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Abstract

Federated Learning (FL) trains a shared model using data and
computation power on distributed agents coordinated by a
central server. Decentralized FL. (DFL) utilizes local model
exchange and aggregation between agents to reduce the com-
munication and computation overheads on the central server.
However, when agents are mobile, the communication oppor-
tunity between agents can be sporadic, largely hindering the
convergence and accuracy of DFL. In this paper, we propose
Cached Decentralized Federated Learning (Cached-DFL)
to investigate delay-tolerant model spreading and aggrega-
tion enabled by model caching on mobile agents. Each agent
stores not only its own model, but also models of agents en-
countered in the recent past. When two agents meet, they ex-
change their own models as well as the cached models. Lo-
cal model aggregation utilizes all models stored in the cache.
We theoretically analyze the convergence of Cached-DFL,
explicitly taking into account the model staleness introduced
by caching. We design and compare different model caching
algorithms for different DFL and mobility scenarios. We con-
duct detailed case studies in a vehicular network to sys-
tematically investigate the interplay between agent mobility,
cache staleness, and model convergence. In our experiments,
Cached-DFL converges quickly, and significantly outper-
forms DFL without caching.

Code —
https://github.com/ShawnXiaoyuWang/Cached-DFL

Extended version — https://arxiv.org/abs/2408.14001

Introduction
Federated Learning on Mobile Agents

Federated learning (FL) is a type of distributed machine
learning (ML) that prioritizes data privacy (McMabhan et al.
2017). The traditional FL involves a central server that con-
nects with a large number of agents. The agents retain their
data and do not share them with the server. During each
communication round, the server sends the current global
model to the agents, and a small subset of agents are chosen
to update the global model by running stochastic gradient
descent (SGD) (Robbins and Monro 1951) for multiple iter-
ations on their local data. The central server then aggregates
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the updated parameters to obtain the new global model. FL
naturally complements emerging Internet-of-Things (IoT)
systems, where each IoT device not only can sense its
surrounding environment to collect local data, but also is
equipped with computation resources for local model train-
ing, and communication interfaces to interact with a cen-
tral server for model aggregation. Many IoT devices are mo-
bile, ranging from mobile phones, autonomous cars/drones,
to self-navigating robots. In recent research efforts on smart
connected vehicles, there has been a focus on integrating
vehicle-to-everything (V2X) networks with Machine Learn-
ing (ML) tools and distributed decision making (Barbieri
et al. 2022), particularly in the area of computer vision tasks
such as traffic light and signal recognition, road condition
sensing, intelligent obstacle avoidance, and intelligent road
routing, etc. With FL, vehicles locally train deep ML models
and upload the model parameters to the central server. This
approach not only reduces bandwidth consumption, as the
size of model parameters is much smaller than the size of
raw image/video data, but also leverages computing power
on vehicles, and protects user privacy.

However, FL on mobile agents still faces communica-
tion and computation challenges. The movements of mo-
bile agents, especially at high speed, lead to fast-changing
channel conditions on the wireless connections between mo-
bile agents and the central server, resulting in high latency
in FL (Niknam, Dhillon, and Reed 2020). Battery-powered
mobile agents also have limited power budget for long-
range wireless communications. Non-i.i.d data distributions
on mobile agents make it difficult for local models to con-
verge. As a result, FL on mobile agents to obtain an opti-
mal global model remains an open challenge. Decentralized
FL (DFL) has emerged as a potential solution where local
model aggregations are conducted between neighboring mo-
bile agents using local device-to-device (D2D) communica-
tions with high bandwidth, low latency and low power con-
sumption (Martinez Beltrdn et al. 2023). Preliminary studies
have demonstrated that DFL algorithms have the potential
to significantly reduce the high communication costs associ-
ated with centralized FL. However, blindly applying model
aggregation algorithms, such as FedAvg (McMahan et al.
2017), developed for centralized FL to DFL cannot achieve
fast convergence and high model accuracy (Liu et al. 2022).



Delay-Tolerant Model Communication and
Aggregation Through Caching

D2D model communication between a pair of mobile agents
is possible only if they are within each other’s transmission
ranges. If mobile agents only meet with each others spo-
radically, there will not be enough model aggregation op-
portunity for fast convergence. In addition, with non-i.i.d
data distributions on agents, if an agent only meets with
agents from a small cluster, there is no way for the agent
to interact with models trained by data samples outside of
its cluster, leading to disaggregated local models that can-
not perform well on the global data distribution. It is there-
fore essential to achieve fast and even model spreading us-
ing limited D2D communication opportunities among mo-
bile agents. A similar problem was studied in the context of
Mobile Ad hoc Network (MANET), where wireless com-
munication between mobile nodes are sporadic. The effi-
ciency of data dissemination in MANET can be significantly
improved by Delay-Tolerant Networking (DTN) (Fall 2003;
Burleigh et al. 2003): a mobile node caches data it received
from nodes it met in the past; when meeting with a new
node, it not only transfers its own data, but also the cached
data of other nodes. Essentially, node mobility forms a new
“communication” channel through which cached data are
transported through node movement in physical space. It is
worth noting that, due to multi-hop caching-and-relay, DTN
transmission incurs longer delay than D2D direct transmis-
sion. Data staleness can be controlled by caching and relay
algorithms to match the target application’s delay tolerance
such as Li et al. (2023).

Motivated by DTN, we propose delay-tolerant DFL com-
munication and aggregation enabled by model caching on
mobile agents. To realize DTN-like model spreading, each
mobile agent stores not only its own local model, but also lo-
cal models received from other agents in the recent history.
Whenever it meets another agent, it transfers its own model
as well as the cached models to the agent through high-
speed D2D communication. Local model aggregation on an
agent works on all its cached models, mimicking a local pa-
rameter server. Compared with DFL without caching, DTN-
like model spreading can push local models faster and more
evenly to the whole network; aggregating all cached models
can facilitate more balanced learning than pairwise model
aggregation. While DFL model caching sounds promising,
it also faces a new challenge of model staleness: a cached
model from an agent is not the current model on that agent,
with the staleness determined by the mobility patterns, as
well as the model spreading and caching algorithms. Using
stale models in model aggregation may slow down or even
deviate model convergence.

The key challenge we want to address in this paper is
how to design cached model spreading and aggregation al-
gorithms to achieve fast convergence and high accuracy in
DFL on mobile agents. Towards this goal, we make the fol-
lowing contributions:

1. We develop Cached-DFL, a new DFL framework that
utilizes model caching on mobile agents to realize delay-
tolerant model communication and aggregation;
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Notation Description
N Number of agents
T Number of global epochs
[N] Set of integers {1, ..., N'}
K Number of local updates
x;(t) Model in the t** epoch on agent i

(
( Global Model in the t*" epoch,

() 2(t) = Bac[oi(8)]
it k) Model initialized from x;, after
T k-th local update on agent ¢
Zi(t) Model z;(t) after local updates
D Dataset on the ¢-th agent
o Aggregation weight
t—rT Staleness
Tmax Tolerance of staleness in cache

All the norms in the paper are [5-norms

Table 1: Notations and Terminologies.

. We theoretically analyze the convergence of aggregation
with cached models, explicitly taking into account the
model staleness;

. We design and compare different model caching algo-
rithms for different DFL and mobility scenarios.

. We conduct a detailed case study on vehicular network
to systematically investigate the interplay between agent
mobility, cache staleness, and convergence of model ag-
gregation. Our experimental results demonstrate that our
Cached-DFL converges quickly and significantly out-
performs DFL without caching.

Mobile DFL with Model Caching
Global Training Objective

Similar to the standard FL problem, the overall objective of
mobile DFL is to learn a single global statistical model from
data stored on tens to potentially millions of mobile agents.
The overall goal is to find the optimal model weights x* €
R? to minimize the global loss function:

1
min F'(z), where F(z) = fi Z

EziNDif(x;zi)7 (1)
i€E[N]

where N denotes the total number of mobile agents, and
each agent has its own local dataset, i.e., D' # D7, Vi # j.
And 2" is sampled from the local data D°.

DFL Training with Local Model Caching

All agents participate in DFL training over 1" global epochs.
At the beginning of the ¢! epoch, agent i’s local model is
x;(t). After K steps of SGD to solve the following optimiza-
tion problem with a regularized loss function:

minE..p.f(a:2) + llz — @i 8)|1%,

agent ¢ obtains an updated local model Z;(¢). Meanwhile,
during the ¢ epoch, driven by their mobility patterns, each



Algorithm 1: Cached Decentralized Federated Learning
(Cached-DFL)
Input: Global epochs 7', local updates K, initial models

{xi(0)}Y,, staleness tolerance Tiay

1: function LOCALUPDATE(x;(t))
2 Initialize: z;(t,0) = x;(¢)
% Define: g, (:2) = f(r:2) + 4l — ()|
4: fork=1,2,...,Kdo
5 Randomly sample z}, ~ D°
6 zi(t, k) = xi(t,k — 1) = nVgg, @) (zs(t, k —
1); ;)
7: end for
8: return z;(t) = z;(t, K)
9: end function
10: function MODELAGGREGATION(C; (t))
11: l’z(t+1) = ZjEC;,(t) Oljfi'j(’]’)
12: return z;(t + 1)
13: end function
Main Process:
14: fort =0,1,...,T —1do
15: for:=1,2,...,N do
16: Z;(t) <~ LOCALUPDATE(z;(t))
17: Ci(t) <~ CACHEUPDATE(C;(t — 1), Tmax)
18: x;(t + 1) < MODELAGGREGATION(C;(t))
19: end for
20: end for

Output: {z;(T)}},

agent meets and exchanges models with other agents. Other
than its own model, agent ¢ also stores models it received
from other agents encountered in the recent history in its
local cache C;(t). When two agents meet, they not only ex-
change their own local models, but also share their cached
models with each others to maximize the efficiency of DTN-
like model spreading. The models received by agent ¢ will be
used to update its model cache C;(t), using different cache
update algorithms, such as LRU update method (Algorithm
2) or Group-based LRU update method, which will be de-
scribed in details later. As the cache size of each agent is
limited, it is important to design an efficient cache update
rule in order to maximize the caching benefit.

After cache updating, each agent conducts local model ag-
gregation using all the cached models with customized ag-
gregation weights {a; € (0,1)} to get the updated local
model z; (¢t 4 1) for epoch ¢t + 1. In our simulation, we take
the aggregation weight as o;; = (n;/ > cc, (1) 1j)> Where
n; is the number of samples on agent j.

The whole process repeats until the end of T' global
epochs. The detailed algorithm is shown in Algorithm 1. 2},
are randomly drawn local data samples on agent 7 for the
k-th local update, and 7 is the learning rate.

Remark 1. Note the N agents communicate with each oth-
ers in a mobile D2D network. D2D communication can
only happen between an agent and its neighbors within a
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short range (e.g. several hundred meters). Since agent lo-
cations are constantly changing (for instance, vehicles con-
tinuously move along the road network of a city), D2D net-
work topology is dynamic and can be sparse at any given
epoch. To ensure the eventual model convergence, the union
graph of D2D networks over multiple epochs should be
strongly-connected for efficient DTN-like model spreading.
We also assume D2D communications are non-blocking,
carried by short-distance high-throughput communication
methods such as mmWave or WiGig, which has enough ca-
pacity to complete the exchange of cached models before the
agents go out of each other’s communication ranges.

Remark 2. Intuitively, comparing to the DFL without cache
(e.g. DeFedAvg (Sun, Li, and Wang 2022)), where each agent
can only get new model by averaging with another model,
Cached-DFL uses more models (delayed versions) for ag-
gregation, thus utilizes more underlying information from
datasets on more agents. Although Cached-DFL intro-
duces stale models, it can benefit model convergence, espe-
cially in highly heterogeneous data distribution scenarios.
Overall, our Cached-DFL framework allows each agent
to act as a local proxy for Centralized FL with delayed
cached models, thus speedup the convergence especially in
highly heterogeneous data distribution scenarios, that are
challenging for the traditional DFL to converge.

Remark 3. As mentioned above, our approach inevitably
introduces stale models. Intuitively, larger staleness results
in greater error in the global model. For the cached models
with large staleness t — T, we could set a threshold T4 to
kick old models out of model spreading, which is described
in the cache update algorithms. The practical value for Ty, gz
should be related to the cache capacity and communication
frequency between agents. In our experimental results, we
choose Tpyqr to be 10 or 20 epochs. Results and analysis
about the effect of different Ty,q, can be found in experi-
mental results section.

Convergence Analysis

We now theoretically investigate the impact of caching, es-
pecially the staleness of cached models, on DFL model con-
vergence. We introduce some definitions and assumptions.

Definition 1 (Smoothness). A differentiable function f is L-
smooth if for ¥, y, f(y) = f(z) < (Vf(x),y—2)+ 5lly -
z||?, where L > 0.

Definition 2 (Bounded Variance). There exists constant ¢ >
0 such that the global variability of the local gradient of the
loss function is bounded ||V Fj(z) — VF(x)||* < ¢?,Vj €
[N],z € R%

Theorem 1. Assume that F is L-smooth and convex, and
each agent executes K local updates before meeting and ex-
changing models, after that, then does model aggregation.
We also assume bounded staleness T < Ty qz, as the kick-out
threshold. Furthermore, we assume, Yz € R i € [N], and
Vz ~ DLV f(z;2)|? < V,||[Vgw (x;2)|]* < V,V2' €
R?. For any small constant € > 0, if we take p > 0, and sat-
isfying —(1+2p+e)V + (p* — §)||a(t, k —1) —z(t)||* >



0,V (t,k — 1), z(t), after T global epochs, Cached-DFL
converges to a critical point:

TmazE[F(x(O)) - F(‘TA4(T) (T))]

T-1
min E||VF(xz(1))[|* <

enC1 KT
npK? Tmaz npK?
< )
+ 0 eCq )< O(enclKT) + 0 eCq ) 2)
Proof Sketch

We now highlight the key ideas and challenges behind our
convergence proof.

Step 1: Similar to Theorem 1 in Xie, Koyejo, and Gupta
(2019), we bound the expected cost reduction after K steps
of local updates on the j-th agent, Vj € [N], as

E[F(Z;(t)) — F(x;(1))] = E[F(z;(t, K)) — F(z;(t,0))]
K—1
< —ne Y E||VF(z;(t, k))|[> + 1 O(pK*V).
k=0
Step 2: For any epoch ¢, we find the index M(¢) of
the agent whose model is the “worst”, ie., M(t)
arg max;c(n){F (z;(t))}, and the “worst” model on all
agents over the time period of [t — Tpa. + 1,1] as

]{F(xM(t)(t))}'

Step 3: We bound the cost reduction of the “worst” model
at epoch ¢ + 1 from the “worst” model in the time period of
[t — Timaz + 1,1, i.e., the worst possible model that can be
stored in some agent’s cache at time ¢, as:

E[F (zapesny(t+ 1) = F (2ar(7(tmmae)) (T (E Tmaz))]
t—‘rmfw-i-l
3)

< —enC1 K min
Step 4: We iteratively construct a time sequence
{15, 11,13, ..., Ty, } € {0,1,..,T — 1} in the back-
ward fashion so that

max

T (t, Tmaz) = arg
tE[t—Tmaz+1,t

IVE(a(r)|[* +17*O(pK°V).

Ty, =T-1;
T;  =T(Ti41:Tmas) =1, 1<i< Np—1
75 =0.

Step 5: Applying inequality (3) at all time instances
{1y, 11, T3, ..., Ty, }, after T global epochs, we have,

Nt

1

= N
=

t—Tmax +1
min
T=t

R ElI ¥ () IVFGI?

TS,
Z E[F(JSM(T(t,me)) (T(t, Tmaz)))

t=T}

1
- E’I]ClKNT

npK*V
601

+O(

— F(zare41)(t +1))] 4+ O(

_ E[F((0)) = F(zarer)(T))]
enC1 K Np

)+ O(

)

npK?V
601

)

npK>
Gcl

Tmaa:

- O(enC’lKT

)- “
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Step 6: With the results in (4) and by leveraging Theorem 1
in Yang, Fang, and Liu (2021), Cached-DFL converges to
a critical point after T" global epochs.
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Figure 1: Manhattan Mobility Model Map. The dots repre-
sent the intersections while the edges between nodes repre-
sent roads in Manhattan.

Experiments

We implement Cached-DFL with PyTorch (Paszke et al.
2017) on Python3. Further details about experiments, hyper-
parameters, and additional results are provided in our tech-
nical report Wang et al. (2024).

Datasets. We conduct experiments using three standard FL.
benchmark datasets: MNIST (Deng 2012), FashionMNIST
(Xiao, Rasul, and Vollgraf 2017), CIFAR-10 (Krizhevsky
2009) on N = 100 vehicles, with CNN, CNN and ResNet-
18 (He et al. 2016) as models respectively. We evaluate
three different data distribution settings: non-i.i.d, i.i.d, and
Dirichlet. In extreme non-i.i.d, we use a setting similar to Su,
Zhou, and Cui (2022), data points in training set are sorted
by labels and then evenly divided into 200 shards, with each
shard containing 1-2 labels out of 10 labels. Then 200 shards
are randomly assigned to 100 vehicles unevenly: 10% vehi-
cles receive 4 shards, 20% vehicles receive 3 shards, 30%
vehicles receive 2 shards and the rest 40% receive 1 shard.
For i.i.d, we randomly allocate all the training data points to
100 vehicles. For Dirichlet distribution, we follow the set-
ting in Xiong et al. (2024), to take a heterogeneous alloca-
tion by sampling p; ~ Diry (), where 7 is the parameter
of Dirichlet distribution. We take m = 0.5 in our following
experiments.

Evaluation Setup. The baseline algorithm is DeFedAvg
(Sun, Li, and Wang 2022), which implements simple decen-
tralized federated optimization. For convenience, we name
DeFedAvg as DFL in the following results. We set batch size
to 64 in all experiments. For MNIST and FashionMNIST,
we use 60k data points for training and 10k data points for



Algorithm 2: LRU Model Cache Update (LRU Update)

Input: Current cache C;(¢), agent j’s cache C;(t), model
Z; (t) from agent j, current time ¢, cache size Cp,x, staleness
tolerance Tmax
Main Process:

: for each x (1) € C;(t) or C;(¢t) do

if t — 7 > 7., then

Remove x(7) from the respective cache (C;(t)

or C;(t))

end if
end for
Add or replace z(t) into C;(¢)
for each x,(7) € C;(¢) do

if 1,(7) ¢ C;(t) then

9: Add z(7) into C;(t)
10: else
11: Retrieve x(77) € C;(t)
12: if 7 > 7/ then
13: Replace z(7") with x(7) in C;(t)
14: end if
15: end if
16: end for
17: Sort models in C;(¢) in descending order of 7
18: Retain only the first Cip.x models in C;(t)
19: return C;(t + 1)

Output: C;(t + 1)

testing. For CIFAR-10, we use 50k data points for training
and 10k data points for testing. Different from training set
partition, we do not split the testset. For MNIST and Fash-
1onMNIST, we test local models of 100 vehicles on the 10k
data points of the whole test set and get the average test ac-
curacy for the evaluation metric. What’s more, for CIFAR-
10, due to the computing overhead, we sample 1,000 data
points from test set for each vehicle and use the average
test accuracy of 100 vehicles as the evaluation metric. For
all the experiments, we train for 1,000 global epochs, and
implement early stop when the average test accuracy stops
increasing for at least 20 epochs. For MNIST and Fashion-
MNIST experiments, we use 10 compute nodes, each with
10 CPUs, to simulate DFL on 100 vehicles. CIFAR-10 re-
sults are obtained from 1 compute node with 5 CPUs and 1
A100 NVIDIA GPU.

Optimization Method. We use SGD as the optimizer and
set the initial learning rate = 0.1, and use learning rate
scheduler named ReduceLROnPlateau from PyTorch, to
automatically adjust the learning rate for each training.
Mobile DFL Simulation. Manhattan Mobility Model maps
are derived from real Manhattan road data (INRIX (INRIX
2024)), as shown in Fig. 1. Following Bai, Sadagopan, and
Helmy (2003), vehicles move along a grid of horizontal and
vertical streets, turning left, right, or going straight at inter-
sections according to specified probabilities (e.g., 0.5 to con-
tinue straight and 0.1667 per road among three options). As
in Su, Zhou, and Cui (2022), each vehicle is equipped with
DSRC and mmWave, can communicate within 100 m, and
travels at 13.89 m/s. We set the number of local updates to
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Figure 2: Cached-DFL vs. DFL without Caching across
Different Datasets: The first row presents results for MNIST,
the second row for FashionMNIST, and the third row for
CIFAR-10.

K = 10, with a 120-second interval between global epochs.
During each epoch, vehicles train their models while moving
and exchange models when they encounter each other.
LRU Cache Update. Algorithm 2, which we name as LRU
method for convenience, is the basic cache update method
we proposed. Basically, the LRU updating rule aims to fetch
the most recent models and keep as many of them in the
cache as possible. At lines 12 and 17, the metric for making
choice among models is the timestamp of models, which is
defined as the epoch time when the model was received from
the original vehicle, rather than received from the cache.
What’s more, to fully utilize the caching mechanism, a vehi-
cle not only fetches other vehicles’ own trained models, but
also models in their caches. For instance, at epoch ¢, vehicle
i can directly fetch model x;(¢) from vehicle j, at line 6, and
also fetch models x(7) € C;(t) from the cache of vehicle
J, at lines 7-16. This way, each vehicle can not only directly
fetch its neighbors’ models, but also indirectly fetch mod-
els of its neighbors’ neighbors, thus boosting the spreading
of the underlying data information from different vehicles,
and improving the DFL convergence speed, especially with
heterogeneous data distribution. Additionally, at lines 1-5,
before updating cache, models with staleness t — 7 > Ty,40
will be removed from each vehicle’s cache.

Experimental Results

Caching vs. Non-caching. To evaluate the performance of
Cached-DFL, we compare the DFL with LRU Cache, Cen-
tralized FLL (CFL) and DFL on MNSIT, FashionMNIST,
CIFAR-10 with three distributions: non-i.i.d, i.i.d, Dirich-
let with 7 = 0.5. For LRU update, we take the cache size
as 10 for MNIST and FashionMNIST, and 3 for CIFAR-10
and 7,4, = O based on practical considerations. Given a
speed of 13.89m/s and and a communication distance of
100m, the communication window of two agents driving in
opposite directions could be limited. Additionally, the above
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Figure 3: Cached-DFL with LRU at Different Cache Sizes:
The first row presents results for MNIST, while the second
row corresponds to FashionMNIST.

cache sizes were chosen by considering the size of cho-
sen models and communication overhead. From the results
in Fig. 2, we can see that Cached-DFL boosts the con-
vergence and outperforms non-caching method (DFL) and
gains performance much closer to CFL in all the cases, es-
pecially in non-i.i.d. scenarios.

Impact of Cache Size. Then we evaluate the performance
gains with different cache sizes from 1 to 30 and 7,4, = 10,
on MNIST and FashionMNIST in Fig. 3. LRU can benefit
more from larger cache sizes, especially in non-i.i.d scenar-
ios, as aggregation with more cached models gets closer to
CFL and training with global data distribution.

Impact of Model Staleness. One drawback of model
caching is introducing stale models into aggregation, so it is
very important to choose a proper staleness tolerance 7,4 -
First, we statistically calculate the relation between the av-
erage number and the average age of cached models at dif-
ferent 7,4, from 1 to 20, when epoch time is 30s, 60s,
120s, with unlimited cache size, in Table 2. We can see that,
with the fixed epoch time, as the 7,,,, increases, the aver-
age number and average age of cached models increase, ap-
proximately linearly. It’s not hard to understand, as every
epoch each agent can fetch a limited number of models di-
rectly from other agents. Increasing the staleness tolerance
Tmaz WIill increase the number of cached models, as well
as the age of cached models. What’s more, we can see that
the communication frequency or the moving speed of agents
will also impact the average age of cached models, as the
faster an agent moves, the more models it can fetch within
each epoch, which we will further discuss later.

Mobility’s Impact on Convergence. Fig. 4 compares DFL
and LRU at different 7,,,, on MNIST under non-i.i.d and
1.i.d settings. Here we pick the epoch time 30s for a clear
view. Under non-i.i.d, a larger 7y,,x initially speeds up con-
vergence by allowing more cached models (confirming our
earlier findings), as it allows for more cached models which
bring more benefits than harm to the training with non-i.i.d.
Under i.i.d, however, more cached models bring no gain and
staleness hinders convergence. Moreover, focusing on the fi-

21301

Tmaz 1 2 3 4 5 10 20
305 09|17 27| 39| 52| 149 | 448

00 | 0.5 10| 1.6 22| 54| 116

60s 1.7 {38 | 65| 104 | 14.1 | 43.1 | 90.3

00 | 0.6 12| 18| 24| 56| 98

120s 37199 | 185|314 | 352|902 | 98.5
00 | 0.6 1.3 1.9 1.5 47| 52

Table 2: Average number and average age of cached mod-
els with different 7,,,,, (columns) and different epoch times:
30s, 60s, 120s (rows). Each row has two sub-rows: the first
shows the average number of cached models, and the second
shows their average age.

nal phase (bottom of each figure), higher 7,,,x reduces fi-
nal accuracy in both scenarios due to staleness. Despite this,
with high 7,,x, LRU can still match or outperform DFL in
non-i.i.d settings.

Vehicle mobility directly determines the frequency and ef-
ficiency of cache-based model spreading and aggregation.
So we evaluate the performance of Cached-DFL at dif-
ferent vehicle speeds. We fix cache size at 10, 7,4, = 10
with non-i.i.d. data distribution. We take the previous speed
v =19 = 13.89 m/s and K = 30 local updates as the base,
named as speedup x1. To speedup, v increases while K re-
duces to keep the fair comparison under the same wall clock.
For instance, for speedup x3, v = 3vg and K = 10. Results
in Fig. 5 show that when the mobility speed increases, al-
though the number of local updates decreases, the spread of
all models in the whole vehicle network is boosted, thus dis-
seminating local models more quickly among all vehicles
leading to faster model convergence.

Grouped Mobility Patterns and Data Distributions. In
practice, vehicle mobility patterns and local data distribu-
tions may naturally form groups. For example, a vehicle may
mostly move within its home area, and collect data specific
to that area. Vehicles within the same area meet with each
others frequently, but have very similar data distributions. A
fresh model of a vehicle in the same area is not as valuable
as a slightly older model of a vehicle from another area. So
model caching should not just consider model freshness, but
should also take into account the coverage of group-based

Tmax=1 Tmax=3 — Tmax=12 DFL
Tmax=2 — Tmax=8 — Tmax=20
non-i.i.
1.0 oo 0.99

0.8
o 0.98
©0.6 -
3 | 097
0.4 :
< M Il -
0.25 200 400 600290 200 400 600
Epoch
Figure 4: Impact of 7,4, on Model Convergence for
MNIST.
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Figure 5: Convergence at Different Mobility Speeds under
Non-IID Data Distribution.

data distributions. For those scenarios, we develop a Group-
based (GB) caching algorithm. More specifically, knowing
that there are m distribution groups, one should maintain
balanced presences of models from different groups. One
straightforward extension of the LRU caching algorithm is
to partition the cache into m sub-caches, one for each group.
Each sub-cache is updated by local models from its associ-
ated group, using the LRU policy. Due to limited space, the
detailed algorithm is presented in our technical report Wang
et al. (2024).

We now conduct a case study for group-based cache up-
date. As shown in Fig. 1, the whole Manhattan road net-
work is divided into 3 areas, downtown, mid-town and up-
town. Each area has 30 area-restricted vehicles that ran-
domly moves within that area, and 3 or 4 free vehicles that
can move into any area. We set 4 different area-related data
distributions: Non-overlap, 1-overlap, 2-overlap, 3-overlap.
n-overlap means the number of shared label classes between
areas is n. We use the same non-i.i.d shards method in the
previous section to allocate data points to the vehicles in the
same area. On each vehicle, we evenly divide the cache for
the three areas. We evaluate our proposed GB cache method
on FashionMNIST. As shown in Fig. 6, while vanilla LRU
converges faster at the very beginning, it cannot outperform
DFL at last. However, the GB cache update method can
solve the problem of LRU update and outperform DFL un-
der different overlap settings.

—— DFL LRU method —— GB method
1.0 0-overlap 1.0 1-overlap
0.8 08
0.6 0.6 =
0.4 0.4
025 250 s00 750 1000920 250 500 750 1000
él.o 2-overlap 1.0 3-overlap
<os ————— 03 S
0.6 0.6
0.4 0.4
025 250 500 750 1000020 250 500 750 1000

Epoch

Figure 6: Group-based LRU Cache Update Performance un-
der Different Data Distribution Overlaps on FashionMNIST.

Discussions

In general, the convergence rate of Cached-DFL outper-
forms non-caching method (DFL), especially for non-i.i.d.
distributions. Larger cache size and smaller 7,,,, make
Cached-DFL closer to the performance of CFL. Em-
pirically, there is a trade-off between the age and number
of cached models, it is critical to choose a proper T,,q.
to control the staleness. What’s more, the choice of 7,44
should take into account the diversity data distributions
on agents. In general, with non-i.i.d data distributions, the
benefits of increasing the number of cached models can
outweigh the damages caused by model staleness; while
when data distributions are close to i.i.d, it is better to use a
small number of fresh models than a large number of stale
models. Similarly conclusions can also be drawn from the
results of area-restricted vehicles. What’s more, in a system
of moving agents, the mobility will also have big impact
on the training, usually higher speed and communication
frequency improve the model convergence and accuracy.

Related Work

Decentralized FL (DFL) has been increasingly applied in
vehicular networks, leveraging existing frameworks like
vehicle-to-vehicle (V2V) communication (Yuan et al. 2024).
V2V FL facilitates knowledge sharing among vehicles and
has been explored in various studies (Samarakoon et al.
2019; Pokhrel and Choi 2020; Yu et al. 2020; Chen et al.
2021; Barbieri et al. 2022; Su, Zhou, and Cui 2022). Sama-
rakoon et al. (2019) studied optimized joint power and re-
source allocation for ultra-reliable low-latency communica-
tion (URLLC) using FL. Su, Zhou, and Cui (2022) intro-
duced DFL with Diversified Data Sources to address data
diversity issues in DFL, improving model accuracy and con-
vergence speed in vehicular networks. None of the previous
studies explored model caching on vehicles. Convergence
of asynchronous federated optimization was studied in Xie,
Koyejo, and Gupta (2019). Their analysis focused on pair-
wise model aggregation between an agent and the parameter
server, does not cover decentralized model aggregation with
stale cached models in our proposed framework.

Conclusion & Future Work

In this paper, we developed Cached-DFL, a novel decen-
tralized Federated Learning framework that leverages on
model caching on mobile agents for fast and even model
spreading. We theoretically analyzed the convergence of
Cached-DFL. Through extensive case studies in a vehi-
cle network, we demonstrated that Cached-DFL signifi-
cantly outperforms DFL without model caching, especially
for agents with non-i.i.d data distributions. We employed
only simple model caching and aggregation algorithms in
the current study. We will investigate more refined model
caching and aggregation algorithms customized for differ-
ent agent mobility patterns and non-i.i.d. data distributions.
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