee) (28)
= P - ReLU(WS°F; + bee) (29)
=PF{;,. (30)

The second line holds because the multiplication with W§*
is in the first dimension of P - F;, whereas the multiplication
with P is in the second and the third dimensions of F;. The
third line holds because ReLU is an elementwise operation.
The fourth line is the definition of F§7,. Similarly, we can

lca __ ca
prove Fi5% =P - F77).
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= P - F?7,, we first need to prove the

loc
To prove F 59
EUV*U and P is commutative:

multiplication between

EUXUP:1U><UP_IU><UP (31)
=P1"*Y —p1V*V (32)
=PEU*V, (33)

The third line holds because the sum of every row/column of
P is 1. We can now prove the permutation-equivariance as

0 =EVV . ReLU(W°P - F; + b°) /(U — 1)
= EY*V . ReLU(P - W{°F; + b$°) /(U — 1)
— EVXUP . ReLU(W?°F; + b°) /(U — 1)
— P EV*UReLU(WS°F; + b%®) /(U — 1)

_ oc
=P -Fj,.
Similarly, we can prove F33 = P-Fi. .
Since the output of every class in every layer is permutation-
equivariant, the whole output after summation over users is
permutation-invariant.
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