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Abstract

We define a new family of commuting operators Fy in Khovanov—-Rozansky link
homology, similar to the action of tautological classes in the cohomology of charac-
ter varieties. We prove that F, satisfies “hard Lefshetz property” and hence exhibits
the symmetry in Khovanov—Rozansky homology conjectured by Dunfield, Gukov, and

Rasmussen.
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1. Introduction

In 2005 Dunfield, Gukov, and Rasmussen [9] proposed a remarkable conjecture about
the structure of triply graded Khovanov—Rozansky link homology (see [23], [24])
categorifying HOMFLY-PT polynomial.

CONJECTURE 1.1
Let K be a knot, and let HHH(K) = @@ HHH; ; x (K) be its reduced triply graded
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homology, where i is the a-grading, j is the quantum grading, and k is the homolog-
ical grading. Then dimHHH; _,; 1 (K) = dimHHH; 5; x> ; (K).

The conjecture was motivated by the well-known symmetry of the HOMFLY-PT
polynomial P x(a,q) = Px(a,q~"), where

Pxla,q) =) d'q/ (1) dimHHH, ; 4 (K).
i,j.k

This conjecture was verified in [9] in numerous examples, and it was later related
to deep results about algebraic geometry of compactified Jacobians (see [29], [35]),
Hilbert schemes of points on the plane (see [13]-[15], [30], [34]), representation
theory of rational Cherednik algebras (see [16]), and combinatorics of g, f-Catalan
numbers (see [10], [12], [17]-[19]). In particular, the third author [27] computed
Khovanov-Rozansky homology for all torus knots, but the resulting combinatorial
expression is not manifestly symmetric. Nevertheless, the work of the third author on
rational shuffle conjecture in [26] implies that it is indeed symmetric, and Conjec-
ture 1.1 holds for torus knots.

For general knots, Conjecture 1.1 remained open until a recent series of papers by
Oblomkov and Rozansky [30]-[34], who resolved it in general, and Galashin and Lam
[11], who proved it for a class of knots related to positroid varieties. Both papers used
very heavy machinery from geometric representation theory: matrix factorizations on
Hilbert schemes of points and graded Koszul duality for category O.

In this paper we give a more direct algebraic proof of this conjecture.

THEOREM 1.2
Conjecture 1.1 is true for all knots.

For the unreduced homology, or for links with several components, the con-
jecture cannot be extended verbatim. Indeed, the unreduced Khovanov—Rozansky
homology HHH(L) is a finitely generated graded module over the polynomial ring
C[x1,...,xc], where ¢ is the number of components of L, and the symmetry in Con-
jecture 1.1 must change the degrees of these variables.

In [13], the first and second authors proposed a solution to this problem
by introducing y-ified link homology HY(L) which is naturally a module over
Clx1,..-»X¢, Y15+, Ve]. In Theorem 1.11, we prove that the y-ified homology is
indeed symmetric in the sense of Conjecture 1.1, and this symmetry exchanges the
action of x; and y;. In the case of knots ¢ = 1, this implies Theorem 1.2.

The key idea of the proof comes from the recent proof of the “curious hard Lef-
shetz” property for character varieties by the third author [28]. Following [28], to a
positive braid § on n strands one can associate a character variety (also known as braid
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variety) Xg, and by [43] the homology of Xg is closely related to the Khovanov—-
Rozansky homology of the closure of 8. Given a symmetric function Q(xy,...,X,)
of degree r, one can define a closed algebraic (2r — 2)-form uo on the character
variety X g, which represents a certain tautological cohomology class. In particular,
for 0 =5 xi2 we get a class u € H?(Xg). The main result of [28] then states that
cup product with certain powers of u, satisfies the “curious hard Lefshetz” property,
that is, yields an isomorphism between certain associated graded components of the
weight filtration in the cohomology of Xg. The proof goes by using a geometric ana-
logue of the skein relation to decompose the varieties into strata, and verifying the
Lefschetz property on each stratum by a direct computation.

In this paper, we define analogues of the forms u ¢ acting in Khovanov—Rozansky
homology. The construction outlined below is completely formal and uses the proper-
ties of Soergel bimodules. We have not been able to find a direct geometric connection
between the two stories, but the geometry of character varieties and related construc-
tions in group cohomology (see [21]) nevertheless motivates a lot of the work in this
paper (see Appendix B for more details).

1.1. The dg algebra A

The key role in our proof of Conjecture 1.1 is played by a remarkable dg algebra A
which was first constructed by Abel and the second author in [1], although they used a
slightly different presentation. It has generators x1, ..., X,, x’l, ... ,x;, of homological
degree 0, &1, ..., &, of homological degree 1, and uy, ..., u, of homological degree 2
with the following differential:

dxi)=d(x))=0,  dE)=xi—x/,  du) =Y he1(x x)&,

i=1

where &y, is the complete symmetric function of degree k. In addition, we impose the
relations

SOea, . xn) = f(x],..00x)

for arbitrary symmetric functions f.

The algebra 4 is naturally an R-R bimodule where R = C[x;,...,x,] acts
on the left by x; and on the right by x;. One can prove that Hy(4A) >~ R and the
higher homologies vanish (see Proposition 3.5), so + is a free resolution of R over
R ®@pgsn R.

The homotopy category of dg modules over 4 is localized by morphisms which
become homotopy equivalences when restricted to the subalgebra generated by x;
and x;. Modules which become isomorphic in this category are called weakly equiv-
alent.
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Any homomorphism A : A — A ®p A defines an A-module structure on the
tensor product M ®g N of arbitrary #A-modules M, N.

THEOREM 1.3
There is a coproduct A : A — A Qr A inducing a tensor product of A-modules
which is associative up to weak equivalence.

Recall that to a braid 8 one can associate a complex T of Soergel bimodules
(called Rouquier complex) which is a tensor product of Rouquier complexes 7;, Ti_1
for crossings (see Section 4.2 for more details). By defining the action of #4 on T;,
Ti_1 and using the coproduct A we can extend it to Rouquier complexes of arbitrary

braids, and arrive at the following result.

THEOREM 1.4

For an arbitrary braid B on n strands there is an action of # on the Rouquier complex
Tg. Here the action of x; is standard, and the action of x| is twisted by the action of
the permutation w(B) corresponding to B. The action of A is well defined and is
invariant under Reidemeister moves up to weak equivalence.

Example 1.5
The minimal Rouquier complex for the full twist on two strands has the form B —
B — R. The action of the dg algebra +4 on it is shown on the following diagram:

uz

— T
B —— B —— R (D)
~—

§1=—6

More generally, we have the following explicit description of u, (see Lem-
ma 4.7).

THEOREM 1.6
One can present the action of uz on a Rougquier complex Tg explicitly as follows:

n
— ) (k)
”2—2251' ®$wjk(i)' 2
i=1j<k

Here éi(j ) is the action of & at the jth crossing, and w i is the permutation corre-
sponding to the piece of the braid B between jth and kth crossings.
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1.2. Action in link homology

Next, we consider the impact of the dg algebra 4 on Khovanov—Rozansky homology.
Recall that the Khovanov—Rozansky homology HHH(L) of the link L obtained as the
closure of B is defined as the homology of the complex HH(7g), where HH denotes
Hochschild homology of Soergel bimodules. Since HH identifies the actions of x;
and x;, we arrive at the following result.

THEOREM 1.7
Consider the dg algebra:

C
€ohen :(C[(x,- e EDy ), | dxi = dE =0, duy =k2x{‘_1§,~].

i=1

If B is a braid on n strands whose closure has ¢ connected components, then HH(Tg)
is a dg module over € A, .

In fact, we prove in Proposition 5.13 that €, , is quasi-isomorphic to the quo-
tient of 4, by the relations x; = xl’u i) Next, we consider the dg algebra €, o
which is the inverse limit of €A, , as n — oo and the homotopy category of dg mod-
ules over it localized by quasi-isomorphisms.! Again, we call isomorphic objects in
the localized category weakly equivalent.

THEOREM 1.8

Let L be a link with ¢ components, presented as the closure of a braid B. Then its
Khovanov—Rozansky complex HH(Tg) is a dg module over € A «, and this module
structure does not depend on the presentation of L as a braid closure up to weak
equivalence.

1.3. Relation to y-ification
A part of Theorem 1.4 implies that there is an action of operators &; of (4, Q,T)

I
w1 (i)’
Here w denotes the permutation

degree (0,2, 1) on an arbitrary Rouquier complex T such that d(§;) = x; —x
!/

w=1()’
associated to the braid 8. Such homotopies were considered before as “dot-sliding

so that &; is a homotopy between x; and x

homotopies” (see [2], [7], [40]) and played an important role in the construction of
the y-ified Khovanov—Rozansky homology by the first and second authors in [13].
Namely, we tensor the Rouquier complex with the polynomial ring C[yy, ..., y,] and

'Note that this category is equivalent to the homotopy category of Aoo-modules over €, oo viewed as an
Ao algebra.
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deform the differential d to

n
dy=d+) &y

i=1

Here the formal variables y; have (A, Q, T')-degrees (0, —2, —2) so that the differen-
tial d, is homogeneous of degree (0,0, —1). The paper [13] also defined the y-ified
link homology HY(8) by taking the Hochschild homology of the y-ified Rouquier
complex for a braid 8. Here we prove the following:

THEOREM 1.9
For any braid B with the associated permutation w there exist operators

n
0
Fy = th—l(xivx;)—l(i))a—y + ug
i=1 !
of (A, Q,T)-degree (0,2k,2) on the y-ified Rouquier complex such that
[dvak]=O7 [Fk7Fm]:07 [Fkaxi]zov
[Fie. il = hi—1 (xi . X1 ;)

In particular, Fj is a chain map and hence defines an interesting endomorphism
of HY(B). Following Theorem 1.8, we prove the following result.

THEOREM 1.10

Suppose that L is a link with ¢ components. There is an action of operators
XlsersXes Vseoos Ver Fi (k= 1) on the y-ified homology HY (L) satisfying the
equations

[Fe.Fnl =0, [Fr.xi]=0.  [Fe.yi]l=kxf"

This action is a link invariant and does not depend on a presentation of L as a braid
closure.

1.4. Basic objects
In Lemma 5.9 we interpret the skein relation

[Ti — T ']~ [R— R]

as a distinguished triangle of #A-modules involving the so-called Koszul objects,
which already appeared in [13]. Applying the skein relations and Markov moves, we
can simplify links until the invariant of any link is represented as an iterated cone
of products of Koszul objects (see Proposition 5.19). We call such products basic
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objects. They are completely classified in Section 5.5, we give a formula for the
action of uy on them in Proposition 5.25, and their y-ification is given explicitly in
Section 6.3. Combinatorially, basic objects are classified by the same data as Riemann
surfaces with boundary on the link, and we think of the decomposition into basic
objects as an algebraic counterpart of the stratification in [28].

1.5. Hard Lefshetz and symmetry
Finally, we apply all of the above results to prove Conjecture 1.1. By Theorem 1.9
there is an operator

n
Rl
= Z(Xi + X;}_l(i))— +uy
i=1 0y:
of degree (A, Q,T) = (0,4,2) acting on the y-ified Khovanov—Rozansky homology
HY(B).

THEOREM 1.11
Suppose that j > 0. Then the operator (F,)’ satisfies a “hard Lefshetz” property,
that is, yields isomorphisms

(F2)! “HY; —2jx(B) = HY, 2 k+2; (B)

foralli, j, k and an arbitrary braid B.

Analogously to [28], the Lefschetz property is proved for basic objects directly,
and then the theorem is deduced from Lemma 7.1.

COROLLARY 1.12

There is an action of the Lie algebra sl, = (E, F, H) on HY(B) where F = F, and
H acts on HY; 5; (B) by a scalar j. This action intertwines x; and y; such that
Clx1,. . Xes V1s- - Vel = (S*V)®C, where V is the defining representation of sl,.

We deduce Theorem 1.2 from Theorem 1.11 as follows. Recall from [13] that
for a knot K one can write HY(K) = HHH(K) ® C|[x, y], where x = " x; and
y =Y y;. Since [F,,y] = 2x and [F,,x] = 0, it is easy to see that one can write
F,=F,+2x % for some operator F, on m(l( ), and EJ induces an isomorphism
between HHH; _,; x(K) ~HHH; 5 k42 (K).

Remark 1.13
After this paper appeared on the arXiv, Chandler and the first author proved in [8] that
the operators F commute with the differentials in the Rasmussen spectral sequence
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[37] from triply graded Khovanov—Rozansky homology to sly homology, and hence
yield well-defined operations in s[; homology.

The action of E, however, does not commute with Rasmussen differentials, and
both the action of sl, from Corollary 1.12 and the symmetry from Theorem 1.2 are
specific to the triply graded homology. See [8] for more details and examples.

1.6. Structure of the paper

In Section 2 we recall several important constructions in homological algebra which
are probably well known in the case of a dg algebra over a field, but for which
we were not able to find a reference for the relative setting. In particular, we study
the localization of the category of dg modules over a dg algebra 4 by the class of
morphisms which admit $B-linear homotopy inverses (but not necessary <-linear
homotopy inverses), where B is a subalgebra of . We give a concise description
of the corresponding dg category as a full subcategory of the homotopy category
of A-modules in Theorem 2.14. Homomorphisms in this category are related to the
Hochschild homology in Proposition 2.17. We also study the pullbacks of dg modules
along dg algebra homomorphisms 4 — 4’ which preserve 8 and give a sufficient
condition when pullbacks induce equivalences of categories (Lemma 2.19) and under
which pullbacks over different homomorphisms produce weakly equivalent modules
(Lemma 2.22). Finally, we formulate the Koszul duality for such categories in the
special case of a linear dg algebra in Theorem 2.32, which is later used to understand
the connection between 4-modules and y-ifications.

In Section 3 we define the dg algebra 4 and study its properties. We construct
an explicit coproduct on #4 in Section 3.3, and prove Theorem 1.3. The results of
Section 2 are applied to the algebra 4 and its subalgebra B = R @ gs» R.

In Section 4 we define Rouquier complexes and construct the action of 4 on
them, proving Theorem 1.4. We compute the action of u, explicitly and prove equa-
tion (2) in Lemma 4.7.

In Section 5 we study invariance under the Markov moves and prove Theorem 1.8
(Theorem 5.17).

In Section 6 we extend these results to y-ified Rouquier complexes and prove
Theorem 1.9 (Corollary 6.11).

Finally, in Section 7 we study various useful properties of complexes with Lef-
shetz endomorphisms and conclude the proof of Theorem 1.11 (Theorem 7.7).

The two appendices discuss “higher Ao, coproducts” on +, and their relation
to group cohomology. We believe that the +A-algebra structure we construct here is
a manifestation of the existence of tautological classes on character varieties con-
structed via transgression and group homology. Although there is a visible similar-
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ity between formulas in the appendices, the problem of finding a direct connection
remains open.

2. Homotopy theory

2.1. Basic definitions
When discussing modules and algebras endowed with several different gradings, there
will always be one special grading called the homological grading and that grading
will be responsible for the sign rules.” The homological degree of a homogeneous
element x is denoted by |x| = deg, x. In expressions involving degrees, we assume,
but do not always mention, that the respective elements are homogeneous. All dg
algebras are assumed to be unital. The differential has degree —1.

Let 4 be a dg algebra over C. We consider the category of dg modules over
4, which we simply call #-modules. Thus an A-module X is a sequence of vector
spaces (X;);ez endowed with a differential d : X; — X;_; and an #-action A x X —
X satistying |ax| = |a| + |x| and the property that for any a € #4 the action on X of
the super-commutator [d,a] = da — (—1)!%ad coincides with the action of d(a):

[d,a]l=d(a) (aeh).

The homological shift is defined by (X [k]); = Xg+;. For x € X; we have x[k] €
(X[k]) j—k, the differential and the action change signs:

d(x[k]) = (=D*@0K],  a(x[k]) = (D" @x)[k].
The morphisms of A-modules form a complex
Hom*(X.Y) = {f e Homc(X.Y) | deg), f =k.[a. f]=0(a € A)}.
with the differential
d :Hom}(X,Y) — Hom?* | (X,Y), d(f)=I[d.[f].
With our sign conventions we have
Hom* (X, Y) = Homg' (X, Y [k]).

Note that the elements of Homg (X, Y') which lie in the kernel of d are precisely the
dg module homomorphisms, and two such homomorphisms are homotopic precisely
when their images in Hy(Hom, (X, Y)) coincide.

20f course, only the parity of that grading matters for the sign rules.
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Let 4 — mod denote the homotopy category of dg modules over #. Its objects
are dg modules over 4 and morphisms are morphisms of dg modules viewed up to
homotopy, that is,

Hom 4 —mod,, (X, Y)
Homﬁ_mod(x, Y) = HO(HOmo(X’ Y)) = [d HOmol (X Y)] ’

Actual morphisms of dg modules will be called strict morphisms. The corresponding
category is denoted A — mody,. Two objects X, Y are homotopy equivalent if they
are isomorphic in 4 — mod. Unwrapping this definition, a homotopy equivalence
is specified by two strict morphisms f : X — Y, g:Y — X and two homotopies
fogx=Idy, go f =Idy. A strict morphism f : X — Y is a homotopy equivalence
if there exists a morphism g and homotopies as above.

An object is contractible if it is homotopy equivalent to the 0 object, equivalently
if the identity map is homotopic to the zero map, equivalently if some invertible endo-
morphism is homotopic to the zero map. A very useful lemma is the following.

LEMMA 2.1
A strict morphism [ : X — Y is a homotopy equivalence if and only if the cone
[X — Y] is contractible.

Here and below we underline the term in homological degree 0. The category 4 —
mody, is pretriangulated (see [4]), which means that twisted complexes of A-modules
are again #-modules. Twisted complexes of #A-modules are defined as follows. Given
a bounded below sequence of dg #4-modules (X;);ez and a collection of maps g;,; €
Hom;_1—;(X;, X;) (i > j) satisfying

d(qij))+ Y 4ikqr; =0,
k
we form a new object X by setting
X=(@xil-i1d), d=d+Y a1 3)
1€Z j<i

This makes sense because for each i the map ¢; ; vanishes for all but finitely many ;.
When the maps are clear from the context, we visualize twisted complexes as follows:

[—)Xl —)&—)X_l —)]

The following is standard.
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LEMMA 2.2
Suppose a twisted complex X = (D, ¢, Xi|—i]. d) is bounded from below and each
X; is contractible. Then X is contractible.

Remark 2.3

There is a dual definition where we require sequence (X;);ecz to be bounded above
and use the direct product instead of the direct sum in (3). The corresponding analogue
of Lemma 2.2 is also true. In the case where the sequence is bounded both above and
below, the two constructions coincide.

Remark 2.4

Sometimes we will need to work with curved dg modules over #4 introduced in [36].
A curved dg module X with curvature W has a differential satisfying d2> = W where
W is a closed central element of #. All other definitions are as above, and one can
check that for fixed W curved dg modules form a pretriangulated dg category.

2.2. Restriction/induction functors

A homomorphism of dg algebras ¢ : B — # is a linear map which preserves the
grading and the unit, and commutes with the product and the differential. Given such
a homomorphism, any #4-module N is naturally a 8-module, which we denote by
@* N and call the restriction of N. Given a B8-module M, the induction, respectively
coinduction, of M is defined by

oM :=AQg M, respecively, @«M = Hom;@(eA,M).

Clearly, all three operations are functorial in the sense that for any N, N’, respec-
tively M, M’, we have morphisms of Hom-complexes

Hom?(N, N') - HomZ (¢* N, ¢p*N'), HomZ (M, M') - Hom? (oM, s M),

and similarly for the coinduction ¢.. Note that in the definitions of ¢, ¢« we do not
take any resolutions, so the functors are not exact in any sense. Nevertheless, all three
functors commute with cones and induce functors on the corresponding homotopy
categories.

We have natural adjunction isomorphisms on the level of complexes

HomZ(¢:M, N) = HomZ (M, p*N), Hom?(N, s M) = HomZ (¢* N, M).

Definition 2.5

Given a homomorphism of dg algebras ¢ : B — #, an A-module N is called induced
if it is isomorphic to a bounded below twisted complex of modules X;, where each
X;j is of the form ¢;(M;) for some B-module M;.
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Remark 2.6
We can similarly define coinduced modules if we consider bounded above twisted
complexes, but then we need to use direct product instead of the direct sum in (3).

Remark 2.7
In the case when 8 = C, the notion of an induced module coincides with the more
familiar notion of a semifree module.

2.3. Localization

Definition 2.8

Given a homomorphism of dg algebras ¢ : 8 — +, a morphism of #-modules f :
M — M’ is a weak equivalence and the modules M and M’ are called weakly equiv-
alent relative to B if ¢™* f is a homotopy equivalence of B-modules. If f itself is a
homotopy equivalence of A-modules, we say that f is a strong equivalence and the
modules are homotopy (or strongly) equivalent.

So we have four notions of equivalence related as follows:

isomorphism => strong equivalence = weak equivalence = quasi-isomorphism.

LEMMA 2.9
Given a homomorphism of dg algebras ¢ : B — A, A-modules M, N, N’, and mor-
phisms f, g below, suppose that M is induced and g is a weak equivalence.

M —— N

Then there exists a unique up to homotopy morphism ' making the diagram commu-
tative up to homotopy.

Proof
Composition with g induces a morphism of complexes

Hom?*(M, N') — Hom®*(M, N).

It is enough to show that this morphism is a quasi-isomorphism. By Lemma 2.1 it is
sufficient to show that

[HomZ*(M, N') — Hom*(M, N)] = Hom* (M, [N’ — N])
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is contractible. Since M is a twisted complex of modules of the form ¢;(M;) and Hom
commutes with the formation of twisted complexes,’ by Lemma 2.2 it is sufficient to
show that each Hom® (¢, (M;), [N’ — N]) is contractible. Using the adjunction, this
complex is equivalent to the complex

Hom:@(Mi, [p*N' — ¢*N]) = [Hom‘;@(Mi,go*N’) — Hom;@(Mi,ga*N)],
which is contractible since ¢*(g) is a homotopy equivalence. ([
Definition 2.10
Given a homomorphism of dg algebras ¢ : B — # and an A-module M, a resolution

of M relative to B is an induced A-module M together with a weak equivalence
M — M called the counit.

Now Lemma 2.9 easily implies the following.

COROLLARY 2.11
For any A-module M, if a resolution exists it is unique up to a strong homotopy
equivalence.

Finally, we have the following.

LEMMA 2.12
Given a homomorphism of dg algebras ¢ : B — A, any A-module M has a resolu-
tion. Moreover, this resolution can be chosen functorially on M .

Proof
For any k > 1, let m = A®38% @ g M. These ]\’Yk form a twisted complex

M::[--'—>¢A®$A@ﬁﬁ@ﬁM—)A@ﬂA@gM—)A@;@M],

with the bar differential

k
dp(a1®-®ar®@x) =) (~)'a1 @ ®ajai41 ® - Dax @ x.

i=1

The higher differentials vanish. For instance, the first few maps are

dp(a1 ®ar, ® x) =ai1a ® x —aj Q axx,

dp(a1 ®ar, ®a3 @ x)=a1a2, Qa3 QX —a; ®araz; ®x + a1 ®dr asx.

3The Hom complex is strictly functorial and sends direct sums to direct products.
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It is a standard fact that d b2 =0.Let £: M — M be the counit map induced by the
product map

M =A®gM— M.
Let ]\% = M . The cone of the counit map is the complex

[+ > AQg AR M —> ARy M — M].

Deﬁneahomotopyh:]’\\[i —>f\7fi 41 by
h(a1®"’®ai®x)=1®a1®...®ai®x.

This map is not #A-linear, but it is B-linear; it commutes with the differential in each
M; and satisfies hd + dh = Id. Thus the cone of the complex is contractible as an
object of B8 — mod and therefore the counit map is a homotopy equivalence in B8 —
mod by Lemma 2.1.

Thus M together with the counit map ¢ is a resolution of M. Its construction is
clearly functorial in M . O

Definition 2.13

The category /8B — mod (abbreviated as 4/ 8) is the localization of the homotopy
category # —mod with respect to weak equivalences relative to 8. Note that 4 —mod
itself can be viewed as 4/ A.

Explicitly, this is the category whose objects are #A-modules, and morphisms are
represented by zigzags

X< X1 X« X35>--->7, 4

in which all the arrows pointing to the left are weak equivalences. Two morphisms are
considered equivalent if they can be related by a sequence of transformations where
we are allowed to replace any arrow by a homotopic arrow; the identity arrow can be
inserted or removed; two consecutive arrows pointing in one direction can be replaced
by their composition; and finally the composition of a weak equivalence and its formal
inverse is equivalent to the identity.

THEOREM 2.14
Given a homomorphism of dg algebras ¢ : B — A, the localization category A/ B is
equivalent to the full subcategory of 4 — mod whose objects are induced from 8.

Proof
Existence of resolutions implies that any object in 4/B is isomorphic to an
object induced from B. Let M be such an object. By Lemma 2.9 the functor
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Hom 4 _,0a(M, —) sees all weak equivalences as isomorphisms. Hence morphisms
from M to any object N in A — mod are in a natural bijection with morphisms in
A/ B. O

Remark 2.15

Explicitly, morphisms in #4/8 — mod from M to M’ can be described as
Hom—moa(M, M'), where M is the resolution from Lemma 2.12. Suppose B =C.
Then, unwrapping the construction of M leads to the fact that morphisms in #4/C
are nothing else but A, module homomorphisms up to homotopy. For the case when
B is an arbitrary dg algebra, we have not seen a relative version of the notion of
Ao module homomorphisms in the literature, but our definition looks like a natural
generalization.

Remark 2.16

We sketch how the construction of the resolution in Lemma 2.12 can be naturally
obtained from attempting to solve the localization problem directly. First, we note
that instead of localizing with respect to all weak equivalences, it is sufficient to
localize with respect to those weak equivalences f : M — N for which ¢* f is a
retraction; that is, there exists g : ¢* N — ¢* M such that ¢* f o g = Idy . In this case
the homotopy 4/ € Hom‘i{B (M, M) connecting g o ¢* f and Ids can be chosen in such
a way that f o h = 0. Now fix N and consider all possible such M, f, g, h. One
can produce elements of M by applying g to the elements of N and then acting by
h and by elements of #. Acting by f does not give anything new because f oh =0
and ¢* f o g =Idy. So we can attempt to construct the universal such M by tak-
ing formal combinations of these operations. It turns out that we arrive precisely at
the construction of N. The chain map from N to M is given by the collection of
morphisms fi : Ny — M defined by

ﬁ(al Rar; Q- Qay ®x)=(—D’arhash---hapg(x),
where s = |ag_q| + |ag_3| +---.

2.4. Relationship to the Hochschild cohomology

PROPOSITION 2.17
Suppose that ¢(B) is in the center of A and A is free over 8. Then for any k and
any A-modules M, N we have

Hy (HomZ* (M, N)) = Extz (4. Hom® (M, N)) = HH (Hom® (M. N)).
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where Hom;73 (M, N) is viewed as a bimodule over A in the obvious way,* and HH
denotes the Hochschild cohomology. The forgetful functor corresponds to the natural
map HH;k (Hom3 (M, N)) - Homf (M, N) induced by the homomorphism A ® g
AP — A,

Proof
For any A ® g A°P-module ¥ we have
Hom?(Y ® 4 M, N) = Hom*®#*” (v, Hom® (M, N)).

Applying it to Y = A®8%+1 (k > 1) we obtain
HomZ (Mg +1. N) = Hom3'®#4" (A®S25T1 Hom® (M, N)),

where My, = A®35t1 @ g M from Lemma 2.12. It remains to notice that in the
case when 4 is free over B, the modules Y form an explicit free resolution of A
over A ® g A°P whose maps are compatible with the maps defining M. O

2.5. Relative induction/restriction
Suppose we have two dg algebras 4, A’ over B. A homomorphism of algebras over
B is a homomorphism ¥ : A — A’, making the following diagram commutative:

¥
A — A

1

B

Clearly, the restriction ¥ * sends weak equivalences to weak equivalences, and there-
fore defines a functor A’/ B — A /B. In the case A = B we will call ¥* the forgetful
functor.

The induction functor ¥, does not preserve weak equivalences.’ Denote by R 4,
respectively R4, any functorial resolution on # — mod and 4’ — mod (e.g., the one
from Lemma 2.12). Then we have a functor yrj o R 4.

LEMMA 2.18
We have the adjunction

Hom,/g(Y1R4M,N) =Homu,g(M,y*N), S
where M (resp., N ) is an A (resp., A') module.
“Here we are using the assumption that @(B) is in the center of .

SSuppose 8 = C. Then weak equivalences are quasi-isomorphisms. If ¥ preserved quasi-isomorphisms, it
would be an exact functor, but we know that it is in general not exact.
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Proof
Indeed, the module Yy R4 M is induced, and therefore we can replace the left-hand
side by

Hom /g (V1 RAM, N) = Hom (Y1 R4 M, N).

On the right-hand side we can replace M by its resolution R 4 M, so the adjunction (5)
comes from the usual adjunction

Homy (Y1 RAM, N) = Hom4(RAM,y*N) =Homy,g(M,y*N). O

The adjunction (5) implies existence of natural homomorphisms
M — Yy Y RAM, YiRAY"N — N. (6)

We have the following.

LEMMA 2.19

Suppose ¥ is a homotopy equivalence when viewed as a homomorphism of B-bi-
modules. Then the adjunction homomorphisms (6) are weak equivalences for any
A-module M and A'-module N and therefore ™, Y R 4 are mutually inverse equiv-
alences of categories A/ B and A’/ B.

Proof

The first homomorphism corresponds to the natural homomorphism of #-modules
RaM — y*yy R4 M.

The module R4 M is induced, so it is a twisted complex whose components are mod-

ules of the form ¢y K for B-modules K. By the usual argument (using Lemmas 2.1,
2.2, and the fact that vy, ¥* preserve direct sums) it is enough to show that the map

oK — ¥ o K

is a homotopy equivalence for each term of the twisted complex, or in other words,
that for each 8-module K the natural map

AR K—> A ®gK @)

is a weak equivalence. The operation ® g K is a functor from B-bimodules to B-
modules, so it sends homotopy equivalences to homotopy equivalences. So the first
adjunction homomorphism is an equivalence.

The second homomorphism is the composition of homomorphisms

VIRAY*N — Yy *N — N,
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where the first arrow is induced by the counit and the second arrow is the usual adjunc-
tion. The functors v, ¥ * are strict and commute with direct sums and we may assume
that R4 is a strict functor commuting with direct sums. So it is enough to prove the
claim for N = ¢/ K = A’ ® g K. The maps become

A QpRA(A RgK) > A Q4 A R K—>A Rz K.

Since (7) is a weak equivalence and A4 ® g K is induced, the module A ® g K is a
resolution for A’ ® g K. So there exists a strong homotopy equivalence R4 (A’ ®g
K) - A ®g K and the counit map factors through it. So it is sufficient to prove that
the composition

A QARG K > A RQp A RgK > AR K

is a weak equivalence. Clearly, this map is an isomorphism. O

Remark 2.20
If A, A’ are super-commutative, then morphisms of B-bimodules are simply mor-
phisms of B-modules, and so the assumptions of the lemma are also necessary.

Definition 2.21

A homomorphism of algebras 4 — 4’ over B which is a weak equivalence of B-
bimodules (modules in the case when »4, 4’ are super-commutative) is called a weak
equivalence of algebras.

The following lemma will be used to compare the results of pullbacks of modules
via different homomorphisms.

LEMMA 2.22

Suppose A, A’ are dg algebras over a dg algebra B. Suppose V1,V, : A — A’
are homomorphisms of algebras over 8B. Suppose there exists a weak equivalence
y : A" — A" to a dg algebra A" such that y o Y1 =y o Y. Then for any A'-module
M the pullbacks Wy M and 5 M are canonically weakly equivalent.

Proof
We can replace M by y*y1R 4 M by Lemma 2.19. The modules ¥/{y*y1R4 M and
V3 y*n R4 M are simply the same modules. O

Example 2.23
The following is a simple example which illustrates the introduced notions. Consider

A=C[x,£|dx=0,d§ = x], A =C
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where x is even, £ is odd, and ¢ : A — A’ sends x, & to 0. The map ¥ is a quasi-
isomorphism, so if we take 8 = C, then i is a weak equivalence, and {*, ¥ R 4 are
equivalences of categories.

On the other hand, if 8 = C|[x], then ¥ is not a weak equivalence, for instance,
because there is no nonzero map from 4’ to A over B.

For an interesting #4-module, take M = C[¢]; the variable x acts by 0. In the case
B = C this module is not induced. As a resolution we can take the complex

RAM = [Clx,£] 5 Clx, £]].

Applying ¥ produces C & C[—1]. Pulling back, we obtain C & C[—1]. So in the
category +/C the object M is isomorphic to its homology C & C[—1].

In the case B = C[x] the picture is very different. First, the object M is already
induced. Applying v gives C. Clearly, M is not isomorphic to C since it is not even
quasi-isomorphic to C.

2.6. Resolutions and Koszul equivalences

In this section we compute Hom 4, g (M, N) in special cases and identify it with Hom
between certain deformations of M, N. Assume # is a super-polynomial algebra over
a super-commutative algebra B:

A:B[ul,...,um |dui =c,-(u1,...,um)], lui| = k;

The degrees k; can be odd or even. Assume that both 4 and B are generated in
nonnegative degrees. In particular, we have k; > 0. The coefficients of ¢; are in B.
Set

A= AAL e A 01 O | dO = Aj dA; =0, |Af] = ki |6;] = ki + 1.

The map ¢ : A — o defined by €(A;) = ¢(6;) = 0 is a homotopy equivalence of
A-modules. Since the algebra +4 is free over 6;, A;, and u;, we can define the corre-
sponding partial derivatives, which satisfy

= [md-m (T ©

LEMMA 2.24
We have
A=ARg Ab1.....0n|d0 = A,
where A; = u: —u; — -+, where u;, u: are the actions of u; coming from the two

different factors of A ® g 4 and --- belongs to the ideal generated by 01, . .., 0y,.
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Proof
Set

m 9 ~ - —
Z a—- A, D:=[h.d]=hd +dh:A— A.

Note that 4 is homogeneous of degree 1. We have h? = %[h, h] = 0 because the oper-
ators of the form 91, - pairwise super-commute.
Therefore D is a derlvatlon of degree 0, it commutes with d and A, and satisfies

m
3cl

D#;)=D(A;)=0, D(ui)=A; + Ze

Any infinite series in the variables §; which is homogeneous must terminate by degree

reasons. In particular, D is locally nilpotent; therefore, exp(D) = Y 72, D is a well-

defined dg algebra automorphism of A. Let
uj = exp(D)(u;).

Since D commutes with d, we have

du; =ci(u, ..., u;_;).
We have
wp =ui + Aj -
where --- belongs to the ideal generated by 61, ..., 6,,. Since the degrees of 6; are

strictly positive, the variables A ; contained in --- must satisty k; < k;. Therefore the
change of coordinates from A; to ug is invertible, so we can use ug instead of A; to
freely generate #A. O

Recall that k; > 0. Then for any A-module M the module

= M.y Br O | i = il uf ) dB = D] O)

on which # acts via u} is a bounded below twisted complex consisting of direct sums
of copies of A ® g M, and so is a resolution of M. Note that as a module over B it
also has a presentation

M=AQ4AM=M[AL....Am.01,....0m | dA; =0,d6; = A;]. (10)
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Example 2.25
In the simplest case, ¢; are elements of 8. In this case we have D(u;) = A;, u; =
u; + A; and the resolution (10) looks like

M =My, . 01.... 0| du) =ci.d6; =u} —u;],

sUWms

where 4 acts via u;.

Example 2.26
Suppose more generally that ¢; depends linearly on the u ;:

du; =c¢; = B; +ZMjA,'j.
j

Here B; are homogeneous of degree k; — 1 and A;; are homogeneous of degree k; —
kj — 1. Then we have D(u;) = A; + Zj 0 A;j and

Ai=d0i=u§—ui—29inj. (11)
J

Also note that the equation d? = 0 implies

d(Bj)+ ) BjAij=0. (=D*d(A;)+) AjAi; =0. (12)
J J

Definition 2.27

We say 4 is linear over B if # is a super-polynomial algebra over B and for each
generator u; the differential du; depends at most linearly on the other generators, as
in Example 2.26 above.

Now let M and N be A-modules. Morphisms in the category + /8 are obtained
from the complex Hom;’" (M, N). To obtain an explicit presentation of the category
we construct an explicit section Hom?* (M, N) — Hom*(M,N):

— 7 -

M-->N

N

For any #-module M we endow M with an action of B-linear operators % and

3iAi using the presentation (10).
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Definition 2.28
For any A-modules M, N a morphism f € Hom®*(M, N) is flat if it commutes with
aiei anda%i (i=1...,m).

LEMMA 2.29

Suppose that M and N are A-modules, and let f - M — N be any 8B-linear mor-

phism.

(a) There exists a unique flat B-linear morphism ]7: M — N whose composition
with the counit map satisfies € o ]7= f.

(b) The lifting f — fcommutes with the differential.

() If A is linear and f is an A-linear map, then the lift fis also A-linear.

Proof

(a) Suppose such f is given. For any x € M the element fN(x) is a polynomial in the
variables 6;, A; with coefficients in N. The operation ¢y extracts the constant term
of a polynomial. The coefficients of f(x) can be extracted from the constant terms of
iterated partial derivatives by the Taylor formula. So f is unique. Explicitly, f can
be produced as follows:

. 9{1~--9,i,,’”A{1~--A{;1’" 9 9 9 0
fe="2. il i 1l ! f(aAm'”aAIEMEX)

i.l,.“,im,
J1seees, Jm

(b) Let 1 : M — N be a B-linear map. Using the super-Jacobi identity, commutation
relations (8), and the fact that / commutes with 3%’ BLA[_, we obtain

0.7 4170,
a7 [k 171 [ 710

Since ey o [d, /:;] = [d, f], we obtain that [g,\_f/] =[d, ﬂ by the uniqueness.
(c) Assume o4 is linear. Then we have

[8 ’-]=Aj,-e£,

3_91.’”] /-]25,']'63.

Bt

This implies

a7 [ ) 7)o

and similarly for 3%1“ If f is #A-linear, then
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evolu) fl=u; f — (=)W fru =0,

o) [u’j, ] is the lift of the zero map, and by the uniqueness must vanish. O

From now on we assume that + is linear. Set

~ a ad
0 = —— Aji—. 13
i aei+z Y (13)
We remind the reader that the operators 3195’ % correspond to the presentation of A

as generated by 6;, A ;.

LEMMA 2.30
The operators 0; satisfy

b)) =0, [d.6] = (1)} +14;:6;.

J

Proof
For the first equation, recall that by Example 2.26 we have

u; =Uj; +Al +ZGJ-A,-]-;
J

hence
é;(ulj) =—A;,+A4;; =0.

For the second equation, we note that both sides are derivations, so it is sufficient to
verify it on generators u’é, 0;. Both sides clearly vanish on ”/z by the first equation.
We have

[d.6,1(60) = dBi (60) — (—1)} 16, d(60) = (=116, A = (=1)* Ags.
This clearly matches the right-hand side applied to 6. O

For a multi-index I = (iy,...,I,) denote

-~

1 _ Dt Dim
0f =6, ---0,m.

LEMMA 2.31
Let M and N be modules over a linear algebra . Then flat morphisms in
Homi"’ (M, N) are precisely morphisms which can be written as series
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> 16" (f1 € HomB (M. N)). (14)
1

Here each morphism f1 € Hom;{B (M, N) is naturally extended to a morphism in
Hom,”" (M, N) using presentation (9). Moreover, the presentation (14) is unique.

Proof
In the case of a linear algebra A we can replace aie,» by 6; in Definition 2.28.

Morphisms f7 and @ are flat. So maps of the form (14) are flat. Conversely,
suppose we have a flat map f. By subtracting maps of the form (14) we obtain a
flat map f” such that ¢ o f’ vanishes on M (61, ..., 6,,]. By u}-linearity, € o f’ must
vanish identically. By Lemma 2.29 we have f’' = 0.

Uniqueness follows by applying the map to elements of M [61,..., 6,]. O

Now we are ready to prove the following.

THEOREM 2.32

Suppose B is generated in nonnegative degrees and A = Buy, ..., Uy| with |u;| =
k; > 0is linear, that is, du; = B; + Zj ujA;ij, where B;, A;; € B. Then the category
A/ B is equivalent to a full subcategory of the category of curved dg modules over

~

A:ﬂ[[@,...ﬁm ‘ 46, = (—1)kf+IZA,-,-§,-]], 61 = —1—k;
J

with curvature an IB,-@. An A-module M corresponds to a curved A-module

M=M [[é\l, .. /G\m_]] with the differential deformed according to the following rule:
di =dygzat > _uibi.
i
Proof

Morphisms from M to N in the category #4/B are the homology groups of the
complex Hom#* (ﬁ ,N), where M is the resolution given in (9). Elements of this
complex are in bijection with flat morphisms in Hom;’"’(ﬁ, ﬁ) by Lemma 2.29. By
Lemma 2.31 they precisely correspond to series of the form (14). Elements of the
complex Hom#* (1\/4\ N ) also correspond to such series. So it remains to compare the
differentials. We claim that the differentials agree; that is, for any f of the form (14)
we have

dyf — (DY fag=dgy f — (D fdg. (15)

The differential on M is given in terms of the differential on M as follows (we
use presentation (9)):
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i = o= 3~ Y00+ 3+ S
j i J !

i

and similarly for d. Flat maps commute with u}, 6; and % (the latter operator coin-
r

cides with the operator 8%1, when using the presentation (10).) Thus, when computing
the left-hand side of (15) we can replace djy, respectively d g, with

(dy resp. dy) + )0 Aijfi + ) uifh.
ij i
Note that |4;;| = k; — k; — 1, in particular 4;; = O for degree reasons. This implies
QinjQi = A,-jG,-Qj. We have

0,0 = (~D)Ki 15y,

and each f7 in the expansion (14) commutes with 6}, so we can replace 6; by the
operator (—l)kf +1 %. We arrive at the following expression for the differential:

J

, P ~
(da tesp. dy) + Y (DR 40— + > uibr.
i,j 391' i
This is precisely the differential d;, respectively d g, so we have shown (15).

Notice that d2 = 0 on s follows from (12). For the deformed differential on M
we have the curvature

m m

m m
J

i=1 i=1 i=1 i=1
By construction the ring # is super-commutative, so the curvature is central. O

Remark 2.33
In our main application for the ring €, o, below, the curvature will vanish, so we
will obtain honest dg modules.

3. The dg algebra A

3.1. Algebras

Let R = C[xy,...,x,] and R® = C[x1,...,Xp, X],...,x,]. We identify R® with
R ®c R by sending x; — x; ® 1 and x; — 1 ® x;. Note that R°-mod and (R, R)-
bimod are equivalent as categories, but not as monoidal categories (the monoidal
structures are given by ®@ ge and Q@ g, resp.).
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Below we will consider various objects which are simultaneously algebra objects
in R¢-mod and coalgebra objects in (R, R)-bimod.

First, let S, act on R by permuting variables, and define B := R ® gs, R, where
RS is the algebra of symmetric polynomials. We can and will regard B as the fol-
lowing quotient of R¢:

B Clxt, ..o, xp, X7, ... x5]
Qi xf =0 Xk (k=1,....n)

In this presentation, the power sum functions can be replaced by any other set of
generators of R5".

This quotient makes it obvious that B is an R¢-algebra. In addition to this struc-
ture, B is a coalgebra object in the category of (R, R)-bimodules. The counit is
defined by

B — R, Xi > Xi, X)X,
and the comultiplication is defined by
B — B ®r B, Xi—x®1, x> 1® xj.

Note that B and B ® g B are R algebras, and the counit and comultiplication are
algebras maps.

Remark 3.1
If M is a B-module, then we may regard M as an R®-module (equivalently, an
(R, R)-bimodule) by restriction. Thus if M, N are B-modules, then M ®g N is
defined. This tensor product inherits the structure of a B-module via the coproduct
B — B ®g B.

Indeed, the category of B-modules coincides with the full subcategory of (R, R)-
bimodules for which the left and right actions of symmetric polynomials coincide; this
full subcategory is obviously closed under ®r.

Remark 3.2
If M, N are B-modules, we will often write M @ g N simply as M N, for simplicity.

Remark 3.3

The algebras B, R are graded by placing the generators x;, x; in degree 2. This
grading is called the ¢-grading. By placing B or R in homological degree O they are
viewed as differential graded algebras with zero differential.

Next we will define an R¢-algebra 4 which is also a coalgebra object in the
category of (R, R)-bimodules, similarly to B (with the exception that coassociativity



TAUTOLOGICAL CLASSES AND SYMMETRY 2507

for + holds only up to homotopy). Consequently the category of 4-modules up to
weak equivalence inherits the structure of a monoidal category.

Definition 3.4

Let # be the free differential graded commutative algebra over B with generators &;
(i=1,...,n),ur (k=1,...,n)of degrees deg;, & = 1, deg;, u = 2. The differential
(of degree —1) is given by

xk —x/k z
d& =x;i—x}.  dug —Z A =) e (ki XD
iz M7 X; i=1

where /iy, is the complete homogeneous symmetric polynomial of degree k. The g-

grading extends to #4 by deg, & = 2 and deg, uy = 2k. Clearly, the differential pre-
serves the g-grading and the condition d? = 0 is satisfied.

Note that B is a dg subalgebra of +, by construction. Moreover, # is free as a
B-module and supported in nonnegative homological degrees.

3.2. Counit
The commutative dg algebra +#4 is a resolution of R over B because of the following.

PROPOSITION 3.5
Let e: A — R be the algebra map sending xi,xlf — x; and & ,u; — 0. Then ¢ is a
quasi-isomorphism of B-modules.

Proof
The idea is to compare 4 to the Koszul resolution of R over the algebra R ® R =
C[x1,..., X4, X],....x,]. This resolution is described by

A= Cl). (). (&) [ d&i = x; = x].dx; = dx} = 0].

We are going to construct a commutative diagram of algebra homomorphisms, three
of which are quasi-isomorphisms. Therefore, the remaining one will be a quasi-
isomorphism:

v —0
Ay = C[(x7), (x)), ). (ur). (vk)] —— A= B[(&). (ux)]

\L vy —>0,ux—>0 \L £ —>0,ux—>0,x]—>x;

/
& —0,x; —>x;

=C[(xi). (x}). (§1)] ——— R=C[(x)]
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The algebra A is not free over R¢; it is only free over B. The free resolution of B
over R¢ has the form

Clen). (D). o) [ dvg = Y xF =35k dwe = dx = 0] =i B (16)
i i

We replace each copy of B in #4 by this resolution and notice that the differential can
be extended, keeping the property d? = 0 as follows:

s = C ). (). (6. (ue). () | dxi = ] = 0.8 = x; =],

dvk=2xl{‘—2x{k,duk —vk—i—Z o _xl Ez]
i i

i=1

The counit homomorphism 4, — 4 is given by sending v; to 0 and is a quasi-
isomorphism by Lemmas 2.1 and 2.2: the complexes -, and # are filtered by degree
in uy first, and then by degree in &;, and the graded pieces for this filtration are copies
of (16). We perform the following change of variables in #A5:

So A, is isomorphic to the following algebra:

Az = C[(xi). (X)), (&), (ug), (vp) | dx; = dxj =0,
d& =xi —xj,dvi, =0,dug = vy |
= A1 ® C[(uk). (vy) | dvg =0, dug = v ],

which is quasi-isomorphic to 4 because the algebra C[(ug). (v}) | dv; =0, duj =
v, ] is quasi-isomorphic to C. O

PROPOSITION 3.6
The morphism e @ Idg —Idg ® €: A Qr A — A is null-homotopic.

Proof

The tensor product 4 @ g 4 is a complex (bounded below) of projective B modules of
the form R ® gs, R ® gs, R. Therefore, the functor Hom?2 (A ® g A, —) sends acyclic
complexes to contractible complexes, and sends quasi-isomorphisms to homotopy
equivalences. In particular, post-composing with the quasi-isomorphism ¢ defines a
homotopy equivalence

Hom?3 (A @& 4, A) — HomB (4 ®g 4, R).
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On the other hand, post-composing with ¢ annihilates ¢ ® Id 4 — Id4 ® ¢; hence, this
morphism must be null-homotopic. O

3.3. Coproduct
We wish to define the coproduct on # as an algebra map 4 — 4 ® g 4. To compact-
ify some of the formulas, we will regard B ® g B as the quotient

Clx,x",x"1>B®rB, xi>xi®l, xi—x;®1=1®x;, x/—1Qx.

Note that A ® g # is naturally a B ® g B algebra, and can be viewed as a B-algebra
via the coproduct B — B ®g B.

Definition 3.7
Let A: A — A ®g A be the B-algebra map defined by

A(xi) =x; @1, A(x)) =1Q®x;, AE)=Q1+1Q§,
A(u1)= 1Qu;+u; ®1
n
Aw) =ue @ 1+ 1@ug + Y o (xi. X[ XD ® & (k= 2).
i=1

We call the map A the coproduct on 4 (over R). As we will see below, it is
a chain map which is coassociative up to homotopy. It is easy to see that the map
& : s — R is a counit for this coproduct.

LEMMA 3.8
The coproduct A is a chain map.

Proof
Let us check that A commutes with the differential. Indeed,

d(AE))=dE @1+ 1®&) = (xi —x)) + (x] —x]) =x; —x] = A(d(&)).
while

d(Aup)) = d(uk QR1+1Qur+ th—z(xi,xf,x{')éi ® %'i)

= Vo1 (i XDE @ 1+ by (] X)) ® &i

1

+ hpe—a (xi, x], x]) (i = x)1 @ & + (x] —x)& @ 1)]. (17)
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Note that
hi—1(xi, x,f’) = hj—1(xi, Xf) + hp—a(xi, xlf, x{’)(xlf’ - xlf)
= hk—l(x,{vxl{/) + hk—z(xi’x,{,x,{/)(xi - X,{)’
so (17)equals Y hg—1 (x;, x/)(& @ 1+ 1 ® &) = A(d(ug)). O
Example 3.9

We have A(uz) =ur @ 1+ 1Qua+ Y 1 & ®&;.

Recall Proposition 3.6, which states that ¢ ® Id and Id ® ¢ are homotopic as
morphisms A @ A — A.

COROLLARY 3.10
The maps Id ® ¢ ~ ¢ ® Id and A are inverse homotopy equivalences of (R, R)-
bimodules A >~ A QR HA.

Proof
It is easy to verify the identity

(Id®eg)oA=(e®Id)o A =1d. (18)
In the other direction, we compute
Ao(ld®e)=(1d®Id®e)o (A®Id) ~ (Id® e ®Id) o (A ® Id)
=Ild®Id. O

PROPOSITION 3.11
The comultiplication on A is coassociative up to homotopy.

Proof
The complex 4 is a bounded below complex of free B-modules, and B is free as
a right R-module so if ¢ : M — N is a quasi-isomorphism of left R-modules, then
Idy ®¢p: AQr M — A Qg N is a quasi-isomorphism. From this it follows that
& ® --- ® ¢ defines a quasi-isomorphism A4 ®g -+ ®g 4 — R.

Also since 4 is free over B and bounded above, the functor Hom?2 (4, —) sends
the quasi-isomorphism ¢ ® --- ® ¢ to a homotopy equivalence

Hom? (A, A @R -+ @R A) > HomZ’ (4, R).

Finally, (A ® Id) o A — (Id ® A) o A is annihilated by ¢ ® ¢ ® ¢, and hence is null-
homotopic. O
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Remark 3.12
In Appendix A, we explicitly write the homotopy which realizes the coassociativity
of A, and its higher analogues.

3.4. Twists of A

Definition 3.13
Each permutation w € S, determines a standard bimodule R.,, which is defined to
be the quotient of R¢ by the ideal generated by elements x,, ;) — x; for all i.

Note that Ry, is the quotient of R¢ by a two-sided ideal, and hence is an algebra
object in R¢-mod. Thus R, ® g A ® g R, is an algebra object in R¢-mod whenever
A is. Such algebras are called twists of A. The following says that all twists of B are
isomorphic.

LEMMA 3.14
We have Ry QR B~ B =~ B ®r Ry, forall w € S,,.

Proof

We may identify Ry, ® g B with the quotient of C[x, x’, x”] by the ideal generated by
Xy@) — X, and f(x’) — f(x") for all symmetric polynomials f. It is easy to check
that the mapping

fxx' . x")— fx.w '(x).x")

defines an isomorphism of bimodules R, ® g B - R ®r B = B. O

Next we consider twists of 4. Twisting preserves the subalgebra B C #4 by the
above lemma, but acts nontrivially on the differentials of &; and uy.

Definition 3.15 (Twists of A)

Let Ry ARy, = Ry, ®r A QR Ry, be the free differential graded commutative algebra
over B with generators & (i =1,...,n), u (k =1,...,n) of degrees deg;, & =1,
deg;, ux = 2, with differential (of degree —1) given by

n
d&i = Xu @) — X)—1 ) duy = th—l(xw(i),x;_l(i))éi,
i=1

where hy, is the complete homogeneous symmetric polynomial of degree k.
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LEMMA 3.16
We have Ry, A = ARy, as B-algebras, via the map sending & v~ &,y and ug — ug
forall k.

Proof
We need only verify that the B-algebra map Ry, 4 — ARy, sending & — &,,;) and
Uy > Uy is a chain map. This follows from the fact that inside R, 4 we have

d& =xpay =X, dug =Y he1(Xway. XD
i

while inside + R, we have
d&way = Xw(i) — X,
dug =) hio1 (xi X1 )& = Y b1 (s XD Ew)-
i i

Definition 3.17
Henceforth, we will denote A, := AR,,. An A, -module will also be referred to as
a w-twisted A-module.

For each pair of permutations w, v, the coproduct of + induces a B-algebra map
Ay —> Ay QR Ay of the form
Apw ARy = AAR Ry = ARy ARy,

which we refer to as the twisted coproduct. These maps satisfy the appropriate notion
of coassociativity up to homotopy. Explicitly, the twisted coproduct A, ,, satisfies
&1 +1 ®év—1(i)
Apw : jup—>ur @1+ 1Quy (19)
+ 2 b2 (i Xy X011 ))6i ® 1)

In addition to the twisted coproduct there is also the twisted counit &, : A, = A QR
R, — R, which satisfies

gy (X)) = Xi, (X)) = Xp(), ep(£i) =0, sy(ug) =0 (20)
foralll1 <i,k <n.
3.5. The category of modules

We will apply the constructions of Section 2 to the case 8 = B C +y,. Thus we have
a category of dg modules over +#4,, where the morphisms are viewed up to homotopy,
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and we localize by the class of morphisms which become homotopy equivalences
when viewed as morphisms of complexes of B-modules. The resulting category is
denoted +,,/B — mod or simply +,, /B and there is a forgetful functor from this
category to the homotopy category of complexes of B-modules. Objects isomorphic
in this category are called weakly equivalent (relative to B).

Given an #Ay-module M and an #,-module N, the tensor product M @ g N
is naturally an +4,, ® g #4,-module; pulling back along the B-algebra map Ay, —
Ay R Ay allows us to regard M @ g N as an #Ay,,-module.

Consider three #-modules M, N, K. Applying Lemma 2.22 for ; = (A®]Id)o
A, Y, =(0d® A)oAand y = (¢ ® ¢ ® 1), we obtain the following.

PROPOSITION 3.18
The isomorphism of B-modules

(M @r N)®r K=M Qg (N ®g K)

induces a weak equivalence of A-modules, that is, an isomorphism in A/ B. Similar
remarks apply if, instead, M, N, K are modules over twisted algebras #,, A, #y.

4. Modules over 4

4.1. Soergel bimodules
Define the R-R bimodules

Bi=R®pgs R

Clxt, v Xn, X1, ..o, X))
/ / /w4 / . LS 4
Xi +Xit1 =X+ X g XiXit1 = XX, Xj =X (j#i,i+1

where s; = (i,i + 1) is the simple reflection. The category of Soergel bimodules
SBim, is defined as a smallest full subcategory of the category of R-R bimodules
containing R and B; and closed under tensor products, direct sums, and direct sum-
mands. This is an additive tensor category, although it is not abelian. We denote by
K (SBim,,) the homotopy category of bounded above complexes in SBim,,.

An important result of Soergel [41] states that the indecomposable objects By,
in SBim,, are in bijection with the permutations w € S,. The bimodule B from the
previous section in fact coincides with By, corresponding to the longest element wq
in S,. We note that the action of R ® R on any Soergel bimodule factors through B
under the natural projection R ® R — B.
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4.2. Rouquier complexes and Khovanov—Rozansky homology
Let b; : B; — R be the R®-linear map sending 1+> 1, and let b/ : R — B;(2) be the
bimodule map sending 1+ x; — x; 1

In [38] Rouquier defined the following two-term complexes of Soergel bimod-
ules:

Ti=[B() > RM). 17 =[RE1D) uR Bi(1)]

and proved that T;, 7;~! satisfy braid relations up to homotopy:

1
Ty @r T ' ~T7'®r T; ~R,
T ®rTiv1 QrRT, 2Ti+1 ®rT; ®r T 41,
T, 9rTi~T; QrTi (li —jlI>1).

To a braid B one can associate a complex of Soergel bimodules T (the product of
T; and Ti_1 corresponding to crossings in ) which is well defined up to homotopy
equivalence.

Given a Soergel bimodule M, one can define its Hochschild cohomology
HH! (M) = ExtiR® r(R, M). Given a complex of Soergel bimodules

-~~—>Mk —>Mk_1 —>Mk_2—>--~ s
one can associate the complex of Hochschild cohomologies
-« — HH! (M) - HH! (Mj_,) = HH (M} _p) — -+~ ;

its homology is denoted by HHH(M ). The Khovanov—Rozansky homology (see [23],
[24]) of the braid B is defined as HHH(Tp); it is a topological invariant of the closure
of B. Khovanov—-Rozansky homology is triply graded: in addition to homological
grading k and Hochschild grading i, there is a quantum grading j induced by grading
on Soergel bimodules B;. We assume that all variables x; have quantum grading 2.
There is also an overall grading shift (see Theorem 5.17).

For higher Hochschild degrees, we normalize the quantum grading such that the
minimal quantum grading in HH? (R) is O for all i (see also Proposition 5.10). With
this normalization, the homology of the n-component unlink is given by

HHH(R) = C[x1....,Xn.01,....6,]. Q1)

Here x; are even variables of quantum grading 2, and Hochschild grading 0, and 6;
are odd variables of quantum grading 0 and Hochschild grading 1.
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4.3. Action of A
We will construct an action of the dg algebra +4 and its twists on various complexes.

LEMMA 4.1
The B-module structure on the Rouquier complexes T;, Ti_1 lifts to an action of As,
where s = (i,i + 1), and uy acts by 0 for all k.

Proof
We define the action of & by “dot-sliding homotopies™ as in [13]. Recall that T; =

b .
B; — R] and &; acts as b : R — B; while &4, acts by —b and &; acts by 0 for
St i i J
j #i,i 4+ 1. Indeed,

bib;k = bl*b, = X; —xl{+1 = —(x,~+1 —xl{).
It is clear that the actions of all generators commute. Now
n

D hea (g Xl )8 = (hkma (6 X[ 1) = By (i1, X)) bi.

J=1
On R we have x; = x; and x;+1 = X/, SO

Pi—1 (xi, X)) = Py (Xi 41, %7) = M1 (X3, Xi 1) = hg—1 (X1, X)) = 0.
The proof for Ti_1 is similar: §; acts as b; : B; — R while §; 1 acts by —b; and

&; acts by O for j #i,i + 1. Therefore we obtain an action of ;. O

LEMMA 4.2

Suppose that X and Y are invertible complexes of Soergel bimodules admitting an
action of Ay. Any homotopy equivalence X — Y of B-modules lifts to a unique
isomorphism in A,/ B.

Proof

The statement is analogous to [13, Proposition 2.20]. Let ¢ : X — Y be a homotopy
equivalence. Since X and Y are homotopy equivalent and invertible, we have quasi-
isomorphisms Hom2 (X,Y) =~ HomZ (X, X) = R, so HHOAw (Homp(X,Y)), which
classifies morphisms from XtoY by Proposition 2.17, equals

HHOAw (R) = HomrAw ®B fA?w ('A)w ’ R) = R ’
since # is concentrated in nonnegative degrees. Thus the map

Homy,,/5(X,Y) - Homp_noa(X,Y)

is an isomorphism. O
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THEOREM 4.3

The B-module structure on any Rouquier complex Ty lifts to an action of #.,, where
w is the permutation represented by B. This action is invariant under braid relations
(up to a weak equivalence).

Proof

Suppose we are given a braid § = (ffl 't -(ffr ", presented as a product of Artin genera-
tors, where 1 <i; <n—1ande; € {—1,1}, and let Tg = T:l QR R Tli’ be the
associated Rouquier complex. Lemma 4.1 constructs an action of +,,; on each T;;,
where w; = (ij ij + 1). The coproduct gives an algebra map

Aw%Awl QR QR Awr,

canonical up to homotopy. Pulling back along this algebra map gives an action of
Ay on Tg, where w = wy ---w,. The complex Tg is invertible, so by Lemma 4.2
the action of «#,, is unique up to a weak equivalence and invariant under homotopy
equivalences (in particular, braid relations). U

Remark 4.4
The action of u; vanishes on any Rouquier complex. Indeed, it vanishes on Tii, and
AUu)=u1 @1+ 1Q®u;.

Example 4.5
Consider the full twist on two strands FT, = T2. We have

A(“2)=M2®1+1®M2+Z$i®§i,

1

and the actions of u, ® 1 and 1 ® u, vanish, so u, acts on the complex FT, by

u =6105 +£6 ®§.

If we write FT, = [B — B — R], one can check that §; ® & = & ® &; acts as the
map b* from R to the leftmost B, and u, acts by 2b* (see (1)). Note that u; acts by
0 by Remark 4.4.

Definition 4.6
An Ay -module will be called elementary if uy actsby O forallk =1,...,n.

For example, TiﬂE are elementary. The tensor product of elementary modules is
no longer elementary; for instance, we have the following.
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LEMMA 4.7
Let wy, ..., w, be permutations and suppose that X1, ..., X, are elementary modules
over Ay, , ..., %w,. The action of u, on X1 g X2+ @r X, is given by

_ k) ()
Uz = Z Zgj 8 w11 ()" (22)

1<j<nk<l

where Ei(k) denotes the action of &; on the kth tensor factor of X1 QR --- g X;.

Proof
It is easy to see that the rth iterated coproduct” on + satisfies

A(')(uz) — Z 1®k—1 Qs ® 1®r—k

1<k<r
+ Z Z l®k_1®Si®1®l_k_l®gi®l®r_l-
1<i<n1<k<l<r

a4

For any permutation w, the isomorphism # Ry, — Ry, o sends &; > &,,—1(;). The
composition

A
ARwl...wr — AQR-- QR ARwl...wr ot ARwl QR - QR ARy,

sends

Uy > Z ]®k—1 Rus ® 1®r—k

1<k<r

okt ®l—k-1
D DID DR LT IO

1<i<nl=<k<l<r
-1
® Eqwywy_)-16) @ 1o,

since the standard bimodule Ry, ...y, _, must migrate past the kth tensor factor.

Now, when acting on the tensor product of elementary modules as in the
(k)

statement, the only surviving summands are those of the form s(wl-uwk,l)—l(i) o
5521...wl71)_1(i) with 1 <i <mand 1 <k <[ <r. Letting j = (wy---wr_1) "' (i)
proves the formula in the statement. ([

OThis iterated coproduct is not well defined since coassociativity holds only up to homotopy. Nonetheless, any
two choices for the rth iterated coproduct act in the same way on u>.
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4.4. Koszul complexes

Recall that inside S, we have the simple reflections (or simple transpositions) s; =
(i,i + 1) which swap indices i and i + 1. Any permutation which is conjugate to a
simple reflection is called a reflection. The reflections in S,, are just the permutations
of the form (i, j) which swap indices i and j, leaving all other indices fixed.

Definition 4.8
For each reflection r = (i, j) we let K, (also denoted K;; or K; ;) denote the Koszul
complex

Xi—

xj
Kij =[R(=1) —= R(1)].
This can be conveniently described as a dg algebra by
Kij = R[n|dn=x; —x;](1), (23)

where deg;, n = 1.

Itis clear that K;; = K ;, so the definition of K, doesn’t depend on the ordering
of indices in the expression r = (i, j).

PROPOSITION 4.9
The Koszul complex K, admits a structure of an r-twisted A-module.

Proof

We let r = (i, j). Observe that x; — x;(k) is 0 unless k € {i, j }. Thus, we may take
& =0for k ¢ {i, j}. We let & act by the multiplication by 7 in the expression (23),
or diagrammatically as the morphism

Xj —Xj
Ko = (R(1) ———— R(1))
&
Xi —Xj
Kr = (R(-1)— R(1))
and we let &; act by —§;. The action of uy,...,u, must be 0 for degree reasons. In

order for this to define a valid action of +4,, we must verify that following elements
actby Oon K, :

dur) =Y iy Ok Xy -
k
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Indeed, x; — x;_ acts by 0 on K, for all k, and & acts by O unless k =i, j and so the
above becomes (h;_1(x;, xj) —h;—1(x;, x;))& which indeed is 0. O

We expect the following to be true, but do not need it or prove it here.

CONJECTURE 4.10
Let X be an Ay, module for w € S,. Then for any reflection r we have a weak equiv-
alence of Ay r-modules

XQr K, =K1 Qr X. (24)
We will prove this in the special case when X is TijE or K,, below.

PROPOSITION 4.11

We have weak equivalences of twisted A-modules:
(1) Tz ®Rr Kr x Ksrs QR Ti;

(2) Ti_l QR Kr = Ksrs QR Ti_l,

(3) Kv QR Kr = erv R Kv’

where s = (i,i + 1) and v,r € S, are reflections.

In fact, the proof will show that (2) and (3) are honest isomorphisms.

Proof

The proofs (2) and (3) amount to the following case-by-case analysis:

@  T7'Kje= KT juk ¢ isi + 1),

®  T7'Kie= Kigw T kg i+ 1,

©  T'Kipue=KuT Pk ¢lii+ 1),

@ T 'Ky = K T,

(e) KijKx1 = K1 Kij i, j, k, [ distinct,

(f) KijKjix = KixK;j = Kjx K;x i, j, k distinct.

We will use equation (19) for the twisted coproduct. The case (a) is straightforward.
We continue to the case (b). It is convenient to view Ti_l, K;j as dg algebras. So Ti_1
is presented by

Ty = Bil&i | d& = xi — x) 41/ (& (xi — x))).

Thus 7,7 K, can be presented by
T 'Kik = Bil&i & | d&x = xx — x, d& = x; — x| 1]/ (& (xi — x})).

The only remaining nonzero generators of # act by
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Eip1=-& &, Um = hm—o(Xi 11, X}, X ) Ei Ek.

Similarly, we compute

Kivu T = Bili i1 | d& = xi —x] 1. dEivy = xip1 —xi)/ (6 (xi — x))).

The +A-action is given by

Er=—&—&+1. Um = hm—2(Xk, Xit1,X])Ei 15

We observe that the modules and the actions coincide.

The case (c) is analogous.

Let us describe the case (d). We have

T Kiiv1 = Bilm,ma | dni = xi — X}y, dnp = x} — x] 11/ (m1 (xi — x})).
The action of #4 is given by & = —§&;+1 = n1 — 12,

ug = hg—a(xi, X[ 41, X)N1 (=12) + ke (Xi1, X[, %] 1) (=01)72
=n1(n1 —n2) (hk—2 (X, Xi, Xig1) + P (Xi, Xig1. Xi 1))
Similarly, we have
Kiiv1 Ty = Bilnioma | dni = xi — Xip1.dnp = xi — x] 11/ (n2(xi — x})),
using the identities of B;. The action of +4 is given by & = —&;+1 = n1 — 12,

U = hg—a(Xi, Xip 1, X)11(=12) + hre—a (Xig1, Xi, Xj 4 1) (—=11) 12
=n2(n1 — n2) (hk—2(Xi, Xi 11, Xi) + P (Xi 11, Xi . Xi 1)),

using the identities 7,x; = n2x; and 72X; 41 = 2] +1- The required isomorphism is
given by the substitution (1, 72) = (12,212 — n1).

The case (e) is straightforward. The case (f) is somewhat similar to (b), but sim-
pler.

This completes the proof of statements (2) and (3) from the statement. We deduce
(1) from (2) by multiplying with 7; on the left and right. The resulting calculation
involves coassociativity of the tensor product of +A-modules, and hence a priori is
only a weak equivalence. O

LEMMA 4.12
Given a permutation w € Sy, suppose W = ry ---r] expresses W as a minimal length
product of reflections. Then the twisted A-module
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Kw = Kr1 "'Krl
depends only on w, and not the choice of reflections ry,...,r; up to weak equiva-
lence.
Proof
Consider the action of w on {1,...,n}. We decompose into orbits

{I,....n}=0,U---UO,.

Let w = rq ---r; be a minimal expression of w as a product of reflections. Then each
reflection r appearing in this expression must be of the form r = (i, j) with i, j both
living in the same orbit O,,. Note that if » = (i, j) and ' = (i’, j') with i, j € Oy,
and i’, j' € Opy with m # m’, then r and r’ commute. Thus, by rearranging we may
assume that our expression for w respects the cycle decomposition in the following
sense:

1
w = (r! )...rl(ll))...(rl(c)...rl(:))’

where the parenthesized expressions are disjoint cycles in S, .

Without loss of generality we may as well assume that ¢ = 1 so that w is an n-
cycle. Let I denote the collection of tuples (r1,...,7,—1) such that w = ry---ry—1
is a minimal length expression of w as a product of reflections. The braid group Bry,
acts on / according to

. / !/
Ul . (rla"'9rn—1) = (r19‘"7ri—1’rj7ri+17ri+25"'7rn—1)7

where ri/ =r;ri+1r; and ri/ 41 = ri. Here 0; € Bry, is the standard Artin generator. If
(ri,...,r) and (rq,..., rl/) are related by the braid group action then the associated
Koszul complexes K and K’ are weakly equivalent since K, Ky, | = Kr;r; 17 Kr; -
By [3, Proposition 1.6.1], the braid group acts transitively on /, which completes the
proof. O

LEMMA 4.13
We have weak equivalences

KyK?~ K?K, ~ K,K2,, ~ K2, K

vrv v

for all reflections r,v € S,,.

Proof
Since rvr and vrv are both reflections, by Lemma 4.12 we get

KyK, =~ Kyro Ky = Kr Kpyr.
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Indeed, for v = r this is trivial and for v # r we get minimal length factorizations
v-r=(@wrv)-v=r-(rvr)
as a product of reflections. Now we compute
KyK? ~ K, Kyyr Ky ~ K?K,
and
KyK? ~ Kypry Ky Ky ~ K2, Ky
Finally, by the first equation we get

K2, Ky~ KyKZ,,. O

Below, we will use the notion of reflection length of a permutation w, which
is defined to be the length of a minimal product of reflections yielding w. We will
denote the reflection length by £.q(w). If r = (i, j), then Leg(wr) = Lreg(w) + 1 if
i, j belong to different, cycles of w; otherwise if i, j belong to the same cycle of w,
then £eq(wr) = Leq(w) — 1.

LEMMA 4.14
If Leg(wr) = Leeg(w) + 1, then Ky K, = Kyr. Otherwise Lieg(wr) = Lreg(w) — 1,
and Ky, K, >~ Kerrz.

Proof

Let w = uy ---u; be a minimal product of reflections yielding w. If u{ ---u;r is min-
imal, then Ky, >~ Ky, K, by construction. Suppose on the other hand that u{ ---u;r
is nonminimal. Then £.q(w) = £eq(wr) + 1; hence Ky, >~ Ky r K, by the first state-
ment of this lemma, and hence

Ky Ky ~ Kyr Ky Ky,

which is the second statement. (|

LEMMA 4.15
Up to weak equivalence relative to 8B, any product K of K;; can be written in the
form

K~Ky,K?> . ---K?

i1 1" is,Js’

(25)

where w is the permutation obtained by multiplying transpositions in K. Moreover,
K is completely determined up to weak equivalence by the following data:
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. the permutation w, which is the product of transpositions in K;

. an equivalence relation ~ on the set {1,...,n}, defined to be the minimal
equivalence relation such that i ~w(i) for alli and i; ~ j; forall 1 <t <s;

. for each equivalence class S for ~, the number of K; ; in K suchthati, j € S.

Proof

We prove (25) by induction on the number of factors in K. The base case K = K;_ j)
is trivial. Suppose now we have a complex of the form

KyK? . - K?

i1,J1 ' is,Js’
and tensor on the right with Ky ;. If k¥ and / belong to different cycles of w, then
w' =w-(k,l) has {rea(w') = Len(w) + 1, hence Ky K ; >~ Ky.(k,1), and hence
(KwK7 j K2 ;) Kk = Kuwgen K7 j, -+ K2 -
On the other hand, if k, [ belong to the same cycle of w, then w - (k,[) has one
more cycle than w, and €eq(w - (k,1)) = Leq(w) — 1, and we find that
K2

is,Js*

(KwK? ;K2 ;) Kis ~ Ko K2 K

. ) 2 .
i1,J1 is,Js i1,J1

This proves existence of the decomposition (25).

To prove the second statement, we choose a representative for K up to weak
equivalence. Let J C {1,...,n} be a set containing exactly one element out of each
cycle of w and let I C J be a set containing exactly one element of each equiva-
lence class with respect to ~. For any j € J \ [ there is a unique i (j) € I such that
i(j) ~ j. Note that the relations j ~ i(j) and the cycles of w already generate the
equivalence relation ~. Let us prove that we can rewrite the product (25) such that it
contains the factors K 12 i) forall j e J\ I.

Indeed, Lemma 4.13 tells us that

K2, Kae >~ Kae K2y ~ K2, Koo ~ Kac K2,
Therefore, if K is a product (25) which contains a factor K., then
KK2, ~ KK2,.

Since j ~ i(j), we can find a chain of pairwise distinct elements jo =
JsJjis-eesjr =1i(j) € J and a set of pairs (ky,l1),...,(ks,l) appearing in (25)
such that k;41 and /; are in the same cycle of w as j; for all . Then

2 2 2 p2 ~ 22
K K gy K, = KwKG o Ky > Kw Ky KLy
All remaining factors K7 ; can be replaced by K7, ;, for k' ~ k ~ I ~I', and therefore
their number in each class is a complete invariant. O
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COROLLARY 4.16
Given a product C of complexes T;, T', and K ik let u € Sy be the product of the

l
corresponding transpositions. Then C can be written in the form

C~TpKuKj j K .
where B is the braid obtained by erasing all K;; from the product, and w is deter-
mined by u and B. This isomorphism agrees with the A-module structures.

Proof
By Proposition 4.11 we can move all Rouquier complexes 7; to the left without
changing their indices or the order, so we get C = TgK, where K is some prod-
uct of K;;. By Lemma 4.15 we can write K = K, ® Kiz1 i K;ZS ;, and the result

follows. O

5. Markov moves

5.1. Cyclic property
Recall that any +,,-module X is a complex of (R, R) bimodules, and one considers
its Hochschild homology HH¥ (X)) component-wise. Since HH is a functor, HH* (X)
again has the structure of an ., module, with the property that the difference x — x;
acts by O for each i.

Definition 5.1
If M is a B-module, then we let HHo(M) = M ®p R. Equivalently, M/I M, where
I C B is the ideal generated by xlf —x;fori =1,...,n. Let €Ay := HHo(Ay).

Modules over €, are simply modules over #,, on which the actions of x/ and
x; coincide for all i. In particular we have the following.

PROPOSITION 5.2
For any Ay, -module X the Hochschild cohomology HHF (X) is a ‘€ Ay, -module.

It is clear that € A,, — mod is a full subcategory of #4,, — mod. Furthermore the
functor HHg defines a left inverse to the inclusion € A,, — mod — +4,, — mod. This
implies that the inclusion functor €, /R = €Ay, /B — #4,, /B is fully faithful. The
tensor product of a €, -module and a € A,,,-module is a €A, 1, -module. So the
following is evident.

PROPOSITION 5.3
Foreach w € Sy, the category € Ay, / R is a full subcategory of Ay, / B. The collection
of categories € Ay, /R is closed under the tensor product, and we have a projection
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formula:
HHM (X g Y) =HH*(X) @r Y (X € shy, —mod, Y € €y, —mod),

provided Y is free as an R-module.

Remark 5.4
We observe that HHy is a functor from B-modules from R-modules. This functor
comes equipped with natural maps

satisfying an appropriate version of the coassociative property.” Combining with the
usual coproduct for algebras +,, gives an algebra map

HH()(eA)vw) — HH()(AU ®R Aw) — HH()(AU) ®R HHo(eAw)

This defines the coproduct € Ay, — €Ay @ g €Ay, . This in turn allows us to define
the structure of a € #A,,,-module on the tensor product M @ g N where M is a € A, -
module and N is a €Ay, -module. This tensor product coincides with the tensor prod-
uct of twisted #A-modules as in Proposition 5.3.

Definition 5.5
For each pair of permutations, let 7y 4 : Cohyy — Cohyy be the B-algebra isomor-
phism sending x; = x,-1(;y, & > &,-1(;), and ug > u.

PROPOSITION 5.6
Let X and Y be A, and A, -modules, respectively, for v,w € Sy,. Then

HHY (X ®@r Y) = 7}, (HH* (Y ®& X)) (26)

inside € Ay, /C.

Proof

On the level of complexes of vector spaces, the isomorphism (26) is well known. This
isomorphism endows HH* (Y ®x X) with the structure of an HHg (A, )-module by
pulling back the obvious HHg (4, ® g #4y)-action along the algebra map o o [Ay 4],
where [Ay ] := HHo(Ay,) is HHg applied to the twisted coproduct (19) and

Oy,w :HHo(sAy ® g Ay) — HHo(Ay QR y)

7In literature, such functors are sometimes called oplax monoidal.
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is inherited from the isomorphism which swaps the order of tensor factors in
HHo(— ® g —). Note that ¢ is C-linear but not R-linear, since the left (=right)
R-action on HHy (X ® g Y') corresponds to the “middle” R-action on HHo(Y ®r X).

Thus, we have two 4, -actions on HH* (Y ® g X), given by pulling back along
Ov,w © Ay, and Ay, 4, 07y, respectively. The former is isomorphic to HHo (X ®rY)
with its o,y -action, by construction. To show that these two .y, -module structures
are weakly equivalent, we show that the algebra maps oy, © Ay, and Ay, © Ty,
become equal after post-composing with an appropriate quasi-isomorphism, and use
Lemma 2.22.

We first examine the action of oy, © Ay 4, and Ay, , 0 7,4, On generators. We
have

Xj > X]
i &1 @1+ 1R®E;
U > ur @1+ 1 ug
+ Zi hk—Z(x1{7xv_l(i)’xiu—lv—l(i))gv—l(i) ® Eiv

Oy,w © Av,w :

Xi I—>Xv—l(i)
Aw,v O Ty,w - 5:‘ g gv—l(i) I+1® Ew_lv_l(i)
upg > Uk @ 1+ 1@ uk + 3 he—a (xu (), X, Xy—1())€w () ® &

In the first line, we have let x; = x] ® 1 = 1 ® x; in HHo(sy ®g #A,). Now apply
the twisted counit &, from (20) on the right. From the formulas it is clear that

(Id®ey)o Ovy,w © Av,w = (Id ® &y) 0 Aw,v O Ty,w-

On the other hand Id ® &, is a quasi-isomorphism because &, is. This completes the
proof. O

Remark 5.7

In general, we do not expect the isomorphism to exist in €s,,/R. The homomor-
phism o is not R-linear, so the proof for R instead of C fails. In our situation, the
modules will turn out to be free over R and we will show that the isomorphism can
be upgraded to an isomorphism in €A,/ R.

5.2. Stabilization

In this section we will be dealing with operations that change the number of strands,
so we will use #n as an index in #A,, €A, to specify the number of strands. Given an
A,-module M we construct an +,+1; module M U 1 as follows. As a B-module
this is simply M ® C[x,+1]. Construct a homomorphism of dg algebras
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@A = An Q Clxyq]

as follows. The generators x;, xlf , &, uy fori <n, k <n are sent to the corresponding
generators of 4. The generator &, is sent to 0, and the generators x,+1, x,’l 41 both
g0 to X, 1. Finally, for the remaining generator u,; we choose any homogeneous
element u of A, satisfying

n
du=""hn(xi.x))E
i=1

and set ¢(un+1) = u. Such u exists by Proposition 3.5, and Lemma A.8 explains
how to construct it explicitly. Any two choices of u differ by a boundary. The A, +1-
module structure on M LI 1; is obtained with the help of ¢:

MUl =¢*(M ® Clxpy1]).

The following says that the resulting functor M +— M U 1; from #,/B, to
Ant1/Bn+1 is monoidal.

PROPOSITION 5.8
For any A, -modules M, N the isomorphism

(M ®Rn N)U]ll g(Ml—l]ll)®R,,+1 (Nu]ll)

of complexes of B-modules lifts to an isomorphism in the category A,+1/B.

Proof
Similarly to the proofs of Propositions 3.18 and 5.6 we use Lemma 2.22 to compare
the pullbacks via the compositions of the maps in the diagram

J’o".H Ay, ®C[xn+l]

l R
*Qw

'A’IZ+1 ®R,,+1 tAw-}—] — (A ® C[xn+1]) ®R,,+1 (A, ® C[xn-H]) = (An QR R, An) ® C[xn-H]

J/ A®lderx, 411

We compose the two maps with the homotopy equivalence
en ®1d®1Id : (An R, An) ® Clxpt1] = An & Clxp41].

Using the identity (¢, ® Idc(yx, 1) © ¢ = €n+1 and (18) we conclude that both of the
two resulting maps A, 41 — 4, ® C[x,+1] agree with ¢. O
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If M is amodule over +,,, then M L 1, is naturally a module over #1,, where
w U 1y € S,41 is the permutation whose restriction to 1, ..., coincides with w.
The following observation turns out to be very useful.

LEMMA 5.9

There are maps of Rouquier complexes Tl._1 — K i+1 — T;[—1] whose composition
is homotopic to 0. The maps and the homotopy are A-linear. The resulting twisted
complex is contractible. In particular, in the category 4 /B we have isomorphisms

T = [Kiiv1 — T[], Ti = [T = Kii+1]-

Proof
This is clear from the diagram

bt
R(-1) — Bi(1)

Xi—Xi41

R(—=1) —— R(1)

l b;k \L Idgr
b

i

Bi(1) —— R(1) O
The Markov II property first has a version which holds in € A,,/R.

PROPOSITION 5.10
For any Ay, -module M and any k we have the following isomorphisms in € A1, /
Ry 41, respectively € Awyu1,)(nn+1)/ Rnt1:

HH*(M U1,) = (HH*(M) U 1,) ® (HHF ' (M) u 1), 27)
HH (M U 1) ®r, .y, T, ') = (HHY(M) U 1) @R,y Knntr

— HHY(M U1y) ®g,,, Tn)[-1]. (28)

Proof

The decomposition (27) is a property of the functor HH. The functor is computed by
the Koszul complex, which splits as a direct sum in the case of a module of the form
M L 1,. The first isomorphism in (28) is obtained by composing the three maps
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HH* "' (M U1,) ®r,,, T, ") > HHF Y (M U 1)) ®r,,, Knnti)
_)HHk+1(M U ]ll) ®Rn+1 Kn,n-H

— (HHk(M) U11) Qrysy Knnsi-

The first map is induced by a map from Lemma 5.9. The second map is the isomor-
phism of the projection formula (Proposition 5.3). Finally, the last map is obtained
from (27). So the composition is a well-defined map of €A, 1-modules. It is a
homotopy equivalence of R;4j-modules by a well-known argument (e.g., see [23]).
Construction of the second isomorphism in (28) is analogous. O

5.3. The stabilized algebras

Definition 5.11
For any ¢ < n, where c is a positive integer and »n is a positive integer or infinity,
let

c
e = C[ @iz, E)fmr (i, | di = d& = 0. dug =k Y xf 61 .

i=1

Clearly, we have €A, , = €Ay, . More generally, the algebra €A, , is a free
extension of € Ajq,. by the generators uci1,...,U,.

Remark 5.12

The ring of symmetric polynomials RS” is a free commutative algebra generated
by the power sum polynomials pi,..., p,. Let U be the unique derivation RS" —
C Ay, satisfying U(py) = ug for k < n. Then for any symmetric polynomial f we
have the identity

n
af
dU(f) =) &.
= Oxi
One can obtain different presentations of the algebra €+, , by choosing different
sets of generators of RS".

Let w € S, be a permutation with ¢ cycles. Let Cy,...,C. be the cycles
and choose a representative j; € C; for each cycle C;. Define a homomorphism
a:ChAy — CA,, by

& (J=Ji)

o a(ug) = ug.
0 otherwise

a(x;) =xi(j € C), a(§) = {
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Define a homomorphism f : €A, , — €Ay by

B(xi) =xj;, B&) = Z IR B(ur) = uy + correction.

JjeCi

PROPOSITION 5.13

(a) For each k there exists a correction making B into a dg algebra homomor-
phism such that the composition « o B is the identity and a and B are quasi-
isomorphisms.

(b) The pullback functors

0* 1 Cohep/C— Cohy /T, B* 1 C€ohy/C — Cohen/C

are mutually inverse equivalences of categories.

(©) For any € Ay, -module X the isomorphism class of the pullback B*X in the
category € A¢ » /C is independent of the choices of the representatives j; and
the corrections, and similarly for a*.

Proof
(a) The correction needs to satisfy

d(correction) = B(dur) —d(up) =Y Y (kxi™" = h_1(xj. xy—15))E;

i=1jeC;

So it is sufficient to find a separate correction for each cycle. Without loss of gener-
ality, assume w consists of a single cycle. Moreover, by reindexing assume w(j) =
j —1 (mod n) and j; = 1. A correction can be constructed as follows:

n—1
4 (Y hemaCeroxi w6 Gt + -+ )

i=1
n—1

= Z(hk—l(xl,xi) — hk_l(xl,x,-Jrl))(g:iJrl ot &)
i=1
n—1

Y (e (er,xi) = hiem1 (X xi 1))

i=1
n—1

= Z(hk—l(xl,xl) - hk—l(xiyxi-l-l))giy

i=1

as required. By construction, o o 8 = Id.
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To show that § is a quasi-isomorphism, notice that via 8 we can view the algebra
€Ay as

Chy =Cohcnlt; §;(j €{1,....n}\ {j1..... je})],

where 7; = x; — x,,—1(;)- We have d§; =1}, so the algebras €, and CA, , are
quasi-isomorphic. The homomorphism « is a partial inverse to 8, and therefore is a
quasi-isomorphism, too.

By Lemma 2.19 the functors a* and 8* are equivalences of categories. Since we
have o o 8 = Id the composition f*a* is the identity functor. Therefore o and § are
inverses of each other.

Now we can construct @ and 8 using different choices of j;. Keeping the choice
for « fixed, if B and B’ are defined using two different choices, since both §* and 8’*
are inverses of a*, they must be isomorphic. We proceed similarly in the case of two
different versions of «. O

Remark 5.14
A similar result is proved in [ |, Theorem 4.43].

Let u = (i1,- .., i¢) be a collection of positive integers so that Y u; = n. Such
a collection is called a composition of n. We write g Fn. For N > n and u Fn we
construct a homomorphism @ﬁ 1 CAc N — €A,y as follows.

PROPOSITION 5.15
(a) There is a unique homomorphism CDIIY : Che N — Cohcn which sends the
variables x;, &;, and uy for k < n to themselves and the generating series

N N c

D, (u) A

(Z “Tzk) ]‘[(1 —txi)Hi 4 OVt
k=1 i=1

has no terms of degree > n in t.

(b) Let x"* be a sequence of variables xi,...,X1,X2,...,Xc, where each Xx;
occures [u; times. We have

n
Ipk
N :2 X (xH
CDIL (uk) e=lu£ 3pg (X )s

where the partial derivative is taken in the ring of symmetric functions in n
variables.
’ P ’ ) ’ N N _ sN’
©) For any p' E N satisfying j; > ui and N' > N we have ®,; o <I>M, =, .
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Proof

Since CDQ’ (ur) = uy for k < n, we can determine the expansion of the generating
series up to O(¢"*1), but since there are no terms of degree > n the series is com-
pletely determined, and we can compute QDIIX (ug) for k > n. Let us prove that the
obtained homomorphism commutes with the differential. Applying d to the generat-
ing series we see that the series

(Zw )H(l )+ OV 29)

k=1 i=1

has no terms of degree > n. On the other hand, the series

(Z(Zfz k— 1) k) ljl(l_[xi)m + oV (30)

=1 i=1

also has no terms of degree > n because we have
I
— 1 — Xt

So the series (29) and (30) must agree and therefore we have

d(®N (uy)) = kak g = o (d(up)).

i=1

This establishes (a). To verify (b) it is sufficient to verify that the series

n 0o Lk

t"a
T apk *)
=1 k=1 oPt

when multiplied by ]_[f=1 (1 —2x;)* has no terms of degree > n. The series in ques-
tion can be rewritten as

n
d
Zw—log(l —eyt +--- L eyt"),
=

and so is a rational function in ¢ with numerator of degree n and denominator 1 —
et + -+ + e,t™, which when specialized to x* becomes [];_; (1 — 7x;)*i. So the
claim is evident.

To prove (c) we use (a). For k < N we have @ﬁ/(uk) = uy and CIDﬁ(uk) =

’ . . 4 N T
<I>ff (ug), so the claim holds. The series lecv=1 %T(uk)tk when multiplied by
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the product [];_, (1 — zx;)"* has no terms of degree > n. Multiplying further by
[Tie,— 1x;)*i i cannot introduce terms of degree > N . So we have that

N’ N’ c
O (ug) ,
>t -y

i=1

has no terms of degree > N. The same holds for @ljl’,/(uk), and therefore for
@l]f(fbﬁ’,'(uk)) in the place of ®'(uy). Since the sequences CDﬁ’(Cbﬁ’,/(uk)) and

@ﬁ /(uk) have the same first N terms, the sequences must agree. O

Now we can finish proving the Markov property. For a permutation w denote by
u(w) the composition pu; = |C;|. Denote w’' = (w U 11)(nn + 1).

PROPOSITION 5.16
Let w € S, and let X be a €Ay -module. Suppose N > n + 1. Then the modules
PN+ ,)ﬂ*((X Uly) ®R,py Knn+1(=1)) and PN * )ﬁ*X are isomorphic in the cat-

u(w w(w
egory €A, n/C.

Proof
In view of (3) of Proposition 5.15 it is sufficient to prove the statement for N =n + 1.
Consider the following diagram of dg algebras:

B o
zf>=7‘\Ic,rz+1 €Aw/ €Ac,n+1

n+1 ~ n+1
l q)u(w) l ¢ l q)u(w)
B

~ ~ o

ChAcp —— ChAy —— CAylxnt1.6n+1] ——= CAy —— ChAcn

The algebra € Ay [x,+1,&q+1] has the differential dx, 11 =0, d&,41 = Xp41 — Xn-
The quasi-isomorphisms to and from €A, to this algebra are evident. The mor-
phism @ is defined similarly to the homomorphism ¢ in Section 5.2 in such a way
that

(X UL) ®Ryyy Knnr1(=1) =@ X[xp41.5n41]

holds. Indeed, the left-hand side is isomorphic to X [x,+1,&,+1] as an abstract com-
plex, and the action of each generator of €A, on it is given by an explicit expression
which involves the action of €A, on X and the elements x, 41, &,+1. These are
packaged into @.

The large square containing both o and f is commutative. Let us show that
the rightmost square is commutative. It is clearly commutative on the generators x;
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and §&;, as well as the generators u; for k < n. It remains to consider the generator
Un+1- The element @(uy41) is the sum of

n

9Pn+1
> g a;k (102 %) F A1 (K1 Gy X Xnt 1) =1 oy (—nt1),
k=1

and certain corrections (see Lemma A.8). The second term above goes to O in
€Ay. By Lemma A.8 we can make sure that the corrections belong to the ideal
generated by x; — xy(;), and therefore go to O after applying . So we are left
with

n

3pn
Yo u S (ax).aln),
k=1 Pk

which equals CD:’LJ(FJ)(M,!H) by Proposition 5.15(b).

So we have shown that the rightmost square of the diagram is commutative.
Applying Lemma 2.22, we obtain that module 8*((X U 11) ®r, ., Knan+1(=1))
is isomorphic to the module obtained from X [x,+1,&,+1] by pulling back along 8,
(DZJ(:;), and the quasi-isomorphism €y, >~ €Ay [Xy+1,E+1]. But as soon as we
pull it back to €A, the module becomes isomorphic in the category €#A,,/C to

X. O
Putting things together, we obtain the following.

THEOREM 5.17

Let L be a link with ¢ components labeled 1,...,c represented as the closure of a
braid b on n strands with the corresponding permutation w. Let e be the number of
the positive crossings of B minus the number of the negative ones. For each k define
a €, -module by

n—

—n—e-+c¢

5 ](c—n).

This module is independent of the presentation of the link up to an isomorphism in the
category € A¢ 00/ C.

HH*(L) = 3% f*HH**

()|

Proof

The cyclic invariance was established in Proposition 5.6. Indeed, for permutations
v, w there is a bijection between the cycles of permutations vw and wv; therefore,
the isomorphism 7, 4 @ Ay —> Ay intertwines the maps By : Acn —> Ay and
Bwy : Acn — Awy for some choices of representatives j; and corrections. By Propo-
sition 5.13 these choices do not affect the isomorphism classes of pullbacks under
Bvw and By, respectively.
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Let us prove invariance under the Markov II moves. If  is a braid on n strands,
then

HHF ((Tp U 11) ®R,y, Tn) = (HH(Tp) U 11) ®R,yy Knint1[l]

by Proposition 5.10. The claim follows from Proposition 5.16. The proof for 7,1 is
analogous. O

54. CAcoo/Cvs. CAcoo/Re

The complexes HH* (T},) are known to be complexes of free R-modules, and
hence free over the subring R, = C[xy,...,x.]. This is also clear from Proposi-
tion 5.19 below. In this case there is no difference between viewing them as objects
of €A¢,00/C or €A¢ o0/ R, by the following.

PROPOSITION 5.18
The category €A, o/ C is equivalent to the full subcategory of € A¢ o/ R consisting
of objects which are free over R..

Proof
Denote the category of objects of €A, o0/ R, Which are free over R, by € o0/ R¢/
C. The identity functor induces a functor

Cohc.o0/Re/C — Cohe.oo/C. 31)

Let X be a €A, oo-module, and let X be its resolution relative to C with the counit
map X — X. Since Ch. o is free over R, any €A, o module which is induced
from C is free over R.. In particular, X is free over R, and so we see that X belongs
to €Ac 00/ R:/C. So (31) is essentially surjective. If X is free over R, then when
restricted to R, it can be viewed as its own resolution relative to C, so the counit
map must be a homotopy equivalence in R, — mod. Therefore X can be viewed as
a resolution of X relative to R.. So X is both a resolution of X relative to C and
relative to R., so the Hom spaces in the two categories are isomorphic. O

5.5. Basic objects
We can restrict the kind of objects that appear as HH¥ (L) as follows.

PROPOSITION 5.19
For each link L with ¢ components and any k the object HH¥ (L) is equivalent to a
twisted complex

HH*(L) = [ — X; — Xo — X_1 — -],
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where each X; is a direct sum of objects of the form @;c()?‘))ﬂ*K(C —n), K=
Ky, --- K, is some Koszul complex, and w = ry---r; € Sy is a permutation with ¢

cycles.

Proof
If L is presented as the closure of a braid b € Br,,, then HH¥ (L) is isomorphic to
HH* (b)(c — n) up to homological shift, by definition. We will prove that

o B*HH (T, ®r, K)

is weakly equivalent to a twisted complex consisting of objects of the form
¢Z?li)) B* K (and homological shifts thereof) for any braid b € Br, and any Koszul
complex K. We proceed by induction on the length of b. Using Lemma 5.9 we
can always replace T; by Ti_l and vice versa modulo complexes for shorter braids.
Moreover, we are free to replace b by a conjugate braid by Proposition 5.6 and
Corollary 4.16.

Using the above transformations we can always reduce the number of crossings
in b (this is essentially Jaeger’s algorithm for computing HOMFLY-PT polynomial
[20]) until we obtain a product of the form 73, T;, --- T;,, K with i1 < --- < ip,. Con-
sider

K).

Applying Proposition 5.3, we can move K outside HHF. Finally, we iteratively apply
Propositions 5.8 and 5.10 to show that HHF (T;, T, -+ Ty, is a direct sum of copies
of Kiyir+1Kin,in+1 7+ Ki iy +1- O

Next we want to classify objects of the form CDZ‘(’fD) B*K(c —n).
By Lemma 4.15 the object K is completely classified by its permutation w, the

equivalence relation ~, and the number of Ki2 j in each equivalence class.

PROPOSITION 5.20

In Proposition 5.19 we can assume that the product of Koszul complexes K satisfies

the following extra assumptions:

(1)  All cycles of w have length 1 or 2.

2) If (i, j) is a cycle of w of length 2, then K contains some odd power of K; ;
and no other K/ j» with i’ € {i, j} or j' €{i, j}.

Proof
If w has a cycle of length at least 3 we first renumber the strands to make sure that
n —1,n,n 4+ 1 are in the cycle. Choose the decomposition of w to contain exactly
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one (n n 4 1) and replace any occurrence K7, ,, by K7, (i <n)andany K2 ., by
K '%—1,71' This does not change the isomorphism class of the object K by Lemma 4.15.
Then apply Proposition 5.16 to reduce the number of strands.

If (i, j) is acycle of w of length 2 and there exist Kiz, j» We can relabel the indices

sothati =n, j =n+1,and j' = n — 1. Then we continue as in the first case. O

We encode any object satisfying (1) and (2) by an unordered collection of pairs

(n,g) = ((nlvgl)» ERR (nwgs))

as follows. Each cycle (i, j) of w of length 2 is encoded as (1, g) if the number of
occurrences of Kj; j is 1 + 2g. The remaining cycles all have lengths 1. Each equiv-
alence class S of cycles of lengths 1 is encoded as (n, g), where n is the number of
cycles in the class and g +n — 1 is the number of occurrences of K 12 ; in the decompo-
sition of K with i, j € S. Note that n — 1 squares are used to generate the equivalence
relation. Note that (1,0) may correspond to an index which doesn’t appear in K or
it can correspond to a 2-cycle i, j with a single Kj; ;, but these produce equivalent
objects by Proposition 5.16.
To go back, a single pair (n, g) corresponds to K 12‘; + (—1)ifn=1and

2g+2
K13 Ky Kan (n22).
The objects for a collection of pairs have to be stacked together horizontally; that
is, the total set of indices is identified with the disjoint union of the sets of indices,
one set for each pair, and the generators K; ; have to be relabeled accordingly and

multiplied together. We denote the result by Kj 5.

Remark 5.21
Below we will frequently abuse notation, denoting CDZ‘(’fD ),3* (K7,z) simply by K5 .
Remark 5.22

Products of Kj; have the following topological interpretation. Consider n disks
labeled by 1,...,n and connect ith and jth disks by a twisted band for each Kj;
appearing in K. The result is an oriented surface X. The classification in Lemma 4.15
has a simple topological meaning: the cycles in w correspond to the components of
the boundary X, equivalence classes for ~ correspond to the connected components
of ¥, and the number of Kl% ; in each equivalence class encodes the Euler charac-
teristic of the corresponding component so that adding an extra Kizj for i and j in
the same equivalence class corresponds to adding a handle. The topological meaning
of the invariant (7, g) is that ¥ is the disjoint union of surfaces X, 4, where X, ¢
stands for the connected surface of genus g with n boundary components.
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For instance, K 1257 *1 corresponds to 2g + 1 twisted bands between two
disks. This is a surface with one boundary component and Euler characteristic
2—-(2g+1)=1-2g,soitis a genus g surface with one puncture. The product

2g+2
K3 K Ko,
Euler characteristic n — (2g + 2n —2) =2 —2g — n; hence it is a genus g surface

corresponds to a surface with n boundary components and
with n punctures.

Finally, we describe 8* Kj z. It is convenient to notice that objects on which §;
acts as 0 can be factored away.

PROPOSITION 5.23

Suppose M is a module over € A, for some permutation w € S, with ¢ cycles, and
suppose N is a module over €A, which is free over R such that every &; acts as O.
Then we have an isomorphism of € A, ,,-modules

B*(M ®r, N)=p"(M) ®r, (Rc ®r, N).

where the homomorphism R,, — R, is the natural homomorphism sending each vari-
able x; to the variable corresponding to the cycle to which i belongs. The action of
Uy on the right-hand side is given by uy ® 1 4+ 1 ® uy and the action of &; is the one
coming from B*(M).

Proof

First, since ¢ o f o @ = « and « is a quasi-isomorphism, the pullbacks via 8 o «
and Id produce equivalent objects by Lemma 2.19. Since N is free, tensoring by N
preserves quasi-isomorphisms, so we can replace M by o* 8* M on the left-hand side.
On o*B* M variables x; corresponding to i from the same cycle act in the same way,
so we have an isomorphism

a*B*M ®gr, N =a*B*M Qg, (Rc ®r, N).

Because all the &; vanish on N, the action of &; on the tensor product comes from the
action on M only. Now when we apply B* the corrections in the definition of 8* are
all contained in the corrections for M, so we have

B*(«*B*M ®r, (Rc ®r, N)) = B*(@*B*M) ®g, (R ®r, N)
=p*(M) ®r, (Rc ®r, N). O

The following is useful in computations of higher powers of K; ;.
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PROPOSITION 5.24
Denote by K[ the €A-module R[n1.n2](2), where 11, no have homological
degree 1, dny = dn, =0, all & act by 0, and uy, acts via

Uk —>khk—2(xi,xj)771772.
Then we have
3
Kl-,j = Ki,jK,-*’j.

Proof
Explicit computation of Ki3, ; produces R[n1,72,13](3) with

dni=xi—x;,  &=-§=m—m+ns,
up = (m(=n2) + (11 — 12)n3) (hre—2(xi, x5, xi) + hg—2(x;, xi,x})).
The first factor in u can be written as (77 — 73) (11 — 12). The second factor contains
every monomial xip x?. with coefficient p + 1 4+ ¢ + 1 = k, so we obtain that u, acts
by
(m —n3)(m — m2)khp—2(xi. x;).
Redefining 11, n2 as n; — n3, n1 — n2 we arrive at the following presentation of Kﬁ i

KZS,] = R[n11n27§i |d7]1 :drIZ zosdgi =X _xJ]’

the action of &; is —&;, and uy acts via khg_(x;,x;)n1n2. This is precisely the

module K; ; K[ ;. O

Finally we obtain the following.

PROPOSITION 5.25

Letin=(ny,...,ng), g =(81,....8s), = ;Nj, 8= ;& M =n1+ - +nj,

I ={m;}_,. The module Kj ; is isomorphic in the category € A¢ /C to
Cl(xj)jer- ) jgr- (nij) j<2g;.i<s|(c —s +28)

with 0 differential and the action of the remaining variables given by

m;—1

Xj = Xm; (m,-_l <j <m), Em,' = - Z i:j’ (32)
J=mi_1+1

s 8i
up =k(k —1) ZX,’ZZZ Z Mi2j—11i,2)-
j=1

i=1
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Proof
Suppose g = 0. Then each 2-cycle of w corresponds to n; =1, g; = 0, so the corre-
sponding element K/ ;-1 appears in degree 1. Applying Proposition 5.16 we get rid
of this element, decreasing the number of strands by 1. So the permutation becomes
the identity permutation and each n; corresponds to a shifted version of the prod-
uct

K@) — K% K2, K?

ni—l,n;"

These products are multiplied together over C. Let us consider each product sepa-
rately. Let n = n;. From the definition, K 12 ; can be computed as follows:

K = Rulni,n2. | dii = dna = x1 — x2](1),

where the action is given by
E=—&=m—n2  ur=—knnahr_o(xi,x;).

After a change of variables, we can represent it as

K2 = Raln. & | dn=x1 — x2,d& = 0](1),
with the action uy = kn&; hr—>(x;,x;). Tensoring these together, we obtain

K® > R,[EF, .. E s a1 | dEF = 0,dni = X110 — xi](n — 1),

with the action given by &, = —§_|, & = &7,

Si = Ei* - E,‘*_l,

n—1 n—1
up =k Z ni&l he—a(xi. Xit1) + Z(—‘Efk_l)éi*hk_z(xi,xi,xi)

i=1 i=2

k
= > (kﬁiéjhk—z(xi,xz'ﬂ)Jr(2)§,~gjxl?‘—2)_

n—1zi>j>1

as the new generators of K,

Let us choose &1,....En—1. 01 + &, .. et + Sn271

The description of the module becomes
K™ = Rylgr. o fnmt oot | A& = 0,d; = Xiga = xi](n = 1),

1
up = Z k(niéjhk—z(xz',xz'ﬂ) + Efiéj(xi _xi+l)hk—3(xi7xi,xi+l))-

n—1zi>j>1
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Let K’ := Clxy, &1, ..., En—1] with O differential and 0 action of uy. Each x; acts by
Xn and &, acts by — Z:’;ll ;. Then we have a quasi-isomorphism K™ — K’(n — 1)
which sends 7; to 0 and all x; to x,,.

Tensoring these quasi-isomorphisms over C we obtain a quasi-isomorphism from
Kﬁy() to

Cl(xi)ier, (Ei)igr](n —1)

with O differential and uy acting by 0, and the remaining variables acting as in
(32). Note that applying ®* to a module on which uj; for all k£ act by 0 again
produces a module on which all u; act by 0. So the statement for g = 0 is
proved.

Now suppose g is arbitrary. The “genus contribution” can be factored out using
Propositions 5.24 and 5.23:

c
B*(Kiig) = B*(Kio) ®r. QK%
i=1
where K;‘:i is the object defined analogously to K;‘: It but with j =1i. So the statement
follows from the case g = 0. U

6. y-ification of A-modules

6.1. y-ification
Let (C,d) be a complex of Soergel bimodules with a structure of w-twisted mod-
ule over the the algebra 4. By definition, this implies that C admits an action of
anticommuting operators &; such that d(§;) = x; —x _; 0y

Let Ry = C[y1, ..., yn]. Following [13], we define the strict y-ification of C as
the complex ¥(C) := C[y1,...,yn] = C ® R, with the twisted differential

n
dy=d+ ) &

i=1

The variables y; are placed in homological degree degj, y; = —2. Note that

n
dy = (i =X,V

i=1

Since dy2 # 0, we will sometimes refer to ¥(C) as to curved complex. It is easy to
see that the definition of tensor product of y-ifications in [13] agrees with y-ification
of tensor product of #-modules.
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In particular, given a braid 8 with the corresponding permutation w, we can use
the w-twisted #-module structure on the Rouquier complex 7T from Theorem 4.3 to
define the y-ified complex ¥(8) = ¥(Tp).

Passing to the Hochschild homology we have the following.

PROPOSITION 6.1
Consider the differential dyy,, on the curved complex HH(Y(B)). Then

A, =0 mod (yi — yuw())-

After taking quotient by the ideal generated by (y; — yw()) the curved complex
HH(Y(B)) becomes an honest chain complex.

Remark 6.2
Note that C[y1,..., yu]/(¥i — Yw()) is a polynomial ring in ¢ variables if the closure
of B has ¢ components.

This yields the following definition.

Definition 6.3
The y-ified Khovanov—Rozansky homology of the braid f is defined as

HY () := HHH(¥Y(B) ®r, Cly1.---. ¥al/ i = Yw@)i=1.dy)-

It is proved in [13] that HY(B) up to grading shifts is the topological invariant of
the closure of 8. We refer to [13] for more details on y-ifications and their properties.

The above constructions use only the action of &;. The action of uj gives rise to
interesting operators in the y-ified homology.

THEOREM 6.4
Let B be an arbitrary braid. Then:

(a) There is a family of chain maps Fy on the y-ified Rouquier complex Y(B)
satisfying

[dy7 Fk] = [Fk’ Fm] = [Fkv-xi] = 07 [Fk’ yl] = hk—l(xirxiufl(l‘))'
(b) There is a family of chain maps Fy on the y-ified link homology HY (B) satisfying
[Fie. Fn] = [Fe.xi] =0, [Fe.yi] = kx{"

Both actions are invariant up to homotopy under braid relations.
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Proof
Let C be a complex of Soergel bimodules which admits a w-twisted module structure
over . Its y-ification ¥(C) is a free module over C[y,..., y,]; hence, one can

define the operators 3%,‘ on ¥(C). We define

n
0
Fiei= ) it (5,31 ) o o e (33)

i=1

By Theorem 4.3 the operators Fj, are invariant up to homotopy under braid relations.
Let us check that they are chain maps. Indeed,

n n
1=+ 3 S s ]

i=1 i=1

n
= [d,uk] = D) hg—r (xi, %, 1 ;)€ = 0.

i=1

Example 6.5

By Remark 4.4 we have u; = 0; hence F; =) |, %

6.2. From A modules to y-ifications

The y-ification can be recognized as a special instance of Theorem 2.32. We have the
following.

COROLLARY 6.6

Let Bg be the subalgebra of A generated by x;, x|, &. Then Y defines a fully faithful
embedding of Bg/ B into the homotopy category of curved complexes of modules over
By = B[y1. ..., yn] with curvature Y ;_, (xi — x}) yi.

Remark 6.7

Theorem 2.32 requires power series in yy, ..., y,, but here we choose to work with
polynomials in y; instead. For y-ifications of bounded complexes, the two approaches
are identical.

defines an endomorphism of ¥(C) = C|[y1,...,ya], where f,
any elements with

.....

degh(fkl ..... kn):degh(fo)—l-Z(kl ++kn)

Since C is bounded, all but finitely many of the f,
reasons.

k, must vanish for degree

.....



2544 GORSKY, HOGANCAMP, and MELLIT

So the y-ification essentially corresponds to forgetting the generators uy. Theo-
rem 2.32 tells us how to capture the complete information.

Definition 6.8
For an #-module X the extended y-ification is defined by

Xyw = (X1, o ynvis.o vnl dy )

with the variables of degrees deg; y; = —2, deg;, vk = —3. The differential is given
by

n n n
dyw=dy+Y wFe=d+Y yii+ Y viF.
k=1 k=1

i=1
We have the following.

COROLLARY 6.9
The extended y-ification X — X, is a fully faithful embedding of the category A/ B
into the category of curved complexes over By ,,, where

n
By, = B[yl,...,yn,vl,...,v,, dvg =0,dy; = th_l(xi,xlf)vk].
k=1

The curvature on B, ,-modules is Y ;_, (xi — x])yi.
Collecting the linear terms in vx we obtain the below.

COROLLARY 6.10
Let X, Y be A-modules. Any morphism of y-ifications Y (X) — Y(Y') coming from a
morphism in A/ B commutes with the operators Fy up to homotopy. In particular, the
action of the operators Fy up to homotopy is an invariant of the isomorphism class of
an object in A/ B.

Analogously, we can define extended y-ifications of objects of €A, /R, and
CAc, 00/ Re. Together with Theorem 5.17 and Proposition 5.18 we obtain the follow-

ing.

COROLLARY 6.11
The y-ified link homology as a module over C[(x;){_,.(yi)i—,. F1.F2,...] is an
invariant of a link.
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6.3. y-ification of the basic objects
From the description in Proposition 5.25 it is easy to compute the y-ifications. Indeed,
by (32) we have

m;i—1
Em=— ) &
j=m;_1+1
SO
K] m; s m;—1
dy=2. 2. &vi=2 2. &i-ym)
i=1j=m;_1+1 i=1j=m;_1+1

Therefore the y-ification of Kj z has cohomology

H(Kig @ Cly1.....ynl dy) = C[(xj)jer. (v))jer. (Mij) j<2g:i<s | (28)

Since Kj z is free over R, taking Hochschild cohomology and then homology with
respect to dy is the same as taking homology with respect to d,, and tensoring with
an exterior algebra:

HY(Kiiz) >~ C[(x))jer. (7)) jer. (i) j<2g; izss (Bk)1<k<n | (28).

The action of the operators Fj is given by

N

I L
F = Z(kx;l;i IV + ek = 1)x,72 Z r’i’ZJ_lni’zj)'
i=1 i j=1

Here the notations follow Proposition 5.25 and (21).

7. Hard Lefshetz and symmetry

7.1. Lefshetz operators
In this section we work with bigraded complexes and grading-preserving chain maps
between them. Let (A = @) A x. D) be a doubly graded complex with differential
D:A;r— Ajir—1. We will assume that for nonzero components A4 ; x the values of
j are even.

We call a chain map F : A — A a Lefshetz map if the following statements hold:
(a) Fsends Aj to Aj 4 k42
(b)  For all j > 0 the map in homology F/ : H_5;(A) — Hajg42,(A) is an

isomorphism
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LEMMA 7.1

Assume that 0 > A — B — C — 0 is a short exact sequence of triply graded com-
plexes where the maps preserve all three gradings. Furthermore, assume that A, B,
C are equipped with endomorphisms F 4, Fp, Fc which commute with maps between
them up to homotopy. Then if Fy, Fc are Lefshetz, then Fp is Lefshetz too.

Proof
We have the following commutative diagrams of long exact sequences:

H 2jk41(C) ———> H_5jx(A) ———> Hx(B) ——> Hx(C) —> H_3jx1(A)

\L F¢ \L Fi l Fi l £e l £

Hjk4142j(C) ———> Hijii2j(A) ——> Hzj;12;(B) ——> H3j;42;(C) ——> Hjjx-142;(A)

Since F4, Fc are Lefshetz, by 5-lemma Fp is Lefshetz as well. O

LEMMA 7.2

Assume that F is a Lefshetz operator for a complex A, and for all N the sum
@j—zk:N H 1 (A) is finite-dimensional. Then the action of F extends to an action
of sl on homology of A where H acts on Hyj x(A) by j.

Proof
Clearly, [F, H] = 2F, so it is sufficient to construct an operator E. By the Jacobson-
Morozov theorem, we can construct it as follows.

Since the operator F preserves the sum j — 2k, by the assumption of the lemma
it is locally nilpotent. Let us prove that for j > 0 and s > 0 one has

Hyjx(A) = Ker(F*) @ Im(F/*%).

Assume that v € Ker(F*) N Im(F/7%) and v # 0; then v = F/*Su for some
u€H 5 45k _2;-25(A), and FJ+25(u) = 0. This is a contradiction, so Ker(F*) N
Im(F/+5) =0.

On the other hand, for arbitrary v € H,j x(A), we can write FSv = F/725(y)
for some u € H_pj_45k—2j—25(A), so v — F/t5(u) € Ker(F*), so Ker(F*) +
Im(FI+5) = Haj i (A).

Now on H,; x(A) we have an ascending filtration by Ker(£¥) and a complemen-
tary descending filtration by Im(F/*%), so we can split these filtrations by

Hyji(A) = P HY (4). HY), (4) =Ker(F*) N Im(F/ ).
S
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Then E is defined on Hz(j.) « by taking preimage under F multiplied by a constant and
projecting to Hz(j.’:)k_z. O
LEMMA 7.3

Let A, B be two complexes of vector spaces with Lefshetz maps F4 and Fp satisfying
the assumptions of Lemma 7.2. Then Fy @ 1 + 1 ® Fp is a Lefshetz map for A @ B.

Proof
We have (A® B)jx = @j’,k’ AjrgrBj_jrx—kr.Since Fy: Ajrjr — Ajrya 42 and
Fp:Bj_jrx—k —> Aj_jr1ak—k+2,both Fy ® 1 and 1 ® Fp send (A ® B); to
(A® B)jtak+2-

Furthermore, by the Kiinneth formula we have Hy «(A ® B) = @ Hy «(4) ®
H, «(B). By Lemma 7.2 the actions of F4 and Fp extend to the actions of sl,, so
F4® 1+ 1® Fp defines the action of F on the product of sl, representations. Since
this product is a finite-dimensional representation of sl5, it is symmetric and F' is a
Lefshetz map. O

LEMMA 7.4
Let A = C[xy,...,Xn, Y1,-..,Yn] with O differential, where x; has bidegree (2,0)
and y; has bidegree (—=2,—2). Then the operator F =) x; % is Lefshetz.

Proof

We can write A = C[x1, y1] ® --- ® C[xy,, y,]. It is easy to see that x; % is Lefshetz
on Cl[x;, y;], and the statement follows from Lemma 7.3. O
LEMMA 7.5

Let A =C[n1,...,M2a](2n), where n; has bidegree (2,1), and F = ni1n2 + n3na +
o+ 4+ Non—1M2n. Then F is Lefshetz.

Proof
We have

A=C[n1,...,m22](2n) = C[n1,n2](2) ® C[n3,n4](2) ® --- ® C[n2n-1,121](2).

It is easy to see that 7,7, is Lefshetz for C[n;, n;](2), so by Lemma 7.3 F is Lefshetz
for A. O

Lemmas 7.3, 7.4, and 7.5, together with the explicit description in Section 6.3,
immediately imply the following.
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COROLLARY 7.6
The y-ified basic objects Y(K5,z) are Lefschetz.

Proposition 5.19, together with the classification of the basic objects, implies
that ¥(HH* (L)) is homotopy equivalent to a twisted complex built from copies of
Y(Kj5,z) and homological shifts thereof. By Lemma 7.1 we obtain our main theorem
below.

THEOREM 7.7
For any link L the y-ified homology H(Y(HH¥(L))) is Lefschetz.

Example 7.8
By the main result of [13], the y-ified homology of (n,n) torus link has the form

HY (T (n,n)) = [\ (xi =x;.yi =, 6 =0;) CClx1,.... Xn. Y10 Yo O1, . O],
i#j

The symmetry exchanges x; and y;, clearly leaving the ideals
(xi =xj.yi —yj.0i —0;)
and their intersection unchanged. Furthermore, the operator F = >_ x; % satisfies
F(f(xi —x;) +g(i —yj) +h(0; —0))) = F(f)(xi —x;) + F(g)(yi — yj)
+ g(xi —x;) + F(h)(6; — 6;)

and preserves these ideals as well. The operator E acts by Y y; Bixi’ so HY(T (n,n))
has a natural action of sl,.

Appendix A. Higher coproducts on 4

A.l. Higher coproducts

As we discussed in Section 3.3, the coproduct A : A — A ® g #A is coassociative up to
homotopy. In this section we write this homotopy and its higher analogues explicitly.
Define §®) : A — A ®g A ®g A by the equation §® (x;) =3 (x)) =63 (&) =0
and

8P i) =Y hims(xiuxj x] x]VE @& @&, k=3,
i

We extend § to all monomials inductively by the equations:
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§P(ax;) =8®(a)x;, §®(ax}) =8P (a)x],
§P@t) =8P)ER IR+ +IR1®E), 34
8P (aur) =8P (@) Ay Aug) + A2 A@)8P (up).

To make the last equation in (34) well defined, we may assume that vy is lexicograph-
ically maximal in the monomial auy.

LEMMA A.1
We have Ay A — Ay A = [d,§P), where A; acts on i th tensor factor.

Proof
Note that 83 (duy) = 0. We have

AMAU) = @11+ 1Qur ®1+1®1Quy

+ ) hia(xi X X6 ® & ® 1
+ ) (i x] xNE®TQE+1®E ®E),
i

SO

Ay A(ug) — A Aug) = Z(hk—z(xi,x,{, x]) = hg—a(xi, x},x]"))E @& ® 1

i

+ Y (ko (xinx] XY = o (xi X[ X)) ® 1 @ &
i
+ Y (e (i x] X)) = hiea (3] x] X)) 1 @ & ® &
i
- th_3(x,-,xlf,xl{’,xl{” [(x] —xNE ®&E R
i

+ O] —xDE®I®E + (i —x)1®& ®&]
=D hi—a(xinxpx] X d(E @ & © &) = d (8P (up).

Next, we check that the homotopy extends correctly to all monomials (34). Note
that §3 (duy) =0,

ALA(x;) = A A(x;) = xi, ATA(X)) = A A(x)) = x{,

and
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AMAE)=MAE)=5R1IRT+IRERI+HIRI®E.
In other words, all equations in (34) have the form
§®(ab) = P (@)A1 Ab) + Ay A(a)5P (b)),
where we assume that a and b satisfy the statement of the lemma. Therefore
[d,8@)(ab) = d§P (@)A1 AD) + 8P (@)A1 A(db) + Ay A(da)s® (b)
+ AsA(a) - d5(b)
—8®(da-b)—8¥(a-db)
=[d.8®(a)|A1AD) + ArAa)[d. 8P)(b)
= (A1A(a) — ArA(a)) AL AD) + AxA(a) (A1 A) — AL A(D))
= A1 A(ab) — Ay A(ab). O

Furthermore, we can define

(S) Zl hk_s(xi,xl{,...,xl(S))El@S lfS Ek,
8% (ug) = ,
0 otherwise.

LEMMA A.2
We have the following Ao relations for §©:

t
D0 w898 D up) = d (89 (up)). (35)

s+t=m+1a=1

Equivalently, if we define a differential § =d + )", 89 acting on B AE™,
then §% = 0.

Proof

The case m = 3 follows from Lemma A.l; consider the case m > 3. By definition,
8(3)(&-) =0 for s > 2, so 8((15)8(’) =0 unless s =2 or t = 2. Now it is easy to see
that each term £ ® 1 ® 5{"_1_“ appears twice in (35), with coefficients complete

symmetric functions /j_,,+1 evaluated at m arguments with xi(a) and x@*V

; missing.
The difference of these functions is precisely (xl.(a) - xi(aH))hk_m (xis... ,xi(m)), up
to a sign, so overall sum agrees with d(§™). O

Remark A.3
All higher coproducts §) vanish on u5, so the the coproduct on the subalgebra of
generated by u, and &; is coassociative on the nose.
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Remark A.4

Equations (34) can be interpreted as a part of a bigger structure expressing the homo-
topy 8 between two homomorphisms of A algebras (see, e.g., [22, Section 3.7]).
It would be very interesting to use similar ideas to extend all § to a family of maps
86 A — A®S 2 < satisfying (35). It appears that this would endow 4 with the
stricture of A, bialgebra in the sense of [25], [39], and [42].

A.2. Integral formulas
The above constructions appear to be specific to power sums, but they can be gener-
alized to other symmetric functions.

LEMMA A.5
Let Q be a symmetric function. Define

1

aiQ(x,x/)=/0 g_g(txi + (1= 1)xj) dt; (36)
then

0(x)—0(x) =) al (x.x")(xi — x}).
Proof
We have

1
0(x)—0(x")=0Q(rxi + (1 —t)x£)|(l) = /0 [O(txi + (1 —t)xl{)];dt

= Z/ (xi —x}) l(tx, + (1—1)x])dt. -

Example A.6

If Q = pi is the power sum, then aQ = kxk 1 and

1 1
a?(x,x’)z/ k(txi+(1—z)x;)"‘1dt=[ di j(tx,+(1—t)x)
0 0

X —(x)k

X; —

_hk(-xl7x)

As a consequence, for any symmetric function Q the element ZaiQ (x,x")&; is
a cycle in the algebra 4. More generally, we call a collection of functions a; (x, x")
a factorization of Q if Y a;(x,x")(x; — x]) = Q(x) — Q(x"). Let I be the ideal
generated by x; — x;.
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LEMMA A.7

Suppose that {a; (x,x")} is a factorization of Q. Then the following holds:
(a) There exist Cij such that a;(x,x") = aiQ(x,x’) + 2 Cij (x, x")(x; — x;).
(b) If a; (x,x') — a2 (x,x') € I?, then Cij € 1771,

Proof
Let us change variables t; = x; — xlf and consider the Koszul complex with differential
d(&) =x; —x, =t;. We have

d(Z(ai (x,x") —aiQ(x,x’))Ei) = Z(ai(x,x’) —aiQ(x,x’))(xi —x})=0,

s0 Y (ai(x,x")— aiQ (x,x"))§&; is acycle. Since #; form a regular sequence, there exist
Cij(x,x’) such that

(@i ex) —al (v X)) = d (Y CilxxEiE )

i<j
= Z(Z Cjitj — ZCiﬂj)%‘i-
i j<i Jj>i

This implies (a) after changing the signs of C;; appropriately. For (b) it is sufficient to
note that the differential increases the 7-degree by 1, so each homogeneous summand
inaj(x,x")— aiQ (x,x") of t-degree p corresponds to C;; of degree p — 1. O

Since A is a resolution of R, the cycle ZaiQ (x,x")&; is a boundary, and the
following result gives an explicit construction of bounding element.

LEMMA A.8
Consider the derivation ) uy, % which sends a symmetric function Q to an element

UQ) =Y up—= € .

Let I € B be the ideal generated by the differences x; — x,. For each symmetric
Sfunction Q there exist elements CUQ € I such that we have

d(u(Q)+ ;q?&s;) =D a8

Proof
The derivation Q + U(Q) is characterized by U(pr) = uy and
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U(fg)=U(fg+ fU(g).

Suppose the corrections Cl{ , C £ € I have been constructed for symmetric functions
f,g. Set

Cl¢ = fCi+gCh +Cl®,

where
Cl{’gz / dt/ ds—/ ds/ dt sx—l—(l—s)x) (tx+(1—t)x)
xl

Setting x = x’ makes the integrand independent of s, ¢. Hence the difference of the
integrals vanishes and we have Ci{’g € 1. Hence Ci{g € I. We have

Zcf’gdé,-=1(/ldtftds—/ldsfsdt)
. ” 2 0 0 0 0

1

x%(sx—l—(l—s)x) 9 (tx+(1—t)x)

1
— %(/0 di(f (tx + (1= 0)x') — f(x))

! ) 98 ,
_/ di(f(x)— f(tx + (1= 0)x )))r(tx+(1—t)x)
0 Xj

1
:/ dr(f (0x + (1 =0)) = f(0) 2 (o (1=,
0

Similarly, we have

1

1
ZCI{’gdgj:—/o dt(g(tx + (1 —1)x") — g(x)) j:(tx—l—(l—t)x)
J

Therefore we obtain

Y CHE — )y dg = al® — faf -

Summing over all j leads to

d(dochtas) =Y (@ - faf - ga))g;.
i,j J

which is precisely what is required to show that the correction Cl-{g satisfies the con-
dition for the function fg. Now any symmetric function can be expressed as a poly-
nomial of pq,..., py, for which the statement is clearly true, so the statement is true

in general. U
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Note that the formulas for the coproduct and its higher analogues for u o can be
written compactly using multivariable integrals:

50) = [ 0w+ 1)+ -+ 1,37 + i (dro —dn)
Ag

+E(dty —diy) + -+ E7(dig—y — d1y)).

For example, one can check that for O = p; we get

k—s)!
hi—s (5, X X)) = % fA (foxi + t1x] + -+ tex”Y = d Vol

Xy
where Ay = {(tg,...,ts) : t; >0, t; = 1} is the standard s-dimensional simplex.
This follows from the multinomial theorem and the multivariate beta integral

ap!---ag!
(@ap + -+ +as+s)

/ 160 -8 d Vol =
As

Appendix B. Group cohomology

The constructions in this paper are motivated by the work of the third author on “curi-
ous hard Lefshetz” property in cohomology of character varieties (see [28]). The Lef-
shetz operator in [28] corresponds to a tautological 2-form on the character variety. In
this appendix, we review the construction of tautological forms on groups and other
varieties following Bott, Shulman, and Jeffrey [5], [6], [21].

B.1. Transgressions
Let G be a Lie group with Lie algebra g. Given an invariant function Q on g, we
define a family of differential forms @, (Q) on G".
First we describe simplicial model for the universal bundle EG — BG. Consider
the family of spaces NG(n) = G" ! with boundary maps ¢; : NG(n) — NG(n — 1),
g;(Wo,....,Up) = (Uy,...,U;,...,U,). We also consider the spaces NG(n) = G"
and the boundary maps ¢; : NG(n) — NG(n — 1):
‘90 : (gla"'3gn) — (g2,-~-’gn),
Si(gl,---,gn) = (gla-~wgigi+lr"'vgn)’ (1 El <n-— 1)’
En(gl, .. -’gn) = (gz’- .. 7gn)-
There are maps ¢ : NG(n) — NG(n) and o : NG(n) — NG(N) defined as follows:
q(Uo.....Up) = Uy 'Ur,.... U Up),

0(g1,----8n) =(1,81,8182,---,81°"" &n)-
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It is easy to see that ¢ o 0 = Idng(n) and both ¢ and o commute with the action of ¢
for all j. Note that the choice of ¢ and o is reverse from the one in [21].
We get the following commutative diagram:

_ & &

NG: .——GxGxG — GxG — G
£j

NG: GxG G *

We define the complex (B, Q*(NG(n)),§) with the differential
§:=Q°(NG(n) > Q*(NG(n+1)), 8= (-D'e.

Let & = g~ dg be the left-invariant g-valued one-form on G. Consider the n-
symplex A, = {(fo,...,tn) :0<1;,> t; = 1}; we define the one-form 6(¢) on A, x
G"*! by the equation

n
9([) = Z t;0;.
i=0
Consider the curvature
F =do(t) + [9([), 9(t)].
Given a symmetric function Q € S(g*)¢ of degree r, we define
(0= [ o) e G,

A

Finally, define ®,(Q) = 6*®,(Q), where

o:G" _>Gn+17 O(gl’-'-’gn) = (glgrthgnasgnvl)

It is easy to see that ®,(Q) = 0 for n > r, so there are finitely many forms for a
given Q. The forms ®,,(Q) are not closed, but it is known that

(d £8)(P1(Q) + -+ ®,(Q)) =0.

$0 d®,(Q) = £6Pp—1(Q).

Example B.1
For G = GL(n) we have § = g~ dg, and for Q = Tr(g?) we get
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®1(Q) =Tr(6,[0,0]) € 2*(G),
®2(Q) =Tr(f " df ndgg™) = (f | g) € 2*(G x G).

Then we have three equations

do1(Q)=0,  d(®2(Q)) =8(21(Q)),  §(P2(Q)) =0.
The latter equation can be written as (f | g) + (fg | h) = (f | gh) + (g | h).

Example B.2
We have

ovtivw h=(wv'\wiw ) —w|w
= viw ) —UvH-wiw
=Uunw-wwvhH-ww
=UWwH - hH-ww

since (V|V™1) =0.

Example B.3
Suppose that G = (C*)" is the abelian group of diagonal matrices. Then 6 = u~! du
and d6 =0, so

0(t)=> 16, F=> 6idy.

Pick Q =Tr(g"); then

or01= [, m(Saan) = [0

otherwise.

This is nothing but the degree 0 part of §(u, ), where we identify 6 = diag(, ...,
&n), and

Te(61 AN 6p) =Y EP.

B.2. Maps to the group

We can use the classes ®,(Q) in the following construction. We say that a map f :
X — G is Q-exactif f*®;(Q) = dw for some (2r —2)-form w. Given two Q-exact
mapsf:X—>Gandg:Y—>Gastheproductfg:XxY—>GxGﬂ>Gandthe
form
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w=w; +wy—(f xg)*D2(Q).
Recall the equation
d®2(0) =21(Q)®1-m"®1(Q) + 1 ® ®1(Q);
then
dw =dw; +dw; — (f x g)*®2(0Q)

=(fx2)"(P1(Q)®1+1® D1(Q) —dP2(Q))
=(f xg)"m"®1(Q).
Unfortunately, this operation is not associative: on (X x Y') x Z we get the form
w1+ 0y +wr— (f x g xh)* (P2 ® 1 +m7,Ps),
while on X x (Y x Z) we get the form
w1+ o+ — (f xgxh)*(1® ®p +m3;D,).
Nevertheless, the equation
dP3(0)=1Q O —mj, P2+ m3; P — P, ® 1

means that the two choices of form on X x Y x Z are different by (f x g X

h)*d®3(Q).

B.3. Equivariant transgression
The above constructions extend to H -equivariant cohomology of G (see [21] for
details). In particular, one can define forms

8F(Q) = [ (F + (o) < 256",
A
where p is the moment map for the action of H on G.

Example B.4
Let H = G = (C*)"; then as above 0(¢) =Y 6;t;, F =) 0;dt;, and u(6(t)) =
Zt,-,ui. Then

1

CD{-I(Q)Z/(; Q(Godl—eldl+I/L0+(1—[)/L1).

We can expand
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Q(6odt —6rdt +tpo+ (1 —1)pr) = O (tpo + (1 —1)p1)

i

£ 360~ 001 22 (1o + (1~ 1)),

)
H 190
Q)= (Bo—00i | ==(to+ (1 —0)m)dr,
i 0 i
which is precisely the formula (36) when we write & = (6g — 601);, to = (x1,...,%X,)
and p1 = (x],....,x;).
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