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 15 

Abstract: Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon 16 

flux in the biosphere but its global magnitude and spatiotemporal dynamics remain uncertain1. 17 

The global annual mean GPP is historically thought to be around 120 PgC yr-1 2–6, which is ~30-18 

50 PgC yr-1 lower than GPP inferred from the oxygen-18 isotope (18O)7 and soil respiration8. 19 

This disparity is a source of uncertainty in predicting climate–carbon cycle feedbacks9,10. Here 20 

we infer GPP from carbonyl sulfide (OCS), an innovative tracer for CO2 diffusion from ambient 21 



air to leaf chloroplasts through stomata and mesophyll layers. We demonstrate that explicitly 22 

representing mesophyll diffusion is important for accurately quantifying the spatiotemporal 23 

dynamics of plant OCS uptake. From the estimated plant OCS uptake, we infer a global 24 

contemporary GPP of 157 (±8.5) PgC yr-1, which is consistent with estimates from 18O (150-175 25 

PgC yr-1) and soil respiration (149!"#$"% PgC yr-1), but with an improved confidence level. Our 26 

global GPP is higher than satellite optical observation-driven estimates (120~140 PgC yr–1) that 27 

are used for Earth System Model benchmarking. This difference predominantly occurs in the 28 

pan-tropical rainforests and is corroborated by ground measurements11, suggesting a more 29 

productive tropics than satellite-based GPP products indicated. As GPP is a primary determinant 30 

of terrestrial carbon sinks and may shape climate trajectories9,10, our findings lay a physiological 31 

foundation on which the understanding and prediction of carbon–climate feedbacks can be 32 

advanced. 33 

Main 34 

Terrestrial ecosystems remove carbon dioxide (CO2) from the atmosphere via photosynthesis, 35 

which is the largest carbon flux on Earth and fuels subsequent processes of the terrestrial carbon 36 

cycle12. Despite decades of effort to quantify photosynthetic CO2 uptake (or gross primary 37 

production, GPP), substantial uncertainty remains in its global magnitude, spatial patterns, 38 

temporal dynamics, and environmental responses6,8,13,14. This uncertainty cascades into 39 

predicting carbon-climate feedbacks1. The global GPP has been estimated to be around 120 PgC 40 

yr-1 since the early 1980s2,3, a value that has later been reiterated by remote sensing4,5. However, 41 

this value is at odds with independent inferences based on the oxygen-18 isotope (18O) signature 42 

of atmospheric CO27 (150-175 PgC yr-1) and soil respiration8 (149!"#$"% PgC yr-1). Such 43 



uncertainties present challenges for projecting the future trajectories of terrestrial carbon sinks15 44 

and call for novel constraints on GPP and its spatiotemporal patterns1.  45 

 46 

Carbonyl sulfide (OCS or COS) is a trace gas in the atmosphere, whose concentration is six 47 

orders of magnitude lower than that of CO216. Plants take up OCS through a diffusion pathway 48 

shared with CO2 and consume it via carbonic anhydrase (CA) within leaves. As the hydrolysis of 49 

OCS by CA is irreversible, plant OCS uptake, unlike CO2 exchange, is not offset by any 50 

production process and thereby tracks GPP. Moreover, the plant uptake, the dominant sink of 51 

atmospheric OCS, is spatially separated from its major sources (i.e., ocean and industrial 52 

sources)17. Consequently, the continental-scale uptake of OCS and CO2 (i.e., GPP) are 53 

coupled10,17.  54 

 55 

Quantifying GPP from OCS fluxes requires a realistic representation of OCS diffusion (from 56 

ambient air to leaf chloroplasts) and reaction processes (consumption by CA) along the soil-57 

plant-atmosphere continuum16, as implemented in Terrestrial Biosphere Models (TBMs). The 58 

OCS consumption via CA (𝑔&'(&)) is generally not considered a limiting factor for OCS 59 

exchange18. OCS diffusion parallels CO2 diffusion, as they share the pathway from ambient air 60 

through the leaf boundary layer, stomata, mesophyll layers, and to their respective reactive 61 

sites16. Along this pathway, the boundary layer conductance gb and stomatal conductance gs for 62 

CO2 (𝑔*&(" and 𝑔+&(" respectively) have been represented in most TBMs19. Such formulations can 63 

be adapted to represent the counterparts for OCS (i.e., 𝑔*(&) and 𝑔+(&)), after accounting for the 64 

different molecular diffusivities of OCS and CO2 in air16. However, the mesophyll conductance 65 



(gmes) has long been neglected in TBMs, even though mesophyll layers act as a major barrier 66 

(with a magnitude comparable to gs) to the movement of both CO2 and OCS inside leaves of C3 67 

plants20,21. Here 𝑔,-+(&)  is assumed equal to 𝑔,-+&(", as the aqueous diffusivities of CO2 and OCS are 68 

similar22,23. Unless otherwise specified, we use gmes to denote mesophyll conductance for both 69 

CO2 and OCS.  70 

 71 

An explicit implementation of gmes is therefore essential to mechanistically resolve the internal 72 

drawdown of CO2 and OCS along the mesophyll diffusion pathway. Although ad hoc 73 

compensating strategies via parameter tuning were employed (or gmes-implicit) and have 74 

appeared reasonable for estimating the “mean” for contemporary periods over limited spatial 75 

areas, such strategies may fall short in characterizing seasonal, interannual, or long-term trends 76 

and spatial variability24. The impact of gmes on the temporal and spatial dynamics of plant OCS 77 

uptakes and on OCS-inferred GPP estimates remains unclear.  78 

 79 

In this study, we quantify global plant OCS uptake and GPP and map their spatiotemporal 80 

dynamics using a bottom-up, process-based approach. We incorporate mechanistic models of 81 

gmes24 and OCS diffusion16 into the National Center for Atmospheric Research (NCAR) 82 

Community Land Model (CLM5) (Methods). We verify estimates of both OCS uptake and GPP 83 

against independent measurements and inferences from the field to the global scale. A key 84 

advantage of our approach is to resolve the spatiotemporal patterns of GPP, with new insights 85 

beyond a single global constraint offered by 18O7 or soil respiration8.  86 

Impact of gmes on OCS flux (FOCS)  87 



Compared with the gmes-implicit treatment, an explicit mechanistic representation of gmes 88 

improves agreement in ecosystem OCS fluxes (FOCS; negative for net uptake) with in-situ 89 

measurements at both Hyytiälä Forest, Finland (FI-Hyy) and Harvard Forest, USA (US-Ha1) 90 

(Methods), the only two sites where multi-year, continuous ecosystem OCS flux measurements 91 

are available (Fig. 1 & fig. S1). In particular, the gmes-explicit simulation better captures not only 92 

the peak-season magnitude but also the seasonal dynamics of FOCS. For example, at FI-Hyy, in-93 

situ FOCS reveals that OCS uptake may start as early as the end of January (e.g., in 2017) (fig. 94 

S1). This early start is unlikely a consequence of soil OCS uptake since the soil temperature was 95 

too low to stimulate soil uptake (fig. S2). The gmes-explicit simulation more realistically captures 96 

this early start of active FOCS uptake. Moreover, in the spring and fall at both FI-Hyy and US-97 

Ha1, the gmes-explicit simulated FOCS agrees well with measurements; in contrast, the gmes-98 

implicit simulation underestimates FOCS in both spring and fall at both sites.  99 

 100 

The improved model-observation consistencies in FOCS result from an explicit consideration of 101 

𝑔,-+(&) . This is confirmed by examining the internal conductance of OCS from leaf substomatal 102 

cavity to the OCS consumption site (𝑔.(&)) and the overall conductance of OCS from ambient air 103 

to the OCS consumption site (𝑔/(&))	(Methods). The gmes-implicit strategy bundles 𝑔,-+(&)  and 104 

𝑔&'(&) to form an apparent internal OCS conductance (𝑔.(&)) and ties it empirically to the 105 

maximum carboxylation rate (Vcmax) through a fixed scaling factor α (Methods)16. However, the 106 

actual relationship between 𝑔.(&) and Vcmax may vary with environmental conditions and 107 

phenological stages25 beyond what the limited existing observations of gas exchange can 108 

constrain16. Taking the two sites as an example, the Vcmax-scaled 𝑔.(&) and the resulting 𝑔/(&) 109 

tend to be smaller than those calculated from 𝑔,-+(&)  and 𝑔&'(&) explicitly considered throughout the 110 



year, especially in the dormant and shoulder seasons (fig. S3). In contrast, the gmes-explicit 𝑔/(&) 111 

more closely matches in-situ measurements (fig. S3). These results suggest that parameter 112 

adjustment cannot compensate for a lack of mechanistic representation of 𝑔,-+(&) 	 (fig. S4). 113 

Although the peak FOCS can be matched by tuning the scaling factor α25, such tuning cannot 114 

reproduce the seasonal variations of FOCS (fig. S1), particularly in the shoulder and dormant 115 

seasons because Vcmax decreases faster than 𝑔.(&) does (fig. S4). A similar phenomenon occurs at 116 

night when carboxylation pauses while leaf stomata remain partially open, allowing sizable plant 117 

OCS uptake that amounts to 20–30% of the total daily uptake26–28. Such nighttime plant OCS 118 

uptake cannot be captured by the gmes-implicit strategy, but can be reproduced by the gmes-119 

explicit simulation (fig. S5). Note that both gmes-implicit and gmes-explicit simulations assume 120 

that OCS is predominantly consumed by CA within leaf chloroplasts29.  121 

 122 

Globally, gmes-implicit and gmes-explicit simulations of FOCS show remarkable differences in time 123 

and space (Fig. 2 and fig. S6). Implicit gmes modeling leads to a weaker FOCS for almost all plant 124 

functional types (PFTs; Fig. 2) but C3 arctic grass. From 2000 to 2010, the gmes-implicit 125 

simulation yields a global average OCS sink of 752 GgS yr-1, consistent with the SiB4 estimate 126 

of 753 GgS yr-1 25. The gmes-explicit simulation yields a global FOCS of 967 GgS yr-1, which is 127 

still within the range of 368–1279 GgS yr-1 (with a mean of 917 GgS yr-1) reported previously 128 

(fig. S6). Differences between the gmes-explicit and implicit simulations (ΔFOCS), generally 129 

around 30%~50%, persist throughout the year for temperate and tropical regions but exhibit the 130 

largest seasonal variation in boreal forests of the northern hemisphere (NH). The distinct 131 

seasonal variation of ΔFOCS in boreal forests indicates a longer active OCS uptake period by 132 

gmes-explicit than gmes-implicit simulations, consistent with in-situ measurements at FI-Hyy (Fig. 133 



1 & fig. S1). The most pronounced gmes impact on FOCS is concentrated in NH boreal forests 134 

because of their stronger mesophyll diffusion limitation (i.e., smaller gmes) than other PFTs24 (fig. 135 

S7). For these PFTs, gmes acts as a strong barrier to both OCS and CO2 diffusion, decreasing FOCS 136 

by 10% to 50% (fig. S8) and potentially reducing photosynthesis by 25% to 75% according to 137 

leaf-level studies30. Although the arctic C3 grass is the only PFT to show weaker FOCS in the gmes-138 

explicit simulation, this pattern cannot yet be validated due to scarce measurements from this 139 

PFT31. Future studies, such as measurements and modeling of gmes dependence on leaf traits, 140 

temperature, and other environmental conditions, are required to understand the impact of gmes 141 

on FOCS for this PFT. 142 

 143 

Our results highlight the importance of mesophyll control, which is of a similar magnitude to 144 

stomatal control, but has not received due attention in TBM representation24. The global gmes 145 

model employed here formulates gmes as a function of leaf dry mass per unit area (Ma), and 146 

considers its vertical variation within canopy depth (driven by light gradient) as well as its 147 

response to leaf temperature and water stress. This formulation characterizes the first-order 148 

impacts of leaf structure and environmental variations on gmes and demonstrates reasonable 149 

performance in estimating contemporary GPP and OCS fluxes across spatial scales. However, 150 

future research to improve the gmes model formulation is still needed, especially with regard to 151 

the varying relationship between gmes and Ma across different PFTs32, temperature response 152 

functions of gmes33, complex responses of gmes to soil water stress34, and acclimation to future 153 

environmental changes35. These complexities, although challenging to parameterize due to 154 

limited measurements, are critical to understanding and predicting the gmes impact on global 155 



carbon and water fluxes under future changing climate scenarios20 (see detailed discussion in 156 

Supplementary Text S1). 157 

 158 

GPP inferred from OCS fluxes 159 

Further, we used leaf relative uptake (LRU, the concentration-normalized ratio of OCS and CO2 160 

uptake)14,36 to translate plant OCS uptake into GPP. LRU varies with environmental conditions, 161 

particularly light intensities, among other factors (e.g., water vapor pressure deficit VPD)26,37. 162 

Kooijmans et al.38 developed a parsimonious empirical equation between LRU and 163 

photosynthetic active radiation (PAR) based on hourly in-situ measurements at FI-Hyy. This 164 

unique leaf-scale dataset paired LRU and PAR along a full range of PAR continuum. Its joint use 165 

with concurrent canopy-level OCS flux measurements facilitated scaling from leaf to canopy 166 

scales. We applied the LRU-PAR equation developed from this dataset (Eq. 25, fig. S9) to 167 

translate the simulated plant OCS fluxes (gmes-explicit) into GPP, denoted as GPPOCS_LRU_PAR 168 

(Methods).  169 

 170 

We found that GPPOCS_LRU_PAR mirrors the in-situ GPP partitioned from net ecosystem exchange 171 

of CO2 (NEE) at both diurnal (Fig. 3) and seasonal scales (fig. S10). Compared to GPP inferred 172 

from plant OCS uptake with a commonly used constant LRU value (1.61 for C339) 173 

(GPPOCS_LRU_constant, gmes-explicit), GPP derived from PAR-dependent LRU (GPPOCS_LRU_PAR) is 174 

higher during daytime and the growing season, but zero at nighttime and lower during the non-175 

growing season as expected. GPPOCS_LRU_PAR tracks the diurnal and seasonal dynamics of in-situ 176 

GPP more closely than GPPOCS_LRU_constant. In addition, GPPOCS_LRU_PAR outperforms GPP 177 



simulated by the default Farquhar, von Caemmerer, and Berry (FvCB) model implemented in 178 

CLM5 (GPPCLM5_FvCB). For example, GPPCLM5_FvCB fails to capture the diurnal shape of GPP at 179 

FI-Hyy and US-Ha1 (e.g., the hysteresis in the afternoon) (Fig. 3), and markedly underestimates 180 

daytime and growing-season GPP at US-Ha1 (Fig. 3b, and fig. S10c). 181 

 182 

At the global scale, applying the parsimonious LRU-PAR equation (Methods) leads to an annual 183 

GPP estimate of 157 (±8.5) PgC yr-1 (GPPOCS_LRU_PAR, gmes-explicit, the 2000–2010 average) 184 

(Fig. 4a & fig. S11). Implicit treatment of gmes only slightly changes the global annual mean GPP 185 

to 152 PgC yr-1 (Table S1), implying that compensatory parameter adjustment might match the 186 

present-day global annual GPP magnitude but can distort the simulated seasonal and spatial 187 

dynamics of OCS fluxes and thus GPP (Fig. 2). However, a constant LRU value (a simplified 188 

strategy adopted in the literature10,14) strongly impacts the global GPP estimates (Fig. 4a, Table 189 

S1, detailed discussion in Supplementary Text S2).  190 

 191 

The global annual mean GPP inferred from the 18O signature of atmospheric CO2 was 150–175 192 

PgC yr-1 7 and that inferred from soil respiration was 149!"#$"% PgC yr-1 8. Our estimate of 157 193 

(±8.5) PgC yr-1, inferred from plant OCS uptake, falls within these independent constraints but 194 

with a considerably narrower uncertainty range. However, all these estimates are much higher 195 

than those derived from satellite optical remote sensing, e.g., estimates from upscaling globally 196 

distributed flux tower measurements using machine learning5,40 or LUE (light use efficiency)-197 

type models13,41 (Fig. 4a & fig. S11). Recently, somewhat higher GPP estimates (120–140 198 

PgCyr-1) were obtained from satellite solar-induced fluorescence (SIF) remote sensing with the 199 

assumption of a linear SIF-GPP scaling42, and process-based models driven by satellite optical 200 



data (e.g., LAI, fPAR, vegetation indices VIs)43,44; these estimates are still lower than our OCS-201 

inferred GPP estimates. The generally lower existing estimates likely result from their shared 202 

biases or uncertainties such as the spatial representativeness of flux towers, NEE partitioning 203 

approaches, and uncertainties in satellite remote sensing products, among others (detailed 204 

discussion in Supplementary Text S3). Interestingly, the global annual mean GPP directly 205 

simulated by CLM5 with the default FvCB photosynthesis module (GPPCLM5_FvCB) is 126 PgC 206 

yr-1, similar to estimates by existing satellite optical data-driven products. This low estimate 207 

likely results from parameter tuning to reproduce the widely cited bottom-up GPP estimates 208 

(e.g., around 120 PgC yr–1)4,5. Our stronger OCS-inferred GPP estimate is not due to the lack of 209 

exceptional El Niño/Southern Oscillation (ENSO) events in the period from 2000 to 2010, as 210 

demonstrated by our sensitivity simulation (Supplementary Text S4, fig S12).  211 

Revisiting the spatial GPP patterns 212 

Plant OCS uptake can offer new insights into the spatial and temporal variations of GPP, which 213 

previous global constraints such as the 18O 7 and soil respiration8 were unable to resolve. Our 214 

OCS-based approach not only informs global GPP but also pinpoints where and when GPP is 215 

likely misrepresented in existing remote sensing based products. To discern the spatiotemporal 216 

disparities of GPP from different approaches, we selected four widely used satellite optical 217 

remote sensing-driven GPP products (i.e., MODIS45, GOSIF46, FluxSat41 and FLUXCOM5 GPP) 218 

and compared them with our OCS-inferred GPP) (Fig. 4b-e, fig. S13). The largest discrepancies 219 

occur in the pan-tropical rainforests. This finding is consistent with a recent study11 that 220 

estimated GPP from comprehensive plot-scale measurements and detailed carbon budget 221 

quantification47. The aforementioned study reported that the mature intact rainforests in the 222 

tropical Amazon have substantially stronger GPP than what the existing satellite optical remote 223 



sensing driven products indicated. The poor performance of these satellite GPP products in the 224 

tropics is likely due to the impacts of frequent clouds and scarcity of flux tower observations 225 

which are needed for upscaling in this most productive region of the Earth6. 226 

 227 

To evaluate the robustness of the OCS-inferred GPP estimates in the pan-tropics, we compared 228 

GPPOCS_LRU_PAR against in-situ data at four tropical flux tower sites located in the central- and 229 

eastern-Amazon48 (Table S2). We found a close agreement in both dry and wet seasons at the 230 

four sites, particularly at the K67 and CAX towers (Table S2 & fig. S14). Additionally, 231 

GPPOCS_LRU_PAR outperforms GPPCLM5_FvCB (both gmes-implicit and explicit), which significantly 232 

underestimates GPP at all four sites in both dry and wet seasons (fig. S14). Furthermore, 233 

GPPOCS_LRU_PAR reveals substantially higher productivity in the western than central Amazon, as 234 

expected from the tropical forest aridity gradient there11. Such a contrast is consistent with OCO-235 

2 SIF observations49 and inference from plot-scale measurements11 but not captured by 236 

GPPCLM5_FvCB (Fig. 3c & d) or other GPP data products (fig. S13). These emergent patterns have 237 

important implications on the carbon sink capacity of tropical rainforests and their resilience to 238 

stress under climate change, and thus should be thoroughly evaluated in the future with 239 

independent ecosystem-scale measurements of OCS and GPP fluxes. Our findings suggest that 240 

in-situ measurements of ecosystem-scale OCS uptake with concurrent CO2 fluxes are critically 241 

needed across the pan-tropics to understand their dynamical relationships, which ultimately will 242 

help verify the regional-scale GPP magnitude and spatiotemporal variations reported here.  243 

 244 

Further, current satellite-driven products also underestimate GPP in NH mid-to-high latitudes, 245 

particularly during the growing season (Fig. 4c). This pattern is consistent with previous 246 



findings50 that utilized atmospheric OCS concentrations from ground measurements and aircraft 247 

campaigns to reveal a stronger GPP than existing TBMs in NH high latitudes. 248 

 249 

Impact of LRU on OCS-inferred GPP 250 

LRU, a key parameter for OCS-based GPP inference, varies with VPD26,38 and with PFTs17,39; 251 

yet this variability cannot be fully constrained due to limited observations. Nevertheless, our 252 

simulations and uncertainty quantification indicate that the empirical LRU-PAR equation is 253 

broadly applicable across species. For example, GPP estimates based on the LRU-PAR 254 

relationship derived at FI-Hyy track the GPP diurnal and seasonal cycles at US-Ha1 reasonably 255 

well (Fig. 3b and fig. S10c-d). Even in the tropical Amazon with drastically different 256 

environments, this parsimonious equation still leads to a GPP magnitude and dry-wet contrast 257 

consistent with in-situ measurements (fig. S14). At the global scale, we employed a Monte Carlo 258 

approach to quantifying the potential uncertainty from cross-PFT variability in LRU and in the 259 

LRU dependency on PAR. We synthesized field and laboratory measurements38,39 as a guidance 260 

to generate an ensemble of PFT-specific LRU-PAR relationships that mimic a diverse 261 

combination of PFT-dependent LRU-PAR relationships (details in Methods and Supplementary 262 

Text S5). The ensemble encompasses a wide range of LRU under ambient light conditions (fig. 263 

S15), but still yields a highly constrained uncertainty range of global GPP, i.e., ±8.5 PgC yr-1 264 

(Fig. 4). This indicates that the sensitivity of the global annual GPP estimates to the cross-PFT 265 

variability in LRU and the LRU-PAR relationship is scale-dependent. At local scales, this 266 

sensitivity can be substantial, as documented by chamber and/or canopy-level measurements38,51, 267 

but at the global scale, such sensitivity greatly diminishes. The dearth of field observations under 268 

varying light intensities and other environmental gradients across diverse biomes or species 269 



prevents a PFT-specific LRU formulation that varies not only with PAR but also with other 270 

environmental conditions (e.g., VPD26). Field measurements across a diverse range of biomes 271 

and environments are urgently needed to characterize PFT/species-specific LRU dependency on 272 

environmental conditions and plant traits. 273 

Conclusions 274 

Taking advantage of the close coupling between OCS and CO2 diffusion processes, we 275 

investigated the impact of mesophyll diffusion on the dynamics of plant OCS uptake, and 276 

inferred the global GPP and its spatiotemporal patterns. Our bottom-up estimates of plant OCS 277 

fluxes provide robust prior for quantifying the global OCS budget and for ascertaining the 278 

sources and sinks of OCS on Earth with inversion approaches10,50. Harnessing the mechanistic 279 

constraint from plant OCS uptake on photosynthesis, our study provides a well-constrained 280 

contemporary GPP estimate. This new estimate is consistent with independent inferences from 281 

18O isotope and soil respiration but with a much-improved confidence level and fully resolved 282 

spatial and temporal dynamics. Our advances mark a key step toward constraining GPP 283 

dynamics. As GPP is a primary determinant of terrestrial carbon sinks and shapes climate 284 

trajectories, our findings lay a solid physiological foundation on which the understanding and 285 

prediction of carbon–climate feedbacks can be advanced. 286 

 287 
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 411 

Main figure legends 412 

Fig. 1 Comparison of seasonal cycles of terrestrial ecosystem OCS fluxes (FOCS) simulated 413 

by implicit and explicit representations of mesophyll conductance (𝒈𝒎𝒆𝒔𝑶𝑪𝑺) with in-situ 414 

ecosystem-scale measurements at (a) Hyytiälä Forest, Finland (FI-Hyy) and (b) Harvard 415 

Forest, Massachusetts, USA (US-Ha1). Negative FOCS denotes net OCS uptake by the 416 

ecosystem. 417 

 418 

Fig. 2. Comparison of FOCS (2000–2010 average) between gmes-implicit and gmes-explicit 419 

simulations across plant functional types (PFTs). Curves show monthly mean FOCS (the right 420 

ordinate), and bars denote relative difference in percentage (ΔFOCS, gmes-explicit minus gmes-421 

implicit, normalized by gmes-explicit FOCS, the left ordinate). Maps show the seasonal ΔFOCS 422 

across the globe. A positive ΔFOCS indicates larger ecosystem OCS uptake (or sink) in gmes-423 

explicit simulations. Abbreviations: BDS: broadleaf deciduous shrub; BDT: broadleaf deciduous 424 

tree; BES: broadleaf evergreen shrub; BET: broadleaf evergreen tree; NDT: needleleaf 425 

deciduous tree; NET: needleleaf evergreen tree. Global PFT distribution is shown in fig. S16. 426 

 427 

Fig. 3. Comparison of GPP inferred from CLM5 OCS simulation with GPP simulated by 428 

CLM5 implemented with the default FvCB model. a & b, diurnal patterns of CLM5 OCS-429 



inferred GPP (GPPOCS_LRU_PAR and GPPOCS_LRU_constant, both are gmes-explicit) and the CLM5 430 

GPP simulations with the default FvCB (GPPCLM5_FvCB, gmes-explicit) in comparison to GPP 431 

partitioned from in-situ NEE (detailed partitioning methods described in Table S3) at FI-Hyy and 432 

US-Ha1 Due to data availability, the mean diurnal cycle from June to mid-July 2017 is shown 433 

for FI-Hyy, and that from June to August during 2012 and 2013 is shown for US-Ha1. c & d, 434 

global annual mean GPP (in 2010) inferred from CLM5 OCS simulations and simulated by 435 

CLM5 with default FvCB, respectively.  436 

 437 



Fig. 4. Intercomparison of GPP estimates from existing approaches. a, the global annual 438 

mean GPP estimates synthesized from literature8. A full list of individual studies under each 439 

category is in fig. S11 (with references). Here colors differentiate the broad categories of 440 

approaches. GPP estimates from this study are all based on gmes-explicit simulations. GPP 441 

estimates inferred from oxygen-18 isotope, soil respiration, and satellite solar-induced 442 

fluorescence (SIF) with linear scaling come from single references, thus the error bars (in black) 443 

denote their uncertainty ranges provided by each reference; GPP estimates from machine 444 

learning-based upscaling and LUE-based upscaling are synthesized from multiple references and 445 

the error bars (in red) denote the standard deviation across different studies falling into the same 446 

category of approaches. b to e, zonal variations of GPP from this study and a subset of widely 447 

used satellite optical remote sensing-driven products from a. 448 

 449 

Methods 450 

Model parameterization of ecosystem OCS fluxes  451 

Ecosystem OCS uptake 452 

Terrestrial ecosystem OCS uptake (termed FOCS) is modeled as:  453 

𝐹(&) = 𝑔6(&)(𝑂𝐶𝑆6 − 𝑂𝐶𝑆,)     (1) 454 

where 𝑔6(&) is the aerodynamic conductance for OCS and assumed equal to that for water; OCSa 455 

is the OCS concentration in the canopy air space, updated at each model time step; OCSm is the 456 

OCS concentration at a reference level. We used the global gridded monthly estimations of OCS 457 

concentration from Ma et al.52. 458 

 459 



OCSa in Eq. (1) was updated at each time step based on simulated plant and soil fluxes as 460 

follows:  461 

𝑂𝐶𝑆! = %𝑂𝐶𝑆!_#$%& + 𝑑𝑡/𝑂𝐶𝑆'!# × +𝑂𝐶𝑆( ∙ 𝑔𝑎𝑂𝐶𝑆 − 𝐹)'*_*)+, − 𝐹)'*_&%-/0 /+1 + 𝑑𝑡 ∙𝑔𝑎𝑂𝐶𝑆/𝑂𝐶𝑆'!#/ (2) 462 

where OCSa_prev refers to OCSa in the previous time step (the OCS concentration at the starting 463 

time step was set as 450 parts per trillion); dt is the CLM model timestep; OCScap is the air 464 

capacity for the OCS exchange (unit: mol air m-2), calculated based on OCS canopy air depth 465 

which was assumed to be a constant (i.e., 10 m); 𝐹;<+_+;.> and 𝐹;<+_?-@ are the OCS plant and soil 466 

fluxes whose calculation is described below. 467 

 468 

OCS Plant uptake 469 

Plant uptake of OCS (termed as Focs_veg) is modeled as: 470 

𝐹;<+_?-@ = 𝑂𝐶𝑆6 × 𝑔/(&); 	𝑔/(&) =
A

.
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.
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.
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123$
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/27
123
   (3) 471 

where OCSa was updated for each model time step by Eq. (2), 𝑔/(&) is the OCS conductance 472 

from the leaf boundary layer to the CA reaction site (unit: mol m-2s-1), calculated based on leaf 473 

boundary layer conductance (𝑔*(&)), stomatal conductance (𝑔+(&)), and mesophyll conductance 474 

(𝑔,-+(&)), as well as a reaction rate coefficient for OCS hydrolysis by carbonic anhydrase (CA) 475 

(𝑔&'(&), also termed as biochemical conductance).  476 

 477 

Although CA is ubiquitous in plants, we only considered the OCS consumption by chloroplast 478 

CA, as existing experimental evidence showed that chloroplast CA dominates the total OCS 479 

consumption29. Following existing parameterization of plant OCS uptake16, we assumed that the 480 



pathway for OCS diffusion from ambient air to leaf chloroplast is similar to that of CO2 as 481 

represented in current land surface models. Analogous to CO2, the boundary layer and stomatal 482 

conductance of OCS can be scaled from those of water vapor (denoted as 𝑔+B"( and 483 

𝑔*B"(	respectively)37 following: 484 

𝑔*(&) =
@0
891

A.DE
, 𝑔+(&) =

@4891

A.%F
    (4)  485 

The mesophyll conductance of OCS (𝑔,-+(&)) was assumed equal to that of CO2 (𝑔,-+&(")18, as a 486 

substantial part of mesophyll diffusion is in the aqueous phase, and the aqueous diffusivities of 487 

these two gases are similar22,23. However, unlike 𝑔+B"( and 𝑔*B"(, 𝑔,-+&(" was not represented in 488 

the standard version of CLM5. In this study, we implemented both implicit and explicit 489 

considerations of mesophyll diffusion to model the OCS plant uptake (descriptions will be given 490 

below). 491 

CLM is a two-big-leaf model, which resolves canopy leaves into sunlit and shaded leaves. 492 

Therefore, 𝑔/(&) was calculated respectively for sunlit and shaded leaves and aggregated as 493 

follows: 494 

𝑔/(&) = 𝑔/_	+HI(&) ∙ 𝐿𝐴𝐼+HI + 𝑔/_	+J6(&) ∙ 𝐿𝐴𝐼+J6  (5) 495 

where	𝑔/_	+HI(&)  and 𝑔/_	+J6(&)  are the 𝑔/(&) for sunlit and shaded leaves, respectively, and 𝐿𝐴𝐼+HI and 496 

𝐿𝐴𝐼+J6 are leaf area index (LAI) for sunlit and shaded leaves, respectively.  497 

 498 

A: OCS plant model with implicit mesophyll diffusion 499 

Independent studies have shown that both the mesophyll conductance (𝑔,-+(&)) and CA activity 500 

(𝑔&'(&)) tend to scale with the maximum carboxylation rate of Rubisco (Vcmax)53,54. Therefore, an 501 



alternative approach was proposed to combine the two processes of 𝑔,-+(&)  and 𝑔&'(&) into a single 502 

apparent conductance 𝑔.(&) for the calculation of the overall conductance 𝑔/(&): 503 

𝑔/(&) =
A

.
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123$

.
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.
/:
123
    (6) 504 

In Eq. (6), 𝑔.(&)represents the internal conductance of OCS diffusion from the intercellular air 505 

space to CA reaction sites and is assumed proportional to Vcmax16: 506 

𝑔.(&) = 𝛼 ∙ 𝑉<,6K ∙ 𝑓L(𝜃) ∙ (
M
M;
) ∙ (N<=>

N;
)   (7) 507 

where α is a scaling factor (1400 for C3 species and 8862 for C4 species25), fw(θ) is the water 508 

stress function (ranging from 0 to 1) implemented in CLM5, p is the atmospheric pressure, and 509 

p0 is the reference surface pressure (1000 hPa), Tcan is canopy temperature which is 510 

prognostically calculated by CLM5, and T0 is the reference temperature (273.15 K). The water 511 

stress function fw(θ) is: 512 

𝑓L(𝜃) = ∑ 𝑓O;;/,. ∙ 𝑤.(𝜃)I
.     (8) 513 

where froot,i denotes the root fraction within soil layer i; and wi refers to the plant wilting factor 514 

related to soil water content 𝜃. 515 

B: OCS plant model with explicit mesophyll diffusion 516 

Although mesophyll diffusion was not represented in the standard version of CLM5, attempts 517 

have been made to represent the mesophyll conductance of CO2 (𝑔,-+&(")24 in some ways. Here, we 518 

assumed 𝑔,-+&(" equal to 𝑔,-+(&)18, and leveraged a process-based gmes model24 to explicitly calculate 519 

gmes. 𝑔&'(&), which depends on CA activity, is assumed constant (0.055 mol m-2s-1) following 520 

Wehr et al.18: 521 



	𝑔&'(&) = 0.055.    (9)  522 

This value (0.055) was estimated from measurements made at Harvard Forest, a temperate 523 

deciduous forest, but works well also at a boreal needleleaf forest site (Hyytiälä Forest, Finland, 524 

FI-Hyy) (Fig. 1). This cross-site applicability suggests that the simulated OCS fluxes may not be 525 

sensitive to the value of 𝑔&'(&). We also evaluated the impact of the temperature dependence of 526 

𝑔&'(&), using Eq. (10), and found no significant effects on the simulated OCS fluxes (fig. S17).  527 

𝑔&'(&) = 0.8 × 0.055 × 𝑒𝑥𝑝(Q;
R
( 1

𝑇𝑟𝑒𝑓
−

1

𝑇𝐿
))   (10) 528 

where E0 is the activation energy (40 kJ mol-1), R is the ideal gas constant (8.3145 J mol-1K-1), 529 

Tref denotes the reference temperature (293 K), and TL is leaf temperature, prognostically 530 

calculated by CLM5. 531 

 532 

Process-based gmes model  533 

Sun et al.24 developed the first global process-based 𝑔,-+&(" model for C3 plants, which was 534 

successfully applied to CLM4.5. The model considered 𝑔,-+&(" variations with leaf structures and 535 

environmental conditions (e.g., temperature and water stress), following: 536 

𝑔,-+&(" = 𝑔,6KS ∙ 𝑓T(𝐿𝐴𝐼) ∙ 𝑓N(𝑇U) ∙ 𝑓L(𝜃)   (11) 537 

where gmax0 is the maximum 𝑔,-+&(" under non-stressed conditions (i.e., the presence of ample soil 538 

water at 25℃); fI(LAI) refers to the vertical variation of 𝑔,-+&(" as a function of LAI; fT(TL) 539 

represents the response function of gmes to leaf temperature (TL, calculated by CLM5); and fw(θ) 540 

is the water stress function given in Eq. (8). gmax0 is given by 541 

𝑔,6KS = 𝑎 ∙ 𝑀6S
*      (12) 542 



where Ma0 represents the leaf dry mass per unit area (Ma, unit: g m-2) at canopy top, which can be 543 

calculated as two times the inverse of the canopy-top specific leaf area SLA0 (a parameter in 544 

CLM5). In CLM5, Ma differs from 1/SLA0 (with a unit of gC m-2) by a factor of two, as the latter 545 

only includes carbon fraction; the carbon content is assumed to be 50% of leaf dry mass24. a and 546 

b are two constants (a = 24.240338, b = -0.6509)24. This gives a 𝑔,-+&(" the unit mol m-2 s-1 Pa-1, 547 

which can be converted to mol m-2s-1 if multiplied by surface pressure.  548 

 549 

Since CLM5 divides the canopy leaves into sunlit and shaded fractions, the function fI in Eq. (11) 550 

was also defined for sunlit (fI_sun) and shaded (fI_sha) fractions, respectively: 551 

𝑓T_+HI(𝐿𝐴𝐼) =
V0

V/$V0
∙ A!-KM	W!XV/$V0YU'TZ	

A!-KM	(!V0∙U'T)	
	   (13a) 552 

𝑓T_+J6(𝐿𝐴𝐼) =
V0

V/XV/$V0Y
V0!XV/$V0Y-KM	X!V/U'TY$V/-KMW!XV/$V0YU'TZ	

-KM	(!V0U'T)	!A$V0U'T
 (13b) 553 

where LAI is the leaf area index; kb is the direct beam extinction coefficient; kg is a composite 554 

parameter with an empirical value of 0.08997. 555 

The temperature response function fT(TL) in Eq. (11) is given by: 556 

𝑓N(𝑇U) = 𝑒𝑥𝑝	( <!∆B=/(R∙NC)
A$-KM	((∆)∙NC!∆BD)/(R∙NC))

)	    (14) 557 

where c is a scaling constant (20); ∆𝐻6 is the activation energy (49.6×103 J mol-1); R is ideal gas 558 

constant; ∆𝑆 is an entropy term (1.4×103 J mol-1K-1); and ∆𝐻` is the deactivation energy 559 

(437.4×103 J mol-1). 560 

 561 



Sun et al.24 also applied the simulated 𝑔,-+&(" to facilitate a more accurate photosynthetic 562 

estimation, as CO2 concentrations drop considerably along mesophyll diffusion pathways, 563 

expressed by Eq. (15): 564 

𝐶< = 𝐶. − 𝐴/𝑔,-+&("     (15) 565 

where Cc and Ci are the CO2 partial pressure (unit: Pa) inside leaf chloroplasts and that at 566 

intercellular air space; A is the net carbon assimilation rate (unit: µmol m-2s-1).   567 

 568 

Sun et al.21 gave a relationship to estimate the true photosynthetic parameters (i.e., the gmes-569 

including parameters) from the CLM modeled gmes-lacking parameters once 𝑔,-+&(" is known: 570 

𝑦 = 𝑤 ∙ 𝑒𝑥𝑝	(𝑝 LE

(@564
219)F$?

)    (16) 571 

where y denotes parameters for a gmes-explicit representation (including Vcmax, Jmax at a reference 572 

temperature of 25℃) and w denotes their counterparts in a gmes-implicit representation; p, q, u, 573 

and v are empirical constants: they are 0.034, 1.1253, 0.8787, and 0.4801 for Vcmax while are 574 

0.2935, 1.4838, 0.0858, and 0.1726 for Jmax. 575 

 576 

OCS soil flux 577 

We used a mechanistic model55 to simulate the soil flux of OCS (Focs_soil). This model described 578 

the OCS uptake or production together with the OCS diffusion, respectively, for each soil 579 

column of a uniform temperature, soil moisture, and porosity. The Ogée soil model has been 580 

used to infer reaction rate parameters across a range of biomes and land cover types in several 581 

laboratory studies56,57. It has also been applied to SiB4, showing a good performance25.  582 



The Ogée soil model simplifies the soil OCS flux (Focs_soil) as: 583 

𝐹;<+_+;.> = √𝑘𝐵𝜃𝐷 O𝑂𝐶𝑆+_6 −
a.9b
c
P1 − 𝑒𝑥𝑝 Q!aG

a.
RST  (17) 584 

where k is the first-order rate constant for CA-mediated OCS hydrolysis (unit: s-1); B is the non-585 

dimensional solubility of OCS in water (unit: mol m–3 H2O/mol m–3 air); 𝜃 is volumetric soil 586 

water content (unit: m3 m-3); D is soil OCS diffusivity (unit: m3 air m-3 soil s-1); OCSs_a is the 587 

OCS mole fraction at the soil-air interface, assumed to be identical to the OCS mole fraction at 588 

the canopy air space; z1 is D/(kBθ); P is the OCS production rate (unit: molm-3s-1); zp is soil depth 589 

(= 1.0 m). Various functions in Eq. (17) are modeled as follows. 590 

The rate constant k in Eq. (17) is given by: 591 

𝑘 = 𝑓HI ∙ 𝑘JK'!L ∙
M%&(O)

M%&QO'()R
		     (18) 592 

where fCA is the CA enhancement factor (see Table S4 for its values across different plant 593 

function types (PFTs)); kuncat is the uncatalyzed reaction rate; xCA(T) and xCA(Tref) are temperature 594 

response functions. The uncatalyzed reaction rate kuncat depends mostly on the temperature T and 595 

pH (assume constant at 4.5): 596 

𝑘#$%&' = 2.15 × 10() *−10450 -*+ −
*

+!"#
./ + 12.7 × 10(,-$.,/𝑒𝑥𝑝 *−6040 -*+ −

*
+!"#

./ (19) 597 

where pKw is the dissociation constant of water (i.e., 14.0). For agricultural patches, the kuncat 598 

value was designated as 1/5 of the value calculated from Eq. (19) as agricultural soil was 599 

reported to have a lower kuncat58.  600 

The temperature response function xCA(T) in Eq. (18) is given by: 601 

	𝑥01(𝑇) =
23,	((∆/%/8+)

*.23,	((∆/&/8+.∆:&/8)
    (20) 602 



where ∆𝐻6, ∆𝐻`, and ∆𝑆` are thermodynamic parameters with values of 40 kJ mol-1, 200 kJ mol-603 

1, and 660 J mol-1K-1, respectively 604 

The non-dimensional solubility B of OCS in water in Eq. (17) is related to Henry’s law constant 605 

KH (unit: mol m-2Pa-1) and depends on temperature: 606 

𝐵 = 𝑘B ∙ 𝑅 ∙ 𝑇;	𝑘B = 2.1 × 10−4 ∙ 𝑒𝑥𝑝	 P
"F%SSd1

𝑇
−

1
298.15

e

R
S  (21) 607 

The soil OCS diffusivity D in Eq. (17) is calculated as25: 608 

𝐷 = 𝐷-ff,6 + 𝐷-ff,> ∙ 𝐵;	𝐷-ff,6 = 𝐷S,6(𝑇) ∙ 𝜏6 ∙ 𝜀6; 	𝐷-ff,> = 𝐷S,> ∙ 𝜏> ∙ 𝜃 (22) 609 

where 𝐷-ff,6 and 𝐷-ff,> are the effective diffusivities of gaseous OCS and dissolved OCS 610 

through the soil matrix, respectively; D0,a refers to the binary diffusivity relative to temperature 611 

as: D0,a(T) = D0,a(298.15K)(T/298.15K)1.5 where D0,a(298.15 K) (or D0,a(25°C)) equals to 612 

1.27×10-5 m2s-1; D0,l is also relative to temperature: D0,l(T) = D0,l(T0)(T/T0-1)1.5 where T0 is 216 K 613 

(−57.15°C) and D0,l(T0) can be calculated as D0,l(298.15K)/(298.15K/T0-1)1.5 with D0,l(298.15 K) 614 

equal to 1.94×10-9 m2 s-1; τa and τl are the tortuosity factors used to describe the tortuous 615 

movement through the air- or water- filled pore space. We selected the τa function59 formed as 616 

(0.2(εa/ϕ)2+0.004)/ϕ where εa is the volumetric air content and ϕ is total soil porosity, and τl 617 

function60 formed as θ7/3/ϕ2 where θ is the volumetric water content as they are independent of 618 

pore-size distribution25.  619 

The OCS production rate P in Eq. (17) is assumed uniform from the surface to depth zp (= 1.0 m) 620 

and controlled by soil temperature Tsoil (in ℃):  621 

𝑃 = 𝑗 ∙ 𝑒𝑥𝑝(𝑚 ∙ 𝑇+;.>)     (23) 622 



where j and m are empirical parameters whose average values across different PFTs are given in 623 

Table S4. 624 

 625 

Inference of GPP from plant OCS fluxes 626 

OCS plant uptake is used to infer GPP, once the concentration-normalized ratio of OCS and CO2 627 

uptake (LRU, leaf relative uptake) is known: 628 

𝐺𝑃𝑃 = 𝐹𝑜𝑐𝑠_𝑣𝑒𝑔
[𝐶𝑂2]𝑎
[(&)]=

1
𝐿𝑅𝑈
     (24) 629 

where [CO2]a denotes the ambient concentration of CO2. For inferring GPP from site-level 630 

simulations, site measurements of [CO2]a and [OCS]a were used herein; whereas for inferring 631 

GPP at the global scale, model simulation of [CO2]a and [OCS]a were used. 632 

 633 

LRU has been estimated in some experimental studies17. Measurements carried out in 22 C3 634 

plant species reported cross-species ranges of LRU with a mean value of 1.61 (± 0.26)39, which 635 

has been adopted by previous studies in evaluating GPP-OCS relationships at sites or 636 

globally14,61. However, a constant LRU is not able to accurately translate plant OCS uptake to 637 

GPP, as LRU was observed to decrease with increasing photosynthetically active radiation 638 

(PAR) at both leaf and ecosystem scales38,51. Here, we applied two approaches to calculating the 639 

LRU for C3 species (a constant LRU of 1.16 was used for C4 species for both approaches, as C4 640 

species were reported to have a much lower LRU29,61) and obtained two estimates of OCS-641 

inferred GPP from Eq. 24. First, a constant LRU value of 1.61 was adopted, leading to a GPP 642 

estimate termed as GPPOCS_LRU_constant. Second, we considered the LRU variations in response to 643 

light intensity, and adopted the empirical equation between LRU and PAR proposed by 644 



Kooijmans et al.38 at Hyytiälä, Finland (Eq. 25). The applicability of the LRU-PAR relationship 645 

in estimating GPP (the resulting GPP is termed as GPPOCS_LRU_PAR) was evaluated at two sites in 646 

different biomes (Fig. 3 & fig S10). The two OCS-inferred GPP were compared with each other 647 

and also with that directly simulated by the CLM5 with the default FvCB model (termed 648 

GPPCLM5_FvCB) (Table S5). 649 

𝐿𝑅𝑈 = 607.2623/𝑃𝐴𝑅 + 0.5705    (25) 650 

Comparison of OCS-inferred GPP with in-situ canopy-scale GPP in Amazon rainforests 651 

Both OCS-inferred and CLM5 FvCB-simulated GPP were compared with in-situ GPP 652 

partitioned from in-situ NEE measurements at four tropical sites located in central and eastern 653 

Amazon. Here the GPP dataset came from the Large-Scale Biosphere-Atmosphere Experiment in 654 

the Amazon - Ecology dataset (LBA-ECO)62, which has been harmonized across projects with 655 

additional quality control checks performed, and aggregated to several time intervals. The four 656 

sites were selected (following Restrepo‐Coupe et al.48) because: (1) they represent mature intact 657 

tropical forests in Amazon that are highly productive, and (2) they span a range of dry-season 658 

intensities and lengths. The simulation design and model-data comparison at these four sites are 659 

provided in Supplementary Text S6.  660 

 661 

Monte Carlo simulations of uncertainties in GPP estimates arising from cross-PFT 662 

variabilities in LRU and its light dependency.  663 

GPP uncertainty may arise from cross-species/PFT variabilities in LRU and its light dependency. 664 

To systematically assess this uncertainty, we combined best available field measurements with 665 

Monte Carlo simulations to generate ensemble estimates of GPP based on diverse combinations 666 



of PFT-specific LRU-PAR relationships. The core of this approach is to construct diverse 667 

combinations of PFT-specific LRU-PAR relationships guided by field measurements. To achieve 668 

this, we generated ensemble LRU-PAR relationships by randomly sampling data points from two 669 

types of field datasets to mimic cross-species variability (Supplementary Text S5). The two field 670 

datasets employed here are: 1) leaf-level measurements of Kooijmans et al.38, so far the only 671 

publicly available leaf-scale dataset with paired LRU-PAR along a full range of PAR continuum 672 

and with concurrent canopy-level OCS flux measurements that can facilitate scaling from leaf to 673 

canopy scales, and 2) datasets compiled by Stimler et al.39, so far the only dataset available that 674 

have LRU measurements under multiple standardized PAR levels across diverse PFTs/species. 675 

Kooijmans et al.38 provided continuous and paired LRU-PAR measurements in the full PAR 676 

range. It offers the baseline “shape” (functional relationship) between LRU and PAR that all 677 

plant species may follow, i.e, a linear relationship between LRU and 1/PAR (or a hyperbolic 678 

relationship between LRU and PAR). Then we applied the cross-PFT variability by varying 679 

slopes and intercepts of the baseline linear shapes. This was achieved by imposing random 680 

variations (representing cross-species variability) to the “baseline” shape, with the random 681 

variation generated from the dataset of Stimler et al.39. We chose measurements from Stimler et 682 

al.39 (synthesized in their Table II) to represent species variability in LRU and its PAR 683 

dependency, primarily because: (1) it covered LRUs from 22 species in total belonging to four 684 

different biome types; (2) it provided LRU values for each species at three different (and 685 

standardized) light levels, i.e., 179, 352, and 1889 μmol m−2s−1, which allowed us to quantify 686 

LRU variability arising from species differences under multiple light levels, and (3) these LRUs 687 

were measured at the same environmental conditions including CO2 concentration, air 688 



temperature, and humidity, ensuring that the LRU variability primarily comes from PAR for 689 

each species.  690 

 691 

Although there are other studies that synthesized LRU values across species from literature (e.g., 692 

Whelean et al.17), these values came from different studies under diverse combinations of 693 

environmental conditions, without standardizing PAR levels or controlling other environmental 694 

factors, precluding the possibility to systematically quantify the variability of LRU-PAR 695 

dependency across species. There are also attempts to employ the optimization theory to  696 

generate global mapping of LRU (e.g., Wohlfahrt et al.63), but challenges still remain with this 697 

approach in quantifying LRU-PAR relationships under unsaturated light conditions. More field 698 

measurements are needed to better characterize LRU variability with light across PFTs.  699 

 700 

Design of CLM5 Model Simulations  701 

We used the CESM (Community Earth System Model) CLM5 as the TBM for OCS simulation. 702 

Four simulations were carried out, with different parameterizations of 𝑔/(&) (Table S6). For 703 

simulation 1 (S1, gmes-implicit simulation), we implemented the OCS plant model with implicit 704 

mesophyll diffusion16. For simulation 2 (S2, gmes-explicit simulation), the OCS plant model with 705 

explicit mesophyll diffusion was implemented, with gmes calculated by a process-based model24. 706 

Comparison between S1 and S2 shows the impact of mechanistic consideration of mesophyll 707 

diffusion in OCS flux simulation. For simulation 3 (S3, gmes-excluding simulation), we assumed 708 

gmes infinite (i.e., ignoring mesophyll resistance) and computed 𝑔/(&) only with 𝑔*(&), 𝑔+(&) and 709 

𝑔&'(&). Comparison between S2 and S3 shows the effect of mesophyll diffusion on OCS fluxes. 710 



For simulation 4 (S4), we implemented explicit gmes while employing a temperature response 711 

function for 𝑔&'(&) (Eq. 10). Comparison between S2 and S4 shows the impact of 𝑔&'(&) 712 

parameterization on OCS simulation.  713 

 714 

Each simulation was run with active biogeochemistry (BGC) and crop models and was preceded 715 

by a spin-up for 100 years. We performed both global simulations and point simulations. For 716 

global simulation, all scenarios from S1 to S4 were performed from 2000 to 2010. 717 

Meteorological data from GSWP3 (Global Soil Wetness Project Phase 3) NCEP (National 718 

Centers for Environmental Prediction) dataset on a 3-hour interval (available from 1901 to 2014) 719 

was used as meteorological forcing. Point simulation was run at two field sites: Hyytiälä, Finland 720 

(FI-Hyy) (2013–2017) and Harvard Forest (US-Ha1) (2012–2013), where OCS observations 721 

exist across most months within a year38,51 and partitioned GPP estimates were also available for 722 

growing seasons38,64 (Table S3). For each site, the plant function type (PFT) in model simulation 723 

was set as consistent with the site land cover type, and site observations of meteorological 724 

conditions were used as meteorological forcing.  725 

Data and materials availability: The CLM5 simulation output related to this study is available 726 

at https://doi.org/10.7298/mxg9-7176.  727 
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