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Abstract

We define a new family of commuting operators Fk in Khovanov–Rozansky link

homology, similar to the action of tautological classes in the cohomology of charac-

ter varieties. We prove that F2 satisfies “hard Lefshetz property” and hence exhibits

the symmetry in Khovanov–Rozansky homology conjectured by Dunfield, Gukov, and

Rasmussen.
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1. Introduction

In 2005 Dunfield, Gukov, and Rasmussen [9] proposed a remarkable conjecture about

the structure of triply graded Khovanov–Rozansky link homology (see [23], [24])

categorifying HOMFLY-PT polynomial.

CONJECTURE 1.1

Let K be a knot, and let HHH.K/ D
L

HHHi;j;k.K/ be its reduced triply graded
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homology, where i is the a-grading, j is the quantum grading, and k is the homolog-

ical grading. Then dim HHHi;�2j;k.K/D dim HHHi;2j;kC2j .K/.

The conjecture was motivated by the well-known symmetry of the HOMFLY-PT

polynomial PK.a; q/D PK.a; q
�1/, where

PK.a; q/D
X

i;j;k

aiqj .�1/k dim HHHi;j;k.K/:

This conjecture was verified in [9] in numerous examples, and it was later related

to deep results about algebraic geometry of compactified Jacobians (see [29], [35]),

Hilbert schemes of points on the plane (see [13]–[15], [30], [34]), representation

theory of rational Cherednik algebras (see [16]), and combinatorics of q, t -Catalan

numbers (see [10], [12], [17]–[19]). In particular, the third author [27] computed

Khovanov–Rozansky homology for all torus knots, but the resulting combinatorial

expression is not manifestly symmetric. Nevertheless, the work of the third author on

rational shuffle conjecture in [26] implies that it is indeed symmetric, and Conjec-

ture 1.1 holds for torus knots.

For general knots, Conjecture 1.1 remained open until a recent series of papers by

Oblomkov and Rozansky [30]–[34], who resolved it in general, and Galashin and Lam

[11], who proved it for a class of knots related to positroid varieties. Both papers used

very heavy machinery from geometric representation theory: matrix factorizations on

Hilbert schemes of points and graded Koszul duality for category O.

In this paper we give a more direct algebraic proof of this conjecture.

THEOREM 1.2

Conjecture 1.1 is true for all knots.

For the unreduced homology, or for links with several components, the con-

jecture cannot be extended verbatim. Indeed, the unreduced Khovanov–Rozansky

homology HHH.L/ is a finitely generated graded module over the polynomial ring

CŒx1; : : : ; xc �, where c is the number of components of L, and the symmetry in Con-

jecture 1.1 must change the degrees of these variables.

In [13], the first and second authors proposed a solution to this problem

by introducing y-ified link homology HY.L/ which is naturally a module over

CŒx1; : : : ; xc ; y1; : : : ; yc �. In Theorem 1.11, we prove that the y-ified homology is

indeed symmetric in the sense of Conjecture 1.1, and this symmetry exchanges the

action of xi and yi . In the case of knots c D 1, this implies Theorem 1.2.

The key idea of the proof comes from the recent proof of the “curious hard Lef-

shetz” property for character varieties by the third author [28]. Following [28], to a

positive braid ˇ on n strands one can associate a character variety (also known as braid
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variety) Xˇ , and by [43] the homology of Xˇ is closely related to the Khovanov–

Rozansky homology of the closure of ˇ. Given a symmetric function Q.x1; : : : ; xn/

of degree r , one can define a closed algebraic .2r � 2/-form uQ on the character

variety Xˇ , which represents a certain tautological cohomology class. In particular,

for QD
P
x2i we get a class u2 2H

2.Xˇ /. The main result of [28] then states that

cup product with certain powers of u2 satisfies the “curious hard Lefshetz” property,

that is, yields an isomorphism between certain associated graded components of the

weight filtration in the cohomology of Xˇ . The proof goes by using a geometric ana-

logue of the skein relation to decompose the varieties into strata, and verifying the

Lefschetz property on each stratum by a direct computation.

In this paper, we define analogues of the forms uQ acting in Khovanov–Rozansky

homology. The construction outlined below is completely formal and uses the proper-

ties of Soergel bimodules. We have not been able to find a direct geometric connection

between the two stories, but the geometry of character varieties and related construc-

tions in group cohomology (see [21]) nevertheless motivates a lot of the work in this

paper (see Appendix B for more details).

1.1. The dg algebra A

The key role in our proof of Conjecture 1.1 is played by a remarkable dg algebra A

which was first constructed by Abel and the second author in [1], although they used a

slightly different presentation. It has generators x1; : : : ; xn; x
0
1; : : : ; x

0
n of homological

degree 0, �1; : : : ; �n of homological degree 1, and u1; : : : ; un of homological degree 2

with the following differential:

d.xi /D d.x
0
i /D 0; d.�i /D xi � x

0
i ; d.uk/D

nX

iD1

hk�1.xi ; x
0
i /�i ;

where hk is the complete symmetric function of degree k. In addition, we impose the

relations

f .x1; : : : ; xn/D f .x
0
1; : : : ; x

0
n/

for arbitrary symmetric functions f .

The algebra A is naturally an R-R bimodule where R D CŒx1; : : : ; xn� acts

on the left by xi and on the right by x0
i . One can prove that H0.A/ ' R and the

higher homologies vanish (see Proposition 3.5), so A is a free resolution of R over

R˝RSn R.

The homotopy category of dg modules over A is localized by morphisms which

become homotopy equivalences when restricted to the subalgebra generated by xi

and x0
i . Modules which become isomorphic in this category are called weakly equiv-

alent.
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Any homomorphism � W A! A˝R A defines an A-module structure on the

tensor product M ˝R N of arbitrary A-modules M , N .

THEOREM 1.3

There is a coproduct � W A! A ˝R A inducing a tensor product of A-modules

which is associative up to weak equivalence.

Recall that to a braid ˇ one can associate a complex Tˇ of Soergel bimodules

(called Rouquier complex) which is a tensor product of Rouquier complexes Ti , T
�1
i

for crossings (see Section 4.2 for more details). By defining the action of A on Ti ,

T �1
i and using the coproduct � we can extend it to Rouquier complexes of arbitrary

braids, and arrive at the following result.

THEOREM 1.4

For an arbitrary braid ˇ on n strands there is an action of A on the Rouquier complex

Tˇ . Here the action of xi is standard, and the action of x0
i is twisted by the action of

the permutation w.ˇ/ corresponding to ˇ. The action of A is well defined and is

invariant under Reidemeister moves up to weak equivalence.

Example 1.5

The minimal Rouquier complex for the full twist on two strands has the form B !

B!R. The action of the dg algebra A on it is shown on the following diagram:

B B

�1D��2

R

u2

(1)

More generally, we have the following explicit description of u2 (see Lem-

ma 4.7).

THEOREM 1.6

One can present the action of u2 on a Rouquier complex Tˇ explicitly as follows:

u2 D

nX

iD1

X

j<k

�
.j /
i ˝ �

.k/

wjk.i/
: (2)

Here �
.j /
i is the action of �i at the j th crossing, and wjk is the permutation corre-

sponding to the piece of the braid ˇ between j th and kth crossings.
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1.2. Action in link homology

Next, we consider the impact of the dg algebra A on Khovanov–Rozansky homology.

Recall that the Khovanov–Rozansky homology HHH.L/ of the link L obtained as the

closure of ˇ is defined as the homology of the complex HH.Tˇ /, where HH denotes

Hochschild homology of Soergel bimodules. Since HH identifies the actions of xi

and x0
i , we arrive at the following result.

THEOREM 1.7

Consider the dg algebra:

CAc;n DC
h
.xi /

c
iD1; .�i /

c
iD1; .uk/

n
kD1

ˇ̌
ˇ dxi D d�i D 0;duk D k

cX

iD1

xk�1
i �i

i
:

If ˇ is a braid on n strands whose closure has c connected components, then HH.Tˇ /

is a dg module over CAc;n.

In fact, we prove in Proposition 5.13 that CAc;n is quasi-isomorphic to the quo-

tient of An by the relations xi D x
0
w.i/

. Next, we consider the dg algebra CAc;1

which is the inverse limit of CAc;n as n!1 and the homotopy category of dg mod-

ules over it localized by quasi-isomorphisms.1 Again, we call isomorphic objects in

the localized category weakly equivalent.

THEOREM 1.8

Let L be a link with c components, presented as the closure of a braid ˇ. Then its

Khovanov–Rozansky complex HH.Tˇ / is a dg module over CAc;1, and this module

structure does not depend on the presentation of L as a braid closure up to weak

equivalence.

1.3. Relation to y-ification

A part of Theorem 1.4 implies that there is an action of operators �i of .A;Q;T /

degree .0; 2; 1/ on an arbitrary Rouquier complex Tˇ such that d.�i /D xi � x
0
w�1.i/

,

so that �i is a homotopy between xi and x0
w�1.i/

. Here w denotes the permutation

associated to the braid ˇ. Such homotopies were considered before as “dot-sliding

homotopies” (see [2], [7], [40]) and played an important role in the construction of

the y-ified Khovanov–Rozansky homology by the first and second authors in [13].

Namely, we tensor the Rouquier complex with the polynomial ring CŒy1; : : : ; yn� and

1Note that this category is equivalent to the homotopy category of A1-modules over CAc;1 viewed as an

A1 algebra.
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deform the differential d to

dy D d C

nX

iD1

�iyi :

Here the formal variables yi have .A;Q;T /-degrees .0;�2;�2/ so that the differen-

tial dy is homogeneous of degree .0; 0;�1/. The paper [13] also defined the y-ified

link homology HY.ˇ/ by taking the Hochschild homology of the y-ified Rouquier

complex for a braid ˇ. Here we prove the following:

THEOREM 1.9

For any braid ˇ with the associated permutation w there exist operators

Fk WD

nX

iD1

hk�1.xi ; x
0
w�1.i/

/
@

@yi
C uk

of .A;Q;T /-degree .0; 2k; 2/ on the y-ified Rouquier complex such that

Œdy ;Fk�D 0; ŒFk;Fm�D 0; ŒFk ; xi �D 0;

ŒFk ; yi �D hk�1.xi ; x
0
w�1.i/

/:

In particular, Fk is a chain map and hence defines an interesting endomorphism

of HY.ˇ/. Following Theorem 1.8, we prove the following result.

THEOREM 1.10

Suppose that L is a link with c components. There is an action of operators

x1; : : : ; xc ; y1; : : : ; yc ;Fk .k � 1/ on the y-ified homology HY.L/ satisfying the

equations

ŒFk ;Fm�D 0; ŒFk ; xi �D 0; ŒFk; yi �D kx
k�1
i :

This action is a link invariant and does not depend on a presentation of L as a braid

closure.

1.4. Basic objects

In Lemma 5.9 we interpret the skein relation

ŒTi ! T �1
i �' ŒR!R�

as a distinguished triangle of A-modules involving the so-called Koszul objects,

which already appeared in [13]. Applying the skein relations and Markov moves, we

can simplify links until the invariant of any link is represented as an iterated cone

of products of Koszul objects (see Proposition 5.19). We call such products basic
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objects. They are completely classified in Section 5.5, we give a formula for the

action of uk on them in Proposition 5.25, and their y-ification is given explicitly in

Section 6.3. Combinatorially, basic objects are classified by the same data as Riemann

surfaces with boundary on the link, and we think of the decomposition into basic

objects as an algebraic counterpart of the stratification in [28].

1.5. Hard Lefshetz and symmetry

Finally, we apply all of the above results to prove Conjecture 1.1. By Theorem 1.9

there is an operator

F2 D

nX

iD1

.xi C x
0
w�1.i/

/
@

@yi
C u2

of degree .A;Q;T /D .0; 4; 2/ acting on the y-ified Khovanov–Rozansky homology

HY.ˇ/.

THEOREM 1.11

Suppose that j � 0. Then the operator .F2/
j satisfies a “hard Lefshetz” property,

that is, yields isomorphisms

.F2/
j WHYi;�2j;k.ˇ/

�
�!HYi;2j;kC2j .ˇ/

for all i , j , k and an arbitrary braid ˇ.

Analogously to [28], the Lefschetz property is proved for basic objects directly,

and then the theorem is deduced from Lemma 7.1.

COROLLARY 1.12

There is an action of the Lie algebra sl2 D hE;F;H i on HY.ˇ/ where F D F2 and

H acts on HYi;2j;k.ˇ/ by a scalar j . This action intertwines xi and yi such that

CŒx1; : : : ; xc ; y1; : : : ; yc �' .S
�V /˝c , where V is the defining representation of sl2.

We deduce Theorem 1.2 from Theorem 1.11 as follows. Recall from [13] that

for a knot K one can write HY.K/ D HHH.K/ ˝ CŒx; y�, where x D
P
xi and

y D
P
yi . Since ŒF2; y� D 2x and ŒF2; x� D 0, it is easy to see that one can write

F2 D F2C2x
@
@y

for some operator F2 on HHH.K/, and F2
j

induces an isomorphism

between HHHi;�2j;k.K/'HHHi;2j;kC2j .K/.

Remark 1.13

After this paper appeared on the arXiv, Chandler and the first author proved in [8] that

the operators Fk commute with the differentials in the Rasmussen spectral sequence
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[37] from triply graded Khovanov–Rozansky homology to slN homology, and hence

yield well-defined operations in slN homology.

The action of E , however, does not commute with Rasmussen differentials, and

both the action of sl2 from Corollary 1.12 and the symmetry from Theorem 1.2 are

specific to the triply graded homology. See [8] for more details and examples.

1.6. Structure of the paper

In Section 2 we recall several important constructions in homological algebra which

are probably well known in the case of a dg algebra over a field, but for which

we were not able to find a reference for the relative setting. In particular, we study

the localization of the category of dg modules over a dg algebra A by the class of

morphisms which admit B-linear homotopy inverses (but not necessary A-linear

homotopy inverses), where B is a subalgebra of A. We give a concise description

of the corresponding dg category as a full subcategory of the homotopy category

of A-modules in Theorem 2.14. Homomorphisms in this category are related to the

Hochschild homology in Proposition 2.17. We also study the pullbacks of dg modules

along dg algebra homomorphisms A!A
0 which preserve B and give a sufficient

condition when pullbacks induce equivalences of categories (Lemma 2.19) and under

which pullbacks over different homomorphisms produce weakly equivalent modules

(Lemma 2.22). Finally, we formulate the Koszul duality for such categories in the

special case of a linear dg algebra in Theorem 2.32, which is later used to understand

the connection between A-modules and y-ifications.

In Section 3 we define the dg algebra A and study its properties. We construct

an explicit coproduct on A in Section 3.3, and prove Theorem 1.3. The results of

Section 2 are applied to the algebra A and its subalgebra B DR˝RSn R.

In Section 4 we define Rouquier complexes and construct the action of A on

them, proving Theorem 1.4. We compute the action of u2 explicitly and prove equa-

tion (2) in Lemma 4.7.

In Section 5 we study invariance under the Markov moves and prove Theorem 1.8

(Theorem 5.17).

In Section 6 we extend these results to y-ified Rouquier complexes and prove

Theorem 1.9 (Corollary 6.11).

Finally, in Section 7 we study various useful properties of complexes with Lef-

shetz endomorphisms and conclude the proof of Theorem 1.11 (Theorem 7.7).

The two appendices discuss “higher A1 coproducts” on A, and their relation

to group cohomology. We believe that the A-algebra structure we construct here is

a manifestation of the existence of tautological classes on character varieties con-

structed via transgression and group homology. Although there is a visible similar-
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ity between formulas in the appendices, the problem of finding a direct connection

remains open.

2. Homotopy theory

2.1. Basic definitions

When discussing modules and algebras endowed with several different gradings, there

will always be one special grading called the homological grading and that grading

will be responsible for the sign rules.2 The homological degree of a homogeneous

element x is denoted by jxj D degh x. In expressions involving degrees, we assume,

but do not always mention, that the respective elements are homogeneous. All dg

algebras are assumed to be unital. The differential has degree �1.

Let A be a dg algebra over C. We consider the category of dg modules over

A, which we simply call A-modules. Thus an A-module X is a sequence of vector

spaces .Xi /i2Z endowed with a differential d WXi !Xi�1 and an A-action A�X!

X satisfying jaxj D jaj C jxj and the property that for any a 2A the action on X of

the super-commutator Œd; a�D da� .�1/jajad coincides with the action of d.a/:

Œd; a�D d.a/ .a 2A/:

The homological shift is defined by .XŒk�/i D XkCi . For x 2 Xj we have xŒk� 2

.XŒk�/j�k , the differential and the action change signs:

d
�
xŒk�

�
D .�1/k.dx/Œk�; a

�
xŒk�

�
D .�1/kjaj.ax/Œk�:

The morphisms of A-modules form a complex

HomA

k .X;Y /D
®
f 2HomC.X;Y /

ˇ̌
degh f D k; Œa; f �D 0.a 2A/

¯
;

with the differential

d WHomA

k .X;Y /!HomA

k�1.X;Y /; d.f /D Œd; f �:

With our sign conventions we have

HomA

k .X;Y /DHomA

0

�
X;Y Œk�

�
:

Note that the elements of Hom0.X;Y / which lie in the kernel of d are precisely the

dg module homomorphisms, and two such homomorphisms are homotopic precisely

when their images in H0.Hom�.X;Y // coincide.

2Of course, only the parity of that grading matters for the sign rules.
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Let A �mod denote the homotopy category of dg modules over A. Its objects

are dg modules over A and morphisms are morphisms of dg modules viewed up to

homotopy, that is,

HomA�mod.X;Y /DH0
�
Hom�.X;Y /

�
D

HomA�modstr
.X;Y /

Œd;Hom1.X;Y /�
:

Actual morphisms of dg modules will be called strict morphisms. The corresponding

category is denoted A �modstr. Two objects X , Y are homotopy equivalent if they

are isomorphic in A � mod. Unwrapping this definition, a homotopy equivalence

is specified by two strict morphisms f W X ! Y , g W Y ! X and two homotopies

f ı gŠ IdY , g ı f Š IdX . A strict morphism f WX! Y is a homotopy equivalence

if there exists a morphism g and homotopies as above.

An object is contractible if it is homotopy equivalent to the 0 object, equivalently

if the identity map is homotopic to the zero map, equivalently if some invertible endo-

morphism is homotopic to the zero map. A very useful lemma is the following.

LEMMA 2.1

A strict morphism f W X ! Y is a homotopy equivalence if and only if the cone

ŒX! Y � is contractible.

Here and below we underline the term in homological degree 0. The category A�

modstr is pretriangulated (see [4]), which means that twisted complexes of A-modules

are again A-modules. Twisted complexes of A-modules are defined as follows. Given

a bounded below sequence of dg A-modules .Xi /i2Z and a collection of maps qi;j 2

Homi�1�j .Xi ;Xj / .i > j / satisfying

d.qi;j /C
X

k

qi;kqk;j D 0;

we form a new object X by setting

X D
�M

i2Z

Xi Œ�i �;ed
�
; ed D d C

X

j<i

qi;j : (3)

This makes sense because for each i the map qi;j vanishes for all but finitely many j .

When the maps are clear from the context, we visualize twisted complexes as follows:

Œ� � � !X1!X0!X�1! � � � �:

The following is standard.
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LEMMA 2.2

Suppose a twisted complex X D .
L
i2ZXi Œ�i �;

ed/ is bounded from below and each

Xi is contractible. Then X is contractible.

Remark 2.3

There is a dual definition where we require sequence .Xi /i2Z to be bounded above

and use the direct product instead of the direct sum in (3). The corresponding analogue

of Lemma 2.2 is also true. In the case where the sequence is bounded both above and

below, the two constructions coincide.

Remark 2.4

Sometimes we will need to work with curved dg modules over A introduced in [36].

A curved dg module X with curvature W has a differential satisfying d2 DW where

W is a closed central element of A. All other definitions are as above, and one can

check that for fixed W curved dg modules form a pretriangulated dg category.

2.2. Restriction/induction functors

A homomorphism of dg algebras ' W B ! A is a linear map which preserves the

grading and the unit, and commutes with the product and the differential. Given such

a homomorphism, any A-module N is naturally a B-module, which we denote by

'�N and call the restriction of N . Given a B-module M , the induction, respectively

coinduction, of M is defined by

'ŠM WDA˝B M; respecively, '�M WDHomB

� .A;M/:

Clearly, all three operations are functorial in the sense that for anyN ,N 0, respec-

tively M , M 0, we have morphisms of Hom-complexes

HomA

� .N;N
0/!HomB

� .'
�N;'�N 0/; HomB

� .M;M
0/!HomA

� .'ŠM;'ŠM
0/;

and similarly for the coinduction '�. Note that in the definitions of 'Š, '� we do not

take any resolutions, so the functors are not exact in any sense. Nevertheless, all three

functors commute with cones and induce functors on the corresponding homotopy

categories.

We have natural adjunction isomorphisms on the level of complexes

HomA

� .'ŠM;N/DHomB

� .M;'
�N/; HomA

� .N;'�M/DHomB

� .'
�N;M/:

Definition 2.5

Given a homomorphism of dg algebras ' WB!A, an A-moduleN is called induced

if it is isomorphic to a bounded below twisted complex of modules Xi , where each

Xi is of the form 'Š.Mi / for some B-module Mi .
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Remark 2.6

We can similarly define coinduced modules if we consider bounded above twisted

complexes, but then we need to use direct product instead of the direct sum in (3).

Remark 2.7

In the case when B D C, the notion of an induced module coincides with the more

familiar notion of a semifree module.

2.3. Localization

Definition 2.8

Given a homomorphism of dg algebras ' WB!A, a morphism of A-modules f W

M !M 0 is a weak equivalence and the modules M and M 0 are called weakly equiv-

alent relative to B if '�f is a homotopy equivalence of B-modules. If f itself is a

homotopy equivalence of A-modules, we say that f is a strong equivalence and the

modules are homotopy (or strongly) equivalent.

So we have four notions of equivalence related as follows:

isomorphism) strong equivalence)weak equivalence) quasi-isomorphism:

LEMMA 2.9

Given a homomorphism of dg algebras ' WB!A, A-modules M , N , N 0, and mor-

phisms f , g below, suppose that M is induced and g is a weak equivalence.

N 0

g

M

f 0

f

N

Then there exists a unique up to homotopy morphism f 0 making the diagram commu-

tative up to homotopy.

Proof

Composition with g induces a morphism of complexes

HomA

� .M;N
0/!HomA

� .M;N /:

It is enough to show that this morphism is a quasi-isomorphism. By Lemma 2.1 it is

sufficient to show that

�
HomA

� .M;N
0/!HomA

� .M;N /
�
DHomA

�

�
M; ŒN 0!N�

�
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is contractible. SinceM is a twisted complex of modules of the form 'Š.Mi / and Hom

commutes with the formation of twisted complexes,3 by Lemma 2.2 it is sufficient to

show that each HomA
� .'Š.Mi /; ŒN

0!N�/ is contractible. Using the adjunction, this

complex is equivalent to the complex

HomB

�

�
Mi ; Œ'

�N 0! '�N�
�
D
�
HomB

� .Mi ; '
�N 0/!HomB

� .Mi ; '
�N/

�
;

which is contractible since '�.g/ is a homotopy equivalence.

Definition 2.10

Given a homomorphism of dg algebras ' WB!A and an A-moduleM , a resolution

of M relative to B is an induced A-module fM together with a weak equivalence
fM !M called the counit.

Now Lemma 2.9 easily implies the following.

COROLLARY 2.11

For any A-module M , if a resolution exists it is unique up to a strong homotopy

equivalence.

Finally, we have the following.

LEMMA 2.12

Given a homomorphism of dg algebras ' WB!A, any A-module M has a resolu-

tion. Moreover, this resolution can be chosen functorially on M .

Proof

For any k � 1, let fMk DA
˝Bk ˝B M . These fMk form a twisted complex

fM WD Œ� � � !A˝B A˝B A˝B M !A˝B A˝B M !A˝B M�;

with the bar differential

db.a1˝ � � � ˝ ak ˝ x/D

kX

iD1

.�1/i�1a1˝ � � � ˝ aiaiC1˝ � � � ˝ ak ˝ x:

The higher differentials vanish. For instance, the first few maps are

db.a1˝ a2˝ x/D a1a2˝ x � a1˝ a2x;

db.a1˝ a2˝ a3˝ x/D a1a2˝ a3˝ x � a1˝ a2a3˝ xC a1˝ a2˝ a3x:

3The Hom complex is strictly functorial and sends direct sums to direct products.



2494 GORSKY, HOGANCAMP, and MELLIT

It is a standard fact that d2
b
D 0. Let " W fM !M be the counit map induced by the

product map

fM1 DA˝B M !M:

Let fM0 DM . The cone of the counit map is the complex

Œ� � � !A˝B A˝B M !A˝B M !M�:

Define a homotopy h WfMi !fMiC1 by

h.a1˝ � � � ˝ ai ˝ x/D 1˝ a1˝ � � � ˝ ai ˝ x:

This map is not A-linear, but it is B-linear; it commutes with the differential in each
fMi and satisfies hd C dhD Id. Thus the cone of the complex is contractible as an

object of B �mod and therefore the counit map is a homotopy equivalence in B �

mod by Lemma 2.1.

Thus fM together with the counit map " is a resolution of M . Its construction is

clearly functorial in M .

Definition 2.13

The category A=B �mod (abbreviated as A=B) is the localization of the homotopy

category A�mod with respect to weak equivalences relative to B. Note that A�mod

itself can be viewed as A=A.

Explicitly, this is the category whose objects are A-modules, and morphisms are

represented by zigzags

X X1!X2 X3! � � � ! Y; (4)

in which all the arrows pointing to the left are weak equivalences. Two morphisms are

considered equivalent if they can be related by a sequence of transformations where

we are allowed to replace any arrow by a homotopic arrow; the identity arrow can be

inserted or removed; two consecutive arrows pointing in one direction can be replaced

by their composition; and finally the composition of a weak equivalence and its formal

inverse is equivalent to the identity.

THEOREM 2.14

Given a homomorphism of dg algebras ' WB!A, the localization category A=B is

equivalent to the full subcategory of A�mod whose objects are induced from B.

Proof

Existence of resolutions implies that any object in A=B is isomorphic to an

object induced from B. Let M be such an object. By Lemma 2.9 the functor
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HomA�mod.M;�/ sees all weak equivalences as isomorphisms. Hence morphisms

from M to any object N in A � mod are in a natural bijection with morphisms in

A=B.

Remark 2.15

Explicitly, morphisms in A=B � mod from M to M 0 can be described as

HomA�mod.fM;M 0/, where fM is the resolution from Lemma 2.12. Suppose B DC.

Then, unwrapping the construction of fM leads to the fact that morphisms in A=C

are nothing else but A1 module homomorphisms up to homotopy. For the case when

B is an arbitrary dg algebra, we have not seen a relative version of the notion of

A1 module homomorphisms in the literature, but our definition looks like a natural

generalization.

Remark 2.16

We sketch how the construction of the resolution in Lemma 2.12 can be naturally

obtained from attempting to solve the localization problem directly. First, we note

that instead of localizing with respect to all weak equivalences, it is sufficient to

localize with respect to those weak equivalences f WM ! N for which '�f is a

retraction; that is, there exists g W '�N ! '�M such that '�f ıgD IdN . In this case

the homotopy h 2HomB
1 .M;M/ connecting g ı'�f and IdM can be chosen in such

a way that f ı h D 0. Now fix N and consider all possible such M , f , g, h. One

can produce elements of M by applying g to the elements of N and then acting by

h and by elements of A. Acting by f does not give anything new because f ı hD 0

and '�f ı g D IdN . So we can attempt to construct the universal such M by tak-

ing formal combinations of these operations. It turns out that we arrive precisely at

the construction of eN . The chain map from eN to M is given by the collection of

morphisms fk W eNk!M defined by

efk.a1˝ a2˝ � � � ˝ ak ˝ x/D .�1/sa1ha2h � � �hakg.x/;

where s D jak�1j C jak�3j C � � � .

2.4. Relationship to the Hochschild cohomology

PROPOSITION 2.17

Suppose that '.B/ is in the center of A and A is free over B. Then for any k and

any A-modules M , N we have

Hk
�
HomA

� .
fM;N/

�
D Ext�k

A˝BAop

�
A;HomB

� .M;N /
�
DHH�k

A

�
HomB

� .M;N /
�
;
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where HomB
� .M;N / is viewed as a bimodule over A in the obvious way,4 and HH

denotes the Hochschild cohomology. The forgetful functor corresponds to the natural

map HH�k
A
.HomB

� .M;N //! HomB

k
.M;N / induced by the homomorphism A˝B

A
op!A.

Proof

For any A˝B A
op-module Y we have

HomA

� .Y ˝A M;N/DHom
A˝BAop

�

�
Y;HomB

� .M;N /
�
:

Applying it to Yk DA
˝BkC1 (k � 1) we obtain

HomA

� .
fMkC1;N /DHom

A˝BAop

�

�
A

˝BkC1;HomB

� .M;N /
�
;

where fMkC1 DA
˝BkC1 ˝B M from Lemma 2.12. It remains to notice that in the

case when A is free over B, the modules Yk form an explicit free resolution of A

over A˝B A
op whose maps are compatible with the maps defining fM .

2.5. Relative induction/restriction

Suppose we have two dg algebras A, A
0 over B. A homomorphism of algebras over

B is a homomorphism  WA!A
0, making the following diagram commutative:

A

 

A
0

B

'

'0

Clearly, the restriction  � sends weak equivalences to weak equivalences, and there-

fore defines a functor A
0=B!A=B. In the case ADB we will call  � the forgetful

functor.

The induction functor  Š does not preserve weak equivalences.5 Denote by RA,

respectively RA0 , any functorial resolution on A�mod and A
0 �mod (e.g., the one

from Lemma 2.12). Then we have a functor  Š ıRA.

LEMMA 2.18

We have the adjunction

HomA0=B. ŠRAM;N/DHomA=B.M; 
�N/; (5)

where M (resp., N ) is an A (resp., A
0) module.

4Here we are using the assumption that '.B/ is in the center of A.
5Suppose B D C. Then weak equivalences are quasi-isomorphisms. If  Š preserved quasi-isomorphisms, it

would be an exact functor, but we know that it is in general not exact.
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Proof

Indeed, the module  ŠRAM is induced, and therefore we can replace the left-hand

side by

HomA0=B. ŠRAM;N/DHomA0. ŠRAM;N/:

On the right-hand side we can replaceM by its resolutionRAM , so the adjunction (5)

comes from the usual adjunction

HomA0. ŠRAM;N/DHomA.RAM; 
�N/DHomA=B.M; 

�N/:

The adjunction (5) implies existence of natural homomorphisms

M ! � ŠRAM;  ŠRA 
�N !N: (6)

We have the following.

LEMMA 2.19

Suppose  is a homotopy equivalence when viewed as a homomorphism of B-bi-

modules. Then the adjunction homomorphisms (6) are weak equivalences for any

A-moduleM and A
0-moduleN and therefore  �,  ŠRA are mutually inverse equiv-

alences of categories A=B and A
0=B.

Proof

The first homomorphism corresponds to the natural homomorphism of A-modules

RAM ! � ŠRAM:

The module RAM is induced, so it is a twisted complex whose components are mod-

ules of the form 'ŠK for B-modules K . By the usual argument (using Lemmas 2.1,

2.2, and the fact that  Š,  
� preserve direct sums) it is enough to show that the map

'ŠK! � Š'ŠK

is a homotopy equivalence for each term of the twisted complex, or in other words,

that for each B-module K the natural map

A˝B K!A
0˝B K (7)

is a weak equivalence. The operation ˝BK is a functor from B-bimodules to B-

modules, so it sends homotopy equivalences to homotopy equivalences. So the first

adjunction homomorphism is an equivalence.

The second homomorphism is the composition of homomorphisms

 ŠRA 
�N ! Š 

�N !N;
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where the first arrow is induced by the counit and the second arrow is the usual adjunc-

tion. The functors Š, 
� are strict and commute with direct sums and we may assume

that RA is a strict functor commuting with direct sums. So it is enough to prove the

claim for N D '0
ŠK DA

0˝B K . The maps become

A
0˝A RA.A

0˝B K/!A
0˝A A

0˝B K!A
0˝B K:

Since (7) is a weak equivalence and A˝B K is induced, the module A˝B K is a

resolution for A
0 ˝B K . So there exists a strong homotopy equivalence RA.A

0 ˝B

K/!A˝B K and the counit map factors through it. So it is sufficient to prove that

the composition

A
0˝A A˝B K!A

0˝A A
0˝B K!A

0˝B K

is a weak equivalence. Clearly, this map is an isomorphism.

Remark 2.20

If A, A
0 are super-commutative, then morphisms of B-bimodules are simply mor-

phisms of B-modules, and so the assumptions of the lemma are also necessary.

Definition 2.21

A homomorphism of algebras A!A
0 over B which is a weak equivalence of B-

bimodules (modules in the case when A, A
0 are super-commutative) is called a weak

equivalence of algebras.

The following lemma will be used to compare the results of pullbacks of modules

via different homomorphisms.

LEMMA 2.22

Suppose A, A
0 are dg algebras over a dg algebra B. Suppose  1; 2 W A! A

0

are homomorphisms of algebras over B. Suppose there exists a weak equivalence

� WA0!A
00 to a dg algebra A

00 such that � ı 1 D � ı 2. Then for any A
0-module

M the pullbacks  �
1M and  �

2M are canonically weakly equivalent.

Proof

We can replace M by ���ŠRA0M by Lemma 2.19. The modules  �
1 �

��ŠRA0M and

 �
2 �

��ŠRA0M are simply the same modules.

Example 2.23

The following is a simple example which illustrates the introduced notions. Consider

ADCŒx; � j dx D 0;d� D x�; A
0 DC
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where x is even, � is odd, and  WA!A
0 sends x, � to 0. The map  is a quasi-

isomorphism, so if we take B DC, then  is a weak equivalence, and  �,  ŠRA are

equivalences of categories.

On the other hand, if B D CŒx�, then  is not a weak equivalence, for instance,

because there is no nonzero map from A
0 to A over B.

For an interesting A-module, takeM DCŒ��; the variable x acts by 0. In the case

B DC this module is not induced. As a resolution we can take the complex

RAM D
�
CŒx; ��

x
�!CŒx; ��

�
:

Applying  Š produces C ˚ CŒ�1�. Pulling back, we obtain C ˚ CŒ�1�. So in the

category A=C the object M is isomorphic to its homology C˚CŒ�1�.

In the case B D CŒx� the picture is very different. First, the object M is already

induced. Applying  Š gives C. Clearly, M is not isomorphic to C since it is not even

quasi-isomorphic to C.

2.6. Resolutions and Koszul equivalences

In this section we compute HomA=B.M;N / in special cases and identify it with Hom

between certain deformations ofM ,N . Assume A is a super-polynomial algebra over

a super-commutative algebra B:

ADB
�
u1; : : : ; um

ˇ̌
dui D ci .u1; : : : ; um/

�
; jui j D ki :

The degrees ki can be odd or even. Assume that both A and B are generated in

nonnegative degrees. In particular, we have ki � 0. The coefficients of ci are in B.

Set

eADAŒ�1; : : : ;�m; �1; : : : ; �m j d�i D�i ; d�i D 0�; j�i j D ki ; j�i j D ki C 1:

The map " W eA! A defined by ".�i / D ".�i / D 0 is a homotopy equivalence of

A-modules. Since the algebra eA is free over �i , �i , and ui , we can define the corre-

sponding partial derivatives, which satisfy

h @
@�i

; d
i
D 0;

h @

@�i
; d
i
D

@

@�i
;

h @

@ui
; d
i
D
X

j

@cj

@ui

@

@uj
: (8)

LEMMA 2.24

We have

eADA˝B AŒ�1; : : : ; �m j d�i D�i �;

where �i D u
0
i � ui � � � � , where ui , u

0
i are the actions of ui coming from the two

different factors of A˝B A and � � � belongs to the ideal generated by �1; : : : ; �m.
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Proof

Set

hD

mX

iD1

�i
@

@ui
W eA! eA; D WD Œh; d �D hd C dh W eA! eA:

Note that h is homogeneous of degree 1. We have h2 D 1
2
Œh; h�D 0 because the oper-

ators of the form �i ,
@
@ui

pairwise super-commute.

Therefore D is a derivation of degree 0, it commutes with d and h, and satisfies

D.�i /DD.�i /D 0; D.ui /D�i C

mX

jD1

�j
@ci

@uj
:

Any infinite series in the variables �i which is homogeneous must terminate by degree

reasons. In particular,D is locally nilpotent; therefore, exp.D/D
P1
iD0

Di

iŠ
is a well-

defined dg algebra automorphism of eA. Let

u0
i D exp.D/.ui /:

Since D commutes with d , we have

du0
i D ci .u

0
1; : : : ; u

0
i�1/:

We have

u0
i D ui C�i C � � � ;

where � � � belongs to the ideal generated by �1; : : : ; �m. Since the degrees of �i are

strictly positive, the variables�j contained in � � � must satisfy kj < ki . Therefore the

change of coordinates from �i to u0
i is invertible, so we can use u0

i instead of �i to

freely generate eA.

Recall that ki � 0. Then for any A-module M the module

fM WD eA˝A M

DM
�
u0
1; : : : ; u

0
m; �1; : : : ; �m

ˇ̌
du0

i D ci .u
0
1; : : : ; u

0
i�1/; d�i D�i

�
(9)

on which A acts via u0
i is a bounded below twisted complex consisting of direct sums

of copies of A˝B M , and so is a resolution of M . Note that as a module over B it

also has a presentation

fM WD eA˝A M DMŒ�1; : : : ;�m; �1; : : : ; �m j d�i D 0;d�i D�i �: (10)
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Example 2.25

In the simplest case, ci are elements of B. In this case we have D.ui /D �i , u
0
i D

ui C�i and the resolution (10) looks like

fM DMŒu0
1; : : : ; u

0
m; �1; : : : ; �m j du

0
i D ci ; d�i D u

0
i � ui �;

where A acts via u0
i .

Example 2.26

Suppose more generally that ci depends linearly on the uj :

dui D ci DBi C
X

j

ujAij :

Here Bi are homogeneous of degree ki � 1 and Aij are homogeneous of degree ki �

kj � 1. Then we have D.ui /D�i C
P
j �jAij and

�i D d�i D u
0
i � ui �

X

j

�jAij : (11)

Also note that the equation d2 D 0 implies

d.Bi /C
X

j

BjAij D 0; .�1/k` d.Ai`/C
X

j

Aj`Aij D 0: (12)

Definition 2.27

We say A is linear over B if A is a super-polynomial algebra over B and for each

generator ui the differential dui depends at most linearly on the other generators, as

in Example 2.26 above.

Now let M and N be A-modules. Morphisms in the category A=B are obtained

from the complex HomA
� .
fM;N/. To obtain an explicit presentation of the category

we construct an explicit section HomA
� .
fM;N/!HomA

� .
fM; eN/:

fM
f

ef eN

"N

N

For any A-moduleM we endow fM with an action of B-linear operators @
@�i

and
@
@�i

using the presentation (10).
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Definition 2.28

For any A-modulesM , N a morphism f 2HomA
� .
fM; eN/ is flat if it commutes with

@
@�i

and @
@�i

(i D 1 : : : ;m).

LEMMA 2.29

Suppose that M and N are A-modules, and let f W fM ! N be any B-linear mor-

phism.

(a) There exists a unique flat B-linear morphism ef WfM ! eN whose composition

with the counit map satisfies "N ı ef D f .

(b) The lifting f ! ef commutes with the differential.

(c) If A is linear and f is an A-linear map, then the lift ef is also A-linear.

Proof

(a) Suppose such Qf is given. For any x 2fM the element ef .x/ is a polynomial in the

variables �i , �i with coefficients in N . The operation "N extracts the constant term

of a polynomial. The coefficients of ef .x/ can be extracted from the constant terms of

iterated partial derivatives by the Taylor formula. So Qf is unique. Explicitly, Qf can

be produced as follows:

Qf .x/D
X

i1;:::;im;
j1;:::;jm

�
i1
1 � � ��

im
m �

j1

1 � � ��
jm
m

i1Š � � � imŠj1Š � � �jmŠ
f
� @

@�m
� � �

@

@�1

@

@�m
� � �

@

@�1
x
�
:

(b) Let f WfM !N be a B-linear map. Using the super-Jacobi identity, commutation

relations (8), and the fact that ef commutes with @
@�i

, @
@�i

, we obtain

h @
@�i

; Œd; ef �
i
D
hh @
@�i

; d
i
; ef
i
D 0;

h @

@�i
; Œd; ef �

i
D
hh @

@�i
; d
i
; ef
i
D
h @
@�i

; ef
i
D 0:

Since "N ı Œd; ef �D Œd; f �, we obtain that Œ̃d; f �D Œd; ef � by the uniqueness.

(c) Assume A is linear. Then we have

h @
@�i

; u0
j

i
DAj i 2B;

h @

@�i
; u0
j

i
D ıij 2B:

This implies

h @
@�i

; Œu0
j ;
ef �
i
D
hh @
@�i

; u0
j

i
; ef
i
D 0;

and similarly for @
@�i

. If f is A-linear, then
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"N ı Œu
0
j ;
ef �D ujf � .�1/juj jjf jf u0

j D 0;

so Œu0
j ;
ef � is the lift of the zero map, and by the uniqueness must vanish.

From now on we assume that A is linear. Set

b�i D�
@

@�i
C
X

j

Aj i
@

@�j
: (13)

We remind the reader that the operators @
@�i

, @
@�j

correspond to the presentation of A

as generated by �i , �j .

LEMMA 2.30

The operators b�i satisfy

b�i .u0
j /D 0; Œd;

b�i �D
X

j

.�1/kj C1Aj i b�j :

Proof

For the first equation, recall that by Example 2.26 we have

u0
i D ui C�i C

X

j

�jAij I

hence

b�i .u0
j /D�Aj i CAj i D 0:

For the second equation, we note that both sides are derivations, so it is sufficient to

verify it on generators u0
`
, �`. Both sides clearly vanish on u0

`
by the first equation.

We have

Œd;b�i �.�`/D db�i .�`/� .�1/ki C1b�i d.�`/D .�1/kib�i�` D .�1/kiA`i :

This clearly matches the right-hand side applied to �`.

For a multi-index I D .i1; : : : ; im/ denote

b�I Db� i11 � � �b� imm :

LEMMA 2.31

Let M and N be modules over a linear algebra A. Then flat morphisms in

HomA
� .
fM; eN/ are precisely morphisms which can be written as series
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X

I

fIb�I
�
fI 2HomB

� .M;N /
�
: (14)

Here each morphism fI 2 HomB
� .M;N / is naturally extended to a morphism in

HomA
� .
fM; eN/ using presentation (9). Moreover, the presentation (14) is unique.

Proof

In the case of a linear algebra A we can replace @
@�i

by b�i in Definition 2.28.

Morphisms fI and b�i are flat. So maps of the form (14) are flat. Conversely,

suppose we have a flat map f . By subtracting maps of the form (14) we obtain a

flat map f 0 such that " ı f 0 vanishes on MŒ�1; : : : ; �m�. By u0
i -linearity, " ı f 0 must

vanish identically. By Lemma 2.29 we have f 0 D 0.

Uniqueness follows by applying the map to elements of MŒ�1; : : : ; �m�.

Now we are ready to prove the following.

THEOREM 2.32

Suppose B is generated in nonnegative degrees and ADBŒu1; : : : ; um� with jui j D

ki � 0 is linear, that is, dui DBiC
P
j ujAij , where Bi ;Aij 2B. Then the category

A=B is equivalent to a full subcategory of the category of curved dg modules over

bADB

hh
b�1; : : : ;b�m

ˇ̌
ˇ db�i D .�1/ki C1

X

j

Aj ib�j
ii
; jb�i j D �1� ki

with curvature
Pm
iD1Bi

b�i . An A-module M corresponds to a curved bA-module
cM DMŒŒb�1; : : : ;b�m�� with the differential deformed according to the following rule:

dcM D dM˝B
bAC

X

i

uib�i :

Proof

Morphisms from M to N in the category A=B are the homology groups of the

complex HomA
� .
fM;N/, where fM is the resolution given in (9). Elements of this

complex are in bijection with flat morphisms in HomA
� .
fM; eN/ by Lemma 2.29. By

Lemma 2.31 they precisely correspond to series of the form (14). Elements of the

complex Hom
bA
� .
cM; bN/ also correspond to such series. So it remains to compare the

differentials. We claim that the differentials agree; that is, for any f of the form (14)

we have

deNf � .�1/
jf jfdfM D dbNf � .�1/

jf jfdcM : (15)

The differential on fM is given in terms of the differential on M as follows (we

use presentation (9)):
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dfM D dM �
X

i

�
u0
i � ui �

X

j

�jAij

�
b�i C

X

i

�
Bi C

X

j

u0
jAij

� @

@u0
i

;

and similarly for deN . Flat maps commute with u0
i ,
b�i and @

@u0
i

(the latter operator coin-

cides with the operator @
@�i

when using the presentation (10).) Thus, when computing

the left-hand side of (15) we can replace dfM , respectively deN , with

.dM resp. dN /C
X

i;j

�jAijb�i C
X

i

uib�i :

Note that jAij j D ki � kj � 1, in particular Ai i D 0 for degree reasons. This implies

�jAijb�i DAijb�i�j . We have

Œ�j ;b�`�D .�1/kj C1ı j̀ ;

and each fI in the expansion (14) commutes with �j , so we can replace �j by the

operator .�1/kj C1 @

@b�j

. We arrive at the following expression for the differential:

.dM resp. dN /C
X

i;j

.�1/kj C1Aijb�i
@

@b�j
C
X

i

uib�i :

This is precisely the differential dcM , respectively dbN , so we have shown (15).

Notice that d2 D 0 on bA follows from (12). For the deformed differential on cM
we have the curvature

d2cM D
h
d
M˝B

bA;
mX

iD1

uib�i
i
D

mX

iD1

�
Bi C

X

j

ujAij

�
b�i �

mX

iD1

uiAj ib�j D
mX

iD1

Bib�i :

By construction the ring bA is super-commutative, so the curvature is central.

Remark 2.33

In our main application for the ring CAc;1 below, the curvature will vanish, so we

will obtain honest dg modules.

3. The dg algebra A

3.1. Algebras

Let R D CŒx1; : : : ; xn� and Re D CŒx1; : : : ; xn; x
0
1; : : : ; x

0
n�. We identify Re with

R˝C R by sending xi 7! xi ˝ 1 and x0
i 7! 1˝ xi . Note that Re-mod and .R;R/-

bimod are equivalent as categories, but not as monoidal categories (the monoidal

structures are given by ˝Re and ˝R, resp.).
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Below we will consider various objects which are simultaneously algebra objects

in Re-mod and coalgebra objects in .R;R/-bimod.

First, let Sn act on R by permuting variables, and define B WDR˝RSn R, where

RSn is the algebra of symmetric polynomials. We can and will regard B as the fol-

lowing quotient of Re :

B D
CŒx1; : : : ; xn; x

0
1; : : : ; x

0
n�

.
Pn
iD1 x

k
i D

Pn
iD1 x

0k
i .k D 1; : : : ; n//

:

In this presentation, the power sum functions can be replaced by any other set of

generators of RSn .

This quotient makes it obvious that B is an Re-algebra. In addition to this struc-

ture, B is a coalgebra object in the category of .R;R/-bimodules. The counit is

defined by

B!R; xi 7! xi ; x0
i 7! xi ;

and the comultiplication is defined by

B!B ˝R B; xi 7! xi ˝ 1; x0
i 7! 1˝ x0

i :

Note that B and B ˝R B are Re algebras, and the counit and comultiplication are

algebras maps.

Remark 3.1

If M is a B-module, then we may regard M as an Re-module (equivalently, an

.R;R/-bimodule) by restriction. Thus if M , N are B-modules, then M ˝R N is

defined. This tensor product inherits the structure of a B-module via the coproduct

B!B ˝R B .

Indeed, the category of B-modules coincides with the full subcategory of .R;R/-

bimodules for which the left and right actions of symmetric polynomials coincide; this

full subcategory is obviously closed under ˝R.

Remark 3.2

If M , N are B-modules, we will often writeM ˝RN simply as MN , for simplicity.

Remark 3.3

The algebras B , R are graded by placing the generators xi , x
0
i in degree 2. This

grading is called the q-grading. By placing B or R in homological degree 0 they are

viewed as differential graded algebras with zero differential.

Next we will define an Re-algebra A which is also a coalgebra object in the

category of .R;R/-bimodules, similarly to B (with the exception that coassociativity
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for A holds only up to homotopy). Consequently the category of A-modules up to

weak equivalence inherits the structure of a monoidal category.

Definition 3.4

Let A be the free differential graded commutative algebra over B with generators �i

(i D 1; : : : ; n), uk (k D 1; : : : ; n) of degrees degh �i D 1, degh uk D 2. The differential

(of degree �1) is given by

d�i D xi � x
0
i ; duk D

nX

iD1

xki � x
0k
i

xi � x
0
i

�i D

nX

iD1

hk�1.xi ; x
0
i /�i ;

where hk is the complete homogeneous symmetric polynomial of degree k. The q-

grading extends to A by degq �i D 2 and degq uk D 2k. Clearly, the differential pre-

serves the q-grading and the condition d2 D 0 is satisfied.

Note that B is a dg subalgebra of A, by construction. Moreover, A is free as a

B-module and supported in nonnegative homological degrees.

3.2. Counit

The commutative dg algebra A is a resolution of R over B because of the following.

PROPOSITION 3.5

Let " W A! R be the algebra map sending xi ; x
0
i 7! xi and �i ; ui 7! 0. Then " is a

quasi-isomorphism of B-modules.

Proof

The idea is to compare A to the Koszul resolution of R over the algebra R˝ R D

CŒx1; : : : ; xn; x
0
1; : : : ; x

0
n�. This resolution is described by

A1 WDC
�
.xi /; .x

0
i /; .�i /

ˇ̌
d�i D xi � x

0
i ; dxi D dx

0
i D 0

�
:

We are going to construct a commutative diagram of algebra homomorphisms, three

of which are quasi-isomorphisms. Therefore, the remaining one will be a quasi-

isomorphism:

A2 DCŒ.xi /; .x
0
i /; .�i /; .uk/; .vk/�

vk!0

v0
k

!0;uk!0

ADBŒ.�i /; .uk/�

�i !0;uk!0;x0
i
!xi

A1 DCŒ.xi /; .x
0
i /; .�i /�

�i !0;x0
i
!xi

RDCŒ.xi /�
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The algebra A is not free over Re ; it is only free over B . The free resolution of B

over Re has the form

C
h
.xi /; .x

0
i /; .vk/

ˇ̌
ˇ dvk D

X

i

xki �
X

i

x0k
i ; dxk D dx

0
k D 0

i
Šq.is. B: (16)

We replace each copy of B in A by this resolution and notice that the differential can

be extended, keeping the property d2 D 0 as follows:

A2 WDC
h
.xi /; .x

0
i /; .�i /; .uk/; .vk/

ˇ̌
ˇ dxi D dx0

i D 0;d�i D xi � x
0
i ;

dvk D
X

i

xki �
X

i

x0k
i ; duk D�vk C

nX

iD1

xki � x
0k
i

xi � x
0
i

�i

i
:

The counit homomorphism A2 ! A is given by sending vk to 0 and is a quasi-

isomorphism by Lemmas 2.1 and 2.2: the complexes A2 and A are filtered by degree

in uk first, and then by degree in �i , and the graded pieces for this filtration are copies

of (16). We perform the following change of variables in A2:

v0
k D�vk C

nX

iD1

xki � x
0k
i

xi � x
0
i

�i :

So A2 is isomorphic to the following algebra:

A2 ŠC
�
.xi /; .x

0
i /; .�i /; .uk/; .v

0
k/
ˇ̌
dxi D dx

0
i D 0;

d�i D xi � x
0
i ; dv

0
k D 0;duk D v

0
k

�

DA1˝C
�
.uk/; .v

0
k/
ˇ̌
dv0
k D 0;duk D v

0
k

�
;

which is quasi-isomorphic to A1 because the algebra CŒ.uk/; .v
0
k
/ j dv0

k
D 0;duk D

v0
k
� is quasi-isomorphic to C.

PROPOSITION 3.6

The morphism "˝ IdA � IdA˝ " W A˝R A!A is null-homotopic.

Proof

The tensor product A˝RA is a complex (bounded below) of projectiveB modules of

the formR˝RSn R˝RSn R. Therefore, the functor HomB
� .A˝RA;�/ sends acyclic

complexes to contractible complexes, and sends quasi-isomorphisms to homotopy

equivalences. In particular, post-composing with the quasi-isomorphism " defines a

homotopy equivalence

HomB
� .A˝R A;A/

'
!HomB

� .A˝R A;R/:



TAUTOLOGICAL CLASSES AND SYMMETRY 2509

On the other hand, post-composing with " annihilates "˝ IdA � IdA˝ "; hence, this

morphism must be null-homotopic.

3.3. Coproduct

We wish to define the coproduct on A as an algebra map A!A˝R A. To compact-

ify some of the formulas, we will regard B ˝R B as the quotient

CŒx; x0; x00��B ˝R B; xi 7! xi ˝ 1; x0
i 7! x0

i ˝ 1D 1˝ xi ; x00
i 7! 1˝ x0

i :

Note that A˝R A is naturally a B ˝R B algebra, and can be viewed as a B-algebra

via the coproduct B!B ˝R B .

Definition 3.7

Let � W A!A˝R A be the B-algebra map defined by

�.xi /D xi ˝ 1; �.x0
i /D 1˝ x

0
i ; �.�i /D �i ˝ 1C 1˝ �i ;

�.u1/D 1˝ u1C u1˝ 1

�.uk/D uk ˝ 1C 1˝ uk C

nX

iD1

hk�2.xi ; x
0
i ; x

00
i /�i ˝ �i .k � 2/:

We call the map � the coproduct on A (over R). As we will see below, it is

a chain map which is coassociative up to homotopy. It is easy to see that the map

" WA!R is a counit for this coproduct.

LEMMA 3.8

The coproduct � is a chain map.

Proof

Let us check that � commutes with the differential. Indeed,

d
�
�.�i /

�
D d.�i ˝ 1C 1˝ �i /D .xi � x

0
i /C .x

0
i � x

00
i /D xi � x

00
i D�

�
d.�i /

�
;

while

d
�
�.uk/

�
D d

�
uk ˝ 1C 1˝ uk C

X

i

hk�2.xi ; x
0
i ; x

00
i /�i ˝ �i

�

D
X

i

�
hk�1.xi ; x

0
i /�i ˝ 1C hk�1.x

0
i ; x

00
i /1˝ �i

C hk�2.xi ; x
0
i ; x

00
i /
�
.xi � x

0
i /1˝ �i C .x

00
i � x

0
i /�i ˝ 1

��
: (17)



2510 GORSKY, HOGANCAMP, and MELLIT

Note that

hk�1.xi ; x
00
i /D hk�1.xi ; x

0
i /C hk�2.xi ; x

0
i ; x

00
i /.x

00
i � x

0
i /

D hk�1.x
0
i ; x

00
i /C hk�2.xi ; x

0
i ; x

00
i /.xi � x

0
i /;

so (17) equals
P
i hk�1.xi ; x

00
i /.�i ˝ 1C 1˝ �i /D�.d.uk//.

Example 3.9

We have �.u2/D u2˝ 1C 1˝ u2C
Pn
iD1 �i ˝ �i .

Recall Proposition 3.6, which states that " ˝ Id and Id ˝ " are homotopic as

morphisms A˝A!A.

COROLLARY 3.10

The maps Id ˝ " ' " ˝ Id and � are inverse homotopy equivalences of .R;R/-

bimodules A'A˝R A.

Proof

It is easy to verify the identity

.Id˝ "/ ı�D ."˝ Id/ ı�D Id: (18)

In the other direction, we compute

� ı .Id˝ "/D .Id˝ Id˝ "/ ı .�˝ Id/' .Id˝ "˝ Id/ ı .�˝ Id/

D Id˝ Id:

PROPOSITION 3.11

The comultiplication on A is coassociative up to homotopy.

Proof

The complex A is a bounded below complex of free B-modules, and B is free as

a right R-module so if � WM ! N is a quasi-isomorphism of left R-modules, then

IdA ˝ � W A˝R M ! A˝R N is a quasi-isomorphism. From this it follows that

"˝ � � � ˝ " defines a quasi-isomorphism A˝R � � � ˝R A!R.

Also since A is free over B and bounded above, the functor HomB
� .A;�/ sends

the quasi-isomorphism "˝ � � � ˝ " to a homotopy equivalence

HomB
� .A;A˝R � � � ˝R A/

'
!HomRe

� .A;R/:

Finally, .�˝ Id/ ı�� .Id˝�/ ı� is annihilated by "˝ "˝ ", and hence is null-

homotopic.
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Remark 3.12

In Appendix A, we explicitly write the homotopy which realizes the coassociativity

of �, and its higher analogues.

3.4. Twists of A

Definition 3.13

Each permutation w 2 Sn determines a standard bimodule Rw , which is defined to

be the quotient of Re by the ideal generated by elements xw.i/ � x
0
i for all i .

Note that Rw is the quotient of Re by a two-sided ideal, and hence is an algebra

object in Re-mod. Thus Rw ˝R A˝R Rv is an algebra object in Re-mod whenever

A is. Such algebras are called twists of A. The following says that all twists of B are

isomorphic.

LEMMA 3.14

We have Rw ˝R B ŠB ŠB ˝R Rw for all w 2 Sn.

Proof

We may identify Rw ˝R B with the quotient of CŒx; x0; x00� by the ideal generated by

xw.i/ � x
0
i and f .x0/ � f .x00/ for all symmetric polynomials f . It is easy to check

that the mapping

f .x;x0; x00/! f
�
x;w�1.x0/; x00

�

defines an isomorphism of bimodules Rw ˝R B!R˝R B ŠB .

Next we consider twists of A. Twisting preserves the subalgebra B �A by the

above lemma, but acts nontrivially on the differentials of �i and uk .

Definition 3.15 (Twists of A)

Let RwARv ŠRw ˝R A˝RRv be the free differential graded commutative algebra

over B with generators �i (i D 1; : : : ; n), uk (k D 1; : : : ; n) of degrees degh �i D 1,

degh uk D 2, with differential (of degree �1) given by

d�i D xw.i/ � x
0
v�1.i/

; duk D

nX

iD1

hk�1.xw.i/; x
0
v�1.i/

/�i ;

where hk is the complete homogeneous symmetric polynomial of degree k.



2512 GORSKY, HOGANCAMP, and MELLIT

LEMMA 3.16

We have RwAŠARw as B-algebras, via the map sending �i 7! �w.i/ and uk 7! uk
for all k.

Proof

We need only verify that the B-algebra map RwA!ARw sending �i 7! �w.i/ and

uk 7! uk is a chain map. This follows from the fact that inside RwA we have

d�i D xw.i/ � x
0
i ; duk D

X

i

hk�1.xw.i/; x
0
i /�i ;

while inside ARw we have

d�w.i/ D xw.i/ � x
0
i ;

duk D
X

i

hk�1.xi ; x
0
w�1.i/

/�i D
X

i

hk�1.xw.i/; x
0
i /�w.i/:

Definition 3.17

Henceforth, we will denote Aw WDARw . An Aw -module will also be referred to as

a w-twisted A-module.

For each pair of permutations w, v, the coproduct of A induces a B-algebra map

Avw!Av ˝R Aw of the form

�v;w WARvw!AARvRw ŠARvARw ;

which we refer to as the twisted coproduct. These maps satisfy the appropriate notion

of coassociativity up to homotopy. Explicitly, the twisted coproduct �v;w satisfies

�v;w W

8
ˆ̂<
ˆ̂:

�i 7! �i ˝ 1C 1˝ �v�1.i/

uk 7! uk ˝ 1C 1˝ uk

C
P
i hk�2.xi ; x

0
v�1.i/

; x00
w�1v�1.i/

/�i ˝ �v�1.i/:

(19)

In addition to the twisted coproduct there is also the twisted counit "v WAv ŠA˝R

Rv!Rv , which satisfies

"v.xi /D xi ; "v.x
0
i /D xv.i/; "v.�i /D 0; "v.uk/D 0 (20)

for all 1� i , k � n.

3.5. The category of modules

We will apply the constructions of Section 2 to the case B DB �Aw . Thus we have

a category of dg modules over Aw where the morphisms are viewed up to homotopy,
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and we localize by the class of morphisms which become homotopy equivalences

when viewed as morphisms of complexes of B-modules. The resulting category is

denoted Aw=B � mod or simply Aw=B and there is a forgetful functor from this

category to the homotopy category of complexes of B-modules. Objects isomorphic

in this category are called weakly equivalent (relative to B).

Given an Aw -module M and an Av-module N , the tensor product M ˝R N

is naturally an Aw ˝R Av-module; pulling back along the B-algebra map Awv !

Aw ˝R Av allows us to regard M ˝R N as an Awv-module.

Consider three A-modulesM ,N ,K . Applying Lemma 2.22 for  1 D .�˝ Id/ı

�,  2 D .Id˝�/ ı� and � D ."˝ "˝ 1/, we obtain the following.

PROPOSITION 3.18

The isomorphism of B-modules

.M ˝R N/˝R K ŠM ˝R .N ˝R K/

induces a weak equivalence of A-modules, that is, an isomorphism in A=B . Similar

remarks apply if, instead, M , N , K are modules over twisted algebras Au, Av , Aw .

4. Modules over A

4.1. Soergel bimodules

Define the R-R bimodules

Bi DR˝Rsi R

D
CŒx1; : : : ; xn; x

0
1; : : : ; x

0
n�

xi C xiC1 D x
0
i C x

0
iC1; xixiC1 D x

0
ix

0
iC1; xj D x

0
j .j ¤ i; i C 1/

;

where si D .i; i C 1/ is the simple reflection. The category of Soergel bimodules

SBimn is defined as a smallest full subcategory of the category of R-R bimodules

containing R and Bi and closed under tensor products, direct sums, and direct sum-

mands. This is an additive tensor category, although it is not abelian. We denote by

K.SBimn/ the homotopy category of bounded above complexes in SBimn.

An important result of Soergel [41] states that the indecomposable objects Bw

in SBimn are in bijection with the permutations w 2 Sn. The bimodule B from the

previous section in fact coincides with Bw0
corresponding to the longest element w0

in Sn. We note that the action of R˝R on any Soergel bimodule factors through B

under the natural projection R˝R!B .
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4.2. Rouquier complexes and Khovanov–Rozansky homology

Let bi W Bi !R be the Re-linear map sending 1 7! 1, and let b�
i WR! Bi .2/ be the

bimodule map sending 1 7! xi � x
0
iC1.

In [38] Rouquier defined the following two-term complexes of Soergel bimod-

ules:

Ti D
�
Bi .1/

bi
�!R.1/

�
; T �1

i D
�
R.�1/

b�
i
�!Bi .1/

�

and proved that Ti , T
�1
i satisfy braid relations up to homotopy:

Ti ˝R T
�1
i ' T

�1
i ˝R Ti 'R;

Ti ˝R TiC1˝R Ti ' TiC1˝R Ti ˝R TiC1;

Ti ˝R Tj ' Tj ˝R Ti
�
ji � j j> 1

�
:

To a braid ˇ one can associate a complex of Soergel bimodules Tˇ (the product of

Ti and T �1
i corresponding to crossings in ˇ) which is well defined up to homotopy

equivalence.

Given a Soergel bimodule M , one can define its Hochschild cohomology

HHi .M/D ExtiR˝R.R;M/. Given a complex of Soergel bimodules

� � � !Mk!Mk�1!Mk�2! � � � ;

one can associate the complex of Hochschild cohomologies

� � � !HHi .Mk/!HHi .Mk�1/!HHi .Mk�2/! � � � I

its homology is denoted by HHH.M/. The Khovanov–Rozansky homology (see [23],

[24]) of the braid ˇ is defined as HHH.Tˇ /; it is a topological invariant of the closure

of ˇ. Khovanov–Rozansky homology is triply graded: in addition to homological

grading k and Hochschild grading i , there is a quantum grading j induced by grading

on Soergel bimodules Bi . We assume that all variables xi have quantum grading 2.

There is also an overall grading shift (see Theorem 5.17).

For higher Hochschild degrees, we normalize the quantum grading such that the

minimal quantum grading in HHi .R/ is 0 for all i (see also Proposition 5.10). With

this normalization, the homology of the n-component unlink is given by

HHH.R/DCŒx1; : : : ; xn; �1; : : : ; �n�: (21)

Here xi are even variables of quantum grading 2, and Hochschild grading 0, and �i

are odd variables of quantum grading 0 and Hochschild grading 1.
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4.3. Action of A

We will construct an action of the dg algebra A and its twists on various complexes.

LEMMA 4.1

The B-module structure on the Rouquier complexes Ti , T
�1
i lifts to an action of As ,

where s D .i; i C 1/, and uk acts by 0 for all k.

Proof

We define the action of �i by “dot-sliding homotopies” as in [13]. Recall that Ti D

ŒBi
bi
�! R� and �i acts as b�

i W R! Bi while �iC1 acts by �b�
i and �j acts by 0 for

j ¤ i; i C 1. Indeed,

bib
�
i D b

�
i bi D xi � x

0
iC1 D�.xiC1 � x

0
i /:

It is clear that the actions of all generators commute. Now

nX

jD1

hk�1.xj ; x
0
w�1.j /

/�j D
�
hk�1.xi ; x

0
iC1/� hk�1.xiC1; x

0
i /
�
bi :

On R we have xi D x
0
i and xiC1 D x

0
iC1, so

hk�1.xi ; x
0
iC1/� hk�1.xiC1; x

0
i /D hk�1.xi ; xiC1/� hk�1.xiC1; xi /D 0:

The proof for T �1
i is similar: �i acts as bi W Bi !R while �iC1 acts by �bi and

�j acts by 0 for j ¤ i; i C 1. Therefore we obtain an action of As .

LEMMA 4.2

Suppose that X and Y are invertible complexes of Soergel bimodules admitting an

action of Aw . Any homotopy equivalence X ! Y of B-modules lifts to a unique

isomorphism in Aw=B .

Proof

The statement is analogous to [13, Proposition 2.20]. Let � WX ! Y be a homotopy

equivalence. Since X and Y are homotopy equivalent and invertible, we have quasi-

isomorphisms HomB
� .X;Y / Š HomB

� .X;X/Š R, so HH0
Aw
.HomB.X;Y //, which

classifies morphisms from eX to Y by Proposition 2.17, equals

HH0
Aw
.R/DHomAw˝B Aw

.Aw ;R/DR;

since A is concentrated in nonnegative degrees. Thus the map

HomAw=B.X;Y /!HomB�mod.X;Y /

is an isomorphism.
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THEOREM 4.3

The B-module structure on any Rouquier complex Tˇ lifts to an action of Aw , where

w is the permutation represented by ˇ. This action is invariant under braid relations

(up to a weak equivalence).

Proof

Suppose we are given a braid ˇD �
"1

i1
� � ��

"r

ir
, presented as a product of Artin genera-

tors, where 1� ij � n� 1 and "j 2 ¹�1; 1º, and let Tˇ D T
"1

i1
˝R � � � ˝R T

"r

ir
be the

associated Rouquier complex. Lemma 4.1 constructs an action of Awj
on each Tij ,

where wj D .ij ij C 1/. The coproduct gives an algebra map

Aw!Aw1
˝R � � � ˝R Awr

;

canonical up to homotopy. Pulling back along this algebra map gives an action of

Aw on Tˇ , where w D w1 � � �wr . The complex Tˇ is invertible, so by Lemma 4.2

the action of Aw is unique up to a weak equivalence and invariant under homotopy

equivalences (in particular, braid relations).

Remark 4.4

The action of u1 vanishes on any Rouquier complex. Indeed, it vanishes on T˙
i , and

�.u1/D u1˝ 1C 1˝ u1.

Example 4.5

Consider the full twist on two strands FT2 D T
2
1 . We have

�.u2/D u2˝ 1C 1˝ u2C
X

i

�i ˝ �i ;

and the actions of u2˝ 1 and 1˝ u2 vanish, so u2 acts on the complex FT2 by

u2 D �1˝ �2C �2˝ �1:

If we write FT2 D ŒB! B ! R�, one can check that �1 ˝ �2 D �2 ˝ �1 acts as the

map b� from R to the leftmost B , and u2 acts by 2b� (see (1)). Note that u1 acts by

0 by Remark 4.4.

Definition 4.6

An Aw -module will be called elementary if uk acts by 0 for all k D 1; : : : ; n.

For example, T˙
i are elementary. The tensor product of elementary modules is

no longer elementary; for instance, we have the following.
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LEMMA 4.7

Let w1; : : : ;wr be permutations and suppose thatX1; : : : ;Xr are elementary modules

over Aw1
; : : : ;Awr

. The action of u2 on X1˝R X2 � � � ˝R Xr is given by

u2 D
X

1�j�n

X

k<l

�
.k/
j ı �

.l/

.wk ���wl�1/
�1.j /

; (22)

where �
.k/
i denotes the action of �i on the kth tensor factor of X1˝R � � � ˝R Xr .

Proof

It is easy to see that the r th iterated coproduct6 on A satisfies

�.r/.u2/D
X

1�k�r

1˝k�1˝ u2˝ 1
˝r�k

C
X

1�i�n

X

1�k<l�r

1˝k�1˝ �i ˝ 1
˝l�k�1˝ �i ˝ 1

˝r�l :

For any permutationw, the isomorphism ARw
Š
!RwA sends �i 7! �w�1.i/. The

composition

ARw1���wr

�.r/

�!A˝R � � � ˝R ARw1���wr
ŠARw1

˝R � � � ˝R ARwr

sends

u2 7!
X

1�k�r

1˝k�1˝ u2˝ 1
˝r�k

C
X

1�i�n

X

1�k<l�r

1˝k�1˝ �.w1���wk�1/
�1.i/˝ 1

˝l�k�1

˝ �.w1���wl�1/
�1.i/˝ 1

˝r�l ;

since the standard bimodule Rw1���wk�1
must migrate past the kth tensor factor.

Now, when acting on the tensor product of elementary modules as in the

statement, the only surviving summands are those of the form �
.k/

.w1���wk�1/
�1.i/

ı

�
.l/

.w1���wl�1/
�1.i/

with 1 � i � n and 1 � k < l � r . Letting j D .w1 � � �wk�1/
�1.i/

proves the formula in the statement.

6This iterated coproduct is not well defined since coassociativity holds only up to homotopy. Nonetheless, any

two choices for the r th iterated coproduct act in the same way on u2 .
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4.4. Koszul complexes

Recall that inside Sn we have the simple reflections (or simple transpositions) si WD

.i; i C 1/ which swap indices i and i C 1. Any permutation which is conjugate to a

simple reflection is called a reflection. The reflections in Sn are just the permutations

of the form .i; j / which swap indices i and j , leaving all other indices fixed.

Definition 4.8

For each reflection r D .i; j / we let Kr (also denoted Kij or Ki;j ) denote the Koszul

complex

Kij D
�
R.�1/

xi �xj

����!R.1/
�
:

This can be conveniently described as a dg algebra by

Kij DRŒ	 j d	D xi � xj �.1/; (23)

where degh 	D 1.

It is clear that Kij ŠKj i , so the definition of Kr doesn’t depend on the ordering

of indices in the expression r D .i; j /.

PROPOSITION 4.9

The Koszul complex Kr admits a structure of an r -twisted A-module.

Proof

We let r D .i; j /. Observe that xk � x
0
r.k/

is 0 unless k 2 ¹i; j º. Thus, we may take

�k D 0 for k … ¹i; j º. We let �i act by the multiplication by 	 in the expression (23),

or diagrammatically as the morphism

Kr D
�
R.�1/ R.1/

�

Kr D
�
R.�1/ R.1/

�

xi � xj

xi � xj

1
�i

and we let �j act by ��i . The action of u1; : : : ; un must be 0 for degree reasons. In

order for this to define a valid action of Ar , we must verify that following elements

act by 0 on Kr :

d.ul/D
X

k

hl�1.xk ; x
0
r.k//�k :
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Indeed, xk � x
0
k

acts by 0 on Kr for all k, and �k acts by 0 unless k D i; j and so the

above becomes .hl�1.xi ; xj /� hl�1.xj ; xi //�i which indeed is 0.

We expect the following to be true, but do not need it or prove it here.

CONJECTURE 4.10

Let X be an Aw module for w 2 Sn. Then for any reflection r we have a weak equiv-

alence of Awr -modules

X ˝R Kr ŠKwrw�1 ˝R X: (24)

We will prove this in the special case when X is T˙
i or Kv , below.

PROPOSITION 4.11

We have weak equivalences of twisted A-modules:

(1) Ti ˝R Kr 'Ksrs ˝R Ti ,

(2) T �1
i ˝R Kr 'Ksrs ˝R T

�1
i ,

(3) Kv ˝R Kr 'Kvrv ˝R Kv ,

where s D .i; i C 1/ and v; r 2 Sn are reflections.

In fact, the proof will show that (2) and (3) are honest isomorphisms.

Proof

The proofs (2) and (3) amount to the following case-by-case analysis:

(a) T �1
i Kjk DKjkT

�1
i j; k … ¹i; i C 1º,

(b) T �1
i Kik DKiC1kT

�1
i k … ¹i; i C 1º,

(c) T �1
i KiC1k DKikT

�1
i k … ¹i; i C 1º,

(d) T �1
i Ki iC1 DKi iC1T

�1
i ,

(e) KijKkl DKklKij i; j; k; l distinct,

(f) KijKjk DKikKij DKjkKik i; j; k distinct.

We will use equation (19) for the twisted coproduct. The case (a) is straightforward.

We continue to the case (b). It is convenient to view T �1
i , Kij as dg algebras. So T �1

i

is presented by

Ti DBi Œ�i j d�i D xi � x
0
iC1�=

�
�i .xi � x

0
i /
�
:

Thus T �1
i Kik can be presented by

T �1
i Kik DBi Œ�i ; �k j d�k D xk � x

0
i ; d�i D xi � x

0
iC1�=

�
�i .xi � x

0
i /
�
:

The only remaining nonzero generators of A act by
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�iC1 D��i � �k; um D hm�2.xiC1; x
0
i ; xk/�i�k :

Similarly, we compute

KiC1kT
�1
i DBi Œ�i ; �iC1 j d�i D xi � x

0
iC1; d�iC1 D xiC1 � xk�=

�
�i .xi � x

0
i /
�
:

The A-action is given by

�k D��i � �iC1; um D hm�2.xk ; xiC1; x
0
i /�iC1�i :

We observe that the modules and the actions coincide.

The case (c) is analogous.

Let us describe the case (d). We have

T �1
i Ki iC1 DBi Œ	1; 	2 j d	1 D xi � x

0
iC1; d	2 D x

0
i � x

0
iC1�=

�
	1.xi � x

0
i /
�
:

The action of A is given by �i D��iC1 D 	1 � 	2,

uk D hk�2.xi ; x
0
iC1; x

0
i /	1.�	2/C hk�2.xiC1; x

0
i ; x

0
iC1/.�	1/	2

D 	1.	1 � 	2/
�
hk�2.xi ; xi ; xiC1/C hk�2.xi ; xiC1; xiC1/

�
:

Similarly, we have

Ki iC1T
�1
i DBi Œ	1; 	2 j d	1 D xi � xiC1; d	2 D xi � x

0
iC1�=

�
	2.xi � x

0
i /
�
;

using the identities of Bi . The action of A is given by �i D��iC1 D 	1 � 	2,

uk D hk�2.xi ; xiC1; x
0
i /	1.�	2/C hk�2.xiC1; xi ; x

0
iC1/.�	1/	2

D 	2.	1 � 	2/
�
hk�2.xi ; xiC1; xi /C hk�2.xiC1; xi ; xiC1/

�
;

using the identities 	2xi D 	2x
0
i and 	2xiC1 D 	2x

0
iC1. The required isomorphism is

given by the substitution .	1; 	2/! .	2; 2	2 � 	1/.

The case (e) is straightforward. The case (f) is somewhat similar to (b), but sim-

pler.

This completes the proof of statements (2) and (3) from the statement. We deduce

(1) from (2) by multiplying with Ti on the left and right. The resulting calculation

involves coassociativity of the tensor product of A-modules, and hence a priori is

only a weak equivalence.

LEMMA 4.12

Given a permutation w 2 Sn, suppose w D r1 � � � rl expresses w as a minimal length

product of reflections. Then the twisted A-module
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Kw DKr1 � � �Krl

depends only on w, and not the choice of reflections r1; : : : ; rl up to weak equiva-

lence.

Proof

Consider the action of w on ¹1; : : : ; nº. We decompose into orbits

¹1; : : : ; nº DO1 t � � � tOc :

Let w D r1 � � � rl be a minimal expression of w as a product of reflections. Then each

reflection r appearing in this expression must be of the form r D .i; j / with i , j both

living in the same orbit Om. Note that if r D .i; j / and r 0 D .i 0; j 0/ with i; j 2 Om

and i 0; j 0 2Om0 with m¤m0, then r and r 0 commute. Thus, by rearranging we may

assume that our expression for w respects the cycle decomposition in the following

sense:

wD .r
.1/
1 � � � r

.1/

l1
/ � � � .r

.c/
1 � � � r

.c/

lc
/;

where the parenthesized expressions are disjoint cycles in Sn.

Without loss of generality we may as well assume that c D 1 so that w is an n-

cycle. Let I denote the collection of tuples .r1; : : : ; rn�1/ such that w D r1 � � � rn�1

is a minimal length expression of w as a product of reflections. The braid group Brn

acts on I according to

�i W .r1; : : : ; rn�1/ 7! .r1; : : : ; ri�1; r
0
i ; r

0
iC1; riC2; : : : ; rn�1/;

where r 0
i D ririC1ri and r 0

iC1 D ri . Here �i 2 Brn is the standard Artin generator. If

.r1; : : : ; rl/ and .r 0
1; : : : ; r

0
l
/ are related by the braid group action then the associated

Koszul complexes K and K 0 are weakly equivalent since KriKriC1
DKri riC1riKri .

By [3, Proposition 1.6.1], the braid group acts transitively on I , which completes the

proof.

LEMMA 4.13

We have weak equivalences

KvK
2
r 'K

2
rKv 'KvK

2
vrv 'K

2
vrvKv

for all reflections r; v 2 Sn.

Proof

Since rvr and vrv are both reflections, by Lemma 4.12 we get

KvKr 'KvrvKv 'KrKrvr :
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Indeed, for vD r this is trivial and for v¤ r we get minimal length factorizations

v � r D .vrv/ � vD r � .rvr/

as a product of reflections. Now we compute

KvK
2
r 'KrKrvrKr 'K

2
rKv

and

KvK
2
r 'KvrvKvKr 'K

2
vrvKv:

Finally, by the first equation we get

K2vrvKv 'KvK
2
vrv:

Below, we will use the notion of reflection length of a permutation w, which

is defined to be the length of a minimal product of reflections yielding w. We will

denote the reflection length by `refl.w/. If r D .i; j /, then `refl.wr/D `refl.w/C 1 if

i , j belong to different, cycles of w; otherwise if i , j belong to the same cycle of w,

then `refl.wr/D `refl.w/� 1.

LEMMA 4.14

If `refl.wr/ D `refl.w/C 1, then KwKr D Kwr . Otherwise `refl.wr/ D `refl.w/ � 1,

and KwKr 'KwrK
2
r .

Proof

Let wD u1 � � �ul be a minimal product of reflections yielding w. If u1 � � �ulr is min-

imal, then Kwr 'KwKr by construction. Suppose on the other hand that u1 � � �ulr

is nonminimal. Then `refl.w/D `refl.wr/C 1; hence Kw 'KwrKr by the first state-

ment of this lemma, and hence

KwKr 'KwrKrKr ;

which is the second statement.

LEMMA 4.15

Up to weak equivalence relative to B, any product K of Kij can be written in the

form

K 'KwK
2
i1;j1
� � �K2is ;js

; (25)

where w is the permutation obtained by multiplying transpositions in K . Moreover,

K is completely determined up to weak equivalence by the following data:
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� the permutation w, which is the product of transpositions in K;

� an equivalence relation � on the set ¹1; : : : ; nº, defined to be the minimal

equivalence relation such that i �w.i/ for all i and it � jt for all 1� t � s;
� for each equivalence class S for�, the number ofKi;j inK such that i; j 2 S .

Proof

We prove (25) by induction on the number of factors in K . The base case K DK.i;j /
is trivial. Suppose now we have a complex of the form

KwK
2
i1;j1
� � �K2is ;js

;

and tensor on the right with Kk;l . If k and l belong to different cycles of w, then

w0 Dw � .k; l/ has `refl.w
0/D `refl.w/C 1, hence KwKk;l 'Kw �.k;l/, and hence

.KwK
2
i1;j1
� � �K2is ;js

/Kk;l 'Kw �.k;l/K
2
i1;j1
� � �K2is ;js

:

On the other hand, if k, l belong to the same cycle of w, then w � .k; l/ has one

more cycle than w, and `refl.w � .k; l//D `refl.w/� 1, and we find that

.KwK
2
i1;j1
� � �K2is ;js

/Kk;l 'Kw �.k;l/K
2
k;lK

2
i1;j1
� � �K2is ;js

:

This proves existence of the decomposition (25).

To prove the second statement, we choose a representative for K up to weak

equivalence. Let J � ¹1; : : : ; nº be a set containing exactly one element out of each

cycle of w and let I � J be a set containing exactly one element of each equiva-

lence class with respect to �. For any j 2 J n I there is a unique i.j / 2 I such that

i.j / � j . Note that the relations j � i.j / and the cycles of w already generate the

equivalence relation �. Let us prove that we can rewrite the product (25) such that it

contains the factors K2
j;i.j /

for all j 2 J n I .

Indeed, Lemma 4.13 tells us that

K2abKac 'KacK
2
ab 'K

2
cbKac 'KacK

2
cb:

Therefore, if K is a product (25) which contains a factor Kac , then

KK2ab 'KK
2
cb:

Since j � i.j /, we can find a chain of pairwise distinct elements j0 D

j; j1; : : : ; jr D i.j / 2 J and a set of pairs .k1; l1/; : : : ; .kr ; lr / appearing in (25)

such that ktC1 and lt are in the same cycle of w as jt for all t . Then

KwK
2
k1;l1
� � �K2kr ;lr

'KwK
2
j;j1
� � �K2jr�1;i.j /

'KwK
2
j;i.j / � � �K

2
jr�1;i.j /

:

All remaining factorsK2
k;l

can be replaced byK2
k0;l 0

for k0 � k � l � l 0, and therefore

their number in each class is a complete invariant.
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COROLLARY 4.16

Given a product C of complexes Ti , T
�1
i , and Kjk , let u 2 Sn be the product of the

corresponding transpositions. Then C can be written in the form

C ' TˇKwK
2
i1;j1
� � �K2is ;js

;

where ˇ is the braid obtained by erasing all Kij from the product, and w is deter-

mined by u and ˇ. This isomorphism agrees with the A-module structures.

Proof

By Proposition 4.11 we can move all Rouquier complexes Ti to the left without

changing their indices or the order, so we get C D TˇK , where K is some prod-

uct of Kij . By Lemma 4.15 we can write K DKw ˝K
2
i1;j1
� � �K2is ;js

and the result

follows.

5. Markov moves

5.1. Cyclic property

Recall that any Aw -module X is a complex of .R;R/ bimodules, and one considers

its Hochschild homology HHk.X/ component-wise. Since HH is a functor, HHk.X/

again has the structure of an Aw module, with the property that the difference x0
i �xi

acts by 0 for each i .

Definition 5.1

If M is a B-module, then we let HH0.M/DM ˝B R. Equivalently, M=IM , where

I �B is the ideal generated by x0
i � xi for i D 1; : : : ; n. Let CAw WDHH0.Aw/.

Modules over CAw are simply modules over Aw on which the actions of x0
i and

xi coincide for all i . In particular we have the following.

PROPOSITION 5.2

For any Aw -module X the Hochschild cohomology HHk.X/ is a CAw -module.

It is clear that CAw �mod is a full subcategory of Aw �mod. Furthermore the

functor HH0 defines a left inverse to the inclusion CAw �mod!Aw �mod. This

implies that the inclusion functor CAw=RD CAw=B!Aw=B is fully faithful. The

tensor product of a CAw1
-module and a CAw2

-module is a CAw1w2
-module. So the

following is evident.

PROPOSITION 5.3

For eachw 2 Sn, the category CAw=R is a full subcategory of Aw=B . The collection

of categories CAw=R is closed under the tensor product, and we have a projection
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formula:

HHk.X ˝R Y /DHHk.X/˝R Y .X 2Aw1
�mod; Y 2 CAw2

�mod/;

provided Y is free as an R-module.

Remark 5.4

We observe that HH0 is a functor from B-modules from R-modules. This functor

comes equipped with natural maps

HH0.M ˝R N/!HH0.M/˝R HH0.N /

satisfying an appropriate version of the coassociative property.7 Combining with the

usual coproduct for algebras Aw gives an algebra map

HH0.Avw/!HH0.Av ˝R Aw/!HH0.Av/˝R HH0.Aw/:

This defines the coproduct CAvw! CAv˝R CAw . This in turn allows us to define

the structure of a CAvw -module on the tensor product M ˝RN where M is a CAv-

module and N is a CAw -module. This tensor product coincides with the tensor prod-

uct of twisted A-modules as in Proposition 5.3.

Definition 5.5

For each pair of permutations, let 
v;w W CAvw ! CAwv be the B-algebra isomor-

phism sending xi 7! xv�1.i/, �i 7! �v�1.i/, and uk 7! uk .

PROPOSITION 5.6

Let X and Y be Av and Aw -modules, respectively, for v;w 2 Sn. Then

HHk.X ˝R Y /Š 

�
v;w

�
HHk.Y ˝R X/

�
(26)

inside CAvw=C.

Proof

On the level of complexes of vector spaces, the isomorphism (26) is well known. This

isomorphism endows HHk.Y ˝R X/ with the structure of an HH0.Avw/-module by

pulling back the obvious HH0.Aw ˝R Av/-action along the algebra map � ı Œ�v;w �,

where Œ�v;w � WDHH0.�v;w/ is HH0 applied to the twisted coproduct (19) and

�v;w WHH0.Av ˝R Aw/!HH0.Aw ˝R Av/

7In literature, such functors are sometimes called oplax monoidal.
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is inherited from the isomorphism which swaps the order of tensor factors in

HH0.� ˝R �/. Note that � is C-linear but not R-linear, since the left (Dright)

R-action on HH0.X˝R Y / corresponds to the “middle” R-action on HH0.Y ˝RX/.

Thus, we have two Avw -actions on HHk.Y ˝R X/, given by pulling back along

�v;w ı�v;w and�w;v ı
v;w , respectively. The former is isomorphic to HH0.X˝RY /

with its Avw -action, by construction. To show that these two Avw -module structures

are weakly equivalent, we show that the algebra maps �v;w ı�v;w and �w;v ı 
v;w

become equal after post-composing with an appropriate quasi-isomorphism, and use

Lemma 2.22.

We first examine the action of �v;w ı�v;w and �w;v ı 
v;w on generators. We

have

�v;w ı�v;w W

8
ˆ̂̂
<̂
ˆ̂̂
:̂

xi 7! x0
i

�i 7! �v�1.i/˝ 1C 1˝ �i

uk 7! uk ˝ 1C 1˝ uk

C
P
i hk�2.x

0
i ; xv�1.i/; x

0
w�1v�1.i/

/�v�1.i/˝ �i ;

�w;v ı 
v;w W

8
ˆ̂<
ˆ̂:

xi 7! xv�1.i/

�i 7! �v�1.i/˝ 1C 1˝ �w�1v�1.i/

uk 7! uk ˝ 1C 1˝ uk C
P
j hk�2.xw.j /; x

0
j ; xv�1.j //�w.j /˝ �j :

In the first line, we have let x0
i D x

0
i ˝ 1D 1˝ xi in HH0.Aw ˝R Av/. Now apply

the twisted counit "v from (20) on the right. From the formulas it is clear that

.Id˝ "v/ ı �v;w ı�v;w D .Id˝ "v/ ı�w;v ı 
v;w :

On the other hand Id˝ "v is a quasi-isomorphism because "v is. This completes the

proof.

Remark 5.7

In general, we do not expect the isomorphism to exist in CAw=R. The homomor-

phism � is not R-linear, so the proof for R instead of C fails. In our situation, the

modules will turn out to be free over R and we will show that the isomorphism can

be upgraded to an isomorphism in CAw=R.

5.2. Stabilization

In this section we will be dealing with operations that change the number of strands,

so we will use n as an index in An, CAn to specify the number of strands. Given an

An-module M we construct an AnC1 module M t 11 as follows. As a B-module

this is simply M ˝CŒxnC1�. Construct a homomorphism of dg algebras
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' WAnC1!An˝CŒxnC1�

as follows. The generators xi , x
0
i , �i , uk for i � n, k � n are sent to the corresponding

generators of An. The generator �nC1 is sent to 0, and the generators xnC1, x0
nC1 both

go to xnC1. Finally, for the remaining generator unC1 we choose any homogeneous

element u of An satisfying

duD

nX

iD1

hn.xi ; x
0
i /�i

and set '.unC1/ D u. Such u exists by Proposition 3.5, and Lemma A.8 explains

how to construct it explicitly. Any two choices of u differ by a boundary. The AnC1-

module structure on M t 11 is obtained with the help of ':

M t 11 D '
�
�
M ˝CŒxnC1�

�
:

The following says that the resulting functor M 7! M t 11 from An=Bn to

AnC1=BnC1 is monoidal.

PROPOSITION 5.8

For any An-modules M , N the isomorphism

.M ˝Rn
N/t 11 Š .M t 11/˝RnC1

.N t 11/

of complexes of B-modules lifts to an isomorphism in the category AnC1=B .

Proof

Similarly to the proofs of Propositions 3.18 and 5.6 we use Lemma 2.22 to compare

the pullbacks via the compositions of the maps in the diagram

AnC1

�

'

An ˝ CŒxnC1�

�˝IdCŒxnC1�

AnC1 ˝RnC1
AnC1

'˝'

.An ˝CŒxnC1�/˝RnC1
.An ˝ CŒxnC1�/Š .An ˝Rn

An/˝ CŒxnC1�

We compose the two maps with the homotopy equivalence

"n˝ Id˝ Id W .An˝Rn
An/˝CŒxnC1�!An˝CŒxnC1�:

Using the identity ."n˝ IdCŒxnC1�/ ı ' D "nC1 and (18) we conclude that both of the

two resulting maps AnC1!An˝CŒxnC1� agree with '.
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IfM is a module over Aw , thenM t11 is naturally a module over Awt11
, where

w t 11 2 SnC1 is the permutation whose restriction to 1; : : : ; n coincides with w.

The following observation turns out to be very useful.

LEMMA 5.9

There are maps of Rouquier complexes T �1
i !Ki;iC1! Ti Œ�1� whose composition

is homotopic to 0. The maps and the homotopy are A-linear. The resulting twisted

complex is contractible. In particular, in the category A=B we have isomorphisms

T �1
i Š

�
Ki;iC1! Ti Œ�1�

�
; Ti Š ŒT

�1
i !Ki;iC1�:

Proof

This is clear from the diagram

R.�1/
b�

i

IdR

Bi .1/

bi

R.�1/
xi �xiC1

b�
i

R.1/

IdR

Bi .1/
bi

R.1/

The Markov II property first has a version which holds in CAw=R.

PROPOSITION 5.10

For any Aw -module M and any k we have the following isomorphisms in CAwt11
=

RnC1, respectively CA.wt11/.nnC1/=RnC1:

HHk.M t 11/D
�
HHk.M/t 11

�
˚
�
HHk�1.M/t 11

�
; (27)

HHkC1
�
.M t 11/˝RnC1

T �1
n

� �
�!
�
HHk.M/t 11

�
˝RnC1

Kn;nC1

�
�!HHk

�
.M t 11/˝RnC1

Tn
�
Œ�1�: (28)

Proof

The decomposition (27) is a property of the functor HH. The functor is computed by

the Koszul complex, which splits as a direct sum in the case of a module of the form

M t 11. The first isomorphism in (28) is obtained by composing the three maps
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HHkC1
�
.M t 11/˝RnC1

T �1
n

�
!HHkC1

�
.M t 11/˝RnC1

Kn;nC1

�

!HHkC1.M t 11/˝RnC1
Kn;nC1

!
�
HHk.M/t 11

�
˝RnC1

Kn;nC1:

The first map is induced by a map from Lemma 5.9. The second map is the isomor-

phism of the projection formula (Proposition 5.3). Finally, the last map is obtained

from (27). So the composition is a well-defined map of CAnC1-modules. It is a

homotopy equivalence of RnC1-modules by a well-known argument (e.g., see [23]).

Construction of the second isomorphism in (28) is analogous.

5.3. The stabilized algebras

Definition 5.11

For any c � n, where c is a positive integer and n is a positive integer or infinity,

let

CAc;n DC
h
.xi /

c
iD1; .�i /

c
iD1; .uk/

n
kD1

ˇ̌
ˇ dxi D d�i D 0;duk D k

cX

iD1

xk�1
i �i

i
:

Clearly, we have CAn;n D CAIdn
. More generally, the algebra CAc;n is a free

extension of CAIdc
by the generators ucC1; : : : ; un.

Remark 5.12

The ring of symmetric polynomials RSn is a free commutative algebra generated

by the power sum polynomials p1; : : : ; pn. Let U be the unique derivation RSn !

CAn;n satisfying U.pk/D uk for k � n. Then for any symmetric polynomial f we

have the identity

dU.f /D

nX

iD1

@f

@xi
�i :

One can obtain different presentations of the algebra CAn;n by choosing different

sets of generators of RSn .

Let w 2 Sn be a permutation with c cycles. Let C1; : : : ;Cc be the cycles

and choose a representative ji 2 Ci for each cycle Ci . Define a homomorphism

˛ W CAw ! CAc;n by

˛.xj /D xi .j 2 Ci /; ˛.�j /D

´
�i .j D ji /

0 otherwise
; ˛.uk/D uk :
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Define a homomorphism ˇ W CAc;n! CAw by

ˇ.xi /D xji
; ˇ.�i /D

X

j2Ci

�j ; ˇ.uk/D uk C correction:

PROPOSITION 5.13

(a) For each k there exists a correction making ˇ into a dg algebra homomor-

phism such that the composition ˛ ı ˇ is the identity and ˛ and ˇ are quasi-

isomorphisms.

(b) The pullback functors

˛� W CAc;n=C! CAw=C; ˇ� W CAw=C! CAc;n=C

are mutually inverse equivalences of categories.

(c) For any CAw -module X the isomorphism class of the pullback ˇ�X in the

category CAc;n=C is independent of the choices of the representatives ji and

the corrections, and similarly for ˛�.

Proof

(a) The correction needs to satisfy

d.correction/D ˇ.duk/� d.uk/D

cX

iD1

X

j2Ci

�
kxk�1

ji
� hk�1.xj ; xw�1.j //

�
�j :

So it is sufficient to find a separate correction for each cycle. Without loss of gener-

ality, assume w consists of a single cycle. Moreover, by reindexing assume w.j /D

j � 1 .mod n/ and j1 D 1. A correction can be constructed as follows:

d
�n�1X

iD1

hk�2.x1; xi ; xiC1/�i .�iC1C � � � C �n/
�

D

n�1X

iD1

�
hk�1.x1; xi /� hk�1.x1; xiC1/

�
.�iC1C � � � C �n/

C

n�1X

iD1

�
hk�1.x1; xi /� hk�1.xi ; xiC1/

�
�i :

D

n�1X

iD1

�
hk�1.x1; x1/� hk�1.xi ; xiC1/

�
�i ;

as required. By construction, ˛ ı ˇD Id.
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To show that ˇ is a quasi-isomorphism, notice that via ˇ we can view the algebra

CAw as

CAw D CAc;n

�
tj ; �j

�
j 2 ¹1; : : : ; nº n ¹j1; : : : ; jcº

��
;

where tj D xj � xw�1.j /. We have d�j D tj , so the algebras CAw and CAc;n are

quasi-isomorphic. The homomorphism ˛ is a partial inverse to ˇ, and therefore is a

quasi-isomorphism, too.

By Lemma 2.19 the functors ˛� and ˇ� are equivalences of categories. Since we

have ˛ ı ˇ D Id the composition ˇ�˛� is the identity functor. Therefore ˛ and ˇ are

inverses of each other.

Now we can construct ˛ and ˇ using different choices of ji . Keeping the choice

for ˛ fixed, if ˇ and ˇ0 are defined using two different choices, since both ˇ� and ˇ0�

are inverses of ˛�, they must be isomorphic. We proceed similarly in the case of two

different versions of ˛.

Remark 5.14

A similar result is proved in [1, Theorem 4.43].

Let �D .�1; : : : ;�c/ be a collection of positive integers so that
P
�i D n. Such

a collection is called a composition of n. We write � � n. For N > n and � � n we

construct a homomorphism ˆN� W CAc;N ! CAc;n as follows.

PROPOSITION 5.15

(a) There is a unique homomorphism ˆN� W CAc;N ! CAc;n which sends the

variables xi , �i , and uk for k � n to themselves and the generating series

� NX

kD1

ˆN� .uk/

k
tk
� cY

iD1

.1� txi /
�i CO.tNC1/

has no terms of degree > n in t .

(b) Let x� be a sequence of variables x1; : : : ; x1; x2; : : : ; xc , where each xi

occures �i times. We have

ˆN� .uk/D

nX

`D1

u`
@pk

@p`
.x�/;

where the partial derivative is taken in the ring of symmetric functions in n

variables.

(c) For any �0
�N satisfying �0

i � �i and N 0 �N we have ˆN� ıˆ
N 0

�0 Dˆ
N 0

� .
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Proof

Since ˆN� .uk/ D uk for k � n, we can determine the expansion of the generating

series up to O.tnC1/, but since there are no terms of degree > n the series is com-

pletely determined, and we can compute ˆN� .uk/ for k > n. Let us prove that the

obtained homomorphism commutes with the differential. Applying d to the generat-

ing series we see that the series

� NX

kD1

d.ˆN� .uk//

k
tk
� cY

iD1

.1� txi /
�i CO.tNC1/ (29)

has no terms of degree > n. On the other hand, the series

� NX

kD1

� cX

iD1

�ix
k�1
i

�
tk
� cY

iD1

.1� txi /
�i CO.tNC1/ (30)

also has no terms of degree > n because we have

1X

kD1

xk�1
i tk D

t

1� xi t
:

So the series (29) and (30) must agree and therefore we have

d
�
ˆN� .uk/

�
D

cX

iD1

kxk�1
i �i Dˆ

N
�

�
d.uk/

�
:

This establishes (a). To verify (b) it is sufficient to verify that the series

nX

`D1

u`

1X

kD1

tk

k

@pk

@p`
.x�/

when multiplied by
Qc
iD1.1� txi /

�i has no terms of degree > n. The series in ques-

tion can be rewritten as

nX

`D1

u`
@

@p`
log.1� e1t C � � � ˙ ent

n/;

and so is a rational function in t with numerator of degree n and denominator 1 �

e1t C � � � ˙ ent
n, which when specialized to x� becomes

Qc
iD1.1 � txi /

�i . So the

claim is evident.

To prove (c) we use (a). For k � N we have ˆN
0

�0 .uk/ D uk and ˆN� .uk/ D

ˆN
0

� .uk/, so the claim holds. The series
PN 0

kD1

ˆN 0

� .uk/

k
tk when multiplied by
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the product
Qc
iD1.1 � txi /

�i has no terms of degree > n. Multiplying further byQc
iD1.1� txi /

�0
i
��i cannot introduce terms of degree >N . So we have that

N 0X

kD1

ˆN
0

� .uk/

k
tk

cY

iD1

.1� txi /
�0

i

has no terms of degree > N . The same holds for ˆN
0

�0 .uk/, and therefore for

ˆN� .ˆ
N 0

�0 .uk// in the place of ˆN
0

� .uk/. Since the sequences ˆN� .ˆ
N 0

�0 .uk// and

ˆN
0

� .uk/ have the same first N terms, the sequences must agree.

Now we can finish proving the Markov property. For a permutation w denote by

�.w/ the composition �i D jCi j. Denote w0 D .w t 11/.nnC 1/.

PROPOSITION 5.16

Let w 2 Sn and let X be a CAw -module. Suppose N � n C 1. Then the modules

ˆN�
�.w0/

ˇ�..X t 11/˝RnC1
Kn;nC1.�1// and ˆN�

�.w/
ˇ�X are isomorphic in the cat-

egory CAc;N =C.

Proof

In view of (3) of Proposition 5.15 it is sufficient to prove the statement forN D nC1.

Consider the following diagram of dg algebras:

CAc;nC1

ˇ

ˆ
nC1
�.w/

CAw0

e'

˛

CAc;nC1

ˆ
nC1
�.w/

CAc;n

ˇ

CAw

�

CAw ŒxnC1; �nC1�
�

CAw

˛

CAc;n

The algebra CAw ŒxnC1; �nC1� has the differential dxnC1 D 0, d�nC1 D xnC1 � xn.

The quasi-isomorphisms to and from CAw to this algebra are evident. The mor-

phism e' is defined similarly to the homomorphism ' in Section 5.2 in such a way

that

.X t 11/˝RnC1
Kn;nC1.�1/De'�XŒxnC1; �nC1�

holds. Indeed, the left-hand side is isomorphic to XŒxnC1; �nC1� as an abstract com-

plex, and the action of each generator of CAw0 on it is given by an explicit expression

which involves the action of CAw on X and the elements xnC1, �nC1. These are

packaged into e'.

The large square containing both ˛ and ˇ is commutative. Let us show that

the rightmost square is commutative. It is clearly commutative on the generators xi
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and �i , as well as the generators uk for k � n. It remains to consider the generator

unC1. The element e'.unC1/ is the sum of

nX

kD1

uk
@pnC1

@pk
.x1; : : : ; xn/C hn�1.xw�1.n/; xn; xnC1/�w�1.n/.��nC1/;

and certain corrections (see Lemma A.8). The second term above goes to 0 in

CAw . By Lemma A.8 we can make sure that the corrections belong to the ideal

generated by xi � xw.i/, and therefore go to 0 after applying ˛. So we are left

with

nX

kD1

uk
@pnC1

@pk

�
˛.x1/; : : : ; ˛.xn/

�
;

which equals ˆnC1
�.w/

.unC1/ by Proposition 5.15(b).

So we have shown that the rightmost square of the diagram is commutative.

Applying Lemma 2.22, we obtain that module ˇ�..X t 11/ ˝RnC1
Kn;nC1.�1//

is isomorphic to the module obtained from XŒxnC1; �nC1� by pulling back along ˇ,

ˆnC1
�.w/

, and the quasi-isomorphism CAw ' CAw ŒxnC1; �nC1�. But as soon as we

pull it back to CAw , the module becomes isomorphic in the category CAw=C to

X .

Putting things together, we obtain the following.

THEOREM 5.17

Let L be a link with c components labeled 1; : : : ; c represented as the closure of a

braid b on n strands with the corresponding permutation w. Let e be the number of

the positive crossings of ˇ minus the number of the negative ones. For each k define

a CAc;1-module by

HHk.L/Dˆ�1
�.w/ˇ

�HHkC n�e�c
2 .Tb/

h�n� eC c
2

i
.c � n/:

This module is independent of the presentation of the link up to an isomorphism in the

category CAc;1=C.

Proof

The cyclic invariance was established in Proposition 5.6. Indeed, for permutations

v, w there is a bijection between the cycles of permutations vw and wv; therefore,

the isomorphism 
v;w WAvw !Awv intertwines the maps ˇvw WAc;n! Avw and

ˇwv WAc;n!Awv for some choices of representatives ji and corrections. By Propo-

sition 5.13 these choices do not affect the isomorphism classes of pullbacks under

ˇvw and ˇwv , respectively.
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Let us prove invariance under the Markov II moves. If b is a braid on n strands,

then

HHk
�
.Tb t 11/˝RnC1

Tn
�
Š
�
HHk.Tb/t 11

�
˝RnC1

Kn;nC1Œ1�

by Proposition 5.10. The claim follows from Proposition 5.16. The proof for T �1
n is

analogous.

5.4. CAc;1=C vs. CAc;1=Rc

The complexes HHk.Tb/ are known to be complexes of free R-modules, and

hence free over the subring Rc D CŒx1; : : : ; xc �. This is also clear from Proposi-

tion 5.19 below. In this case there is no difference between viewing them as objects

of CAc;1=C or CAc;1=Rc by the following.

PROPOSITION 5.18

The category CAc;1=C is equivalent to the full subcategory of CAc;1=Rc consisting

of objects which are free over Rc .

Proof

Denote the category of objects of CAc;1=Rc which are free overRc by CAc;1=Rc=

C. The identity functor induces a functor

CAc;1=Rc=C! CAc;1=C: (31)

Let X be a CAc;1-module, and let eX be its resolution relative to C with the counit

map eX ! X . Since CAc;1 is free over Rc , any CAc;1 module which is induced

from C is free over Rc . In particular, eX is free over Rc and so we see that eX belongs

to CAc;1=Rc=C. So (31) is essentially surjective. If X is free over Rc then when

restricted to Rc it can be viewed as its own resolution relative to C, so the counit

map must be a homotopy equivalence in Rc �mod. Therefore eX can be viewed as

a resolution of X relative to Rc . So eX is both a resolution of X relative to C and

relative to Rc , so the Hom spaces in the two categories are isomorphic.

5.5. Basic objects

We can restrict the kind of objects that appear as HHk.L/ as follows.

PROPOSITION 5.19

For each link L with c components and any k the object HHk.L/ is equivalent to a

twisted complex

HHk.L/Š Œ� � � !X1!X0!X�1! � � � �;
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where each Xi is a direct sum of objects of the form ˆ�1
�.w/

ˇ�K.c � n/, K D

Kr1 � � �Krl is some Koszul complex, and w D r1 � � � rl 2 Sn is a permutation with c

cycles.

Proof

If L is presented as the closure of a braid b 2 Brn, then HHk.L/ is isomorphic to

HHk.b/.c � n/ up to homological shift, by definition. We will prove that

ˆ�1
�.w/ˇ

�HHk.Tb ˝Rn
K/

is weakly equivalent to a twisted complex consisting of objects of the form

ˆ�1
�.w/

ˇ�K (and homological shifts thereof) for any braid b 2 Brn and any Koszul

complex K . We proceed by induction on the length of b. Using Lemma 5.9 we

can always replace Ti by T �1
i and vice versa modulo complexes for shorter braids.

Moreover, we are free to replace b by a conjugate braid by Proposition 5.6 and

Corollary 4.16.

Using the above transformations we can always reduce the number of crossings

in b (this is essentially Jaeger’s algorithm for computing HOMFLY-PT polynomial

[20]) until we obtain a product of the form Ti1Ti2 � � �TimK with i1 < � � � < im. Con-

sider

ˆ�1
�.w/ˇ

�HHk.Ti1Ti2 � � �TimK/:

Applying Proposition 5.3, we can move K outside HHk . Finally, we iteratively apply

Propositions 5.8 and 5.10 to show that HHk.Ti1Ti2 � � �Tim/ is a direct sum of copies

of Ki1;i1C1Ki2;i2C1 � � �Kim;imC1.

Next we want to classify objects of the form ˆ�1
�.w/

ˇ�K.c � n/.

By Lemma 4.15 the object K is completely classified by its permutation w, the

equivalence relation �, and the number of K2i;j in each equivalence class.

PROPOSITION 5.20

In Proposition 5.19 we can assume that the product of Koszul complexes K satisfies

the following extra assumptions:

(1) All cycles of w have length 1 or 2.

(2) If .i; j / is a cycle of w of length 2, then K contains some odd power of Ki;j

and no other Ki 0;j 0 with i 0 2 ¹i; j º or j 0 2 ¹i; j º.

Proof

If w has a cycle of length at least 3 we first renumber the strands to make sure that

n � 1;n;nC 1 are in the cycle. Choose the decomposition of w to contain exactly
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one .n nC 1/ and replace any occurrence K2i;nC1 by K2i;n (i < n) and any K2n;nC1 by

K2n�1;n. This does not change the isomorphism class of the objectK by Lemma 4.15.

Then apply Proposition 5.16 to reduce the number of strands.

If .i; j / is a cycle ofw of length 2 and there existK2i;j 0 , we can relabel the indices

so that i D n, j D nC 1, and j 0 D n� 1. Then we continue as in the first case.

We encode any object satisfying (1) and (2) by an unordered collection of pairs

. Nn; Ng/D
�
.n1; g1/; : : : ; .ns; gs/

�

as follows. Each cycle .i; j / of w of length 2 is encoded as .1; g/ if the number of

occurrences of Ki;j is 1C 2g. The remaining cycles all have lengths 1. Each equiv-

alence class S of cycles of lengths 1 is encoded as .n;g/, where n is the number of

cycles in the class and gCn�1 is the number of occurrences ofK2i;j in the decompo-

sition ofK with i; j 2 S . Note that n�1 squares are used to generate the equivalence

relation. Note that .1; 0/ may correspond to an index which doesn’t appear in K or

it can correspond to a 2-cycle i , j with a single Ki;j , but these produce equivalent

objects by Proposition 5.16.

To go back, a single pair .n;g/ corresponds to K
2gC1
12 .�1/ if nD 1 and

K
2gC2
12 K223 � � �K

2
n�1;n .n� 2/:

The objects for a collection of pairs have to be stacked together horizontally; that

is, the total set of indices is identified with the disjoint union of the sets of indices,

one set for each pair, and the generators Ki;j have to be relabeled accordingly and

multiplied together. We denote the result by K Nn; Ng .

Remark 5.21

Below we will frequently abuse notation, denoting ˆ�1
�.w/

ˇ�.K Nn; Ng/ simply by K Nn; Ng .

Remark 5.22

Products of Kij have the following topological interpretation. Consider n disks

labeled by 1; : : : ; n and connect i th and j th disks by a twisted band for each Kij

appearing inK . The result is an oriented surface†. The classification in Lemma 4.15

has a simple topological meaning: the cycles in w correspond to the components of

the boundary @†, equivalence classes for � correspond to the connected components

of †, and the number of K2i;j in each equivalence class encodes the Euler charac-

teristic of the corresponding component so that adding an extra K2ij for i and j in

the same equivalence class corresponds to adding a handle. The topological meaning

of the invariant . Nn; Ng/ is that † is the disjoint union of surfaces †ni ;gi
, where †n;g

stands for the connected surface of genus g with n boundary components.
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For instance, K
2gC1
12 corresponds to 2g C 1 twisted bands between two

disks. This is a surface with one boundary component and Euler characteristic

2 � .2g C 1/ D 1 � 2g, so it is a genus g surface with one puncture. The product

K
2gC2
12 K223 � � �K

2
n�1;n corresponds to a surface with n boundary components and

Euler characteristic n � .2g C 2n � 2/D 2 � 2g � n; hence it is a genus g surface

with n punctures.

Finally, we describe ˇ�K Nn; Ng . It is convenient to notice that objects on which �i

acts as 0 can be factored away.

PROPOSITION 5.23

Suppose M is a module over CAw for some permutation w 2 Sn with c cycles, and

suppose N is a module over CAn which is free over R such that every �i acts as 0.

Then we have an isomorphism of CAc;n-modules

ˇ�.M ˝Rn
N/Š ˇ�.M/˝Rc

.Rc ˝Rn
N/;

where the homomorphism Rn!Rc is the natural homomorphism sending each vari-

able xi to the variable corresponding to the cycle to which i belongs. The action of

uk on the right-hand side is given by uk ˝ 1C 1˝ uk and the action of �i is the one

coming from ˇ�.M/.

Proof

First, since ˛ ı ˇ ı ˛ D ˛ and ˛ is a quasi-isomorphism, the pullbacks via ˇ ı ˛

and Id produce equivalent objects by Lemma 2.19. Since N is free, tensoring by N

preserves quasi-isomorphisms, so we can replaceM by ˛�ˇ�M on the left-hand side.

On ˛�ˇ�M variables xi corresponding to i from the same cycle act in the same way,

so we have an isomorphism

˛�ˇ�M ˝Rn
N D ˛�ˇ�M ˝Rn

.Rc ˝Rn
N/:

Because all the �i vanish on N , the action of �i on the tensor product comes from the

action on M only. Now when we apply ˇ� the corrections in the definition of ˇ� are

all contained in the corrections for M , so we have

ˇ�
�
˛�ˇ�M ˝Rn

.Rc ˝Rn
N/
�
D ˇ�.˛�ˇ�M/˝Rc

.Rc ˝Rn
N/

D ˇ�.M/˝Rc
.Rc ˝Rn

N/:

The following is useful in computations of higher powers of Ki;j .
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PROPOSITION 5.24

Denote by K�
i;j the CA-module RŒ	1; 	2�.2/, where 	1, 	2 have homological

degree 1, d	1 D d	2 D 0, all �i act by 0, and uk acts via

uk! khk�2.xi ; xj /	1	2:

Then we have

K3i;j DKi;jK
�
i;j :

Proof

Explicit computation of K3i;j produces RŒ	1; 	2; 	3�.3/ with

d	i D xi � xj ; �i D��j D 	1 � 	2C 	3;

uk D
�
	1.�	2/C .	1 � 	2/	3

��
hk�2.xi ; xj ; xi /C hk�2.xj ; xi ; xj /

�
:

The first factor in uk can be written as .	1�	3/.	1�	2/. The second factor contains

every monomial x
p
i x

q
j with coefficient pC 1C qC 1D k, so we obtain that uk acts

by

.	1 � 	3/.	1 � 	2/khk�2.xi ; xj /:

Redefining 	1, 	2 as 	1 � 	3, 	1 � 	2 we arrive at the following presentation of K3i;j :

K3i;j DRŒ	1; 	2; �i j d	1 D d	2 D 0;d�i D xi � xj �I

the action of �j is ��i , and uk acts via khk�2.xi ; xj /	1	2. This is precisely the

module Ki;jK
�
i;j .

Finally we obtain the following.

PROPOSITION 5.25

Let NnD .n1; : : : ; ns/, Ng D .g1; : : : ; gs/, c D
P
i ni , g D

P
i gi , mi D n1 C � � � C ni ,

I D ¹miº
s
iD1. The module K Nn; Ng is isomorphic in the category CAc;1=C to

C
�
.xj /j2I ; .�j /j…I ; .	ij /j�2gi ;i�s

�
.c � sC 2g/

with 0 differential and the action of the remaining variables given by

xj D xmi
.mi�1 < j <mi /; �mi

D�

mi �1X

jDmi�1C1

�j ; (32)

uk D k.k � 1/

sX

iD1

xk�2
mi

giX

jD1

	i;2j�1	i;2j :
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Proof

Suppose g D 0. Then each 2-cycle of w corresponds to ni D 1, gi D 0, so the corre-

sponding element Ki 0;i 0C1 appears in degree 1. Applying Proposition 5.16 we get rid

of this element, decreasing the number of strands by 1. So the permutation becomes

the identity permutation and each ni corresponds to a shifted version of the prod-

uct

K.ni / DK212K
2
23 � � �K

2
ni �1;ni

:

These products are multiplied together over C. Let us consider each product sepa-

rately. Let nD ni . From the definition, K2i;j can be computed as follows:

K2i;j DRnŒ	1; 	2; j d	1 D d	2 D x1 � x2�.1/;

where the action is given by

�i D��j D 	1 � 	2; uk D�k	1	2hk�2.xi ; xj /:

After a change of variables, we can represent it as

K2i;j DRnŒ	; �i j d	D x1 � x2; d�i D 0�.1/;

with the action uk D k	�ihk�2.xi ; xj /. Tensoring these together, we obtain

K.n/ ŠRnŒ�
�
1 ; : : : ; �

�
n�1; 	1; : : : ; 	n�1 j d�

�
i D 0;d	i D xiC1 � xi �.n� 1/;

with the action given by �n D��
�
n�1, �1 D �

�
1 ,

�i D �
�
i � �

�
i�1;

uk D k

n�1X

iD1

	i�
�
i hk�2.xi ; xiC1/C

n�1X

iD2

.���
i�1/�

�
i hk�2.xi ; xi ; xi /

D
X

n�1�i�j�1

�
k	i�jhk�2.xi ; xiC1/C

 
k

2

!
�i�jx

k�2
i

	
:

Let us choose �1; : : : ; �n�1; 	1 C
�1

2
; : : : ; 	n�1C

�n�1

2
as the new generators of K.n/.

The description of the module becomes

K.n/ ŠRnŒ�1; : : : ; �n�1; 	1; : : : ; 	n�1 j d�i D 0;d	i D xiC1 � xi �.n� 1/;

uk D
X

n�1�i�j�1

k
�
	i�jhk�2.xi ; xiC1/C

1

2
�i�j .xi � xiC1/hk�3.xi ; xi ; xiC1/

�
:
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Let K 0 WD CŒxn; �1; : : : ; �n�1� with 0 differential and 0 action of uk . Each xi acts by

xn and �n acts by �
Pn�1
iD1 �i . Then we have a quasi-isomorphism K.n/!K 0.n� 1/

which sends 	i to 0 and all xi to xn.

Tensoring these quasi-isomorphisms over C we obtain a quasi-isomorphism from

K Nn;0 to

C
�
.xi /i2I ; .�i /i…I

�
.n� 1/

with 0 differential and uk acting by 0, and the remaining variables acting as in

(32). Note that applying ˆ� to a module on which uk for all k act by 0 again

produces a module on which all uk act by 0. So the statement for g D 0 is

proved.

Now suppose g is arbitrary. The “genus contribution” can be factored out using

Propositions 5.24 and 5.23:

ˇ�.K Nn; Ng/Š ˇ
�.K Nn;0/˝Rc

cO

iD1

.K�
i;i /

gi ;

whereK�
i;i is the object defined analogously toK�

i;j , but with j D i . So the statement

follows from the case gD 0.

6. y-ification of A-modules

6.1. y-ification

Let .C;d/ be a complex of Soergel bimodules with a structure of w-twisted mod-

ule over the the algebra A. By definition, this implies that C admits an action of

anticommuting operators �i such that d.�i /D xi � x
0
w�1.i/

.

Let Ry D CŒy1; : : : ; yn�. Following [13], we define the strict y-ification of C as

the complex Y.C / WD CŒy1; : : : ; yn�D C ˝Ry with the twisted differential

dy D d C

nX

iD1

�iyi :

The variables yi are placed in homological degree degh yi D�2. Note that

d2y D

nX

iD1

.xi � x
0
w�1.i/

/yi :

Since d2y ¤ 0, we will sometimes refer to Y.C / as to curved complex. It is easy to

see that the definition of tensor product of y-ifications in [13] agrees with y-ification

of tensor product of A-modules.
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In particular, given a braid ˇ with the corresponding permutation w, we can use

the w-twisted A-module structure on the Rouquier complex Tˇ from Theorem 4.3 to

define the y-ified complex Y.ˇ/D Y.Tˇ /.

Passing to the Hochschild homology we have the following.

PROPOSITION 6.1

Consider the differential dHH;y on the curved complex HH.Y.ˇ//. Then

d2HH;y D 0 mod .yi � yw.i//:

After taking quotient by the ideal generated by .yi � yw.i// the curved complex

HH.Y.ˇ// becomes an honest chain complex.

Remark 6.2

Note that CŒy1; : : : ; yn�=.yi � yw.i// is a polynomial ring in c variables if the closure

of ˇ has c components.

This yields the following definition.

Definition 6.3

The y-ified Khovanov–Rozansky homology of the braid ˇ is defined as

HY.ˇ/ WDHHH
�
Y.ˇ/˝Ry

CŒy1; : : : ; yn�
ı
.yi � yw.i//

n
iD1; dy

�
:

It is proved in [13] that HY.ˇ/ up to grading shifts is the topological invariant of

the closure of ˇ. We refer to [13] for more details on y-ifications and their properties.

The above constructions use only the action of �i . The action of uk gives rise to

interesting operators in the y-ified homology.

THEOREM 6.4

Let ˇ be an arbitrary braid. Then:

(a) There is a family of chain maps Fk on the y-ified Rouquier complex Y.ˇ/

satisfying

Œdy ;Fk�D ŒFk ;Fm�D ŒFk ; xi �D 0; ŒFk ; yi �D hk�1.xi ; x
0
w�1.i/

/:

(b) There is a family of chain maps Fk on the y-ified link homology HY.ˇ/ satisfying

ŒFk ;Fm�D ŒFk ; xi �D 0; ŒFk ; yi �D kx
k�1
i :

Both actions are invariant up to homotopy under braid relations.
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Proof

Let C be a complex of Soergel bimodules which admits a w-twisted module structure

over A. Its y-ification Y.C / is a free module over CŒy1; : : : ; yn�; hence, one can

define the operators @
@yi

on Y.C /. We define

Fk WD

nX

iD1

hk�1.xi ; x
0
w�1.i/

/
@

@yi
C uk : (33)

By Theorem 4.3 the operators Fk are invariant up to homotopy under braid relations.

Let us check that they are chain maps. Indeed,

Œdy ;Fk�D
h
d C

nX

iD1

�iyi ;

nX

iD1

hk�1.xi ; x
0
w�1.i/

/
@

@yi
C uk

i

D Œd;uk��

nX

iD1

hk�1.xi ; x
0
w�1.i/

/�i D 0:

Example 6.5

By Remark 4.4 we have u1 D 0; hence F1 D
Pn
iD1

@
@yi

.

6.2. From A modules to y-ifications

The y-ification can be recognized as a special instance of Theorem 2.32. We have the

following.

COROLLARY 6.6

Let B� be the subalgebra of A generated by xi , x
0
i , �i . Then Y defines a fully faithful

embedding of B�=B into the homotopy category of curved complexes of modules over

By DBŒy1; : : : ; yn� with curvature
Pn
iD1.xi � x

0
i /yi .

Remark 6.7

Theorem 2.32 requires power series in y1; : : : ; yn, but here we choose to work with

polynomials in yi instead. For y-ifications of bounded complexes, the two approaches

are identical.

Indeed, if C is a bounded complex, then any power series
P
fk1;:::;kn

y
k1

1 � � �y
kn
n

defines an endomorphism of Y.C / D CŒy1; : : : ; yn�, where fk1;:::;kn
2 End.C / are

any elements with

degh.fk1;:::;kn
/D degh.f0/C 2.k1C � � � C kn/:

Since C is bounded, all but finitely many of the fk1;:::;kn
must vanish for degree

reasons.
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So the y-ification essentially corresponds to forgetting the generators uk . Theo-

rem 2.32 tells us how to capture the complete information.

Definition 6.8

For an A-module X the extended y-ification is defined by

Xy;� D
�
XŒy1; : : : ; yn; �1; : : : ; �n�; dy;v

�

with the variables of degrees degh yi D �2, degh �k D �3. The differential is given

by

dy;v D dy C

nX

kD1

�kFk D d C

nX

iD1

yi�i C

nX

kD1

�kFk :

We have the following.

COROLLARY 6.9

The extended y-ificationX!Xy;v is a fully faithful embedding of the category A=B

into the category of curved complexes over By;� , where

By;� DB
h
y1; : : : ; yn; �1; : : : ; �n

ˇ̌
ˇ d�k D 0;dyi D

nX

kD1

hk�1.xi ; x
0
i /�k

i
:

The curvature on By;�-modules is
Pn
iD1.xi � x

0
i /yi .

Collecting the linear terms in �k we obtain the below.

COROLLARY 6.10

Let X , Y be A-modules. Any morphism of y-ifications Y.X/! Y.Y / coming from a

morphism in A=B commutes with the operators Fk up to homotopy. In particular, the

action of the operators Fk up to homotopy is an invariant of the isomorphism class of

an object in A=B .

Analogously, we can define extended y-ifications of objects of CAc;n=Rc and

CAc;1=Rc . Together with Theorem 5.17 and Proposition 5.18 we obtain the follow-

ing.

COROLLARY 6.11

The y-ified link homology as a module over CŒ.xi /
c
iD1; .yi /

c
iD1;F1;F2; : : :� is an

invariant of a link.
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6.3. y-ification of the basic objects

From the description in Proposition 5.25 it is easy to compute the y-ifications. Indeed,

by (32) we have

�mi
D�

mi �1X

jDmi�1C1

�j ;

so

dy D

sX

iD1

miX

jDmi�1C1

�jyj D

sX

iD1

mi �1X

jDmi�1C1

�j .yj � ymi
/:

Therefore the y-ification of K Nn; Ng has cohomology

H
�
K Nn; Ng ˝CŒy1; : : : ; yn�; dy

�
'C

�
.xj /j2I ; .yj /j2I ; .	ij /j�2gi ;i�s

�
.2g/:

Since K Nn; Ng is free over R, taking Hochschild cohomology and then homology with

respect to dy is the same as taking homology with respect to dy and tensoring with

an exterior algebra:

HY.K Nn; Ng/'C
�
.xj /j2I ; .yj /j2I ; .	ij /j�2gi ;i�s; .�k/1�k�n

�
.2g/:

The action of the operators Fk is given by

Fk D

sX

iD1

�
kxk�1

mi

@

@ymi

C k.k � 1/xk�2
mi

giX

jD1

	i;2j�1	i;2j

�
:

Here the notations follow Proposition 5.25 and (21).

7. Hard Lefshetz and symmetry

7.1. Lefshetz operators

In this section we work with bigraded complexes and grading-preserving chain maps

between them. Let .A D
L
Aj;k;D/ be a doubly graded complex with differential

D W Aj;k! Aj;k�1. We will assume that for nonzero components Aj;k the values of

j are even.

We call a chain map F WA!A a Lefshetz map if the following statements hold:

(a) F sends Aj;k to AjC4;kC2.

(b) For all j � 0 the map in homology F j W H�2j;k.A/! H2j;kC2j .A/ is an

isomorphism
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LEMMA 7.1

Assume that 0! A! B! C ! 0 is a short exact sequence of triply graded com-

plexes where the maps preserve all three gradings. Furthermore, assume that A, B ,

C are equipped with endomorphisms FA, FB , FC which commute with maps between

them up to homotopy. Then if FA, FC are Lefshetz, then FB is Lefshetz too.

Proof

We have the following commutative diagrams of long exact sequences:

H�2j;kC1.C /

F
j
C

H�2j;k .A/

F
j
A

H�2j;k .B/

F
j
B

H�2j;k .C /

F
j
C

H�2j;k�1.A/

F
j
A

H2j;kC1C2j .C / H2j;kC2j .A/ H2j;kC2j .B/ H2j;kC2j .C / H2j;k�1C2j .A/

Since FA, FC are Lefshetz, by 5-lemma FB is Lefshetz as well.

LEMMA 7.2

Assume that F is a Lefshetz operator for a complex A, and for all N the sumL
j�2kDN Hj;k.A/ is finite-dimensional. Then the action of F extends to an action

of sl2 on homology of A where H acts on H2j;k.A/ by j .

Proof

Clearly, ŒF;H�D 2F , so it is sufficient to construct an operator E . By the Jacobson-

Morozov theorem, we can construct it as follows.

Since the operator F preserves the sum j � 2k, by the assumption of the lemma

it is locally nilpotent. Let us prove that for j � 0 and s � 0 one has

H2j;k.A/DKer.F s/˚ Im.F jCs/:

Assume that v 2 Ker.F s/ \ Im.F jCs/ and v ¤ 0; then v D F jCsu for some

u 2H�2j�4s;k�2j�2s.A/, and F jC2s.u/D 0. This is a contradiction, so Ker.F s/\

Im.F jCs/D 0.

On the other hand, for arbitrary v 2H2j;k.A/, we can write F sv D F jC2s.u/

for some u 2 H�2j�4s;k�2j�2s.A/, so v � F jCs.u/ 2 Ker.F s/, so Ker.F s/ C

Im.F jCs/DH2j;k.A/.

Now onH2j;k.A/ we have an ascending filtration by Ker.F s/ and a complemen-

tary descending filtration by Im.F jCs/, so we can split these filtrations by

H2j;k.A/D
M

s

H
.s/

2j;k
.A/; H

.s/

2j;k
.A/DKer.F sC1/\ Im.F jCs/:
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Then E is defined on H
.s/

2j;k
by taking preimage under F multiplied by a constant and

projecting to H
.sC1/

2j�4;k�2
.

LEMMA 7.3

Let A, B be two complexes of vector spaces with Lefshetz maps FA and FB satisfying

the assumptions of Lemma 7.2. Then FA˝ 1C 1˝FB is a Lefshetz map for A˝B .

Proof

We have .A˝B/j;k D
L
j 0;k0 Aj 0;k0Bj�j 0;k�k0 . Since FA WAj 0;k0 !Aj 0C4;k0C2 and

FB W Bj�j 0;k�k0 ! Aj�j 0C4;k�k0C2, both FA ˝ 1 and 1˝ FB send .A˝ B/j;k to

.A˝B/jC4;kC2.

Furthermore, by the Künneth formula we have H�;�.A˝ B/ D
L
H�;�.A/˝

H�;�.B/. By Lemma 7.2 the actions of FA and FB extend to the actions of sl2, so

FA˝ 1C 1˝FB defines the action of F on the product of sl2 representations. Since

this product is a finite-dimensional representation of sl2, it is symmetric and F is a

Lefshetz map.

LEMMA 7.4

Let A D CŒx1; : : : ; xn; y1; : : : ; yn� with 0 differential, where xi has bidegree .2; 0/

and yi has bidegree .�2;�2/. Then the operator F D
P
xi

@
@yi

is Lefshetz.

Proof

We can write ADCŒx1; y1�˝ � � � ˝CŒxn; yn�. It is easy to see that xi
@
@yi

is Lefshetz

on CŒxi ; yi �, and the statement follows from Lemma 7.3.

LEMMA 7.5

Let AD CŒ	1; : : : ; 	2n�.2n/, where 	i has bidegree .2; 1/, and F D 	1	2 C 	3	4 C

� � � C 	2n�1	2n. Then F is Lefshetz.

Proof

We have

ADCŒ	1; : : : ; 	2n�.2n/DCŒ	1; 	2�.2/˝CŒ	3; 	4�.2/˝ � � � ˝CŒ	2n�1; 	2n�.2/:

It is easy to see that 	i	j is Lefshetz for CŒ	i ; 	j �.2/, so by Lemma 7.3 F is Lefshetz

for A.

Lemmas 7.3, 7.4, and 7.5, together with the explicit description in Section 6.3,

immediately imply the following.
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COROLLARY 7.6

The y-ified basic objects Y.K Nn; Ng/ are Lefschetz.

Proposition 5.19, together with the classification of the basic objects, implies

that Y.HHk.L// is homotopy equivalent to a twisted complex built from copies of

Y.K Nn; Ng/ and homological shifts thereof. By Lemma 7.1 we obtain our main theorem

below.

THEOREM 7.7

For any link L the y-ified homology H.Y.HHk.L/// is Lefschetz.

Example 7.8

By the main result of [13], the y-ified homology of .n;n/ torus link has the form

HY
�
T .n;n/

�
D
\

i¤j

.xi �xj ; yi �yj ; �i ��j /�CŒx1; : : : ; xn; y1; : : : ; yn; �1; : : : ; �n�:

The symmetry exchanges xi and yi , clearly leaving the ideals

.xi � xj ; yi � yj ; �i � �j /

and their intersection unchanged. Furthermore, the operator F D
P
xi

@
@yi

satisfies

F
�
f .xi � xj /C g.yi � yj /C h.�i � �j /

�
D F.f /.xi � xj /CF.g/.yi � yj /

C g.xi � xj /CF.h/.�i � �j /

and preserves these ideals as well. The operator E acts by
P
yi

@
@xi

, so HY.T .n;n//

has a natural action of sl2.

Appendix A. Higher coproducts on A

A.1. Higher coproducts

As we discussed in Section 3.3, the coproduct� WA!A˝RA is coassociative up to

homotopy. In this section we write this homotopy and its higher analogues explicitly.

Define ı.3/ WA!A˝R A˝R A by the equation ı.3/.xi /D ı
.3/.x0

i /D ı
.3/.�i /D 0

and

ı.3/.uk/D
X

i

hk�3.xi ; x
0
i ; x

00
i ; x

000
i /�i ˝ �i ˝ �i ; k � 3:

We extend ı.3/ to all monomials inductively by the equations:
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ı.3/.axi /D ı
.3/.a/xi ; ı.3/.ax0

i /D ı
.3/.a/x00

i ;

ı.3/.a�i /D ı
.3/.a/.�i ˝ 1˝ 1C 1˝ �i ˝ 1C 1˝ 1˝ �i /;

ı.3/.auk/D ı
.3/.a/�1�.uk/C�2�.a/ı

.3/.uk/:

(34)

To make the last equation in (34) well defined, we may assume that uk is lexicograph-

ically maximal in the monomial auk .

LEMMA A.1

We have �1���2�D Œd; ı
.3/�, where �i acts on i th tensor factor.

Proof

Note that ı.3/.duk/D 0. We have

�1�.uk/D uk ˝ 1˝ 1C 1˝ uk ˝ 1C 1˝ 1˝ uk

C
X

i

hk�2.xi ; x
0
i ; x

00
i /�i ˝ �i ˝ 1

C
X

i

hk�2.xi ; x
00
i ; x

000
i /.�i ˝ 1˝ �i C 1˝ �i ˝ �i /;

so

�1�.uk/��2�.uk/D
X

i

�
hk�2.xi ; x

0
i ; x

00
i /� hk�2.xi ; x

0
i ; x

000
i /
�
�i ˝ �i ˝ 1

C
X

i

�
hk�2.xi ; x

00
i ; x

000
i /� hk�2.xi ; x

0
i ; x

000
i /
�
�i ˝ 1˝ �i

C
X

i

�
hk�2.xi ; x

00
i ; x

000
i /� hk�2.x

0
i ; x

00
i ; x

000
i /
�
1˝ �i ˝ �i

D
X

i

hk�3.xi ; x
0
i ; x

00
i ; x

000
i /
�
.x00
i � x

000
i /�i ˝ �i ˝ 1

C .x00
i � x

0
i /�i ˝ 1˝ �i C .xi � x

0
i /1˝ �i ˝ �i

�

D
X

i

hk�3.xi ; x
0
i ; x

00
i ; x

000
i / d.�i ˝ �i ˝ �i /D d

�
ı.3/.uk/

�
:

Next, we check that the homotopy extends correctly to all monomials (34). Note

that ı.3/.duk/D 0,

�1�.xi /D�2�.xi /D xi ; �1�.x
0
i /D�2�.x

0
i /D x

00
i ;

and
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�1�.�i /D�2�.�i /D �i ˝ 1˝ 1C 1˝ �i ˝ 1C 1˝ 1˝ �i :

In other words, all equations in (34) have the form

ı.3/.ab/D ı.3/.a/�1�.b/C�2�.a/ı
.3/.b/;

where we assume that a and b satisfy the statement of the lemma. Therefore

Œd; ı.3/�.ab/D dı.3/.a/�1�.b/C ı
.3/.a/�1�.db/C�2�.da/ı

.3/.b/

C�2�.a/ � dı
.3/.b/

� ı.3/.da � b/� ı.3/.a � db/

D
�
d; ı.3/.a/

�
�1�.b/C�2�.a/Œd; ı

.3/�.b/

D
�
�1�.a/��2�.a/

�
�1�.b/C�2�.a/

�
�1�.b/��2�.b/

�

D�1�.ab/��2�.ab/:

Furthermore, we can define

ı.s/.uk/D

´P
i hk�s.xi ; x

0
i ; : : : ; x

.s/
i /�˝s

i if s � k;

0 otherwise:

LEMMA A.2

We have the following A1 relations for ı.s/:

X

sCtDmC1

tX

aD1

˙ı.s/a ı.t/.uk/D d
�
ı.m/.uk/

�
: (35)

Equivalently, if we define a differential ı D d C
P
s;a ı

.s/
a acting on

L1
mD0A

˝m,

then ı2 D 0.

Proof

The case mD 3 follows from Lemma A.1; consider the case m > 3. By definition,

ı.s/.�i / D 0 for s > 2, so ı
.s/
a ı.t/ D 0 unless s D 2 or t D 2. Now it is easy to see

that each term �ai ˝ 1 ˝ �
m�1�a
i appears twice in (35), with coefficients complete

symmetric functions hk�mC1 evaluated atm arguments with x
.a/
i and x

.aC1/
i missing.

The difference of these functions is precisely .x
.a/
i � x

.aC1/
i /hk�m.xi ; : : : ; x

.m/
i /, up

to a sign, so overall sum agrees with d.ı.m//.

Remark A.3

All higher coproducts ı.s/ vanish on u2, so the the coproduct on the subalgebra of A

generated by u2 and �i is coassociative on the nose.
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Remark A.4

Equations (34) can be interpreted as a part of a bigger structure expressing the homo-

topy ı.3/ between two homomorphisms of A1 algebras (see, e.g., [22, Section 3.7]).

It would be very interesting to use similar ideas to extend all ı.s/ to a family of maps

ı.s/ WA!A
˝s , 2 � s satisfying (35). It appears that this would endow A with the

stricture of A1 bialgebra in the sense of [25], [39], and [42].

A.2. Integral formulas

The above constructions appear to be specific to power sums, but they can be gener-

alized to other symmetric functions.

LEMMA A.5

Let Q be a symmetric function. Define

a
Q
i .x; x

0/D

Z 1

0

@Q

@xi

�
txi C .1� t /x

0
i

�
dt I (36)

then

Q.x/�Q.x0/D
X

a
Q
i .x; x

0/.xi � x
0
i /:

Proof

We have

Q.x/�Q.x0/DQ
�
txi C .1� t /x

0
i

�ˇ̌1
0
D

Z 1

0

�
Q
�
txi C .1� t /x

0
i

��0
t
dt

D

iX

iD1

Z 1

0

.xi � x
0
i /
@Q

@xi

�
txi C .1� t /x

0
i

�
dt:

Example A.6

If QD pk is the power sum, then
@Q
@xi
D kxk�1

i , and

a
Q
i .x; x

0/D

Z 1

0

k
�
txi C .1� t /x

0
i

�k�1
dt D

Z 1

0

dt

xi � x
0
i

d

dt

�
txi C .1� t /x

0
i

�k

D
xki � .x

0
i /
k

xi � x
0
i

D hk.xi ; x
0
i /:

As a consequence, for any symmetric function Q the element
P
a
Q
i .x; x

0/�i is

a cycle in the algebra A. More generally, we call a collection of functions ai .x; x
0/

a factorization of Q if
P
ai .x; x

0/.xi � x
0
i / D Q.x/ � Q.x

0/. Let I be the ideal

generated by xi � x
0
i .
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LEMMA A.7

Suppose that ¹ai .x; x
0/º is a factorization of Q. Then the following holds:

(a) There exist Cij such that ai .x; x
0/D a

Q
i .x; x

0/C
P
j¤i Cij .x; x

0/.xj � x
0
j /.

(b) If ai .x; x
0/� a

Q
i .x; x

0/ 2 Ip , then Cij 2 I
p�1.

Proof

Let us change variables ti D xi �x
0
i and consider the Koszul complex with differential

d.�i /D xi � x
0
i D ti . We have

d
�X�

ai .x; x
0/� a

Q
i .x; x

0/
�
�i

�
D
X�

ai .x; x
0/� a

Q
i .x; x

0/
�
.xi � x

0
i /D 0;

so
P
.ai .x; x

0/�a
Q
i .x; x

0//�i is a cycle. Since ti form a regular sequence, there exist

Cij .x; x
0/ such that

X�
ai .x; x

0/� a
Q
i .x; x

0/
�
�i D d

�X

i<j

Cij .x; x
0/�i�j

�

D
X

i

�X

j<i

Cj i tj �
X

j>i

Cij tj

�
�i :

This implies (a) after changing the signs of Cij appropriately. For (b) it is sufficient to

note that the differential increases the t -degree by 1, so each homogeneous summand

in ai .x; x
0/� a

Q
i .x; x

0/ of t -degree p corresponds to Cij of degree p � 1.

Since A is a resolution of R, the cycle
P
a
Q
i .x; x

0/�i is a boundary, and the

following result gives an explicit construction of bounding element.

LEMMA A.8

Consider the derivation
P
uk

@
@pk

which sends a symmetric function Q to an element

U.Q/D

nX

kD1

uk
@Q

@pk
2A:

Let I 2 B be the ideal generated by the differences xi � x
0
i . For each symmetric

function Q there exist elements C
Q
ij 2 I such that we have

d
�
U.Q/C

X

i;j

C
Q
ij �i�j

�
D
X

i

a
Q
i .x; x

0/�i :

Proof

The derivation Q 7! U.Q/ is characterized by U.pk/D uk and
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U.fg/D U.f /gC f U.g/:

Suppose the corrections C
f
ij ;C

g
ij 2 I have been constructed for symmetric functions

f , g. Set

C
fg
ij D f C

g
ij C gC

f
ij CC

f;g
ij ;

where

C
f;g
ij D

1

2

�Z 1

0

dt

Z t

0

ds �

Z 1

0

ds

Z s

0

dt
� @f
@xi

�
sxC .1� s/x0

� @g
@xj

�
txC .1� t /x0

�
:

Setting x D x0 makes the integrand independent of s, t . Hence the difference of the

integrals vanishes and we have C
f;g
ij 2 I . Hence C

fg
ij 2 I . We have

X

i

C
f;g
ij d�i D

1

2

�Z 1

0

dt

Z t

0

ds �

Z 1

0

ds

Z s

0

dt
�

�
@f

@s

�
sxC .1� s/x0

� @g
@xj

�
txC .1� t /x0

�

D
1

2

�Z 1

0

dt
�
f
�
txC .1� t /x0

�
� f .x0/

�

�

Z 1

0

dt
�
f .x/� f

�
txC .1� t /x0

��� @g
@xj

�
txC .1� t /x0

�

D

Z 1

0

dt
�
f
�
txC .1� t /x0

�
� f .x/

� @g
@xj

�
txC .1� t /x0

�
:

Similarly, we have

X

j

C
f;g
ij d�j D�

Z 1

0

dt
�
g
�
txC .1� t /x0

�
� g.x/

� @f
@xi

�
txC .1� t /x0

�
:

Therefore we obtain
X

i

.C
f;g
ij �C

f;g
j i / d�i D a

fg
j � fa

g
j � ga

f
j :

Summing over all j leads to

d
�X

i;j

C
f;g
ij �i�j

�
D
X

j

.a
fg
j � fa

g
j � ga

f
j /�j ;

which is precisely what is required to show that the correction C
fg
ij satisfies the con-

dition for the function fg. Now any symmetric function can be expressed as a poly-

nomial of p1; : : : ; pn, for which the statement is clearly true, so the statement is true

in general.
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Note that the formulas for the coproduct and its higher analogues for uQ can be

written compactly using multivariable integrals:

ı.s/.uQ/D

Z

�s

Q
�
t0xi C t1x

0
i C � � � C tsx

.s/
i C �i .dt0 � dt1/

C � 0
i .dt1 � dt2/C � � � C �

.s/
i .dts�1 � dts/

�
:

For example, one can check that for QD pk we get

hk�s.xi ; x
0
i ; : : : ; x

.s/
i /D

.k � s/Š

kŠ

Z

�s

.t0xi C t1x
0
i C � � � C tsx

.s/
i /k�s dVol;

where �s D ¹.t0; : : : ; ts/ W ti � 0;
P
ti D 1º is the standard s-dimensional simplex.

This follows from the multinomial theorem and the multivariate beta integral

Z

�s

t
a0

0 � � � t
as
s dVolD

a0Š � � �asŠ

.a0C � � � C as C s/Š
:

Appendix B. Group cohomology

The constructions in this paper are motivated by the work of the third author on “curi-

ous hard Lefshetz” property in cohomology of character varieties (see [28]). The Lef-

shetz operator in [28] corresponds to a tautological 2-form on the character variety. In

this appendix, we review the construction of tautological forms on groups and other

varieties following Bott, Shulman, and Jeffrey [5], [6], [21].

B.1. Transgressions

Let G be a Lie group with Lie algebra g. Given an invariant function Q on g, we

define a family of differential forms ˆn.Q/ on Gn.

First we describe simplicial model for the universal bundleEG!BG. Consider

the family of spaces NG.n/DGnC1 with boundary maps "j WNG.n/!NG.n� 1/,

"j .U0; : : : ;Un/ D .U0; : : : ;cUj ; : : : ;Un/. We also consider the spaces NG.n/ D Gn

and the boundary maps "j WNG.n/!NG.n� 1/:

"0 W .g1; : : : ; gn/! .g2; : : : ; gn/;

"i .g1; : : : ; gn/D .g1; : : : ; gigiC1; : : : ; gn/; .1� i � n� 1/;

"n.g1; : : : ; gn/D .g2; : : : ; gn/:

There are maps q WNG.n/!NG.n/ and � WNG.n/!NG.N / defined as follows:

q.U0; : : : ;Un/D .U
�1
0 U1; : : : ;U

�1
n�1Un/;

�.g1; : : : ; gn/D .1; g1; g1g2; : : : ; g1 � � �gn/:
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It is easy to see that q ı � D IdNG.n/ and both q and � commute with the action of "j

for all j . Note that the choice of q and � is reverse from the one in [21].

We get the following commutative diagram:

NG W : : : G �G �G
"j

q

G �G
"j

q

G

q

NG W : : : G �G
"j

�

G

�

	

�

We define the complex .
L
n


�.NG.n//; ı/ with the differential

ı WD
�
�
NG.n/

�
!
�

�
NG.nC 1/

�
; ıD

X
.�1/i"�

i :

Let � D g�1 dg be the left-invariant g-valued one-form on G. Consider the n-

symplex �n D ¹.t0; : : : ; tn/ W 0� ti ;
P
ti D 1º; we define the one-form �.t/ on �n �

GnC1 by the equation

�.t/D

nX

iD0

ti�i :

Consider the curvature

F D d�.t/C
�
�.t/; �.t/

�
:

Given a symmetric function Q 2 S.g�/G of degree r , we define

ˆn.Q/D

Z

�

Q.F / 2
2r�n.GnC1/:

Finally, define ˆn.Q/D �
�ˆn.Q/, where

� WGn!GnC1; �.g1; : : : ; gn/D .g1 � � �gn; g2 � � �gn; : : : ; gn; 1/:

It is easy to see that ˆn.Q/D 0 for n > r , so there are finitely many forms for a

given Q. The forms ˆn.Q/ are not closed, but it is known that

.d ˙ ı/
�
ˆ1.Q/C � � � Cˆr .Q/

�
D 0;

so dˆn.Q/D˙ıˆn�1.Q/.

Example B.1

For G DGL.n/ we have � D g�1 dg, and for QD Tr.g2/ we get



2556 GORSKY, HOGANCAMP, and MELLIT

ˆ1.Q/D Tr
�
�; Œ�; ��

�
2
3.G/;

ˆ2.Q/D Tr.f �1 df ^ dgg�1/D .f j g/ 2
2.G �G/:

Then we have three equations

dˆ1.Q/D 0; d
�
ˆ2.Q/

�
D ı

�
ˆ1.Q/

�
; ı

�
ˆ2.Q/

�
D 0:

The latter equation can be written as .f j g/C .fg j h/D .f j gh/C .g j h/.

Example B.2

We have

.UV �1jV W �1/D
�
UV �1jV jW �1

�
� .V jW �1/

D
�
U jV �1jV jW �1

�
� .U jV �1/� .V jW �1/

D
�
U j1jW �1

�
� .U jV �1/� .V jW �1/

D .U jW �1/� .U jV �1/� .V jW �1/

since .V jV �1/D 0.

Example B.3

Suppose that G D .C�/n is the abelian group of diagonal matrices. Then � D u�1 du

and d� D 0, so

�.t/D
X

ti�i ; F D
X

�i dti :

Pick QD Tr.gr/; then

ˆk.Q/D

Z

�n

Tr
�X

�i dti

�k
D

´
Tr.�1 ^ � � � ^ �r / if k D r;

0 otherwise:

This is nothing but the degree 0 part of ı.r/.ur/, where we identify � D diag.�1; : : : ;

�n/, and

Tr.�1 ^ � � � ^ �r/D
X

�˝r
i :

B.2. Maps to the group

We can use the classes ˆn.Q/ in the following construction. We say that a map f W

X!G isQ-exact if f �ˆ1.Q/D d! for some .2r �2/-form !. Given twoQ-exact

maps f WX!G and g W Y !G as the product fg WX � Y !G �G
m
�!G and the

form
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! D !1C!2 � .f � g/
�ˆ2.Q/:

Recall the equation

dˆ2.Q/Dˆ1.Q/˝ 1�m
�ˆ1.Q/C 1˝ˆ1.Q/I

then

d! D d!1C d!2 � .f � g/
�ˆ2.Q/

D .f � g/�
�
ˆ1.Q/˝ 1C 1˝ˆ1.Q/� dˆ2.Q/

�

D .f � g/�m�ˆ1.Q/:

Unfortunately, this operation is not associative: on .X � Y /�Z we get the form

!1C!2C!2 � .f � g � h/
�.ˆ2˝ 1Cm

�
12ˆ2/;

while on X � .Y �Z/ we get the form

!1C!2C!2 � .f � g � h/
�.1˝ˆ2Cm

�
23ˆ2/:

Nevertheless, the equation

dˆ3.Q/D 1˝ˆ2 �m
�
12ˆ2Cm

�
23ˆ2 �ˆ2˝ 1

means that the two choices of form on X � Y � Z are different by .f � g �

h/� dˆ3.Q/.

B.3. Equivariant transgression

The above constructions extend to H -equivariant cohomology of G (see [21] for

details). In particular, one can define forms

ˆHn .Q/D

Z

�

Q
�
F C�

�
�.t/

��
2
2r�n

H .GnC1/;

where � is the moment map for the action of H on G.

Example B.4

Let H D G D .C�/n; then as above �.t/ D
P
�i ti , F D

P
�i dti , and �.�.t// DP

ti�i . Then

ˆH1 .Q/D

Z 1

0

Q
�
�0 dt � �1 dt C t�0C .1� t /�1

�
:

We can expand
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Q
�
�0 dt � �1 dt C t�0C .1� t /�1

�
DQ

�
t�0C .1� t /�1

�

C
X

i

.�0 � �1/i
@Q

@xi

�
t�0C .1� t /�1

�
;

so

ˆH1 .Q/D
X

i

.�0 � �1/i

Z 1

0

@Q

@xi

�
t�0C .1� t /�1

�
dt;

which is precisely the formula (36) when we write �i D .�0��1/i , �0 D .x1; : : : ; xn/

and �1 D .x
0
1; : : : ; x

0
n/.
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