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Abstract: Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon
flux in the biosphere but its global magnitude and spatiotemporal dynamics remain uncertain'.
The global annual mean GPP is historically thought to be around 120 PgC yr'! 26, which is ~30-
50 PgC yr'! lower than GPP inferred from the oxygen-18 isotope (**O)” and soil respiration®.
This disparity is a source of uncertainty in predicting climate—carbon cycle feedbacks®!?. Here

we infer GPP from carbonyl sulfide (OCS), an innovative tracer for CO> diffusion from ambient
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air to leaf chloroplasts through stomata and mesophyll layers. We demonstrate that explicitly
representing mesophyll diffusion is important for accurately quantifying the spatiotemporal
dynamics of plant OCS uptake. From the estimated plant OCS uptake, we infer a global
contemporary GPP of 157 (£8.5) PgC yr!, which is consistent with estimates from 30 (150-175
PgC yr'!) and soil respiration (149723 PgC yr!), but with an improved confidence level. Our
global GPP is higher than satellite optical observation-driven estimates (120~140 PgC yr!) that
are used for Earth System Model benchmarking. This difference predominantly occurs in the
pan-tropical rainforests and is corroborated by ground measurements'!, suggesting a more
productive tropics than satellite-based GPP products indicated. As GPP is a primary determinant
of terrestrial carbon sinks and may shape climate trajectories®!?, our findings lay a physiological
foundation on which the understanding and prediction of carbon—climate feedbacks can be

advanced.
Main

Terrestrial ecosystems remove carbon dioxide (CO») from the atmosphere via photosynthesis,
which is the largest carbon flux on Earth and fuels subsequent processes of the terrestrial carbon
cycle!'?. Despite decades of effort to quantify photosynthetic CO» uptake (or gross primary
production, GPP), substantial uncertainty remains in its global magnitude, spatial patterns,
temporal dynamics, and environmental responses®®!314, This uncertainty cascades into
predicting carbon-climate feedbacks!. The global GPP has been estimated to be around 120 PgC
yr! since the early 1980s%3, a value that has later been reiterated by remote sensing*>. However,
this value is at odds with independent inferences based on the oxygen-18 isotope ('*0) signature

of atmospheric CO,’ (150-175 PgC yr'") and soil respiration® (149¥33 PgC yr!). Such
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uncertainties present challenges for projecting the future trajectories of terrestrial carbon sinks!>

and call for novel constraints on GPP and its spatiotemporal patterns'.

Carbonyl sulfide (OCS or COS) is a trace gas in the atmosphere, whose concentration is six
orders of magnitude lower than that of CO,!6. Plants take up OCS through a diffusion pathway
shared with CO» and consume it via carbonic anhydrase (CA) within leaves. As the hydrolysis of
OCS by CA is irreversible, plant OCS uptake, unlike CO exchange, is not offset by any
production process and thereby tracks GPP. Moreover, the plant uptake, the dominant sink of
atmospheric OCS, is spatially separated from its major sources (i.e., ocean and industrial
sources)!’. Consequently, the continental-scale uptake of OCS and CO; (i.e., GPP) are

coupled!'®!7,

Quantifying GPP from OCS fluxes requires a realistic representation of OCS diffusion (from
ambient air to leaf chloroplasts) and reaction processes (consumption by CA) along the soil-
plant-atmosphere continuum!, as implemented in Terrestrial Biosphere Models (TBMs). The

OCS consumption via CA (g2§

%) is generally not considered a limiting factor for OCS
exchange!®. OCS diffusion parallels CO; diffusion, as they share the pathway from ambient air
through the leaf boundary layer, stomata, mesophyll layers, and to their respective reactive
sites'®. Along this pathway, the boundary layer conductance g, and stomatal conductance g for
CO: (g£9? and g&©? respectively) have been represented in most TBMs'®. Such formulations can
ocs

be adapted to represent the counterparts for OCS (i.e., g5 ° and g2¢5), after accounting for the

different molecular diffusivities of OCS and CO in air'®. However, the mesophyll conductance



66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

&3

84

&5

86

87

(gmes) has long been neglected in TBMs, even though mesophyll layers act as a major barrier
(with a magnitude comparable to gs) to the movement of both CO2 and OCS inside leaves of C3
ocs co2

plants?®2!, Here g5 is assumed equal to g522, as the aqueous diffusivities of CO, and OCS are

similar?>?3. Unless otherwise specified, we use gmes to denote mesophyll conductance for both

CO3 and OCS.

An explicit implementation of gmes is therefore essential to mechanistically resolve the internal
drawdown of CO; and OCS along the mesophyll diffusion pathway. Although ad hoc
compensating strategies via parameter tuning were employed (or gmes-implicit) and have
appeared reasonable for estimating the “mean” for contemporary periods over limited spatial
areas, such strategies may fall short in characterizing seasonal, interannual, or long-term trends
and spatial variability?*. The impact of gmes on the temporal and spatial dynamics of plant OCS

uptakes and on OCS-inferred GPP estimates remains unclear.

In this study, we quantify global plant OCS uptake and GPP and map their spatiotemporal
dynamics using a bottom-up, process-based approach. We incorporate mechanistic models of
gmes>* and OCS diffusion!® into the National Center for Atmospheric Research (NCAR)
Community Land Model (CLMS5) (Methods). We verify estimates of both OCS uptake and GPP
against independent measurements and inferences from the field to the global scale. A key
advantage of our approach is to resolve the spatiotemporal patterns of GPP, with new insights

beyond a single global constraint offered by 07 or soil respiration®.

Impact of gmes on OCS flux (Focs)
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Compared with the gmes-implicit treatment, an explicit mechanistic representation of gmes
improves agreement in ecosystem OCS fluxes (Focs; negative for net uptake) with in-situ
measurements at both Hyytidld Forest, Finland (FI-Hyy) and Harvard Forest, USA (US-Hal)
(Methods), the only two sites where multi-year, continuous ecosystem OCS flux measurements
are available (Fig. 1 & fig. S1). In particular, the gmes-explicit simulation better captures not only
the peak-season magnitude but also the seasonal dynamics of Focs. For example, at FI-Hyy, in-
situ Focs reveals that OCS uptake may start as early as the end of January (e.g., in 2017) (fig.
S1). This early start is unlikely a consequence of soil OCS uptake since the soil temperature was
too low to stimulate soil uptake (fig. S2). The gmes-explicit simulation more realistically captures
this early start of active Focs uptake. Moreover, in the spring and fall at both FI-Hyy and US-
Hal, the gmes-explicit simulated Focs agrees well with measurements; in contrast, the gmes-

implicit simulation underestimates Focs in both spring and fall at both sites.

The improved model-observation consistencies in Focs result from an explicit consideration of

9953 This is confirmed by examining the internal conductance of OCS from leaf substomatal

cavity to the OCS consumption site (g°¢*) and the overall conductance of OCS from ambient air

to the OCS consumption site (g25) (Methods). The gmes-implicit strategy bundles g2%3 and

9255 to form an apparent internal OCS conductance (g°¢%) and ties it empirically to the
maximum carboxylation rate (Vemax) through a fixed scaling factor a (Methods)'®. However, the

actual relationship between gP“* and Vemax may vary with environmental conditions and

phenological stages® beyond what the limited existing observations of gas exchange can

constrain'®. Taking the two sites as an example, the Vemax-scaled g?¢° and the resulting g2¢S

tend to be smaller than those calculated from g953 and g255 explicitly considered throughout the
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year, especially in the dormant and shoulder seasons (fig. S3). In contrast, the gmes-explicit g2¢s

more closely matches in-situ measurements (fig. S3). These results suggest that parameter
adjustment cannot compensate for a lack of mechanistic representation of g9S5 (fig. S4).
Although the peak Focs can be matched by tuning the scaling factor o?°, such tuning cannot
reproduce the seasonal variations of Focs (fig. S1), particularly in the shoulder and dormant
seasons because Vemax decreases faster than g?¢ does (fig. S4). A similar phenomenon occurs at
night when carboxylation pauses while leaf stomata remain partially open, allowing sizable plant
OCS uptake that amounts to 20-30% of the total daily uptake?¢-2%. Such nighttime plant OCS
uptake cannot be captured by the gmes-implicit strategy, but can be reproduced by the gmes-
explicit simulation (fig. S5). Note that both gmes-implicit and gmes-explicit simulations assume

that OCS is predominantly consumed by CA within leaf chloroplasts®.

Globally, gmes-implicit and gmes-explicit simulations of Focs show remarkable differences in time
and space (Fig. 2 and fig. S6). Implicit gmes modeling leads to a weaker Focs for almost all plant
functional types (PFTs; Fig. 2) but Cs arctic grass. From 2000 to 2010, the gmes-implicit
simulation yields a global average OCS sink of 752 GgS yr!, consistent with the SiB4 estimate
of 753 GgS yr'! . The gmes-explicit simulation yields a global Focs of 967 GgS yr'!, which is
still within the range of 368-1279 GgS yr! (with a mean of 917 GgS yr'!) reported previously
(fig. S6). Differences between the gmes-explicit and implicit simulations (AFocs), generally
around 30%~50%, persist throughout the year for temperate and tropical regions but exhibit the
largest seasonal variation in boreal forests of the northern hemisphere (NH). The distinct
seasonal variation of AFocs in boreal forests indicates a longer active OCS uptake period by

gmes-explicit than gmes-implicit simulations, consistent with in-situ measurements at FI-Hyy (Fig.



134 1 & fig. S1). The most pronounced gmes impact on Focs is concentrated in NH boreal forests

135  because of their stronger mesophyll diffusion limitation (i.e., smaller gmes) than other PFTs?* (fig.
136 S7). For these PFTs, gmes acts as a strong barrier to both OCS and CO, diffusion, decreasing Focs
137 by 10% to 50% (fig. S8) and potentially reducing photosynthesis by 25% to 75% according to
138 leaf-level studies®’. Although the arctic C3 grass is the only PFT to show weaker Focs in the gmes-
139 explicit simulation, this pattern cannot yet be validated due to scarce measurements from this

140 PFT3! Future studies, such as measurements and modeling of gmes dependence on leaf traits,

141  temperature, and other environmental conditions, are required to understand the impact of @mes

142 on Focs for this PFT.
143

144 Our results highlight the importance of mesophyll control, which is of a similar magnitude to
145  stomatal control, but has not received due attention in TBM representation®*. The global gmes
146  model employed here formulates gmes as a function of leaf dry mass per unit area (M,), and
147  considers its vertical variation within canopy depth (driven by light gradient) as well as its

148  response to leaf temperature and water stress. This formulation characterizes the first-order
149 impacts of leaf structure and environmental variations on gmes and demonstrates reasonable
150  performance in estimating contemporary GPP and OCS fluxes across spatial scales. However,
151  future research to improve the gmes model formulation is still needed, especially with regard to
152 the varying relationship between gmes and M, across different PFTs2, temperature response
153 functions of gmes*>, complex responses of gmes to soil water stress®*, and acclimation to future
154 environmental changes®. These complexities, although challenging to parameterize due to

155  limited measurements, are critical to understanding and predicting the gmes impact on global
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carbon and water fluxes under future changing climate scenarios®” (see detailed discussion in

Supplementary Text S1).

GPP inferred from OCS fluxes

Further, we used leaf relative uptake (LRU, the concentration-normalized ratio of OCS and CO»
uptake)!#36 to translate plant OCS uptake into GPP. LRU varies with environmental conditions,
particularly light intensities, among other factors (e.g., water vapor pressure deficit VPD)?%7,
Kooijmans et al.*® developed a parsimonious empirical equation between LRU and
photosynthetic active radiation (PAR) based on hourly in-situ measurements at FI-Hyy. This
unique leaf-scale dataset paired LRU and PAR along a full range of PAR continuum. Its joint use
with concurrent canopy-level OCS flux measurements facilitated scaling from leaf to canopy
scales. We applied the LRU-PAR equation developed from this dataset (Eq. 25, fig. S9) to
translate the simulated plant OCS fluxes (gmes-explicit) into GPP, denoted as GPPocs LrU PAR

(Methods).

We found that GPPocs_Lru_par mirrors the in-situ GPP partitioned from net ecosystem exchange
of CO (NEE) at both diurnal (Fig. 3) and seasonal scales (fig. S10). Compared to GPP inferred
from plant OCS uptake with a commonly used constant LRU value (1.61 for C3*)
(GPPocs LRU constant, gmes-€Xplicit), GPP derived from PAR-dependent LRU (GPPocs LrU PAR) 1S
higher during daytime and the growing season, but zero at nighttime and lower during the non-
growing season as expected. GPPocs Lru par tracks the diurnal and seasonal dynamics of in-situ

GPP more closely than GPPocs LRU constant- In addition, GPPocs 1ru par outperforms GPP



178  simulated by the default Farquhar, von Caemmerer, and Berry (FvCB) model implemented in
179  CLMS (GPPcwms rve). For example, GPPcrvs ryves fails to capture the diurnal shape of GPP at
180  FI-Hyy and US-Hal (e.g., the hysteresis in the afternoon) (Fig. 3), and markedly underestimates

181  daytime and growing-season GPP at US-Hal (Fig. 3b, and fig. S10c).

182

183 At the global scale, applying the parsimonious LRU-PAR equation (Methods) leads to an annual
184  GPP estimate of 157 (+£8.5) PgC yr'! (GPPocs_LrU PAR, gmes-€xplicit, the 2000-2010 average)

185  (Fig. 4a & fig. S11). Implicit treatment of gmes only slightly changes the global annual mean GPP
186 to 152 PgC yr'! (Table S1), implying that compensatory parameter adjustment might match the
187  present-day global annual GPP magnitude but can distort the simulated seasonal and spatial

188 dynamics of OCS fluxes and thus GPP (Fig. 2). However, a constant LRU value (a simplified
189  strategy adopted in the literature!%!#) strongly impacts the global GPP estimates (Fig. 4a, Table

190  S1, detailed discussion in Supplementary Text S2).
191

192 The global annual mean GPP inferred from the 80 signature of atmospheric CO> was 150-175
193 PgC yr''7 and that inferred from soil respiration was 14923 PgC yr'!' 8. Our estimate of 157
194  (£8.5) PgC yr'!, inferred from plant OCS uptake, falls within these independent constraints but
195  with a considerably narrower uncertainty range. However, all these estimates are much higher
196  than those derived from satellite optical remote sensing, e.g., estimates from upscaling globally
197  distributed flux tower measurements using machine learning™*° or LUE (light use efficiency)-
198  type models'>*! (Fig. 4a & fig. S11). Recently, somewhat higher GPP estimates (120—140

199 PgCyr!) were obtained from satellite solar-induced fluorescence (SIF) remote sensing with the

200  assumption of a linear SIF-GPP scaling*?, and process-based models driven by satellite optical
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data (e.g., LAL fPAR, vegetation indices VIs)**; these estimates are still lower than our OCS-
inferred GPP estimates. The generally lower existing estimates likely result from their shared
biases or uncertainties such as the spatial representativeness of flux towers, NEE partitioning
approaches, and uncertainties in satellite remote sensing products, among others (detailed
discussion in Supplementary Text S3). Interestingly, the global annual mean GPP directly
simulated by CLM5 with the default FvCB photosynthesis module (GPPcrLms rveB) is 126 PgC
yrl, similar to estimates by existing satellite optical data-driven products. This low estimate
likely results from parameter tuning to reproduce the widely cited bottom-up GPP estimates
(e.g., around 120 PgC yr')*>. Our stronger OCS-inferred GPP estimate is not due to the lack of
exceptional El Nifio/Southern Oscillation (ENSO) events in the period from 2000 to 2010, as

demonstrated by our sensitivity simulation (Supplementary Text S4, fig S12).
Revisiting the spatial GPP patterns

Plant OCS uptake can offer new insights into the spatial and temporal variations of GPP, which
previous global constraints such as the '*O 7 and soil respiration® were unable to resolve. Our
OCS-based approach not only informs global GPP but also pinpoints where and when GPP is
likely misrepresented in existing remote sensing based products. To discern the spatiotemporal
disparities of GPP from different approaches, we selected four widely used satellite optical
remote sensing-driven GPP products (i.e., MODIS*, GOSIF*, FluxSat*! and FLUXCOM?> GPP)
and compared them with our OCS-inferred GPP) (Fig. 4b-e, fig. S13). The largest discrepancies
occur in the pan-tropical rainforests. This finding is consistent with a recent study!'! that
estimated GPP from comprehensive plot-scale measurements and detailed carbon budget
quantification*’. The aforementioned study reported that the mature intact rainforests in the

tropical Amazon have substantially stronger GPP than what the existing satellite optical remote
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sensing driven products indicated. The poor performance of these satellite GPP products in the
tropics is likely due to the impacts of frequent clouds and scarcity of flux tower observations

which are needed for upscaling in this most productive region of the Earth®,

To evaluate the robustness of the OCS-inferred GPP estimates in the pan-tropics, we compared
GPPocs 1rU PAR against in-situ data at four tropical flux tower sites located in the central- and
eastern-Amazon*® (Table S2). We found a close agreement in both dry and wet seasons at the
four sites, particularly at the K67 and CAX towers (Table S2 & fig. S14). Additionally,
GPPocs 1ru par outperforms GPPcims rves (both gmes-implicit and explicit), which significantly
underestimates GPP at all four sites in both dry and wet seasons (fig. S14). Furthermore,
GPPocs 1ru pAR reveals substantially higher productivity in the western than central Amazon, as
expected from the tropical forest aridity gradient there!'!. Such a contrast is consistent with OCO-
2 SIF observations* and inference from plot-scale measurements!! but not captured by
GPPcrvs rves (Fig. 3¢ & d) or other GPP data products (fig. S13). These emergent patterns have
important implications on the carbon sink capacity of tropical rainforests and their resilience to
stress under climate change, and thus should be thoroughly evaluated in the future with
independent ecosystem-scale measurements of OCS and GPP fluxes. Our findings suggest that
in-situ measurements of ecosystem-scale OCS uptake with concurrent CO; fluxes are critically
needed across the pan-tropics to understand their dynamical relationships, which ultimately will

help verify the regional-scale GPP magnitude and spatiotemporal variations reported here.

Further, current satellite-driven products also underestimate GPP in NH mid-to-high latitudes,

particularly during the growing season (Fig. 4c). This pattern is consistent with previous
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findings® that utilized atmospheric OCS concentrations from ground measurements and aircraft

campaigns to reveal a stronger GPP than existing TBMs in NH high latitudes.

Impact of LRU on OCS-inferred GPP

LRU, a key parameter for OCS-based GPP inference, varies with VPD?%38 and with PFTs!7-%;
yet this variability cannot be fully constrained due to limited observations. Nevertheless, our
simulations and uncertainty quantification indicate that the empirical LRU-PAR equation is
broadly applicable across species. For example, GPP estimates based on the LRU-PAR
relationship derived at FI-Hyy track the GPP diurnal and seasonal cycles at US-Hal reasonably
well (Fig. 3b and fig. S10c-d). Even in the tropical Amazon with drastically different
environments, this parsimonious equation still leads to a GPP magnitude and dry-wet contrast
consistent with in-situ measurements (fig. S14). At the global scale, we employed a Monte Carlo
approach to quantifying the potential uncertainty from cross-PFT variability in LRU and in the

LRU dependency on PAR. We synthesized field and laboratory measurements®3-3

as a guidance
to generate an ensemble of PFT-specific LRU-PAR relationships that mimic a diverse
combination of PFT-dependent LRU-PAR relationships (details in Methods and Supplementary
Text S5). The ensemble encompasses a wide range of LRU under ambient light conditions (fig.
S15), but still yields a highly constrained uncertainty range of global GPP, i.e., +8.5 PgC yr!
(Fig. 4). This indicates that the sensitivity of the global annual GPP estimates to the cross-PFT
variability in LRU and the LRU-PAR relationship is scale-dependent. At local scales, this
sensitivity can be substantial, as documented by chamber and/or canopy-level measurements®®->!,

but at the global scale, such sensitivity greatly diminishes. The dearth of field observations under

varying light intensities and other environmental gradients across diverse biomes or species
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prevents a PFT-specific LRU formulation that varies not only with PAR but also with other
environmental conditions (e.g., VPD?%). Field measurements across a diverse range of biomes
and environments are urgently needed to characterize PFT/species-specific LRU dependency on

environmental conditions and plant traits.
Conclusions

Taking advantage of the close coupling between OCS and CO; diffusion processes, we
investigated the impact of mesophyll diffusion on the dynamics of plant OCS uptake, and
inferred the global GPP and its spatiotemporal patterns. Our bottom-up estimates of plant OCS
fluxes provide robust prior for quantifying the global OCS budget and for ascertaining the
sources and sinks of OCS on Earth with inversion approaches!®>°. Harnessing the mechanistic
constraint from plant OCS uptake on photosynthesis, our study provides a well-constrained
contemporary GPP estimate. This new estimate is consistent with independent inferences from
80 isotope and soil respiration but with a much-improved confidence level and fully resolved
spatial and temporal dynamics. Our advances mark a key step toward constraining GPP
dynamics. As GPP is a primary determinant of terrestrial carbon sinks and shapes climate
trajectories, our findings lay a solid physiological foundation on which the understanding and

prediction of carbon—climate feedbacks can be advanced.
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Main figure legends

Fig. 1 Comparison of seasonal cycles of terrestrial ecosystem OCS fluxes (Focs) simulated
by implicit and explicit representations of mesophyll conductance (g253) with in-situ
ecosystem-scale measurements at (a) Hyytiéila Forest, Finland (FI-Hyy) and (b) Harvard

Forest, Massachusetts, USA (US-Hal). Negative Focs denotes net OCS uptake by the

ecosystem.

Fig. 2. Comparison of Focs (2000-2010 average) between gmes-implicit and gmes-explicit
simulations across plant functional types (PFTs). Curves show monthly mean Focs (the right
ordinate), and bars denote relative difference in percentage (AFocs, gmes-€Xplicit minus gmes-
implicit, normalized by gmes-explicit Focs, the left ordinate). Maps show the seasonal AFocs
across the globe. A positive AFocs indicates larger ecosystem OCS uptake (or sink) in gmes-
explicit simulations. Abbreviations: BDS: broadleaf deciduous shrub; BDT: broadleaf deciduous
tree; BES: broadleaf evergreen shrub; BET: broadleaf evergreen tree; NDT: needleleaf

deciduous tree; NET: needleleaf evergreen tree. Global PFT distribution is shown in fig. S16.

Fig. 3. Comparison of GPP inferred from CLMS OCS simulation with GPP simulated by

CLMS implemented with the default FvCB model. a & b, diurnal patterns of CLM5 OCS-
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inferred GPP (GPPocs Lru parR and GPPocs LRU constant, DOth are gmes-explicit) and the CLMS
GPP simulations with the default FvCB (GPPcLms_FveB, gmes-eXplicit) in comparison to GPP
partitioned from in-situ NEE (detailed partitioning methods described in Table S3) at FI-Hyy and
US-Hal Due to data availability, the mean diurnal cycle from June to mid-July 2017 is shown
for FI-Hyy, and that from June to August during 2012 and 2013 is shown for US-Hal. ¢ & d,
global annual mean GPP (in 2010) inferred from CLM35 OCS simulations and simulated by

CLMS5 with default FvCB, respectively.



438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Fig. 4. Intercomparison of GPP estimates from existing approaches. a, the global annual
mean GPP estimates synthesized from literature®. A full list of individual studies under each
category is in fig. S11 (with references). Here colors differentiate the broad categories of
approaches. GPP estimates from this study are all based on gmes-explicit simulations. GPP
estimates inferred from oxygen-18 isotope, soil respiration, and satellite solar-induced
fluorescence (SIF) with linear scaling come from single references, thus the error bars (in black)
denote their uncertainty ranges provided by each reference; GPP estimates from machine
learning-based upscaling and LUE-based upscaling are synthesized from multiple references and
the error bars (in red) denote the standard deviation across different studies falling into the same
category of approaches. b to e, zonal variations of GPP from this study and a subset of widely

used satellite optical remote sensing-driven products from a.

Methods

Model parameterization of ecosystem OCS fluxes
Ecosystem OCS uptake

Terrestrial ecosystem OCS uptake (termed Focs) is modeled as:

Focs = ggCS(OCSa — 0CS,y,) (1)

where g2¢S is the aerodynamic conductance for OCS and assumed equal to that for water; OCS,

is the OCS concentration in the canopy air space, updated at each model time step; OCSn, is the
OCS concentration at a reference level. We used the global gridded monthly estimations of OCS

concentration from Ma et al.*2.
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OCS. in Eq. (1) was updated at each time step based on simulated plant and soil fluxes as

follows:

0CSq = (0CSq prev + At/0CS qp X (0CS* GO = Focs sou = Focs veg) ) /(1 + dt - 995 /0CS.0)  (2)

ocs
where OCS, prev refers to OCS., in the previous time step (the OCS concentration at the starting
time step was set as 450 parts per trillion); df is the CLM model timestep; OCScap is the air
capacity for the OCS exchange (unit: mol air m), calculated based on OCS canopy air depth
which was assumed to be a constant (i.e., 10 m); Fjcs 5051 and F,¢s yeg are the OCS plant and soil

fluxes whose calculation is described below.

OCS Plant uptake

Plant uptake of OCS (termed as Focs veg) is modeled as:

1
Focs_veg = OCSa X g?CS; gtOCS =1 1 1 1 (3)

ocst-ocst-ocstocs
9p s Imes 9ICA

where OCS, was updated for each model time step by Eq. (2), g°¢° is the OCS conductance

from the leaf boundary layer to the CA reaction site (unit: mol m2s™!), calculated based on leaf
boundary layer conductance (g2 ), stomatal conductance (g2¢S), and mesophyll conductance

(g953), as well as a reaction rate coefficient for OCS hydrolysis by carbonic anhydrase (CA)

(9253, also termed as biochemical conductance).

Although CA is ubiquitous in plants, we only considered the OCS consumption by chloroplast
CA, as existing experimental evidence showed that chloroplast CA dominates the total OCS

consumption?’. Following existing parameterization of plant OCS uptake'®, we assumed that the
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pathway for OCS diffusion from ambient air to leaf chloroplast is similar to that of CO; as
represented in current land surface models. Analogous to CO2, the boundary layer and stomatal

conductance of OCS can be scaled from those of water vapor (denoted as gf2° and

91129 respectively)®’ following:

H20 H20
ocs _ 9p ocs _ 95

9p " =7 o s “on 4)

The mesophyll conductance of OCS (g953) was assumed equal to that of CO, (g$%2)'8, as a

substantial part of mesophyll diffusion is in the aqueous phase, and the aqueous diffusivities of
these two gases are similar*>?*. However, unlike gi2 and gi/29, gS92 was not represented in
the standard version of CLMS. In this study, we implemented both implicit and explicit
considerations of mesophyll diffusion to model the OCS plant uptake (descriptions will be given
below).
CLM is a two-big-leaf model, which resolves canopy leaves into sunlit and shaded leaves.

ocs

Therefore, g; > was calculated respectively for sunlit and shaded leaves and aggregated as

follows:
G0 = 0%+ LAl + 9050 + LALipq ©)

where gto_ ¢s . and gto_ ¢s , are the g2¢ for sunlit and shaded leaves, respectively, and LAl,, and

LAl are leaf area index (LAI) for sunlit and shaded leaves, respectively.

A: OCS plant model with implicit mesophyll diffusion

Independent studies have shown that both the mesophyll conductance (g253) and CA activity

C

(9255) tend to scale with the maximum carboxylation rate of Rubisco (Vemax)*>>*. Therefore, an
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alternative approach was proposed to combine the two processes of g2%3 and g25° into a single

apparent conductance g for the calculation of the overall conductance g2¢S:

1
e P (©6)
g(b)CS gSOCS giOCS
In Eq. (6), g°“ represents the internal conductance of OCS diffusion from the intercellular air

space to CA reaction sites and is assumed proportional to Vemax'¢:
0csS _ . . P~ . (Tcan
9i = chax fw(g) (p_) ( T ) (7)
0 0

where « is a scaling factor (1400 for Cs species and 8862 for Cs species?), fw(6) is the water
stress function (ranging from 0 to 1) implemented in CLM3, p is the atmospheric pressure, and
po s the reference surface pressure (1000 hPa), Tcan is canopy temperature which is
prognostically calculated by CLMS5, and 7o is the reference temperature (273.15 K). The water

stress function fy(6) is:
fw(e) = Z:l froot,i ' WL(B) (8)

where froot,; denotes the root fraction within soil layer i; and wj refers to the plant wilting factor

related to soil water content 6.
B: OCS plant model with explicit mesophyll diffusion

Although mesophyll diffusion was not represented in the standard version of CLMS, attempts

have been made to represent the mesophyll conductance of COz (g522)* in some ways. Here, we

assumed g5%2 equal to g95318, and leveraged a process-based gmes model** to explicitly calculate
gmes. 9255, which depends on CA activity, is assumed constant (0.055 mol m2s™") following

Wehr et al.!®:
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9285 = 0.055. 9)

This value (0.055) was estimated from measurements made at Harvard Forest, a temperate
deciduous forest, but works well also at a boreal needleleaf forest site (Hyytiéld Forest, Finland,
FI-Hyy) (Fig. 1). This cross-site applicability suggests that the simulated OCS fluxes may not be

sensitive to the value of g25°. We also evaluated the impact of the temperature dependence of

9255, using Eq. (10), and found no significant effects on the simulated OCS fluxes (fig. S17).

9955 = 0.8 % 0.055 X exp(X2 (— - 2)) (10)
R Tref Ty,

where Ej is the activation energy (40 kJ mol ™), R is the ideal gas constant (8.3145 J mol'K™!),

Tret denotes the reference temperature (293 K), and 71 is leaf temperature, prognostically

calculated by CLMS5.

Process-based gmes model
Sun et al.>* developed the first global process-based g522 model for Cs plants, which was
successfully applied to CLM4.5. The model considered g$92 variations with leaf structures and

environmental conditions (e.g., temperature and water stress), following:

mes = Gmaxo " [i(LAD) - fr(T) - fu(0) (11)

where gmaxo is the maximum g$2% under non-stressed conditions (i.e., the presence of ample soil

water at 25°C); fi(LAI) refers to the vertical variation of g$22 as a function of LAI; fr(71)
represents the response function of gmes to leaf temperature (71, calculated by CLMS5); and f(6)

is the water stress function given in Eq. (8). gmaxo is given by

Imaxo = a* M, (12)
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where My represents the leaf dry mass per unit area (M,, unit: g m2) at canopy top, which can be
calculated as two times the inverse of the canopy-top specific leaf area SLAo (a parameter in
CLMS5). In CLMS, M, differs from 1/SLAo (with a unit of gC m) by a factor of two, as the latter
only includes carbon fraction; the carbon content is assumed to be 50% of leaf dry mass®*. a and
b are two constants (a = 24.240338, b = -0.6509)**. This gives a g$22 the unit mol m?s! Pa’,

which can be converted to mol m2s! if multiplied by surface pressure.

Since CLMS5 divides the canopy leaves into sunlit and shaded fractions, the function f; in Eq. (11)

was also defined for sunlit (fi sun) and shaded (f sna) fractions, respectively:

_ _kp 1-exp [—(kg+kb)LAI]
fI_sun(LAI) - kg+kp 1—exp (—kp.LAI)

(13a)

kp kp—(kg+kp)exp (—kgLAI)+kgexp|—(kg+kp)LAI|
kg(kg+kp) exp (—kpLAI) —1+kpLAI

fi_sna(LAI) = (13b)

where LAI is the leaf area index; 4y is the direct beam extinction coefficient; &, is a composite
parameter with an empirical value of 0.08997.
The temperature response function fr(71) in Eq. (11) is given by:

_ c—AHg/(R'TyL)
fr(T.) = exp (1+exp ((ASTL—AH)/(RTL))

(14)

where c is a scaling constant (20); AH,, is the activation energy (49.6x10° J mol!); R is ideal gas
constant; AS is an entropy term (1.4x10° J mol'K""); and AH, is the deactivation energy

(437.4x10° J mol!).
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1.>* also applied the simulated g$92 to facilitate a more accurate photosynthetic

Sun et a
estimation, as CO; concentrations drop considerably along mesophyll diffusion pathways,

expressed by Eq. (15):
Cc = Ci— A/g5% (15)

where C. and C; are the CO» partial pressure (unit: Pa) inside leaf chloroplasts and that at

intercellular air space; 4 is the net carbon assimilation rate (unit: pmol m2s!).

1'21

Sun et al.** gave a relationship to estimate the true photosynthetic parameters (i.e., the gmes-

including parameters) from the CLM modeled gmes-lacking parameters once g$22 is known:

u

y=w-exp (P omary) (16)

where y denotes parameters for a gmes-explicit representation (including Vemax, Jmax at a reference
temperature of 25°C) and w denotes their counterparts in a gmes-implicit representation; p, g, u,
and v are empirical constants: they are 0.034, 1.1253, 0.8787, and 0.4801 for Vemax While are

0.2935, 1.4838, 0.0858, and 0.1726 for Jimax.

OCS soil flux

We used a mechanistic model®® to simulate the soil flux of OCS (Focs soi). This model described
the OCS uptake or production together with the OCS diffusion, respectively, for each soil
column of a uniform temperature, soil moisture, and porosity. The Ogée soil model has been
used to infer reaction rate parameters across a range of biomes and land cover types in several

56,57

laboratory studies>®>. It has also been applied to SiB4, showing a good performance®.
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The Ogée soil model simplifies the soil OCS flux (Focs soil) as:
z2p —Z
Foes sou = VKBOD (0655_a -4r (1 — exp (22 p))) (17)
1

where £k is the first-order rate constant for CA-mediated OCS hydrolysis (unit: s!); B is the non-
dimensional solubility of OCS in water (unit: mol m~ H>O/mol m™ air); 6 is volumetric soil
water content (unit: m®> m); D is soil OCS diffusivity (unit: m? air m soil s'); OCS; 4 is the
OCS mole fraction at the soil-air interface, assumed to be identical to the OCS mole fraction at
the canopy air space; z1 is D/(kBO); P is the OCS production rate (unit: molm>s); z, is soil depth

(= 1.0 m). Various functions in Eq. (17) are modeled as follows.

The rate constant k in Eq. (17) is given by:

xca(T)
szCA'kuncat'LT (18)

XCA (Tref)

where fca is the CA enhancement factor (see Table S4 for its values across different plant
function types (PFTSs)); kuncat 1S the uncatalyzed reaction rate; xca(7) and xca(7rrf) are temperature
response functions. The uncatalyzed reaction rate kuncar depends mostly on the temperature 7" and

pH (assume constant at 4.5):

Kyncar = 2.15 X 1075 (—10450 (1 - )) +12.7 X 10"PKw*PH gxpy <—6040 (1 - )) (19)
T Tref T Tref

where pKy, is the dissociation constant of water (i.e., 14.0). For agricultural patches, the kuncat
value was designated as 1/5 of the value calculated from Eq. (19) as agricultural soil was

reported to have a lower kuncar>®.

The temperature response function xca(7) in Eq. (18) is given by:

_ exp (~AHg/RT)
xca(T) = 1+exp (-AHg/RT+ASq/R) )



603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

where AH,, AH,, and AS,; are thermodynamic parameters with values of 40 kJ mol™!, 200 kJ mol-

!, and 660 J mol'K"!, respectively

The non-dimensional solubility B of OCS in water in Eq. (17) is related to Henry’s law constant

Ku (unit: mol m2Pa!) and depends on temperature:

_ .D.T. — —4 24900(%_29;.15)
B=ky R'T; ky=21x10" exp | ———2= (21)

R

The soil OCS diffusivity D in Eq. (17) is calculated as®:
D= Deff,a + Deff,l ' B; Deff,a = DO,a(T) “Ta ' Eas Deff,l = DO,I T+ 0 (22)

where Dgsr . and Desp, are the effective diffusivities of gaseous OCS and dissolved OCS
through the soil matrix, respectively; Do . refers to the binary diffusivity relative to temperature
as: Doa(T) = Do,2(298.15K)(7/298.15K)!> where D4(298.15 K) (or Do 4(25°C)) equals to
1.27x10° m?s™!; Dy, is also relative to temperature: Do (T) = Do(To)(T/To-1)'> where Tp is 216 K
(—=57.15°C) and Dy (7o) can be calculated as Do (298.15K)/(298.15K/To-1)"> with D (298.15 K)
equal to 1.94x10° m?s’!; 7, and 7 are the tortuosity factors used to describe the tortuous
movement through the air- or water- filled pore space. We selected the 7, function®” formed as
(0.2(£4/¢)*+0.004)/¢ where &, is the volumetric air content and ¢ is total soil porosity, and 7|
function®® formed as 673/¢? where 0 is the volumetric water content as they are independent of

pore-size distribution®.

The OCS production rate P in Eq. (17) is assumed uniform from the surface to depth z, (= 1.0 m)

and controlled by soil temperature 7 (in °C):

P =j-exp(m-Tey) (23)
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where j and m are empirical parameters whose average values across different PFTs are given in

Table S4.

Inference of GPP from plant OCS fluxes

OCS plant uptake is used to infer GPP, once the concentration-normalized ratio of OCS and CO>

uptake (LRU, leaf relative uptake) is known:

[coz], 1

GPP = Focs_veg m@

(24)

where [CO2]. denotes the ambient concentration of CO». For inferring GPP from site-level
simulations, site measurements of [CO2], and [OCS]. were used herein; whereas for inferring

GPP at the global scale, model simulation of [CO2], and [OCS]. were used.

LRU has been estimated in some experimental studies'’. Measurements carried out in 22 C3
plant species reported cross-species ranges of LRU with a mean value of 1.61 (+ 0.26)*, which
has been adopted by previous studies in evaluating GPP-OCS relationships at sites or
globally!+¢!. However, a constant LRU is not able to accurately translate plant OCS uptake to
GPP, as LRU was observed to decrease with increasing photosynthetically active radiation
(PAR) at both leaf and ecosystem scales*®>!. Here, we applied two approaches to calculating the
LRU for Cs species (a constant LRU of 1.16 was used for C4 species for both approaches, as Cs
species were reported to have a much lower LRU?%!) and obtained two estimates of OCS-
inferred GPP from Eq. 24. First, a constant LRU value of 1.61 was adopted, leading to a GPP
estimate termed as GPPocs LRU constant. S€cond, we considered the LRU variations in response to

light intensity, and adopted the empirical equation between LRU and PAR proposed by
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Kooijmans et al.*® at Hyytidld, Finland (Eq. 25). The applicability of the LRU-PAR relationship

in estimating GPP (the resulting GPP is termed as GPPocs 1ru par) Was evaluated at two sites in
different biomes (Fig. 3 & fig S10). The two OCS-inferred GPP were compared with each other

and also with that directly simulated by the CLMS5 with the default FvCB model (termed

GPPCLMsipch) (Table SS).
LRU = 607.2623/PAR + 0.5705 (25)
Comparison of OCS-inferred GPP with in-situ canopy-scale GPP in Amazon rainforests

Both OCS-inferred and CLMS5 FvCB-simulated GPP were compared with in-situ GPP
partitioned from in-situ NEE measurements at four tropical sites located in central and eastern
Amazon. Here the GPP dataset came from the Large-Scale Biosphere-Atmosphere Experiment in
the Amazon - Ecology dataset (LBA-ECO)®, which has been harmonized across projects with
additional quality control checks performed, and aggregated to several time intervals. The four
sites were selected (following Restrepo-Coupe et al.*®) because: (1) they represent mature intact
tropical forests in Amazon that are highly productive, and (2) they span a range of dry-season
intensities and lengths. The simulation design and model-data comparison at these four sites are

provided in Supplementary Text S6.

Monte Carlo simulations of uncertainties in GPP estimates arising from cross-PFT

variabilities in LRU and its light dependency.

GPP uncertainty may arise from cross-species/PFT variabilities in LRU and its light dependency.
To systematically assess this uncertainty, we combined best available field measurements with

Monte Carlo simulations to generate ensemble estimates of GPP based on diverse combinations
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of PFT-specific LRU-PAR relationships. The core of this approach is to construct diverse
combinations of PFT-specific LRU-PAR relationships guided by field measurements. To achieve
this, we generated ensemble LRU-PAR relationships by randomly sampling data points from two
types of field datasets to mimic cross-species variability (Supplementary Text S5). The two field
datasets employed here are: 1) leaf-level measurements of Kooijmans et al.*%, so far the only
publicly available leaf-scale dataset with paired LRU-PAR along a full range of PAR continuum
and with concurrent canopy-level OCS flux measurements that can facilitate scaling from leaf to
canopy scales, and 2) datasets compiled by Stimler et al.’?, so far the only dataset available that
have LRU measurements under multiple standardized PAR levels across diverse PFTs/species.

Kooijmans et al.*8

provided continuous and paired LRU-PAR measurements in the full PAR
range. It offers the baseline “shape” (functional relationship) between LRU and PAR that all
plant species may follow, i.e, a linear relationship between LRU and 1/PAR (or a hyperbolic
relationship between LRU and PAR). Then we applied the cross-PFT variability by varying
slopes and intercepts of the baseline linear shapes. This was achieved by imposing random
variations (representing cross-species variability) to the “baseline” shape, with the random
variation generated from the dataset of Stimler et al.**. We chose measurements from Stimler et
al.’? (synthesized in their Table II) to represent species variability in LRU and its PAR
dependency, primarily because: (1) it covered LRUs from 22 species in total belonging to four

different biome types; (2) it provided LRU values for each species at three different (and

standardized) light levels, i.e., 179, 352, and 1889 pumol m_zs_l, which allowed us to quantify

LRU variability arising from species differences under multiple light levels, and (3) these LRUs

were measured at the same environmental conditions including CO> concentration, air
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temperature, and humidity, ensuring that the LRU variability primarily comes from PAR for

each species.

Although there are other studies that synthesized LRU values across species from literature (e.g.,
Whelean et al.!”), these values came from different studies under diverse combinations of
environmental conditions, without standardizing PAR levels or controlling other environmental
factors, precluding the possibility to systematically quantify the variability of LRU-PAR
dependency across species. There are also attempts to employ the optimization theory to
generate global mapping of LRU (e.g., Wohlfahrt et al.®®), but challenges still remain with this
approach in quantifying LRU-PAR relationships under unsaturated light conditions. More field

measurements are needed to better characterize LRU variability with light across PFTs.

Design of CLM5 Model Simulations

We used the CESM (Community Earth System Model) CLMS5 as the TBM for OCS simulation.
Four simulations were carried out, with different parameterizations of gZ¢S (Table S6). For
simulation 1 (S1, gmes-implicit simulation), we implemented the OCS plant model with implicit
mesophyll diffusion'®. For simulation 2 (S2, gmes-explicit simulation), the OCS plant model with
explicit mesophyll diffusion was implemented, with gmes calculated by a process-based model?*.
Comparison between S1 and S2 shows the impact of mechanistic consideration of mesophyll
diffusion in OCS flux simulation. For simulation 3 (S3, gmes-excluding simulation), we assumed

Zmes infinite (i.e., ignoring mesophyll resistance) and computed gZ¢ only with g2¢5, g2¢S and

c

9255, Comparison between S2 and S3 shows the effect of mesophyll diffusion on OCS fluxes.
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For simulation 4 (S4), we implemented explicit gmes While employing a temperature response
function for g25° (Eq. 10). Comparison between S2 and S4 shows the impact of g2$°

parameterization on OCS simulation.

Each simulation was run with active biogeochemistry (BGC) and crop models and was preceded
by a spin-up for 100 years. We performed both global simulations and point simulations. For
global simulation, all scenarios from S1 to S4 were performed from 2000 to 2010.
Meteorological data from GSWP3 (Global Soil Wetness Project Phase 3) NCEP (National
Centers for Environmental Prediction) dataset on a 3-hour interval (available from 1901 to 2014)
was used as meteorological forcing. Point simulation was run at two field sites: Hyytiéld, Finland
(FI-Hyy) (2013-2017) and Harvard Forest (US-Hal) (2012-2013), where OCS observations

exist across most months within a year’*-!

and partitioned GPP estimates were also available for
growing seasons3®%* (Table S3). For each site, the plant function type (PFT) in model simulation

was set as consistent with the site land cover type, and site observations of meteorological

conditions were used as meteorological forcing.

Data and materials availability: The CLMS5 simulation output related to this study is available

at https://doi.org/10.7298/mxg9-7176.
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