
Algebraic weaves and braid varieties 
Roger Casals, Eugene Gorsky, Mikhail Gorsky, José Simental

American Journal of Mathematics, Volume 146, Number 6, December
2024, pp. 1469-1576 (Article)

Published by Johns Hopkins University Press
DOI:

For additional information about this article

https://doi.org/10.1353/ajm.2024.a944357

https://muse.jhu.edu/article/944357/summary

[128.120.235.72]   Project MUSE (2025-07-08 18:44 GMT)  University of California, Davis 



ALGEBRAIC WEAVES AND BRAID VARIETIES

By ROGER CASALS, EUGENE GORSKY, MIKHAIL GORSKY, and JOSÉ SIMENTAL

Abstract. In this manuscript we study braid varieties, a class of affine algebraic varieties associated

to positive braids. Several geometric constructions are presented, including certain torus actions on

braid varieties and holomorphic symplectic structures on their respective quotients. We also develop

a diagrammatic calculus for correspondences between braid varieties and use these correspondences

to obtain interesting decompositions of braid varieties and their quotients. It is shown that the max-

imal charts of these decompositions are exponential Darboux charts for the holomorphic symplectic

structures, and we relate these charts to exact Lagrangian fillings of Legendrian links.
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1. Introduction. This article studies braid varieties, a class of affine alge-

braic varieties associated to positive braids, and their relation to contact and sym-

plectic geometry. First, the geometric properties of braid varieties are studied, in-

cluding the construction of torus actions and holomorphic symplectic structures

on their quotients. Then, we construct correspondences between these braid vari-

eties by using certain moduli spaces associated to weaves, a class of labeled planar

diagrams. These geometric correspondences are shown to induce valuable decom-

positions for braid varieties and their quotients, also unifying known constructions

of P. Boalch and A. Mellit, in the case of character varieties, and M. Henry and D.

Rutherford, in the case of augmentation varieties.

The diagrammatic calculus based on weaves, presented in Section 5, allows for

direct and explicit computations, and we provide new constructions of embedded

exact Lagrangian fillings for Legendrian links through combinatorial methods. The

main results of the article are Theorems 1.1, 1.3, and 1.7, and several detailed

examples are provided throughout the manuscript. In particular, we believe that

the construction of a holomorphic symplectic structure on augmentation varieties,

developed in Section 3, is of value for contact and symplectic geometry.

1.1. Context. Legendrian links in contact 3–manifolds [2, 4, 49] are central

in contact and symplectic geometry. Legendrian fronts, immersed planar cuspidal

curves, arise in topology, as Cerf diagrams [1, 11, 27], in differential equations,

as Stokes data for irregular singularities [5, 102, 104], and in analysis, as wave-

front sets [61, 62, 71]. In this article, we use that a positive braid ´ gives rise to a

Legendrian link Λ(´)¦ (R3, Àst), cf. [23, Section 2.2] or [17, 49].

Associated to a Legendrian link Λ ¦ (R3, Àst), there exist two geometrically

defined moduli spaces: the moduli space of microlocal sheaves in R
2 microlocally

supported at Λ, cf. [24, 56, 69, 70], and the moduli space of exact Lagrangian

fillings L ¦ (R4,Ést), with boundary ∂L = Λ, cf. [1, 17, 23, 49]. Note that the
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latter can be understood as the (geometric part of the) moduli space of objects of

the Fukaya category of (R4,Ést) partially wrapped at Λ. For the Legendrian links

Λ(´) ¦ (R3, Àst), these moduli are algebraic stacks and, when appropriately dec-

orated, smooth algebraic varieties. The present manuscript studies a collection of

algebraic varieties associated to a positive braid ´, including and generalizing these

two moduli spaces, and new correspondences between them. These algebraic corre-

spondences are often induced by geometric exact Lagrangian cobordisms between

Legendrian links, and can in general be described with a diagrammatic calculus, as

we will show, building on work of the first author with E. Zaslow [25].

In summary, we introduce the class of braid varieties, study torus actions and

their quotients, construct correspondences and morphisms between them, and de-

velop a diagrammatic calculus associated to these correspondences. As we estab-

lish these results, we prove several theorems of interest, including the fact that the

augmentation variety associated to Λ(´) admits a holomorphic symplectic struc-

ture, and explain the relation between A. Mellit’s decomposition of character va-

rieties [84] and the ruling stratification of the augmentation variety [58, 57]. Note

that holomorphic symplectic structures play a central role in the study of moduli

spaces of connections [6, 9], and there ought to be a relation to their symplectic

structures through understanding the moduli stack of objects in the Aug+-category

[86] as a wild character variety [7, 101]. It should be noted that our diagrammatic

calculus, which we refer to as algebraic weaves, provides a combinatorial and ex-

plicit approach to these decompositions. In addition, the pieces are compatible with

the holomorphic symplectic structure, the open toric charts admitting (exponential)

holomorphic Darboux coordinates.

1.2. Main results. Let us define our main object of study, the braid matrices

and braid varieties. In order to do this, let us fix n > 0. For each i = 1, . . . ,n− 1,

we consider the braid matrix Bi(z) ∈ GL(n,C[z]) defined by:

(Bi(z))jk :=





1 j = k and j ̸= i, i+1

1 (j,k) = (i, i+1) or (i+1, i)

z j = k = i+1

0 otherwise;

,

i.e.,

Bi(z) :=




1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0

0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1



.
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Note that the only the non-trivial (2×2)-block is at ith and (i+1)st rows. Braid

matrices have appeared in a range of areas, starting with L. Euler’s continuants

[41], G. Stokes’ study of irregular singularities [104] (see P. Boalch’s [8, 9]), M.

Broué and J. Michel’s work on Deligne-Lusztig varieties [13], P. Deligne’s braid

invariants [30], and more recently in T. Kálmán’s study of the Legendrian Contact

DGA [67] (see also [23]) and A. Mellit’s results on the curious Lefschetz property

for character varieties [84], among others.

Let µ be a positive n-braid word [µ] ∈ Br+n , µ = Ãi1
· · ·Ãiℓ . We consider the

following matrix Bµ(z1, . . . , zℓ) ∈ GL(n,C[z1, . . . , zℓ]), which we define to be the

matrix product

Bµ(z1, . . . , zℓ) :=Bi1
(z1) · · ·Biℓ(zℓ).

Finally, if Ã ∈ GL(n,C) is a permutation matrix we consider the braid variety

X0(µ;Ã) := {(z1, . . . , zℓ) :Bµ(z1, . . . , zℓ)Ã is upper-triangular} ¦ C
ℓ.

Note that this is an affine algebraic variety, given by the vanishing of
(
n
2

)
polyno-

mial equations in the variables z1, . . . , zℓ.

From our definition above, it is simple to see that X0(µ;Ã) is isomorphic to

X0(µ
′;Ã) if [µ] = [µ′] ∈ Brn, i.e. if two positive words µ,µ′ represent the same

n-braid, the resulting braid varieties are isomorphic, hence the name. In the course

of the article, the permutation (matrix) Ã will often be the identity Ã = Id = e ∈ Sn
or the longest element Ã = w0 = (n n−1 . . . 1) ∈ Sn. Let ∆ ∈ Br+n be a positive

braid lift of the permutation w0, i.e. ∆ will be a braid word for the half-twist. See

Example 2.2 for our specific choice of positive braid word for ∆.

The first result of the article establishes geometric properties of braid varieties,

including the existence of a torus action and their relation to the Floer-theoretically

defined augmentation varieties [10, 28, 86]. It reads as follows.

THEOREM 1.1. Let µ be a positive n-braid word [µ]∈Br+n . Then the following

statements hold:

(i) X0(µ∆;1) ≃ X0(µ;w0)×C(
n
2), and X0(µ;w0) is non-empty if and only

if the Demazure product of µ equals w0. In this case, X0(µ;w0) is an irreducible

complete intersection of dimension ℓ(µ)−
(
n
2

)
, and X0(µ∆;1) is an irreducible

complete intersection of dimension ℓ(µ).

Suppose that there exists a positive n-braid word ´ such that µ = ´∆. Then:

(ii) The braid variety X0(´∆;w0), and thus X0(´∆
2;1), is smooth.

(iii) There exists a free torus action on X0(´∆;w0) such that the quotient

algebraic variety X0(´∆;w0)/T is smooth and holomorphic symplectic.

(iv) There exists an isomorphism between X0(´∆;w0)/T and an augmenta-

tion variety Aug(´) associated to the Legendrian link Λ(´). In particular, Aug(´)

is a holomorphic symplectic (smooth) affine variety.
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(v) The open Bott-Samelson variety OBS(´) associated to ´ is isomorphic to

the quotient

OBS(´)∼= (GL(n,C)×X0(´;1))/B,

where B ¦ GL(n,C) is the Borel subgroup of upper-triangular matrices.

In Theorem 1.1 (iii), the dimension of the torus T does depend on the number

of components in the closure of ´, see Section 2 for details. See Section 2.6 for

the details on marked points used to define the objects in Theorem 1.1 (iv). The

different varieties and the torus action featured in Theorem 1.1 are presented in the

course of the article, and the proof of this theorem is obtained by gathering some the

results we develop, such as Theorems 2.39, 2.6, and 3.14 and Corollary 5.36. See

also Section 4.4 for the definition of Demazure product, and note that the Demazure

product of ´∆ equals w0 for any ´.

Theorem 1.1 discusses the absolute aspects of braid varieties. The study of

such varieties also relies crucially on their relative geometry: morphisms between

different such braid varieties and, more generally, correspondences, yield inter-

esting (and useful) results. In order to study this relative setting, we develop the

diagrammatic calculus of weaves, which we summarize as follows.

Let Wn be the category defined as:

– Objects: Ob(Wn) are arbitrary positive braid words µ=Ãi1
· · ·Ãiℓ , [µ]∈Br

+
n ,

– Morphisms: HomWn
(µ,µ′) are compositions of the following six elementary

moves, starting at µ at the top and ending at µ′ at the bottom. The moves are

ÃiÃi→ Ãi, ÃiÃi+1Ãi´ Ãi+1ÃiÃi+1, ÃiÃj → ÃjÃi (|i− j|> 1), and ÃiÃi´ 1.

We will declare some of the morphisms to be equivalent, see Section 4.

The morphisms in Wn will be represented diagrammatically as certain planar

graphs with edges decorated by simple transpositions si. (Namely, si are the Cox-

eter projections of the Artin braid generators Ãi, 1f ifn.) These planar graphs are

referred to as weaves, following [25, Section 2], and Wn will be called the category

of weaves. The elementary moves above, i.e. the building blocks for morphisms,

can be drawn as follows:
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There is also a dual 6-valent vertex corresponding to ÃiÃi−1Ãi→ Ãi−1ÃiÃi−1 which

we do not draw here but is equally allowed. An algebraic weave, obtained by ver-

tically and horizontally concatenating the models above (plus additional decora-

tions), represents a morphism from the braid word on the top to the braid word on

the bottom. The composition of weaves

HomWn
(µ′,µ′′)×HomWn

(µ,µ′)−→ HomWn
(µ,µ′′)

is given by vertical stacking of these weave diagrams. See Figure 1 for an instance

of a morphism.

Figure 1. An algebraic weave in HomWn
(µ,µ′) between the two positive 3-braids µ =

Ã3
1Ã2Ã

3
1Ã

2
1Ã

3
1Ã

3
2Ã

3
1Ã2Ã

3
1 , at the top, and µ′ = Ã3

2Ã
2
1Ã

2
2 , at the bottom. The darker shade is

labeled with the transposition s1 and the lighter shade is labeled with s2. For readability we

omit the (downward pointing) orientations. The upside-down trivalent vertices are defined

using the usual trivalent vertices and cups, see Section 4.3.2.

Remark 1.2. Note that this diagrammatic category is in part similar to the cat-

egories appearing in Soergel calculus [37, 38], but differs in several key aspects. In

particular, in the category of algebraic weaves there is no requirement that the two

ways of getting from ÃiÃiÃi to Ãi, via the moves ÃiÃi→ Ãi, are equivalent:

The difference between these diagrams will be referred to as a weave mutation.

Let C be the category of algebraic varieties whose morphisms are correspon-

dences. That is, a morphism X→ Y consists of a pair of morphisms X←Z→ Y ,
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and composition corresponds to the fiber product. The second result in this manu-

script shows that braid varieties and their correspondences provide a realization of

the weave category Wn, as follows.

THEOREM 1.3. There exists a functor X0 : Wn→ C such that:

(a) Objects: For a positive braid word µ ∈Ob(Wn), the functor X0 associates

the braid variety X0(µ) :=X0(´;w0).

(b) Morphisms: For a weave w ∈ HomWn
(´2,´1), the functor associates a

correspondence X0(w) between X0(´2;w0) and X0(´1;w0), such that correspon-

dences X0(w) and X0(w
′) associated to equivalent weaves with no caps w,w′ are

isomorphic. (The algebraic variety X0(w) is in fact described as a certain moduli

space governed by the weave w.)

(c) Composition: Let w1 ∈ HomWn
(´1,´0), w2 ∈ HomWn

(´2,´1), and con-

sider their composition w=w1 ◦w2 ∈ HomWn
(´2,´0), which is obtained by ver-

tical concatenation of w2, at the top, and w1, at the bottom. Then the composition

of weaves under X0 corresponds to the diagram:

X0(w)

X0(w1) X0(w2)

X0(´0;w0) X0(´1;w0) X0(´2;w0),

where the middle square is Cartesian.

(d) Let w ∈ HomWn
(´2,´1) be a weave with no caps, a cups and b trivalent

vertices. Then the correspondence X0(w) defines an injective map

X0(w) : Ca× (C∗)b×X0(´1;w0) ↪→X0(´2;w0).

Furthermore, the correspondences X0(w) are equivariant with respect to appro-

priate torus actions and, using Theorem 1.1 (iv), yield correspondences between

augmentation varieties.

The proof of Theorem 1.3 occupies the majority of Section 5, the equivariance

statement being discussed in Section 5.7. The statements in Theorem 1.3 (a)–(c)

are the algebraic analogues of the symplectic geometric results obtained in [25].

Note that the algebraic variety X0(∆;w0) is a point, and thus Theorem 1.3 implies

the following.

COROLLARY 1.4. Let w∈HomWn
(µ,∆) be a weave with no caps, a cups and

b trivalent vertices, a,b ∈ N. Then the correspondence X0(w) yields an injective
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map

X0(w) : Ca× (C∗)b ↪→X0(µ;w0), 2a+ b= ℓ(µ)−

(
n

2

)
.

Corollary 1.4 provides a unifying framework for many known decompositions,

including the ruling stratification in augmentation varieties [44, 57, 58], and the

decomposition by walks in character varieties [84]. First, we will see that any

weave w ∈ HomWn
(µ,∆) with no cups or caps yields an open (algebraic) torus

(C∗)ℓ(µ)−(
n
2) ¢ X0(µ;w0). Fixing such a weave, we will see that its complement

can be further decomposed with weaves (that will now include cups). The weaves

with no caps or cups, that will be of primary importance in this article, will be

referred to as Demazure weaves. Note that different Demazure weaves define (a

priori) different decompositions of X0(µ;w0).

Remark 1.5. The manuscript also includes a new construction of weaves, com-

ing from a class of labeled triangulations. This construction, described in Sec-

tion 4.7, uses Demazure products in a crucial manner and, together with results

of [25], provides a systematic (and combinatorial) mechanism to construct embed-

ded exact Lagrangian fillings for Legendrian links in (R3, Àst) which are obtained as

closures of a positive braid ´. Specifically, the points in the braid varietyX0(´;w0)

correspond to fillings of the (−1)-closure of ´∆, cf. [23, Section 2].

Finally, complementing Theorems 1.1 and 1.3, we give a geometric interpreta-

tion to these toric charts associated to Demazure weaves w ∈ HomWn
(´∆,∆), as

follows.

First, we show in Section 2.3 that these charts can be combinatorially obtained

by opening the crossings of the positive braid ´. Indeed, Section 2.3 shows that

there is an injective map

X0(´
′∆;w0)×C

∗ ↪→X0(´∆;w0),

if the positive braid word ´′ is obtained from ´ by removing exactly one crossing.

Therefore, opening the crossings in ´ one by one, in some order, yields a toric

chart inX0(´∆;w0). Different orders might yield identical or different toric charts.

For instance, for a 2-strand braid ´ = Ãn1 , there are n! possible orderings and one

obtains a Catalan number Cn of toric charts. In particular, in this correspondence,

each toric chart is obtained by exactly one 312-pattern avoiding permutation.

Definition 1.6. Throughout the paper, if ´ is a braid word of length ℓ, we

denote by Sℓ the set of orderings on the crossings of ´ (which is in bijection with

the symmetric group in ℓ letters).

Regarding this relation, between toric charts and openings of crossings, we

show the following.
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THEOREM 1.7. Let [´] ∈ Br+n be a positive braid and ´ = Ãi1
·Ãi2
· . . . ·Ãil a

positive braid word. Consider an ordering Ä ∈ Sl for the crossings of ´. Then:

(i) There exists a (Demazure) weave wÄ such that the sequence of crossing

openings according to Ä is realized by the weave wÄ. Conversely, any Demazure

weave w is equivalent to opening crossings for some ordering Ä ∈ Sl, i.e., there

exists Ä ∈ Sl such that w is equivalent to wÄ.

(ii) Two toric charts C1,C2 ¦ X0(´∆;w0) associated to different orderings

of the crossings are represented by weaves w1,w2 such that w1,w2 are related

by a sequence of mutations. In addition, the union of all such toric charts covers

X0(´∆;w0) up to codimension 2.

The first item is proven in Lemma 5.17 and Theorem 5.18, and the proof of the

codimension-2 cover is established in Theorem 2.25. The mutation equivalence

of any weaves yielding toric charts follows from the more general Theorem 4.12,

which states that, under technical conditions that are satisfied in the weaves per-

taining to Theorem 1.7, any two Demazure weaves between the same two braid

words are related by a sequence of equivalence moves and mutations. Note that

Theorem 4.12 is a translation of a result of B. Elias [36] to our weaves framework.

Remark 1.8. Note that both the openings of crossings and mutations can be

described in terms of braid words. Indeed, consider a braid word ÃiuÃj with Ãiu=

uÃj , i.e., (Ãi,Ãj) is a deletion pair in the notation of [59]. Then, we can consider

two different weaves:

ÃiuÃj

ÃiÃiu uÃjÃj

Ãiu uÃj

In this diagram, the left weave ÃiuÃj→ uÃj corresponds to the opening of a cross-

ing Ãi, and the right weave ÃiuÃj → uÃj to opening a crossing Ãi. Theorem 1.7

implies that the two weaves are always related by a sequence of equivalence moves

and mutations. For example, for i = j and u = Ãi we get a mutation, while for

i= 1, j = 2 and u= Ã2Ã1 we get an equivalence (see Section 4.2.4):

Ã1(Ã2Ã1)Ã2

Ã1Ã1(Ã2Ã1) (Ã2Ã1)Ã2Ã2

Ã1(Ã2Ã1) (Ã2Ã1)Ã2
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1.3. Related developments. In this section we comment on some recent

results and developments which were completed after the first version of this paper

was posted on arXiv.

We further studied certain classes of braid varieties in [19]. In particular, all

positroid varieties [73] in the Grassmannian Gr(k,n) were shown to be isomorphic

to braid varieties for several different braids, both on n and on k strands. The paper

[19] also gives a precise relation between braid varieties, subword complexes and

brick polytopes [12, 26, 39, 53, 55, 64, 74, 75, 92]. The faces of a subword complex

for a braid word µ correspond to all possible subwords of µ such that the Demazure

product of their complements equals w0. Subword complexes were introduced by

Knutson and Miller [74, 75] in the context of Gröbner geometry of Schubert poly-

nomials. Knutson and Miller proved that subword complexes are homeomorphic

to balls or spheres. Pilaud and Stump found polytopal realizations of spherical sub-

word complexes and called them brick polytopes. Results of [53, 54, 55] describe

the behavior of subword complexes under braid moves and moves sisi→ si in µ.

Ceballos, Labbé and Stump [26] proved that certain brick polytopes are general-

ized associahedra, thus relating subword complexes to the theory of cluster alge-

bras. See also more recent works of Brodsky and Stump [12] and of Jahn, Löwe

and Stump [64] further exploring this relation. Using the work of Escobar [39],

we also show in [19] that a braid variety admits a smooth compactification by the

so-called brick manifold. The combinatorics of the boundary divisor agrees with

the dual subword complex.

Finally, there was a recent increase of interest relating weaves, braid varieties

and cluster algebras. In particular, in a joint work with I. Le and L. Shen [18], we

show that any braid variety admits a cluster structure. This result was also proven

in [46, 47, 98] by different methods, and we expect the two cluster structures to

be closely related. The above results resolve a long-standing conjecture of Leclerc

[77] on the existence of cluster structure on open Richardson varieties. In particu-

lar, a cluster structure guarantees the existence of a collection of open tori which

correspond to Demazure weaves as in Corollary 1.4. On such a torus, [18] defines

a collection of cluster coordinates using the combinatorics of a weave. We refer to

[18, 46, 47, 98, 99, 100] and references therein for all definitions and details.
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Ng, Minh-Tam Trinh and Daping Weng for useful discussions, and Johan As-

plund for comments on an earlier version of the paper. E. Gorsky would like to

thank Yuri Chekanov for the lifetime influence. Parts of this work were done when

M. Gorsky’s participated in the junior trimester program “New Trends in Repre-

sentation Theory” at the Hausdorff Institute for Mathematics in Bonn. We would



ALGEBRAIC WEAVES AND BRAID VARIETIES 1479

like to thank the anonymous referee for their very thorough reading of the paper

and many helpful suggestions.

2. Braid varieties and augmentation varieties. In this section we intro-

duce and start studying braid varieties. Part of Theorem 1.1 is proven in this section,

with the holomorphic symplectic structure being discussed in Section 3. This sec-

tion also discusses the torus actions on braid varieties and their quotients, which

relate to augmentation varieties.

Notations for the braid group. Let n ∈N. The braid group Brn on n-strands is

presented with n−1 generators Ãi, i ∈ [1,n−1], and relations

ÃiÃi+1Ãi = Ãi+1ÃiÃi+1, for i= 1, . . . ,n−2,

ÃiÃj = ÃjÃi for |i− j| g 2, i, j ∈ [1,n−1].
(2.1)

In this article, we mainly work with the positive braid monoid Br+n ¦ Brn gener-

ated by the non-negative powers of the generators Ãi, i ∈ [1,n−1]. By definition,

a (positive) braid word is a product expression of non-negative powers of the gen-

erators Ãi where no relations are being applied. For instance, the two braid words

Ã1Ã2Ã3Ã1 and Ã2Ã1Ã2Ã3 are distinct as braid words and represent the same element

[Ã1Ã2Ã3Ã1] = [Ã2Ã1Ã2Ã3] ∈ Br+4 .

The symmetric group Sn is the Coxeter group associated to Brn: it is generated

by the transpositions si = (i i+ 1), subject to relations (2.1) above and the addi-

tional relation s2
i = 1, for all i∈ [1,n−1]. By definition, a reduced expression for a

permutation w ∈ Sn is a minimal length expression for the element w as a product

of the generators si, i ∈ [1,n−1]; the length ℓ(w) is defined as the length of such

reduced expression. It is well known that any two reduced expressions are related

by a sequence of braid moves (2.1). Therefore, one can define a positive braid lift

of w ∈ Sn to Br+n by choosing an arbitrary reduced expression and replacing each

generator si with the generator Ãi, for each i ∈ [1,n− 1]. We will refer to such

positive braid lifts as reduced braid words. To ease notation, we interchangeably

use Ãi, si, and sometimes simply i for the braid group generators, i ∈ [1,n−1].

2.1. Braid matrices and braid varieties. Braid varieties are affine alge-

braic varieties cut out by matrix equations. Their definition relies on the following

notion.

Definition 2.1. Let n ∈ N, i ∈ [1,n− 1] ∈ N and z a (complex) variable. The

braid matrix Bi(z) ∈ GL(n,C[z]) is defined as

(Bi(z))jk :=





1 j = k and j ̸= i, i+1

1 (j,k) = (i, i+1) or (i+1, i)

z j = k = i+1

0 otherwise;
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i.e.,

Bi(z) :=




1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0

0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1



.

Given a positive braid word ´ = Ãi1
· · ·Ãir ∈ Br+n and z1, . . . , zr complex variables,

we define the braid matrix B´(z1, . . . , zr) ∈ GL(n,C[z1, . . . , zr]) to be the product

B´(z1, . . . , zr) =Bi1
(z1) · · ·Bir(zr).

For instance, it follows from Definition 2.1 that B´(0, . . . ,0) is simply the per-

mutation matrix associated to the Coxeter projection Ã(´) ∈ Sn. Thus, in a sense,

braid matrices are deformations of permutation matrices. It is a simple computation

to verify the two relations:

(2.2) Bi(z1)Bi+1(z2)Bi(z3) =Bi+1(z3)Bi(z2−z1z3)Bi+1(z1), ∀i∈[1,n−2],

and

(2.3) Bi(z1)Bj(z2) =Bj(z2)Bi(z1) for |i− j| g 2.

Here are a few useful examples.

Example 2.2. Let us first consider (a lift of) the Coxeter element Ã1Ã2 · · ·Ãn−1∈

Br+n . Induction on n shows that

(2.4) BÃ1Ã2···Ãn−1
(z1, . . . , zn−1) =




0 0 · · · 0 1

1 0 · · · 0 z1

0 1 · · · 0 z2

...
...

. . .
...

...

0 0 · · · 1 zn−1



.

Now we consider the positive braid word

∆= (Ã1Ã2 · · ·Ãn−1)(Ã1 · · ·Ãn−2) · · ·(Ã1Ã2)Ã1,

which represents a half-twist. It follows from (2.4) that its associated braid matrix

is

(2.5) B∆

(
z1, . . . , z(n2)

)
=




0 0 · · · 0 1

0 0 · · · 1 z1

0 0 · · · zn z2

...
...

. . .
...

...

1 z(n2)
· · · z2n−3 zn−1



.
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Let ∆′ ∈ Br+n be any positive braid lift of the longest element w0 of Sn. It then

follows from the braid relation (2.2) that

(2.6) B∆′

(
z1, . . . , z(n2)

)
=




0 0 · · · 0 1

0 0 · · · 1 z2,n

0 0 · · · z3,n−1 z3,n
...

...
. . .

...
...

1 zn,2 . . . zn,n−1 zn,n



,

where the zi,j are algebraically independent generators of C
[
z1, . . . , z(n2)

]
.

LEMMA 2.3. Let ∆2 ∈ Br+n represent the full-twist braid, i.e. the square of

the positive braid lift of w0 ∈ Sn to the braid group. Then its braid matrix can be

decomposed as

B∆2

(
z1, . . . , z(n2)

,w1, . . .w(n2)

)

= LU =




1 0 · · · 0

c21 1 · · · 0
... · · ·

. . . 0

cn1 · · · · · · 1







1 u12 · · · u1n

0 1 · · · u2n

0 · · ·
. . . un−1,n

0 · · · · · · 1


 ,

where cij ∈C
[
z1, . . . , z(n2)

]
and uij ∈C

[
w1, . . . ,w(n2)

]
are algebraically indepen-

dent generators.

Proof. By Example 2.2,B∆ =Lw0 =w0U . HenceB∆2 =B∆B∆ =Lw0w0U

= LU . □

Let us now use braid matrices to define the central object of interest in this

manuscript.

Definition 2.4. Let ´ = Ãi1
· · ·Ãir ∈ Br+n be a positive braid word. The braid

variety X0(´)¦ C
r associated to ´ is the affine closed subvariety given by

X0(´) :=
{
(z1, . . . , zr) :B´(z1, . . . , zr) is upper-triangular

}
¦ C

r.

Let Ã ∈ Sn be considered as a permutation matrix. We define the braid variety

X0(´;Ã)¦ C
r as

X0(´;Ã) :=
{
(z1, . . . , zr) :B´(z1, . . . , zr)Ã is upper-triangular

}
¦ C

r.

It follows from the braid relation (2.2) that different presentations of the same braid

[´] ∈ Brn yield algebraically isomorphic braid varieties.

Let us give some simple examples of braid varieties.
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Example 2.5. Consider the positive braid associated to the full twist ´ = ∆2.

Lemma 2.3 implies that X0(∆
2) is given by the equations cij = 0, and thus the

braid variety is the affine space X0(∆
2)∼= C(

n
2), with coordinates being uij . Simi-

larly, Example 2.2 implies that the braid variety X0(∆;w0) = {pt} is a point.

The computation in Example 2.2 shows that X0(´;w0) admits a closed em-

bedding into X0(´ ·∆):

º :X0(´;w0)→X0(´ ·∆), (z1, . . . , zℓ) 7→ (z1, . . . , zℓ,0,0, . . . ,0)

where there are
(
n
2

)
zeroes in (z1, . . . , zℓ,0, . . . ,0). In general, if Π ∈ Br+n is a posi-

tive lift of a permutation Ã ∈ Sn then X0(´;Ã) embeds into X0(´ ·Π). Let us now

establish the general dimension and smoothness for braid varieties.

THEOREM 2.6. Let ´ ∈Br+n be a positive braid of length ℓ(´). Then, the braid

varieties X0(´ ·∆;w0) and X0(´ ·∆
2) are smooth of dimension ℓ(´) and ℓ(´)+(

n
2

)
, respectively. In addition, X0(´ ·∆

2)≃X0(´ ·∆;w0)×C(
n
2).

Proof. The variety X0(´ ·∆
2) is defined by the condition that B´·∆2 is an

upper triangular matrix. By Lemma 2.3, we get

B´·∆2 =B´B∆2 =B´LU =B´·∆w0U.

This is upper-triangular if and only if B´·∆w0 is upper-triangular, which

is precisely the condition defining X0(´ · ∆;w0). Therefore, X0(´ · ∆
2) ≃

X0(´ ·∆;w0)×C(
n
2), with C(

n
2) being the coordinates on the upper unitriangular

matrix U . Now, by (2.5) we have that B∆w0 is a lower unitriangular matrix, and

thus we can write

(2.7) B´·∆w0 =B´L

where L is lower unitriangular. If we have a point in X(´ ·∆;w0) we obtain

B´·∆w0 = U ′, an upper triangular matrix. Together with (2.7) we obtain

B−1
´ = L(U ′)−1.

Note that the existence of an LU decompositionM =LU ′′ is an open condition on

M , namely the non-vanishing of principal minors; also, if an LU decomposition

exists, it is unique provided that L has 1s on the diagonal. Therefore X0(´ ·∆;w0)

is isomorphic to an open subset in the affine space C
ℓ(´). Hence, it is smooth of

dimension dimX0(´ ·∆;w0) = ℓ(´), and X0(´ ·∆
2) is also smooth of dimension

dimX0(´ ·∆
2) = ℓ(´)+

(
n
2

)
, as required. □

In the proof of the previous result we obtained thatX0(´ ·∆;w0) is open in the

affine space C
ℓ(´). Since this will be used again later, let us state it as a separate

result.
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LEMMA 2.7. Let ´ ∈ Br+n be a positive braid of length ℓ(´). Then, the braid

variety X(´ ·∆;w0) is open in the affine space C
ℓ(´), and it is given by the non-

vanishing of the leading principal minors of the matrix B−1
´ (z1, . . . , zℓ).

Lemma 2.7 implies that the braid variety X(´ ·∆;w0) is isomorphic to the

(half-decorated) double Bott-Samelson cell studied in [100]. Note that a similar

smoothness result was proved in [100, Theorem 2.30]. The braid varieties asso-

ciated to 2-stranded braids ´ ∈ Br+2 are smooth varieties whose equations closely

relate to Euler’s continuants [41].

Example 2.8. Consider ´ = Ã3
1 ∈Br

+
2 , the braid varietyX0(Ã

5
1) =X0(Ã

3
1 ·∆

2)

is defined by the equation:

B(z1)B(z2)B(z3)B(z4)B(z5) is upper-triangular.

This condition can written as (cf. Lemma 2.3)

B(z1)B(z2)B(z3)

(
1 0

z4 1

)(
1 z5

0 1

)
is upper-triangular,

and equivalently

B(z1)B(z2)B(z3)

(
1 0

z4 1

)

=

(
z2 +(z2z3 +1)z4 z2z3 +1

z1z2 +(z1 +(z1z2 +1)z3)z4 +1 z1 +(z1z2 +1)z3

)
is upper-triangular.

Note that we have
(

1 0

z4 1

)
=

(
0 1

1 z4

)(
0 1

1 0

)
=

(
0 1

1 z4

)
w0,

and thus the condition above, in the coordinates (z1, z2, z3, z4) ∈ C
4, is in fact

the equation for X0(Ã
3
1 ·∆;w0). This implies that X0(Ã

3
1 ·∆

2) is isomorphic to

X0(Ã
3
1 ·∆;w0) times an affine line C = Spec(C[z5]). This is proven in general in

Theorem 2.6. It thus suffices to understand X0(Ã
3
1 ·∆;w0). For that, consider the

equation above:

X0(Ã
3
1 ·∆;w0)={(z1, z2, z3, z4)∈C

4 : 1+z1z2+z4(z1+z3+z1z2z3)= 0}

¦C
4,

(2.8)

which cuts out a hypersurface, and should be smooth according to Theorem 2.6. In-

deed, note that we must have z1+z3+z1z2z3 ̸= 0, otherwise the defining equation

(2.8) would imply 1+z1z2 = 0, and in these constraints

z1 = z1 +z3(z1z2 +1) = z1 +z3 +z1z2z3 = 0.



1484 R. CASALS, E. GORSKY, M. GORSKY, AND J. SIMENTAL

This is a contradiction; thus, z1 + z3 + z1z2z3 ̸= 0 in X0(Ã
3
1 ·∆;w0). In conse-

quence, X0(Ã
3
1 ·∆;w0) is isomorphic to the open subset

X0(Ã
3
1 ·∆;w0) = {(z1, z2, z3) ∈ C

3 : (z1 +z3 +z1z2z3) ̸= 0} ¦ C
3,

since the coordinate z4 can be obtained uniquely from any points (z1, z2, z3) ∈ C
3

in this subset. This shows that X0(Ã
3
1 ·∆;w0) is smooth.

In fact, this provides a rather simple description for this braid variety: it is the

open set foliated by the smooth hypersurfaces (z1+z3+z1z2z3) = a, a∈C∗. For a

fixed a∈C∗, the Stein deformation type of the affine surface {(z1+z3+z1z2z3) =

a} is described in [22, Section 4.1].

Remark 2.9. In the case of positive braids associated to algebraic knots K ¦

R
3, the braid varieties can be similarly described symplectically using the arboreal

skeleta constructed in [16]. In general, following the lines of Example 2.8, the

braid varieties for (2,n)-torus links can be similarly described in terms of affine

hypersurfaces.

Note that we can write

X0(Ã
3
1 ·∆;w0)∼= {(z1, z2, z3, t) : (z1 +z3 +z1z2z3)t= 1} ¦ C

3×C
∗
t ,

and thus there exists a C∗-action onX0(Ã
3
1 ·∆;w0) whose quotient yields the affine

hypersurface {z1 + z3 + z1z2z3 = 1} ¦ C
3. The feature of admitting certain (com-

plex) torus actions with interesting quotients is a general property of braid varieties,

as we will now see.

2.2. Torus actions on braid varieties. Let [´] ∈ Br+n be a positive braid

with a fixed positive braid word ´ = Ãi1
· · ·Ãir . Consider the Cartan subgroup T∼=

(C∗)n ¦ GL(n,C) of diagonal matrices, and its quotient T by the subgroup of

scalar invertible matrices. In this section we construct an algebraic T -action on the

braid variety X0(´). First, we observe that

(2.9)

(
t1 0

0 t2

)(
0 1

1 z

)
=

(
0 1

1 t2

t1
z

)(
t2 0

0 t1

)
.

Let Dt = diag(t1, . . . , tn) ∈ T be a diagonal matrix. In general, we have

DtBi(z) =Bi

(
ti+1

ti
z

)
Dsi(t),

for si the Coxeter projection of Ãi. Thus

(2.10) DtBi1
(z1) · · ·Bir(zr) =Bi1

(c1z1) · · ·Bir(crzr)Dw(t),

where r = ℓ(´), ck = twk(ik+1)t
−1
wk(ik)

, wk = si1
· · ·sik−1

and w = wr+1 is the per-

mutation corresponding to ´. The torus actions we study are defined as follows.
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Definition 2.10. Let ´ be a positive n-braid word of length r= ℓ(´). The action

of the torus T∼= (C∗)n on affine space C
ℓ(´) is given by

t.(z1, . . . , zr) := (c1z1, . . . , crzr), t ∈ T, (z1, . . . , zr) ∈ C
r,

where ci are defined as above, i ∈ [1, r]. Note that this T-action preserves the braid

variety X0(´) ¦ C
r thanks to relation (2.10). Let T := T/C∗diag

∼= (C∗)n−1, the

quotient of T by the diagonal subtorus. By definition, the T -action T ×X0(´)→

X0(´) on the braid variety X0(´) is the quotient of the restriction of the above

T-action to X0(´) by the diagonal subtorus C∗diag. Note that the T-action descends

to the T -action quotient since the diagonal subtorus (t, . . . , t)¦ T acts trivially on

X0(´).

Example 2.11. Let us consider the braid word ´ = Ã1Ã2Ã2Ã1Ã2. If t =

(t1, t2, t3) ∈ (C∗)3 we have

t.(z1, z2, z3, z4, z5) =

(
t2
t1
z1,

t3
t1
z2,

t1
t3
z3,

t1
t2
z2,

t3
t2
z5

)
.

Remark 2.12. We can read the ti/tj factor of each zk-variable from the braid

´ as follows. For the weight of zk, consider the strands that are incident on the

left to the k-th crossing of ´ and follow them until the left border of ´. If the

strand incident from the bottom (resp. the top) to the k-th crossing arrives at the

i-th (resp. j-th) level strand at the leftmost end, then the scalar factor for zk is ti/tj .

For example, the next figure illustrates that for z3 in Example 2.11 we have t1/t3.

The torus action on C
r in Definition 2.10 depends on the choice of braid

word ´. Nevertheless, we have the following result.

LEMMA 2.13. Let ´,´′ be two positive presentations of the same braid,

i.e. [´] = [´′]. Then, the algebraic isomorphism X0(´) ∼= X0(´
′) defined by

formulas (2.2) and (2.3) is T -equivariant.

Proof. Let us verify that applying the relation (2.2) defines a T -equivariant

isomorphism. For this, it suffices to consider n= 3, ´ = Ã1Ã2Ã1 and ´′ = Ã2Ã1Ã2.

The action of T on C
3 that yields the action on X0(Ã1Ã2Ã1) is given by:

(2.11) (t1, t2, t3).(z1, z2, z3) =

(
t2
t1
z1,

t3
t1
z2,

t3
t2
z3

)
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while the T -action on C
3 given the action on X0(Ã2Ã1Ã2) is given by:

(2.12) (t1, t2, t3).(w1,w2,w3) =

(
t3
t2
w1,

t3
t1
w1,

t2
t1
w3

)
.

Then (2.11) and (2.12) imply that the map (z1, z2, z3) 7→ (z3, z2− z1z3, z1) is

T -equivariant. The verification that (2.3) also induces a T -equivariant isomorphism

is similar. □

We also have the following result.

LEMMA 2.14. The T -action preserves the product decomposition

X0(´ ·∆
2)∼=X0(´ ·∆;w0)×C(

n
2)

established in Theorem 2.6.

Proof. This follows from uniqueness of the LU-decomposition, which is in-

deed unique if the lower triangular matrix has 1’s on the diagonal. □

Let c(´) be the number of cycles in the cycle decomposition of the Coxeter

projection Ã(´) ∈ Sn, i.e. the number of cycles of ´ understood as a permutation.

The braid [´] ∈ Brn closes up (either through the rainbow or (−1)-framed closure,

see Figure 2 and Section 2.6 for more details) to a knot in R
3 if and only if c(´) = 1,

and there are (n− 1)! such permutations Ã(´) ∈ Sn. For a braid associated to a

knot, we have the following result.

LEMMA 2.15. Let ´ be a positive braid word, [´] ∈ Br+n , with c(´) = 1. Then

the action of T ∼= (C∗)n−1 on the braid variety X0(´) is free.

Proof. Let (z1, . . . , zr) ∈ X0(´) and assume t.(z1, . . . , zr) = (z1, . . . , zr) for

some t ∈ (C∗)n. In particular, we have that B´(z) = B´(t.z). Thanks to equal-

ity (2.10), we have that DtB´(z)D
−1
w(t) = B´(z). Since z ∈ X0(´), the matrix

B´(z) is upper triangular, and therefore its diagonal entries must be non-zero, as

det(B´(z)) =±1. From the equation

DtB´(z)D
−1
w(t) =B´(z),

it follows that tit
−1
w(i) = 1 for every i= 1, . . . ,n. Given that c(´) = 1, we must have

that ti = tj for all i, j and the result follows. □

COROLLARY 2.16. Let ´ be a positive braid word, [´] ∈ Br+n , with c(´) = 1.

Then the action of T ∼= (C∗)n−1 on X0(´ ·∆;w0) is free.

Proof. Note that c(´) = c(´∆2) and thus, by Lemma 2.15, the T -action on

X0(´∆
2) is free. The result now follows from Lemma 2.14. □
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COROLLARY 2.17. Let ´ be a positive braid word, [´] ∈ Br+n , with c(´) = 1.

Then the quotients of the braid varieties X0(´ ·∆
2)/T and X0(´ ·∆;w0)/T are

smooth and of dimension ℓ(´)+
(
n
2

)
−n+1 and ℓ(´)−n+1, respectively.

Remark 2.18. Similarly to [45, Corollary 4.8] one can argue that for c(´) = 1

we have

X0(´) = (X0(´)/T )×T.

Indeed, fixing the diagonal entries of B´(z) provides the corresponding principal

T -bundle over X0(´)/T with a section, hence this bundle is trivial.

The hypothesis c(´) = 1 in Lemma 2.15 is needed, as the T -actions on the

braid varieties will in general fail to be free. For instance, consider the 2-stranded

braid ´ = Ã4
1 and its braid variety

X0(´)∼= {(z1, z2, z3, z4) ∈ C
4 : z1 +z3(1+z1z2) = 0}.

The T -action scales z1 and z3 by t ∈ T ∼= C
∗, and scales z2 and z4 by t−1. Hence,

it has a fixed point (z1, z2, z3, z4) = (0,0,0,0) ∈X0(´). The following remark ex-

plains how to proceed in the case that c(´) ̸= 1.

Remark 2.19. Consider a positive braid word ´ such that [´] ∈ Br+n closes

up to a link with k connected components, i.e. c(´) = k. Let w = w(´) be the

permutation in Sn corresponding to ´. Let C1, . . . ,Ck be the disjoint cycles in w,

and Cj = (aj,1 . . .aj,ℓj ). Now let Tc ¦ T be the (n−k)-dimensional torus given by

the equations ta1,ℓ1
= ta2,ℓ2

= · · ·= tak,ℓk . Recall that T = T/C∗, so we can instead

consider the torus T̃c ¦ T given by the equations ta1,ℓ1
= ta2,ℓ2

= · · · = tak,ℓk = 1.

The projection T̃c→ Tc is an isomorphism, and the actions of Tc, T̃c on the braid

varieties coincide, so we will not distinguish between these tori.

The same argument as in the proof of Lemma 2.15 shows that Tc acts freely

on X0(´). Note that we obtain that the quotient braid variety X0(´ ·∆;w0)/Tc
is a smooth variety of dimension ℓ(´)−n+ k, and a similar result holds for the

quotient X0(´ ·∆
2)/Tc.

This concludes the discussion on the torus action on X0(´). The geometric

structures discussed during the article, e.g. decompositions and holomorphic sym-

plectic structures, are compatible with these torus actions, and will be studied for

the braid varieties X0(´) and their quotients X0(´)/T .

2.3. Toric charts in braid varieties. In this subsection, we construct a

codimension-0 toric chart TÄ ¦ X0(´ ·∆;w0) associated to an (arbitrary) order-

ing Ä ∈ Sl(´) of the crossings of the positive braid word ´. For that, consider two

n-braid words

´ = Ãi1
Ãi2
· · · · ·Ãik−1

ÃikÃik+1
· · · · ·Ãil , ´′ = Ãi1

Ãi2
· · · · ·Ãik−1

Ãik+1
· . . . ·Ãil ,
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i.e. ´′ is obtained from ´ by removing the kth crossing Ãik . We will construct a

rational map X0(´ ·∆
2) 99KX0(´

′ ·∆2)×C
∗ that identifies the latter variety with

an explicit open set in X0(´ ·∆
2).

We start with the following lemma.

LEMMA 2.20. LetL andU be invertible lower- and upper-triangular matrices,

respectively, and i = 1, . . . ,n− 1. Then there exist lower- and upper-triangular

matrices L̃ and Ũ such that

Bi(z)U = ŨBi

(
ui+1,i+1z+ui,i+1

ui,i

)
, LBi(z) =Bi

(
li+1,i+1z+ li+1,i

li,i

)
L̃.

Moreover, ũi,i+1 = l̃i+1,i = 0 and ũk,k = usi(k),si(k) for every k.

Proof. We prove the statement for the upper-triangular matrix U , the case of L

is proven analogously. First, note that

(2.13) (Bi(z)U)j,k =





uj,k if j ̸∈ {i, i+1},

ui+1,k if j = i,

ui,k+zui+1,k if j = i+1,

and

(2.14)
(
ŨBi(w)

)
j,k

=





ũj,k if k ̸∈ {i, i+1},

ũj,i+1 if k = i,

ũj,i+wũj,i+1 if k = i+1.

Now, assume that we know the matrix U and z, and we want to solve for the entries

of Ũ andw in such a way thatBi(z)U = ŨBi(w). Note that (2.13) and (2.14) force

uj,k = ũj,k if j,k ̸∈ {i, i+1}. In particular, ũk,k = uk,k if j ̸= i, i+1, and the matrix

Ũ is upper triangular except for, perhaps, the i and i+1-st row and column.

Setting j = i = k in (2.14) and (2.13) we obtain ui+1,i = ũi,i+1. Since U is

upper triangular, this forces ũi,i+1 = 0. Now setting j = i and k = i+ 1 gives

ui+1,i+1 = ũi,i+wũi,i+1, so ũi,i = ui+1,i+1. Similarly, setting j = i+ 1,k = i we

obtain ui,i+zui+1,i = ũi+1,i+1, so the upper triangularity of U gives us ũi+1,i+1 =

ui,i. Note that at this point we have shown that ũk,k = usik,sik for every k.

If k ̸∈ {i, i+1} then (2.13) and (2.14) give us

ũi,k = ui+1,k and ũi+1,k = ui,k+zui+1,k.

Similarly, if j ̸∈ {i, i+ 1} we obtain (setting k = i) ũj,i+1 = uj,i that the we can

use to solve for ũj,i in the equation uj,i+1 = ũj,i+wũj,i+1, that we obtain setting

k = i+ 1. Note that at this point we have found all entries ũk,j , except for ũi+1,i,

that we must show is 0. This is where our choice of w in the statement of the
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lemma comes into play. Indeed, setting j = i+1= k we obtain ui,i+1+zui+1,i+1 =

ũi+1,i+wũi+1,i+1. Thus, since we know that ũi+1,i+1 = ui,i we obtain

w =
ui+1,i+1z+ui,i+1

ui,i
⇒ ũi+1,i = 0

so the matrix Ũ is upper triangular and the lemma is proved. □

The key algebraic equality that incarnates opening a crossing Ãi in a positive

braid word, in terms of braid matrices, reads

(2.15) Bi(z) = Ui(z)Di(z)Li(z),

where the variable z ∈ C
∗ associated to that crossing Ãi is now assumed to be

non-zero. In this equation, we have used the matrices

(2.16) Ui(z) :=

(
1 z−1

0 1

)
, Di(z) :=

(
−z−1 0

0 z

)
, Li(z) :=

(
1 0

z−1 1

)
,

understood as being the (2× 2)-block matrices placed in i-th and (i+ 1)-st row

and column. Let us now illustrate how the process of opening a crossing occurs

at the level of general braid matrices, as follows. Consider the positive braid word

´ = ´1Ãi´2 and the braid word ´′ = ´1´2 obtained by opening (i.e. removing)

the explicit crossing Ãi between ´1,´2. In order to apply equation (2.15) we must

assume that the variable z associated to the crossing Ãi is non-vanishing, and we

always do so. Then we write

B´ =B´1
(z1, . . . , zr−1)Bi(z)B´2

(zr+1, . . . , zℓ) =B´1
Ui(z)Di(z)Li(z)B´2

,

and use both equation (2.9) and Lemma 2.20 to slide the middle matrices to the

sides, U,D to the left and L to the right. This results in a decomposition of the

form

B´ = U ′D′B´1
(z′1, . . . , z

′
r−1)B´2

(z′r+1, . . . , z
′
ℓ)L
′

= U ′D′B´′(z
′
1, . . . , z

′
r−1, z

′
r+1, . . . , z

′
ℓ)L
′

where U ′, L′ and D′ are some explicit upper (lower) unitriangular and diago-

nal matrices, respectively, and z′1, . . . , z
′
r−1, z

′
r+1, . . . , z

′
ℓ are polynomial functions

on z1, . . . , zr−1, z
±1
r , zr+1, . . . , zℓ. Note that B´(z)L1 is upper-triangular for some

lower-triangular matrix L1 if and only if B´′(z
′)L′L1 is upper-triangular. These

are the first ingredients for the construction of the rational map

ΩÃi
:X0(´∆

2) 99KX0(´
′∆2)×C

∗.

For the second ingredient, we consider a point (z1, . . . , zℓ, cij) ∈ X0(´ ·∆
2).

By Theorem 2.6, this is equivalent to B´(z)L(cij) being upper triangular. Now
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we open a crossing, so we assume zi ̸= 0 is non-vanishing: using the decompo-

sition above we obtained that B´′(z
′
1, . . . , z

′
r−1)L

′L(cij) is upper triangular. Since

L′L(cij) is lower triangular with 1’s in the diagonal, we can write L′L(cij) =

L(c′ij), where c′ij are polynomial functions on z−1
r , zr+1, . . . , zℓ, cij . These poly-

nomial functions are the second ingredient. In summary, we obtain the following

rational map.

Definition 2.21. Consider the positive braid word ´ = ´1Ãi´2 of length ℓ =

l(´), ´′ = ´1´2, and suppose that the complex variable zi associated to the (mid-

dle) crossing Ãi is non-vanishing. By definition, the rational map ΩÃi
associated to

opening the crossing Ãi is

ΩÃi
:X0(´∆

2) 99KX0(´
′∆2)×C

∗,

(z1, . . . , zℓ, cij) 7−→ (z′1, . . . , z
′
r−1, z

′
r+1, . . . , z

′
ℓ, c
′
ij , z

−1
r ),

where z′i ∈ C[z1, . . . , zr−1, z
±
r , zr+1, . . . , zℓ], c

′
ij ∈ C[z−1

r , zr+1, . . . , zℓ, cij ] are the

polynomial functions defined as above.

In the same notation and hypothesis as above, we have the following result.

LEMMA 2.22. The rational map

ΩÃi
:X0(´∆

2) 99KX0(´
′∆2)×C

∗

restricts to an isomorphism between the open locus {zr ̸= 0} ¦ X0(´ ·∆
2) and

X0(´
′ ·∆2)×C

∗.

Proof. From the construction, see e.g. Lemma 2.20, if we know z′1, . . . , z
′
r−1,

z′r+1, . . . , z
′
ℓ and zr then we can reconstruct z1, . . . , zℓ, provided zr ̸= 0. It remains

to show that if we also know c′ij then we can reconstruct cij as well. For that, we

just notice that we can reconstruct L′, and we have the equation

L(cij) = (L′)−1L(c′ij). □

There are two fundamental properties of these rational maps ΩÃi
: they can be

iterated, and they are compatible with the torus action. This leads to the following

result.

PROPOSITION 2.23. Let ´ be a positive n-braid word. For each ordering Ä ∈

Sℓ(´) of the crossings of ´, there exists an open set T̃Ä ¦X0(´ ·∆
2) such that:

(i) T̃Ä ∼= (C∗)ℓ(´)×X0(∆
2) = (C∗)ℓ(´)×C(

n
2).

(ii) T̃Ä is given by the non-vanishing of Laurent polynomials in zr1
, z′r2

, z′′r3
, . . . ,

z
(ℓ−1)
rℓ ; these latter variables can be taken as coordinates of the (C∗)ℓ(´)-factor.

(iii) T̃Ä is stable under the action of (C∗)n−1 on X0(´ ·∆
2).
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Proof. Parts (i) and (ii) follow from the discussion above, applied iteratively.

Thus, the only assertion that needs a proof is the stability under the torus action

in Part (iii). For that, we need to show that zr1
, z′r2

, . . . , z
(ℓ−1)
rℓ are all homogeneous

under the (C∗)n−1-action. This is proven in Lemmas 2.29 and 2.30 below (both

lemmas are independent of the intervening material), and their corresponding ana-

logues in the case of lower-triangular matrices. □

Proposition 2.23 and the relation between the braid varieties X0(´ ·∆
2) and

X0(´ ·∆;w0), as established in Theorem 2.6, imply the following result.

COROLLARY 2.24. Let ´ be a positive n-braid word. For each ordering Ä ∈

Sℓ(´) of the crossings of ´, there exists an open set TÄ ¦ X0(´ ·∆;w0) which is

isomorphic to a torus TÄ ∼= (C∗)ℓ(´) and stable under the action of (C∗)n−1 on

X0(´ ·∆;w0).

The union of the toric charts TÄ in Corollary 2.24, as Ä ∈ Sℓ(´) ranges through

all the possible orderings, does not necessarily cover the entire variety X0(´ ·

∆;w0). Fortunately, we can show that it does cover it up to codimension 2.

THEOREM 2.25. Let ´ be a positive braid word. The complement

X0(´ ·∆;w0)\
( ⋃

Ä∈Sℓ(´)

TÄ

)
¦X0(´ ·∆;w0)

has codimension at least 2.

Proof. Let us prove this by induction on the length ℓ(´) ∈ N. The base case,

ℓ(´) = 0 holds, as X0(∆;w0) = {pt}, see Example 2.5. Note that for the case

ℓ(´)= 1, ´= Ãi for some i∈ [1,n−1], andX0(´∆;w0) is defined by the condition

that Bi(z)
−1 admits an LU -decomposition. (See the proof of Theorem 2.6.) Note

thatBi(z)
−1 is the identity everywhere except in the i and i+1-st row and columns,

where it is (
−z 1

1 0

)
.

So thatBi(z)
−1 admitting anLU -decomposition is equivalent to the non-vanishing

z ̸= 0 (which is obviously equivalent to the non-vanishing of the principal minors

of Bi(z)
−1). Thus X0(´ ·∆;w0) = C

∗; thus the statement also holds in this case.

For the induction step, we assume the statement to be true for length ℓ ∈N and

suppose that ℓ(´) = ℓ+1. Let U1 := {z1 ̸= 0} and U2 := {z2 ̸= 0} and let ´′,´′′ be

the braids we obtain by opening the first and second crossings of ´, respectively. In

particular, U1=X0(´
′ ·∆;w0)×C

∗ and U2=X0(´
′′ ·∆;w0)×C

∗. By the induction

assumption, U1 and U2 can be covered up to codimension 2 by opening crossings

in the positive braids ´′,´′′, respectively. Moreover, the complement of U1∪U2 is

{z1 = 0}∩{z2 = 0}. By Lemma 2.7, X0(´∆;w0) is an open subset in the affine
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space where zi are coordinates, so {z1 = 0}∩ {z2 = 0}∩X0(´ ·∆;w0) is either

empty or has codimension 2 in X0(´ ·∆;w0) and the required result follows. □

The toric charts TÄ ¦X0(´ ·∆;w0) used in Corollary 2.24 and Theorem 2.25

are constructed in Proposition 2.23, whose proof we now complete.

2.4. Proof of Proposition 2.23. Let us state and prove Lemma 2.29 and

Lemma 2.30, which will conclude the proof of Proposition 2.23. For that, we will

need to establish some notation and conventions regarding actions of tori on C-

algebras.

LetR be a C-algebra, and assume that a torus T acts onR by algebra automor-

phisms. We will assume that this action is rational, that is, each element r ∈ R is

contained in a finite-dimensional T -stable subspace of R. This guarantees that, as

a vector space, R is the direct sum of its T -weight spaces. Equivalently, put more

succinctly, R is graded (as a C-algebra) by the character lattice X(T ) of T .

Now, given n > 0, we denote by Mn(R) the algebra of n×n-matrices with

coefficients in R. Note that the action of T on R extends to an action on Mn(R).

Indeed, if t ∈ T and U = (ujk) ∈Mn(R), defining t.U via

(t.U)jk = t.ujk

defines an action of T on Mn(R) and it respects the multiplication on Mn(R).

Our preferred torus will be, as in the previous sections, T =(C∗)n/C∗, the quo-

tient of (C∗)n by its diagonal torus. Its character lattice is X(T ) = {(a1, . . . ,an) ∈

Z
n |

∑
ai = 0}. For i∈ [1,n], we denote by ei the vector (0, . . . ,0,1,0, . . . ,0)∈Zn,

where the 1 is on the i-th position, so that the differences ei− ej belong to X(T ).

Definition 2.26. Let T be the torus (C∗)n−1 = (C∗)n/C∗, w ∈ Sn a permu-

tation, and assume that T acts rationally and by algebra automorphisms on a C-

algebra R. By definition, a matrix U = (ua,k) ∈Mn(R) is said to be w-admissible

if ua,k ∈R is homogeneous of weight

wt(ua,k) = ew(a)− ew(k)

for every a,k f n.

Remark 2.27. (Characterization of w-admissibility) Consider the torus T =

(C∗)n. Under the assumptions of Definition 2.26, T acts on R via the projection

T→ T . Thus, as explained in the discussion above, it also acts on Mn(R). Inde-

pendently, since R is a C-algebra, the torus T embeds into Mn(R) as the torus of

diagonal matrices with entries in C
∗. As above, for t = (t1, . . . , tn) ∈ (C∗)n, let us

denote by Dt the diagonal matrix diag(t1, . . . , tn). Then, U is w-admissible if and

only if t.U =Dw(t)UD
−1
w(t).
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Before we proceed with Lemma 2.29, here is an example of a w-admissible

matrix.

Example 2.28. Let w ∈ Sn be any permutation and assume z0 is an invert-

ible element of weight wt(z0) = ew(i+1)− ew(i). Then the matrix Ui(z0) = Id+

z−1
0 Ei,i+1 is w-admissible.

Consider a w-admissible matrix U ∈ Mn(R) and z an element of weight

wt(z) = ew(a)−ew(b)+ew(m)−ew(k) for some a,b,m,k ∈ [1,n]. Then the element

ua,k + zub,m is homogeneous. The salient property of admissible matrices, which

motivates their definition, is that they allow us to construct homogeneous elements

for the torus action, as the following result shows.

LEMMA 2.29. Let w ∈ Sn be a permutation, U 0 be an invertible upper-

triangularw-admissible matrix, and ´ = Ãiℓ · · ·Ãi1
a positive braid word. Consider

algebraically independent variables zℓ, . . . , z1 with weights

wt(zk) =−ewk−1(ik+1)+ ewk−1(ik).

where wd = wsi1
· · ·sid , and inductively define (see Lemma 2.20) the upper trian-

gular matrices U 1, . . . ,U ℓ and elements z′ℓ, . . . , z
′
1 ∈R[zℓ, . . . , z1] by the equation

Bid+1
(zd+1)U

d = Ud+1Bid+1
(z′d+1),

Then the following two facts hold:

(a) The elements z′1, . . . , z
′
ℓ+1 are all homogeneous with respect to the torus

action and, moreover, wt(z′d) = wt(zd) for every d= 1, . . . , ℓ.

(b) For every d = 0, . . . , ℓ, the matrix Ud is invertible, upper triangular, wd-

admissible and has entries in the polynomial ring R[zd−1, . . . , z1].

Proof. A computation shows that the matrices U 0, . . . ,U ℓ are invertible and

upper triangular. In order to prove the remaining claims, we induct on the length ℓ,

with the base ℓ= 0 holding by assumption.

For the inductive step, suppose that the statement holds for positive braids of

length ℓ, and consider a positive braid ´ = Ãiℓ+1
Ãiℓ · · ·Ãi1

of length ℓ+1. Note that

the matrices U 0,U 1, . . . ,U ℓ and the elements z′1, . . . , z
′
ℓ coincide with those for the

braid Ãiℓ · · ·Ãi1
, so we only need to show that the element z′ℓ+1 is homogeneous of

the same weight as zℓ+1, and that the matrix U ℓ+1 is wsi1
· · ·siℓ+1

-admissible. To

ease the notation, we will write i := iℓ+1.

By the comment preceding the lemma, each of the entries of the ma-

trix Bi(zℓ+1)U
ℓ is homogeneous. The (i + 1, i + 1)-entry of this matrix is

uℓi+1,i+1zℓ+1 +u
ℓ
i,i+1. Dividing by uℓi,i we obtain that

z′ℓ+1 =
uℓi+1,i+1zℓ+1 +u

ℓ
i,i+1

uℓi,i
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is homogeneous. Since the diagonal entries of U ℓ have weight 0 and every entry of

U ℓ is algebraically independent with zℓ+1, we obtain that z′ℓ+1 is homogeneous of

the same weight as zℓ+1. Moreover, using again the wℓ-admissibility assumption

for U ℓ we have that every entry of the matrix U ℓB−1(z′ℓ+1) is homogeneous.

NowU ℓ+1 =Bi(zℓ+1)U
ℓB−1

i (z′ℓ+1). We check that this matrix iswℓ+1 =wℓsi-

admissible. Indeed, computing Dwℓ+1(t)U
ℓ+1D−1

wℓ+1(t)
we have

Dwℓ+1(t)U
ℓ+1D−1

wℓ+1(t)
= (t.Bi(zℓ+1))Dw(t)U

ℓD−1
w(t)(t.B

−1
i (z′ℓ+1))

= (t.Bi(zℓ+1))(t.U
ℓ)(t.B−1

i (z′ℓ+1))

= t.(U ℓ+1)

where the first equality follows from (2.9). This concludes the proof thanks to

Remark 2.27. □

The proof of the following result is similar to that of Lemma 2.29 and left to

the reader.

LEMMA 2.30. Let U ∈Mn(R) be aw-admissible upper-triangular matrix and

z0 ∈ R homogeneous and invertible with weight wt(z0) = −ew(i+1)+ ew(i). Then

the matrix U ′ =Di(z0)UD
−1
i (z0) is wsi-admissible.

This concludes the necessary ingredients for Proposition 2.23, and thus com-

pletes our argument for Corollary 2.24 and Theorem 2.25. The following three

subsections relate the results and constructions of Sections 2.1, 2.2, and 2.3 to

character varieties, through the work of P. Boalch, A. Mellit [6, 8, 9, 84] and oth-

ers, augmentation varieties, as featured in [23, 66, 67], and open Bott-Samelson

varieties, according to [100, 102].

2.5. Mellit’s chart and sequences of crossings. In this subsection we re-

cast a construction from [84] in the light of braid varieties, in particular defining a

certain toric chart in X0(´∆;w0), which we refer to as the Mellit chart. The main

result of the subsection is that the Mellit chart can be obtained by our opening-

crossing procedure from Section 2.3 above. In order to connect to [84], we need

the following preliminary discussion.

Let w ∈ Sn be a permutation and Cw = BwB ¦ GL(n,C) the Bruhat cell cor-

responding to w, where B ¦ GL(n,C) is the Borel subgroup of upper-triangular

matrices. Recall that the product of any two matrices in Cu and Cv belongs to Cuv

if ℓ(uv) = ℓ(u) + ℓ(v). Consequently, for any reduced expression u = si1
· · ·siℓ ,

the associated braid matrix Bu(z1, . . . , zℓ) belongs to the Bruhat cell Cu. Recall

that we interchangeably use the notation si and Ãi for the Artin generators of the

braid group, which is particularly well suited when comparing to the notation used

in [84].
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PROPOSITION 2.31. Let u = si1
· · ·siℓ be a reduced expression and suppose

that ℓ(usi) = ℓ(u)−1. Then there exists k ∈ N such that:

(a) The matrix Bu(z1, . . . , zℓ)Bi(z) belongs to the Bruhat cell Cu if and only

if zk ̸= 0,

(b) In case zk ̸= 0, we can uniquely write

Bu(z1, . . . , zℓ)Bi(z) = UBu(z
′
1, . . . , z

′
ℓ)

for a certain upper-triangular matrix U .

Proof. Since ℓ(usi)=ℓ(u)−1, there exists k∈N such that usi=si1
· · · ŝik · · ·siℓ

(this is known as exchange property for the Coxeter group Sn). That is, we can

write u=u1siku2 such that siku2 =u2si, and thus usi =u1siku2si =u1siksiku2 =

u1u2. This implies the following equation for the braid matrices:

Bu(z1, . . . , zℓ)Bi(z) =Bu1
(z1, . . . , zk−1)Bik(zk)Bik(z

′)Bu2
(z′k+1, . . . , z

′
ℓ),

where z′, z′k+1, . . . , z
′
ℓ are some functions of z,zk+1, . . . , zℓ. If zk ̸= 0, then we can

further write Bik(zk)Bik(z
′) = UBik(z

′′), so

Bu(z1, . . . , zℓ)Bi(z) = ŨBu1
(z′1, . . . , z

′
k−1)Bik(z

′′)Bu2
(z′k+1, . . . , z

′
ℓ)

= ŨBu(z
′
1, . . . , z

′
k−1, z

′′, z′k+1, . . . , z
′
ℓ)

and the result is in the Bruhat cell Cu. If instead zk = 0, then Bik(zk)Bik(z
′)

is upper-triangular, and Bu(z1, . . . , zℓ)Bi(z) is in the Bruhat cell Cu1u2
, which is

disjoint from Cu. □

Example 2.32. Consider ´1 = s1s2s1s1 and ´2 = s1s2s1s2. Then the braid ma-

trix B´1
(z1, z2, z3, z4) is in the Bruhat cell Cs1s2s1

if and only if z3 ̸= 0. In contrast,

the braid matrixB´2
(z1, z2, z3, z4) is in the Bruhat cell Cs1s2s1

if and only if z1 ̸= 0.

In both cases, we have a reduced expression u= s1s2s1 and a simple reflection s1,

resp. s2, satisfying the assumption of Proposition 2.31.

Remark 2.33. The index k ∈N from Proposition 2.31 is unique and can be de-

scribed geometrically, as follows. Draw a braid diagram for u, labeling the strands

1 to n on the right. Since ℓ(usi) = ℓ(u)−1, the i-th and (i+1)-st strands intersect

somewhere in the diagram for u. Given that u is reduced, they intersect exactly

once. The index k corresponds to this intersection point. □

Let us now compare our construction to [84], with ´∆= si1
· · ·si

ℓ+(n2)
a posi-

tive braid. In [84, Section 5.4], a sequence of permutations p0 = 1,p1, . . . ,pℓ+(n2)
is

defined according to the following rules:

(a) If ℓ(pk−1sik) = ℓ(pk−1)+1 then pk = pk−1sik ,

(b) If ℓ(pk−1sik) = ℓ(pk−1)−1 then pk = pk−1.

In the terminology of ibid., this sequence is a walk which never goes down.
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Remark 2.34. The permutations 1 = p0,p1, . . . ,pℓ+(n2)
may be described in

terms of the Demazure product, cf. Section 4.4. Indeed, using the notation of that

section it follows that pj = ¶(Ãi1
· · ·Ãij ).

Let us now describe the toric chart used in [84].

Definition 2.35 (Mellit Chart). Let ´ be a positive n-braid word, the Mellit

chart M¦X0(´∆,w0) is defined as the locus of z1, . . . , zs such that

(2.17) Bi1
(z1) · · ·Bis(zs) ∈ Cps for all sf ℓ+

(
n

2

)
.

Note that M¦X0(´∆,w0) is codimension-0 and Zariski open in X0(´∆,w0).

Remark 2.36. By definition, the Mellit chart M is closely related to the maxi-

mal piece in the Deodhar decomposition [32].

At this stage, our Corollary 2.24 provides many toric charts TÄ forX0(´∆,w0),

(surjectively) indexed by orderings Ä ∈ Sℓ(´) of the crossings. The toric chart M

introduced in Definition 2.35 is also a subset of X0(´∆,w0), and it is thus natural

to ask whether M is of the form TÄ and, if so, for which ordering Ä this is the case.

This is answered in our next result (and its proof).

THEOREM 2.37. Let ´ be a positive braid word. Then there exists an ordering

Ä(´) ∈ Sℓ(´) of the crossings such that TÄ(´) ¦ X0(´∆,w0) coincides with the

Mellit chart M¦X0(´∆,w0).

Proof. The ordering Ä(´) in which we open the crossings is as follows. First,

we find the smallest j such that pj−1 = pj . This means that pj−1 = si1
· · ·sij−1

is a

reduced word and ℓ(pj−1sij ) = ℓ(pj−1)− 1. The condition (2.17) holds automat-

ically for s < j, and for s = j we can apply Proposition 2.31: there exists some

k < j such that Bi1
(z1) · · ·Bij (zj) ∈ Cpj if and only if zk ̸= 0.

It follows from Remark 2.33 that the crossing with index k is in the braid ´,

and never in ∆. We can open this crossing and obtain a new braid ´′∆. By Proposi-

tion 2.31, a point inX0(´∆,w0) is in the Mellit chart if and only if the correspond-

ing point in X0(´
′∆,w0) is in the respective chart. This process can be continued

iteratively. Eventually, all crossings in ´ will be exhausted, and we reach a reduced

expression ∆, which satisfies the defining inclusion (2.17) automatically. □

Example 2.38. Consider the positive 3-braid ´ = Ã1Ã2Ã1, and thus ´∆ =

Ã1Ã2Ã1Ã1Ã2Ã1. By opening the third crossing from the left Ã1, we reach the

braid word Ã1Ã2Ã1Ã2Ã1. Then we open the first (leftmost) Ã1 crossing and obtain

Ã2Ã1Ã2Ã1. Finally, opening again the first (leftmost) crossing Ã2 in the resulting

braid (which corresponds to the second crossing in the original braid) we reach the

positive braid word ∆ = Ã1Ã2Ã1. This sequence of crossings Ä(´) yields a toric

chart TÄ(´)¦X0(´∆,w0) which coincides with the Mellit chart M¦X0(´∆,w0).

This concludes our discussion on the Mellit chart and the relation between our

Corollary 2.24 and [84, Section 5]. Let us shift our focus towards augmentation
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varieties, a class of algebraic varieties which are central to the study of Legendrian

links in contact 3-manifolds.

2.6. Augmentation varieties as quotient braid varieties. In this subsec-

tion, we establish a connection between braid varieties and augmentation varieties.

The latter are a class of varieties that feature saliently in the study of Floer-theoretic

invariants associated to Legendrian links Λ ¦ (R3, Àst). The reader is referred to

[49] for the basics of 3-dimensional contact topology, [40] for a survey on Floer-

theoretic invariants of Legendrian knots, and [23, 28, 66, 67] for further details.

Figure 2. The front projection known as the rainbow closure of ´.

Let ´ ∈ Br+n be a positive braid word and Λ(´)¦ (R3, Àst) the Legendrian link

associated to the rainbow framed closure of the braid ´. This is the front diagram

for Λ(´) depicted in Figure 2, cf. [17, 23]. Let us also choose a collection of marked

points t ¦ ´ on the Legendrian link Λ´ , see e.g. [85, 86]. In our case, the two

choices for marked points that we use are:

(1) A choice of one marked point per strand of the braid ´, this collection of

marked points will be denoted by ts.

(2) A choice of one marked point per component of the Legendrian link

Λ(´)¦ (R3, Àst), this collection will be denoted by tc.

By convention, we place all marked points to the right of all crossings in ´

and before the right cusps. Though not essential, this convention will be useful

in simplifying some statements. Note also that tc technically depends on a choice

of strand per component of Λ(´), but for the sake of readability we prefer to not

include this into our notation. Figure 3 depicts two instances of such placing of

marked points.

Figure 3. The front (xz) projection of the rainbow closure of the braid word ´ =
Ã1Ã2Ã3Ã1Ã2Ã1, with one marked point per strand (left) and one marked point per compo-

nent (right). This is a braid word for the half-twist ∆4. Note that the Legendrian condition

implies that all crossings are overcrossings. Note also that the marked points are located to

the right of all crossings of ´.
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Let A(´, t) be the commutative Legendrian Contact DGA of the Legendrian

link Λ(´) ¦ (R3, Àst) endowed with a set of marked points t ¦ Λ(´). The sta-

ble tame isomorphism type, and thus the quasi-isomorphism type, of this dif-

ferential graded algebra (DGA) is an invariant of the Legendrian link Λ(´) ¦

(R3, Àst) with marked points t up to Legendrian isotopy. It was defined by Y.

Chekanov [28] over Z2-coefficients and latter lifted to Z-coefficients and marked

points [85, 86], see [40] for a survey. The differential ofA(´, t) is given by a count

of (pseudo)holomorphic strips whose asymptotics are governed by the Legendrian

link Λ ¦ (R3, Àst). In the case of a rainbow closure Λ = Λ(´), the differential is

always given by polynomials in the generators, an explicit formula is given in [23,

Section 5]. In this manuscript, the augmentation variety Aug(´, t) associated to

(´, t) is defined to be Aug(´, t) := SpecH0(A(´, t)), the affine variety associated

to the 0th homology of this DGA. This is an affine algebraic variety defined over

Z. The fact that A(´, t) is non-negatively graded implies that the set of R-points

of Aug(´, t) can be identified with Homdg(A(´, t),R), the set of dg-algebra mor-

phisms from A(´, t) to R, where R is taken to be a dg-algebra concentrated in

degree 0 and with trivial differential.

In the case of Legendrian links Λ¦ (R3, Àst) associated to positive braids, Λ≃

Λ(´), augmentation varieties Aug(´, t) are closely related to braid varieties. This

will follow from the work of T. Kálmán [67], cf. also [23, Section 5], as we will

now explain.

THEOREM 2.39. Let ´ be a positive braid word, [´] ∈ Br+n . The following two

statements hold:

(i) There exists an algebraic isomorphism Aug(´, ts)∼=X0(´ ·∆;w0).

(ii) Let Tc ¦ (C∗)n be the algebraic torus determined by tw−1(i) = 1 if the ith

strand of the braid ´ has a marked point in tc (compare with Remark 2.19). Then

there exists an algebraic isomorphism

Aug(´, tc)∼=X0(´ ·∆;w0)/Tc.

Proof. Let us use the following characterization by T. Kálmán [66, 67] (see

also [23]): if ´ is a positive braid word and i1, . . . , is are strands that carry a marked

point (to the right of every crossing) then the augmentation variety is the affine

subvariety of Cℓ(´)+(n2)× (C∗)s given by the equation

B´(z)




1 0 · · · 0

c21 1 · · · 0
...

...
. . .

...

cn1 cn2 · · · 1


diag(t1, . . . , tn)

is upper triangular with a prescribed diagonal

(2.18)
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where the notation follows the convention that in diag(t1, . . . , tn) we have ti = 1 if

i ̸= i1, . . . , is. For the choice of marked points ts, this reduces to B´(z)B∆(u)w0

being upper triangular, which is precisely the definition of X0(´ ·∆;w0). This

establishes the statement in (i). For the choice of marked points tc, as in (ii), equa-

tion (2.18) reduces to B´(z)B∆(u)w0 being upper triangular with a prescribed

diagonal outside of the strands carrying marked points. Since the action of Tc
on X0(´ ·∆;w0) is free (see Remark 2.19) the quotient map X0(´ ·∆;w0) →

X0(´ ·∆;w0)/Tc is a principal Tc-bundle. In consequence, X0(´ ·∆;w0)/Tc is

equivalent to the closed subvariety of X0(´ ·∆;w0) given by prescribing the diag-

onal elements in B´·∆w0 at entries corresponding to strands not carrying marked

points. □

In contact geometry, opening a crossing from ´ = ´1Ãi´2 to ´′ = ´1´2 can be

realized by an embedded exact Lagrangian cobordism Li ¦ (R3×Rt,d(e
t³)) in

the symplectization of (R3, Àst), with ∂Li = ∂−Li ∪ ∂+Li and ∂−Li = Λ(´′) and

∂+Li = Λ(´) [2, 11] (this is correct in the case that the positive braid has a half-

twist remaining [23, 34], which will always be the case in our context). It follows

from the Floer-theoretic functoriality proven in [34, 89] that such a Lagrangian

cobordism induces an algebraic regular map ΦLi
: Aug(´′, t)→Aug(´, t) between

augmentation varieties. It follows from [23, 34] that the (Z-lifted) Floer-theoretical

map ΦLi
agrees with the (quotient of the) map ΩÃi

we constructed in Section 2.3.

The toric charts we constructed in Corollary 2.24, using Proposition 2.23, can

now be used to give an open cover of the augmentation varieties in Theorem 2.39,

up to codimension 2, as follows.

COROLLARY 2.40. Let ´ be a positive braid word, [´] ∈ Br+n , with c(´) = k.

Geometrically, the Legendrian link Λ(´) has k connected components. For each

ordering Ä ∈ Sℓ(´) of the crossings of ´ there exist codimension-0 toric charts

T c
Ä ¦ Aug(´, tc) and T s

Ä ¦ Aug(´, ts), with T c
Ä
∼= (C∗)ℓ(´)−n+k and T s

Ä
∼= (C∗)ℓ(´)

such that the complements

Aug(´, tc)\
( ⋃

Ä∈Sℓ(´)

T c
Ä

)
¦ Aug(´, tc), Aug(´, ts)\

( ⋃

Ä∈Sℓ(´)

T s
Ä

)
¦ Aug(´, ts)

both have codimension at least 2.

Proof. In view of Theorem 2.39, only the statement for Aug(´, tc) remains

unproven. It follows from the T -stability of the toric charts on the braid variety

X0(´ ·∆;w0), cf. Corollary 2.24. □

2.7. Open Bott-Samelson varieties. This section is not required for the

rest of the manuscript: it is provided here for contextual completeness with respect

to the articles [17, 48, 100, 101]. The purpose of this section is to relate the braid

variety X0(´) to the (diagonal) open Bott-Samelson variety OBS(´) associated
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to the braid ´. This is achieved in Theorem 2.43 below, after a brief reminder on

Bott-Samelson varieties.

Consider G := GL(n,C), B ¦ G the Borel subgroup of upper-triangular ma-

trices and the flag variety Fℓ := G/B. The projective variety Fℓ is the mod-

uli space of complete flags of subspaces in C
n: an element F ∈ Fℓ is a flag

F = (F1¦ ·· · ¦Fn) where dimFi = i. Given a flagF ∈Fℓ, we can choose a basis

(v1, . . . ,vn) of Cn such that Fj = ïv1, . . . ,vjð for j = 1, . . . ,n; we denote by VF ∈G

the matrix whose columns are the vectors vi expressed in the standard basis. Con-

versely, given a matrix V ∈G, we can consider a flagFV = (F1 ¦ ·· · ¦Fn) where

Fj is the span of the first j columns of the matrix V . In this correspondence, two

flags are equal FV =FV ′ if and only if their matrices V,V ′ are related by an upper

triangular matrix, i.e. V = V ′U for some U ∈ B.

By definition, two flags F ,F ′ ∈ Fℓ are in relative position si, i ∈ [1,n−1], if

Fj = F ′j for j ̸= i and Fi ̸= F ′i . In terms of their matrices, the flags FV ,FV ′ are in

relative position si if and only if there exist upper-triangular matrices A1 and A2

such that V ′ = V A1siA2, where si is understood as a permutation matrix.

Remark 2.41. Since the permutation matrix si = Bi(0) is a braid matrix with

the variable set to zero, it follows from Lemma 2.20 that the flags FV and FV ′ are

in relative position si if and only if there exist an upper-triangular matrix U and

z ∈ C such that V ′ = V UBi(z).

Building on the articles [13, 30], and the subsequent developments [17, 100,

101, 102], we introduce the two algebraic varieties OBS(´) and OBS′(´) as fol-

lows.

Definition 2.42. Let ´ = Ãi1
· · ·Ãiℓ be a positive braid word.

(i) The open Bott-Samelson variety OBS(´) ¦ Fℓℓ+1 associated to ´ is the

moduli space of (ℓ+ 1)-tuples of flags (F0, . . . ,Fℓ) such that consecutive flags

Fk−1,Fk are in relative position sik , for each k ∈ [1, ℓ].

(ii) The diagonal open Bott-Samelson variety OBS′(´)¦OBS(´) is the closed

subvariety defined by the additional condition that F0 = Fℓ.

The diagonal open Bott-Samelson variety OBS′(´) will be related to the braid

variety, as we now explain. First, let us construct a map Ã :G×X0(´)→OBS′(´)

as follows. Consider a point (z1, . . . , zℓ) ∈X0(´) and a matrix V ∈ G, and define

Vk := V Bi1
(z1) · · ·Bik(zk) ∈G. The map Ã is then defined by:

Ã :G×X0(´)−→ OBS′(´), Ã(V,z1, . . . , zℓ) := (FV ,FV1 , . . . ,FVℓ).

It follows from Remark 2.41 that Ã(V,z1, . . . , zℓ) ∈ OBS(´) and since Vℓ =

V B´(z1, . . . , zℓ), and (z1, . . . , zℓ) ∈X0(´), we actually have that Ã(V,z1, . . . , zℓ) ∈

OBS′(´). Thus, the image of Ã belongs to OBS′(´) ¦ OBS(´), as written above.

This map is, in general, not an isomorphism. Nevertheless, we will now construct
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a right B-action on the product G×X0(´), and Ã will descend to an isomorphism

on the quotient.

Indeed, consider an upper-triangular matrix U = U 0 ∈ B and define z′1, . . . , z
′
ℓ

and U 1, . . . ,U ℓ ∈ B inductively via the equation

(2.19) Biℓ−k(zℓ−k)U
k = Uk+1Biℓ−k(z

′
ℓ−k).

It follows from the equationU ℓB´(z1, . . . , zℓ)=B´(z
′
1, . . . , z

′
ℓ)U

0 that (z1, . . . , zℓ)∈

X0(´) if and only if (z′1, . . . , z
′
ℓ) ∈ X0(´). For each (V,z1, . . . , zℓ) ∈ G×X0(´)

and upper-triangular matrix U = U 0 ∈ B, we define its (right) action by:

(V,z1, . . . , zℓ) ·U := (V U ℓ, z′1, . . . , z
′
ℓ).

The usefulness of this right action is manifest in the main result of this subsection

which reads as follows.

THEOREM 2.43. Let ´ be a positive braid word,G= GL(n,C) and B ¦G the

Borel subgroup of upper-triangular matrices. Then

(i) The right B-action on G×X0(´) defined above is free.

(ii) The map Ã :G×X0(´)→ OBS′(´) induces an isomorphism

(G×X0(´))/B ∼= OBS′(´).

Proof. Let us first prove the freeness of the right B-action. Indeed, suppose that

there exists a fixed point, i.e. there existU ∈B and (V,z1, . . . , zℓ)∈G×X0(´) such

that

(V,z1, . . . , zℓ) ·U = (V,z1, . . . , zℓ).

Since z′j = zj for every j ∈ [1, ℓ], it follows from equation (2.19) that the matri-

ces U,U 1, . . . ,U ℓ are pairwise conjugate. In particular, the initial upper-triangular

matrix U is conjugate to U ℓ. Nevertheless, the condition V U ℓ = V implies that

U ℓ = Id, and it follows that U = Id. The action is thus free.

Second, let us show that the map Ã is surjective, onto the diagonal open Bott-

Samelson variety OBS′(´). For that, consider a point (F0, . . . ,Fℓ) ∈ OBS′(´) and

let V ∈G be any matrix such that FV =F0. Thanks to Remark 2.41, we have that

there exist upper-triangular matrices U 1, . . . ,U ℓ and z1, . . . , zℓ ∈ C such that

Fk = F
V U1Bi1

(z1)···U
kBik

(zk) for all k = 1, . . . , ℓ.

Now, use Lemma 2.20 to slide all the upper triangular matrices U 2, . . . ,U ℓ to

the left; this yields upper-triangular matrices Û 1 = U 1, Û 2, . . . , Û ℓ and ẑ1, . . . , ẑℓ
with the property that, for every k:

V Û 1 · · · Û ℓBi1
(ẑ1) · · ·Bik(ẑk) = V U 1Bi1

(z1) · · ·U
kBik(zk)Û ,

and

ÛBik+1
(ẑk+1) · · ·Biℓ(ẑℓ) = Uk+1Bik+1

(zk+1) · · ·U
ℓBiℓ(zℓ),
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where Û is an upper-triangular matrix depending on k. This implies that

Ã(V Û 1 · · · Û ℓ, ẑ1, . . . , ẑℓ) = (F0, . . . ,Fℓ). It remains to show that (ẑ1, . . . , ẑℓ) ∈

X0(´), that is, the matrix B´(ẑ1, . . . , ẑℓ) is upper-triangular. Since F0 = Fℓ, the

matrices V and V Û 1 · · · Û ℓBℓ(ẑ1, . . . , ẑℓ) differ by an upper-triangular matrix.

Since Û 1, . . . , Û ℓ are upper-triangular, the result follows. Thus, Ã is surjective.

Third, let us prove that the map Ã is B-invariant. We need to check that for

every k the matrices V Bi1
(z1) · · ·Bik(zk) and V U ℓBi1

(z′1) · · ·Bik(z
′
k) differ by an

upper-triangular matrix. It follows from equation (2.19) that this matrix is precisely

U ℓ−k, which is upper-triangular. This proves B-invariance.

Finally, we must show that if Ã(V,z1, . . . , zℓ) = Ã(V ′, z′1, . . . , z
′
ℓ) then there ex-

ists an upper triangular matrix U such that (V ′, z′1, . . . , z
′
ℓ) = (V,z1, . . . , zℓ) ·U .

For that, note that FV = FV ′ implies that there exists an upper-triangular ma-

trix, say U ℓ, such that V ′ = V U ℓ. Since FV Bi1
(z1) = F

V ′B′i1
(z′1), there also ex-

ists an upper-triangular matrix, say U ℓ−1, such that V ′B′i1
(z′1) = V Bi1

(z1)U
ℓ−1.

In consequence, we obtain the equality V U ℓBi1
(z′1) = V Bi1

(z1)U
ℓ−1, and thus

U ℓBi1
(z′1) = Bi1

(z1)U
ℓ−1. Note that this is precisely equation (2.19). We iterate

this procedure until we find U 0, which is the required upper-triangular matrix. This

concludes the proof of the statement. □

Remark 2.44. By [20, Section 6.4] or [101, Theorem 3.9], for certain ´, the

variety OBS′(´) is closely related to a suitable positroid variety [73], see also [19].

See [45], where the topology of positroid varieties is studied in detail.

Remark 2.45. As a side note, the homotopy types of the varieties X0(´) and

OBS′(´) appear to be related to the spectra constructed in [72]. This remains to be

explored.

This concludes our discussion relating braid varieties to open Bott-Samelson

varieties. Let us now move to the construction of a holomorphic symplectic struc-

ture on braid varieties X0(´).

3. Holomorphic symplectic structure. This section constructs holomor-

phic symplectic structures on the quotients X0(´∆;w0)/T of braid varieties, es-

tablishing the remainder of Theorem 1.1 (iii). In particular, Theorem 2.39 will im-

ply that the augmentation variety associated to a Legendrian link Λ(´), ´ a posi-

tive braid word and a certain choice of marked points, is holomorphic symplectic.

In addition, the toric charts we built in Corollary 2.24 will actually be exponen-

tial pre-Darboux charts (cf. Example 3.1 below) for a closed holomorphic 2-form

on X0(´∆;w0), and they will project via the torus quotient to exponential Dar-

boux charts for this holomorphic symplectic structure. The construction we present

draws from the literature on character varieties, where the holomorphic symplectic
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structures on character varieties have a central role, starting with the Atiyah-Bott-

Goldman structures [3, 50] and continuing with, e.g., the work of P. Boalch and L.

Jeffrey [7, 6, 8, 65, 84].

Example 3.1. Let T =(C∗)n be an algebraic torus with coordinates (x1, . . . ,xn)

∈ (C∗)n. In general, a holomorphic 2-form É ∈ Ω2
T on T is an expression of the

form

É =
∑

i<j

fij(x1, . . . ,xn)dxidxj ,

where fij(x1, . . . ,xn) : T → C are holomorphic functions. For instance,

É = (x1x2)
−1dx1dx2

is a holomorphic 2-form on (C∗)2. In general, a set of coordinates (x1, . . . ,xn) ∈

(C∗)n are said to be exponential pre-Darboux coordinates for a holomorphic 2-

form É ∈ Ω2
T if É is expressed in this set of coordinates as

É =
∑

i<j

Cij · (xixj)
−1dxidxj ,

where Cij ∈ C are all constant functions. If one defines Xi := log(xi), so that

we can formally write dXi = d log(xi) = x−1
i dxi, then exponential pre-Darboux

coordinates are such that

É =
∑

i<j

Cij ·dXidXj ,

i.e. the coefficients are constant with respect to the expressions {dX1, . . . ,dXn}.

The 2-form that we now construct in Section 3.1 will be endowed with a set of

exponential pre-Darboux coordinates.

Remark 3.2. We use the term pre-Darboux, instead of Darboux, because É

might not a priori be symplectic and the constants might not define the standard

symplectic basis. If É is symplectic and {Xi = log(xi)} are chosen as the stan-

dard symplectic basis, then exponential pre-Darboux coordinates coincide with the

usual exponential Darboux coordinates.

3.1. Construction of a 2-form. First, let us review the construction of a 2-

form on the braid variety X0(´) according to [65, 84]. For that, let ¹ := f−1df and

¹R := dff−1 denote respectively the left- and right-invariant algebraic 1-forms on

the (complex) Lie groupG=GL(n,C); these 1-forms are valued in the Lie algebra

g = gl(n), and ¹ is referred to as the Maurer-Cartan form. We have the following

facts (see e.g. [65, Section 4], [84, Section 3]):

(a) The 3-form Ω := 1
6
Tr(¹' [¹,¹]) is closed and represents a non-trivial class

in H3(G;C)≃ C.
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(b) There is a 2-form (f |g) := Tr(Ã∗1¹'Ã
∗
2¹

R) = Tr(f−1df 'dgg−1) onG×G

satisfying the following two “cocycle conditions”:

d(f |g) = Ã∗1Ω−m
∗Ω+Ã∗2Ω,(3.1)

(g|h)− (fg|h)+(f |gh)− (f |g) = 0,(3.2)

where Ã1,Ã2,m : G×G→ G are the two projections and the Lie group multipli-

cation map.

Definition 3.3. Let X be an arbitrary algebraic variety. A map f : X → G is

said to be Ω-trivial if f∗Ω= dÉ for some 2-form É on X .

Suppose that two maps f :X→G and g :Y →G are Ω-trivial, then the product

f ·g :X×Y
f×g
−−→G×G

m
−→G

is also Ω-trivial. Indeed, if f∗Ω= dÉX and g∗Ω= dÉY then (3.1) implies

(f ·g)∗Ω= d(ÉX +ÉY − (f |g)).

By iterating this construction, we obtain the following result.

PROPOSITION 3.4. Suppose that fi :Xi→G, i∈ [1, r] are Ω-trivial maps with

f∗i Ω= dÉi and consider the form on X1×·· ·×Xr given by:

(3.3) É :=
∑

ÉXi
− (f1|f2)− (f1f2|f3)− . . .− (f1 · · ·fr−1|fr).

Then

(f1 · · ·fr)
∗Ω= dÉ.

Let us abbreviate:

(3.4) (f1|f2| · · · |fr) := (f1|f2)+(f1f2|f3)+ . . .+(f1 · · ·fr−1|fr)

so that (3.3) can be more succinctly written as

(3.5) É =
∑

ÉXi
− (f1|f2| · · · |fr).

The condition (3.2) implies that this operation defines an associative convolution

(f1|f2| · · · |fr) on collections of Ω-trivial maps. The following identity will be use-

ful for us.

LEMMA 3.5. For fi :Xi→G, i= 1, . . . , r we have:

(3.6) (f1| · · · |fr) = (f1| · · · |fjfj+1| · · · |fr)+(fj |fj+1).
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Proof. This follows from (3.2). Let us set f := f1 · · ·fj−1. It follows from the

definition (3.4) that (3.6) is equivalent to

(f |fj)+(ffj |fj+1) = (f |fjfj+1)+(fj |fj+1).

This latter identity is a consequence of (3.2). □

Example 3.6. Suppose that D1, . . . ,Dr are diagonal matrices. Then Di and

dDi all commute with each other, and one can prove by induction that

(3.7) (D1| · · · |Dr) =
∑

i<j

Tr(d logDi'd logDj).

Indeed, if r = 2 then

(D1|D2) = Tr(D−1
1 dD1'dD2 ·D

−1
2 ) = Tr(d logD1'd logD2).

For the step of the induction, we write

(D1| · · · |Dr+1) = (D1| · · · |Dr)+(D1 · · ·Dr|Dr+1)

= (D1| · · · |Dr)+Tr(d log(D1 · · ·Dr)'d logDr+1)

= (D1| · · · |Dr)+
r∑

i=1

Tr(d logDi'd logDr+1).

Having summarized the necessary ingredients, let us apply this construction

to braid varieties as follows. We can regard the braid matrices Bi(z) as functions

Bi : C→ G where z is the coordinate on C. The first key fact is that the maps

Bi : C→ G given by the braid matrices are Ω-trivial, since B∗i (Ω) is a 3-form on

C which must vanish.

Similarly, for a braid ´ = Ãi1
· · ·Ãir , we can regard the braid matrix

B´(z1, . . . , zr) =Bi1
(z1) · · ·Bir(zr)

as a function B´ : Cr→G. Let us define the following 2-form on C
r:

É´ := (Bi1
(z1)| · · · |Bir(zr)) = (Bi1

(z1)|Bi2
(z2))+(Bi1

(z1)Bi2
(z2)|Bi3

(z3))

+ · · ·+(Bi1
(z1) · · ·Bir−1

(zr−1)|Bir(zr)).

Here we keep track of the arguments of different Bij for the reader’s convenience.

By Proposition 3.4, we conclude that the map B´ : Cr→G is Ω-trivial with prim-

itive −É´ . By applying (3.2) repeatedly, we get the identity

(3.8) É´1´2
= É´1

+(B´1
|B´2

)+É´2
.

For reduced words, this form vanishes.
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LEMMA 3.7 ([84, Proposition 5.1.5]). Let ´ ∈Br+n be a reduced positive braid

word. Then the 2-form É´ vanishes on C
ℓ(´).

The following example will prove useful.

Example 3.8. Let ∆ ∈ Br+n be the positive braid (word) associated to the half-

twist; then by Lemma 3.7 we have that the 2-form É∆ = 0 vanishes on C(
n
2). Fol-

lowing Lemma 2.3, we can write

B∆2 =B∆(c)B∆(u) = Lw0 ·w0U = LU,

where two copies of B∆ depend on two sets of independent variables cij and uij .

The 2-form on C
2(n2) associated to ∆2 then reads:

É∆2 = É∆(c)+(B∆(c)|B∆(u))+É∆(u) = (B∆(c)|B∆(u))

= (Lw0|w0U) = (L|w0|w0|U) = (L|w0w0|U) = (L|U).

Here the second equation follows from (3.8), and in the second line we use that w0

is constant and (w0|f) = (f |w0) = 0 for any f .

LEMMA 3.9. The restriction of the 2-form É´ to the braid variety X0(´) is

closed.

Proof. Note that the map B´ : X0(´)→ G lands in the subgroup of upper-

triangular matrices, and the restriction of the 3-form Ω to the space of upper-

triangular matrices vanishes. Therefore, since d commutes with pull-back, we have

dÉ´ =−B∗´Ω= 0,

i.e. É´ is a closed 2-form. □

Consider now the toric charts TÄ ¦X0(´∆;w0) ¦X0(´ ·∆
2) constructed in

Corollary 2.24 and, in particular, the restriction É|TÄ
. Recall the matrices Ui,Di,Li

defined in (2.16). By Proposition 2.23 (ii) and Corollary 2.24, the coordinates on

the torus TÄ are given by the coordinates associated to the Di-matrices that appear

while opening crossings according to Ä .

LEMMA 3.10. Let ´ be a positive braid word and Ä ∈ Sℓ(´). The restriction

of the 2-form É´·∆2 to the toric chart TÄ ¦ X0(´∆;w0) ¦ X0(´ ·∆
2) has con-

stant coefficients in the canonical (exponential) coordinates associated to the Di

matrices.

Here constant coefficients is to be understood in the sense of Example 3.1,

i.e. Lemma 3.10 states that the coordinates associated to the Di are exponential

pre-Darboux coordinates for É´·∆2 .
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Proof. By Lemma 2.3, we can write

B´·∆2 =B´B∆2 =Bi1
(z1) · · ·Bir(zr)LU.

By Example 3.8, we can also write

É´·∆2 = É´ +(B´ |B∆2)+É∆2 = É´ +(B´ |LU)+(L|U)

= (Bi1
(z1)| · · · |Bir(zr)|L|U).

Next, we need to understand the behavior of the 2-form under opening the crossings

according to Ä , as this determines the construction of the toric chart TÄ . Note that

on the variety X0(´∆;w0) ¦ X0(´∆
2) we have U = I , the identity matrix. We

break this computation in several steps.

(1) By using the decomposition in equation (2.15) and (3.6), we can write

(· · · |Bis(zs)| · · ·)

= (· · · |Uis(zs)|Dis(zs)|Lis(zs)| · · ·)− (Uis(zs)|Dis(zs)|Lis(zs)).

Note that (Uis(zs)|Dis(zs)|Lis(zs)) is a 2-form on a 1-dimensional space (with

coordinate zs) and therefore vanishes, so

(· · · |Bis(zs)| · · ·) = (· · · |Uis(zs)|Dis(zs)|Lis(zs)| · · ·).

(2) Next, we would like to move upper-triangular matrices to the left and lower-

triangular matrices to the right as in Lemma 2.20. Assume that U is an upper uni-

triangular matrix (so dU is strictly upper triangular) then

(· · · |Bi(z)|U | · · ·) = (· · · |Bi(z)U | · · ·)+(Bi(z)|U)

= (· · · |ŨBi(z
′)| · · ·)+(Bi(z)|U)

= (· · · |Ũ |Bi(z
′)| · · ·)+(Bi(z)|U)− (Ũ |Bi(z

′)).

The terms (Bi(z)|U),(Ũ |Bi(z
′)) in fact vanish. Indeed, observe that

B−1
i (z)dBi(z) =

(
−z 1

1 0

)(
0 0

0 dz

)
=

(
0 dz
0 0

)
,

while dU ·U−1 is strictly upper triangular, so

(Bi(z)|U) = Tr
(
B−1

i (z)dBi(z)'dU ·U
−1
)
= 0.

Similarly,

dBi(z
′) ·Bi(z

′)−1 =

(
0 0

0 dz′

)(
−z′ 1

1 0

)
=

(
0 0

dz′ 0

)
,
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so that

(Ũ |Bi(z
′)) = Tr

(
Ũ−1dŨ 'dBi(z

′) ·Bi(z
′)−1

)
= (Ũ−1dŨ)i,i+1dz

′.

On the other hand, by Lemma 2.20 we get Ũi+1,i+1 = 1 and Ũi,i+1 = 0, hence

dŨi+1,i+1 = dŨi,i+1 = 0. Therefore

(Ũ−1dŨ)i,i+1 =
∑

k

(Ũ−1)i,kdŨk,i+1

= (Ũ−1)i,idŨi,i+1 +(Ũ−1)i,i+1dŨi+1,i+1 = 0,

and (Ũ |Bi(z
′)) = 0. We conclude that

(· · · |Bi(z)|U | · · ·) = (· · · |Ũ |Bi(z
′)| · · ·),

and similarly (· · · |Di(z)|U | · · ·) = (· · · |Ũ |Di(z)| · · ·). The conclusion from this

computation is that the 2-form É´·∆2 does not change as we move U to the left.

Similarly, it does not change as we move lower-triangular matrices to the right.

(3) After opening all crossings, we are left with several upper unitriangular

matrices, followed by several diagonal matrices and by several lower unitriangular

matrices.

Let U be an upper unitriangular matrix and U ′ an upper-triangular matrix, then

dU is strictly upper-triangular and dU ′ is upper-triangular. Therefore U−1dU is

strictly upper-triangular and dU ′(U ′)−1 is upper-triangular, hence

(3.9) (U |U ′) = Tr
(
U−1dU 'dU ′(U ′)−1

)
= 0.

Similarly, (L|L′) = 0 for two lower unitriangular matrices L,L′.

By (3.6) this means that we can use (3.9) to consolidate all upper and all lower

unitriangular matrices and write

É´·∆2 = (Ũ |Di1
| · · · |Dir |L̃|I).

Since ŨDi1
· · ·Dir L̃ is upper-triangular, we get L̃= I . On the other hand, by (3.9)

we get

(Ũ |Di1
· · ·Dir |I) = (Ũ |Di1

· · ·Dir)+(ŨDi1
· · ·Dir |I) = 0,

Thus, by (3.7) we get

É´·∆2 = (Ũ |Di1
| · · · |Dir |I) = (Di1

| · · · |Dir) =
∑

s<t

Tr(d log(Dis)'d log(Dit)).

By direct computation, using the notation in (2.16) for Di, we have

d logDi(x) = d log

(
−x−1 0

0 x

)
=

(
−x−1dx 0

0 x−1dx

)
,
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for some variable x. Therefore, each summand Tr(d log(Dis(xs))'d log(Dit(xt)))

as above is of the form Cst ·d log(xs)d log(xt) with Cst a constant, for some coor-

dinates xs,xt on the torus TÄ . Therefore, {x1, . . . ,xr} are exponential pre-Darboux

coordinates for É´·∆2 . □

COROLLARY 3.11. The form É´·∆2 induces a skew-symmetric bilinear form

on the cocharacter lattice of the torus chart TÄ .

As emphasized above, the proof of Lemma 3.10 actually shows that the entries

of the Di matrices associated to (opening the crossings for) ´ are exponential pre-

Darboux. We have now discussed closedness of the 2-form É´·∆2 and its expression

in the toric charts TÄ(´). In order to show that É´·∆2 induces an holomorphic sym-

plectic structure, as stated in Theorem 1.1 (iii), it suffices to show non-degeneracy,

which we now address.

3.2. Non-degeneracy of É´·∆2 . Let us recall the torus Tc from Remark

2.19 that acts freely on the variety X0(´ ·∆
2). The following result is key for this

section: it relates the action of the torus Tc to the 2-form É´·∆2 .

LEMMA 3.12 ([84], Proposition 5.3.3). The form É´·∆2 is Tc-invariant. Thus,

it descends to a 2-form É´·∆2/Tc
on the quotient X0(´∆;w0)/Tc.

In this subsection, we will show that É´·∆2/Tc
is non-degenerate, and thus holo-

morphic symplectic, on the space X0(´∆;w0)/Tc. In order to do this, let us con-

sider the Mellit chart M, as constructed in Theorem 2.37. By Remark 2.19 and

Corollary 2.24, the torus Tc acts freely on M, and we will consider restrictions of

É´·∆2 on M and É´·∆2/Tc
on M/Tc respectively.

We will first show that the restriction of É´·∆2/Tc
to M/Tc is non-degenerate,

and thus (holomorphic) symplectic. Then we prove, in Theorem 3.14, that É´·∆2/Tc

induces the holomorphic symplectic structure according to Theorem 1.1 (iii).

Following [84, Section 6], we can construct a topological avatar for the

torus M, as follows. Consider a labeled marked surface (S,A,B), i.e. an ori-

ented surface S with boundary ∂S and two sets of points A := {1,2, . . . ,n},

B := {1′,2′, . . . ,n′} ¦ ∂S such that:

– Each connected component of S has a boundary component.

– Each boundary component intersects both A and B.

– The elements of A and B in each boundary component alternate.

Let us denote the two Abelian groups Λ := H1(S,A) and Λ′ := H1(S,B).

Since A and B are alternating, there is a perfect pairing · : Λ¹Λ′ → Z. There

is also a map rot : Λ→ Λ′, that is induced from the map that, up to homotopy,

rotates the boundary components clockwise. This induces a bilinear form É̃S on

the first homology Λ, given by É̃S(µ,µ
′) = µ · rot(µ′), and we also consider its

anti-symmetrization ÉS .
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By Corollary 3.11, É´·∆2 induces a form on the cocharacter lattice of M. In or-

der to prove the symplecticity of É´·∆2 stated in Theorem 1.1, we use the following

result.

LEMMA 3.13 ([84, Section 6.5]). There exists a marked surface (S,A,B) such

that Λ is identified with the cocharacter lattice of M, and the form induced by É´·∆2

on the cocharacter lattice of M is identified (up to a non-zero constant factor) with

ÉS .

Note that the surface S is homeomorphic to the spectral curve constructed

in [25]. Now, we need two more properties of (S,A,B), which follow from the

construction in [84, Section 6.5]. Recall from Remark 2.19 that Ã is the permutation

corresponding to ´ with disjoint cycles C1, . . . ,Ck, and Cj = (aj,1 . . .aj,ℓj ).

– The connected components of ∂S correspond to the cycles of Ã, i.e. to the

components of the closure of the braid ´.

– Let Cj be the connected component of ∂S corresponding to the cycle

(aj,1 . . .aj,ℓj ). Then, the elements of A = {1, . . . ,n} appearing in C are precisely

aj,1 . . .aj,ℓj , and they appear in the same order as in the cycle.

We will now decompose Λ = H1(S,A), as follows. First, we have the exact

sequence in relative homology

0→H1(S)→H1(S,A)
∂
−→H0(A) = Z

A→H0(S)→ 0,

where the image of ∂ is spanned by elements of the form a− b, where a,b ∈ A

belong to the same connected component of S . For each such a,b, we choose a

path from a to b in S , and we let K be the span of the classes of these paths in

homology. This gives a splitting

H1(S,A) =H1(S)·K.

We construct a basis of K as follows. For simplicity, we will assume that S is

connected, the general case follows similarly. For each connected component Cj

of ∂S , we take the path from aj,i to aj,i+1 following Cj , j ∈ [1, ℓj − 1]. We also

take a path µj from aj,ℓj to aj+1,1, j ∈ [1,k− 1]. Then we obtain the basis of K,

see Figure 4:

K = Z{aj,iaj,i+1,µj′ | j ∈ [1,k], i ∈ [1, ℓj−1], j′ ∈ [1,k−1]}.

We can further split H1(S) as follows. We let S̄ be the surface obtained from

S by attaching disks along the boundary components. We have an exact sequence

0→H2(S̄)→H1(∂S)→H1(S)→H1(S̄)→ 0

so that H1(S) = H1(S̄) · (H1(∂S)/H2(S̄)). Note that a spanning set for

H1(∂S)/H2(S̄) is given by Ci−Cj , where Ci and Cj are boundary components
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...

.

.

.

Figure 4. The surface S, with the marked points in the boundary. Points of A are colored

white, and points of B are colored black. For the sake of readability we do not label the

paths along the boundary for two consecutive points of A.

of the same connected component of S . Since we are assuming S is connected, a

basis is given by Ci−Ci+1, i ∈ [1,k−1]. Moreover, since the elements in H1(S)

are rot-invariant, the form ÉS on H1(S) is given by the intersection form. This im-

plies that ÉS |H1(S̄)
is the intersection form on S̄ , and therefore is non-degenerate.

In addition, ÉS(H1(S̄),H1(∂S)/H2(S̄)) = 0 and ÉS(H1(S̄),K) = 0. Thus, using

the decomposition

Λ =H1(S,A) =H1(S̄)· (H1(∂S)/H2(S̄))·K,

the form ÉS has the following form

ÉS =



ÉS |H1(S̄)

0 0

0 0 ∗
0 ∗ ∗


 .

We will not find the remaining terms ∗ for ÉS , we will only do so after passing

to the quotient by the action of a torus, as this is all that suffices. We have a map

È : ZA → H1(S,A) that to each point a ∈ A associates the path that follows the

boundary component containing a from a to rot2(a). In other words, it sends aj,i
to a path aj,iaj,i+1, where aj,ℓj+1 = aj,1.

The torus Tc is the fixed torus for the action of the element

Ã = (a1,ℓ1
a2,ℓ2
· · ·ak,ℓk).

According to [84], to find the cocharacter lattice of M/Tc we need to mod out by

the image of È on Ã-invariant elements ofA. Thus, the cocharacter lattice of M/Tc
can be identified with

Λ =H1(S̄)· (H1(∂S)/H2(S̄))·Z{µ1, . . . ,µk−1}.
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There is a natural projection q : Λ→ Λ, and the form ÉS descends to a form É
S,Λ

on Λ. It agrees with the form ÉM/Tc
induced by É´·∆2 on the cocharacter lattice of

M/Tc.

In addition, note that we can identify q(Ci) = ai,ℓiai,1. Thus, q(Ci−Ci+1) =

ai,ℓiai,1 − ai+1,ℓi+1
ai+1,1. Note also that ÉS(µi,µj) = 0 as µi · rot(µj) = 0 for

every i ̸= j. Moreover, µi · rot(ai,ℓiai,1 − ai+1,ℓi+1
ai+1,1) = 0 while (ai,ℓiai,1 −

ai+1,ℓi+1
ai+1,1) ·µi = 2. Thus, É

S,Λ(µi,ai,ℓiai,1−ai+1,ℓi+1
ai+1,1) = 2. Similarly, we

can see that É
S,Λ(µi,ai−1,ℓi−1

ai−1,1− ai,ℓiai,1) = 1 and É
S,Λ(µi,ai+1,ℓi+1

ai+1,1−

ai+2,ℓi+2
ai+2,1) = −1. It follows that the form É

S,Λ is given by the following

matrix:

É
S,Λ =



ÉS |H1(S̄)

0 0

0 0 −P
0 P 0


 ,

where P is the (k−1)× (k−1)-matrix

P =




2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2



.

This implies that the form ÉM/Tc
on the cocharacter lattice of M/Tc is non-

degenerate, therefore the restriction of É´·∆2/Tc
to M/Tc is non-degenerate as

well. Thus the chart M/Tc is (holomorphic) symplectic. Let us now use the above

discussion, and this result for the Mellit chart, to conclude Theorem 1.1 (iii).

THEOREM 3.14. Let ´ ∈ Br+n be a positive braid (word). Then, the 2-form

É´·∆2 induces a 2-form on the augmentation variety Aug(´, tc) that has maximal

rank at every point. Thus, the augmentation variety of any positive braid is holo-

morphic symplectic.

Proof. By Theorem 2.39, the augmentation variety Aug(´, tc) can be identi-

fied with X0(´∆;w0)/Tc. The coefficients of the form É´·∆2 are regular functions

on X0(´∆;w0) and by Lemma 3.12 the form is Tc-invariant. Thus, we have an in-

duced closed 2-form É´·∆2/Tc
on the augmentation variety, and it is non-degenerate

if and only if its determinant does not vanish anywhere. Let us first prove that it

is non-degenerate on all toric charts. Thanks to the discussion above on the Mellit

chart, the form É´·∆2/Tc
is non-degenerate on the (quotient) toric chart M/Tc. By

Lemma 3.10, the 2-form É´·∆2/Tc
has constant coefficients in canonical coordi-

nates in any other chart M′/Tc obtained from an ordering of the crossings, and, by

the above, it is non-degenerate on the intersection with M/Tc. Thus, the 2-form

É´·∆2/Tc
is non-degenerate on the entire (other) chart M′/Tc. Finally, by Theorem
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2.25, these toric charts cover Aug(´, tc) up to codimension 2. Hence, the deter-

minant of É´·∆2/Tc
is non-zero outside of a codimension 2 locus and hence it is

non-zero everywhere. □

This concludes the proof of Theorem 1.1 and establishes that the augmentation

variety associated to a positive braid is holomorphic symplectic. The following is

an explicit example to help illustrate the computations and arguments above.

Example 3.15. Consider the case n = 2,´ = Ã2, so that X(´∆;w0) =

X(Ã3;w0). A direct computation, similar to Example 2.8, shows that

X(Ã3;w0) = {(z1, z2, z3) : z1 +z3 +z1z2z3 = 0} ¢ C
3.

As in Example 2.8, we can rewrite the defining equation as z1 + z3(1+ z1z2) = 0

and observe that 1+z1z2 ̸= 0. Indeed, 1+z1z2 = 0 and z1+z3(1+z1z2) = 0 imply

z1 = 0, which would imply 1+ z1z2 = 1, a contradiction with 1+ z1z2 = 0. Since

1+z1z2 ̸= 0, we can write

z3 =−
z1

1+z1z2

,

and thus X(Ã3;w0)∼= {(z1, z2) : 1+ z1z2 ̸= 0} ¢ C
2. The torus Tc is trivial in this

case. Let us compute the form É´∆2 onX(Ã3;w0)/Tc =X(Ã3;w0). For the matrix

M =B(z1)B(z2) =

(
1 z2

z1 1+z1z2

)
,

we compute

M−1dM =

(
1+z1z2 −z2

−z1 1

)(
0 dz2

dz1 z1dz2 +z2dz1

)
=

(
−z2dz1 dz2−z

2
2dz1

dz1 z2dz1

)
.

The two-form É´∆2 can now be computed as

É´∆2 = (B(z1)|B(z2))+(B(z1)B(z2)|B(z3)) = (B(z1)|B(z2))+(M |B(z3))

= Tr

[(
0 dz1

0 0

)(
0 0

dz2 0

)]
+Tr

[(
−z2dz1 dz2−z

2
2dz1

dz1 z2dz1

)(
0 0

dz3 0

)]

= dz1dz2 +dz2dz3−z
2
2dz1dz3.

Let us explicitly show that É´∆2 is symplectic form onX(Ã3;w0), as follows. Since

dz3 = d

(
−

z1

1+z1z2

)
=
−dz1(1+z1z2)+z1(z1dz2 +z2dz1)

(1+z1z2)2
=
−dz1 +z

2
1dz2

(1+z1z2)2
,
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we can further write

É´∆2 = dz1dz2−
dz2dz1

(1+z1z2)2
−
z2

1z
2
2dz1dz2

(1+z1z2)2

=
1+2z1z2 +z

2
1z

2
2−1−z2

1z
2
2

(1+z1z2)2
dz1dz2.

This simplifies to the expression

(3.10) É´∆2 =
2dz1dz2

1+z1z2

=
2dz1dz2

w
, where w := 1+z1z2.

We conclude that É is holomorphic symplectic on the open subset {w ̸= 0} ¢ C
2

which is isomorphic to X(Ã3;w0) as explained above.

Let us now find explicit exponential Darboux coordinates. The two ways of

opening crossings in ´ correspond to two toric charts T1 := {z1 ̸= 0,w ̸= 0} and

T2 := {z2 ̸= 0,w ̸= 0} in X(Ã3;w0). Identity (3.10) implies that

É´∆2 =
2dz1dw

z1w
=
−2dz2dw

z2w
.

It therefore follows that {z1,w} are exponential Darboux coordinates in T1, and

{z2,w} are exponential Darboux coordinates in T2. This is indeed in agreement

with Lemma 3.10 above. The corresponding skew-symmetric form on the cochar-

acter lattice of both tori is given by the matrix
(

0 2
−2 0

)
, up to reordering coordinates.

Finally, the surface S in this case is an annulus. It has two boundary compo-

nents and one point from A and one point from B on each component. The relative

homology Λ =H1(S,A) has rank 2 and is generated by an absolute cycle µ along

the core of the annulus, and a relative cycle µ′ connecting the two points inA. With

an appropriate choice of orientations, the intersection form on Λ is given by the ma-

trix
(

0 1
−1 0

)
, which is half the skew-symmetric form in the cocharacter lattice. Note

that in this case we cannot use H1(S) or H1(S,∂S), as these lattices have rank 1,

while our tori are two-dimensional. This explains the need of introducing marked

points A and B, cf. also [24, Section 3]. From the viewpoint of cluster algebras,

the variable z1 is mutable and corresponds to the absolute cycle µ, and the variable

w is frozen and corresponds to the relative cycle µ′, up to signs. See [24, 18] for

more details and [97] for more examples and computations of the form É´∆2 for

2-stranded braids.

Remark 3.16. In our more recent work [18], we construct cluster structures

on braid varieties and in [18, Section 9.2] we show that the Gekhtman-Shapiro-

Vainshtein cluster 2-form for the corresponding cluster structure on X0(´∆;w0)

coincides with É´·∆2 . The variety

Aug(´, tc) =X0(´∆;w0)/Tc
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is an even-dimensional quotient of the cluster variety X(´∆;w0) which has really

full rank by [18, Section 8.1], and the torus Tc acts by so-called cluster automor-

phisms, cf. [76, Section 5.1]. The non-degeneracy of É´·∆2/Tc
can then also be

deduced from the results of [76, Section 5.5]. This argument using [18, 76] is log-

ically independent of the one given in this section, and [18] appeared after the

present article.

Remark 3.17. It is likely that the above setup can be shown to fit within the

context of P. Boalch’s work [6, 8, 9], of which we learnt after this manuscript first

appeared. In particular, the holomorphic symplectic structure constructed above

might likely coincide with some of the holomorphic symplectic structures he builds

on wild character varieties by using quasi-Hamiltonian G-spaces with G-valued

moment maps. (Potentially, the moment map is given by the action of the marked

points in tc.) Moving onward, we hope to better understand their work and connect

it to the results above.

This subsection concludes the first part of the article, and we now move for-

ward to discuss correspondences between braid varieties and the diagrammatic cal-

culus we develop for their study.

4. The combinatorics of weaves. This section discusses weaves, based on

[25], and connects them to braid varieties. In short, weaves are a diagrammatic cal-

culus that can be used to study the braid varieties X0(´), describing toric charts,

regular functions and other relevant geometric structures on them. The present sec-

tion focuses on the combinatorial aspects of these diagrams; in particular, this for-

malizes the weave category Wn discussed in Section 1. We use these weaves in

Section 5, where we prove that a weave between two positive braids ´1 and ´2

yields a correspondence between the braid varieties X0(´1) and X0(´2) (as stated

in Theorem 1.3). We refer the reader to [25] for the original definition of weaves as

well as the contact and symplectic geometry motivation behind them, cf. also [24].

4.1. Weaves. Weaves are diagrams introduced in the work of the first au-

thor and E. Zaslow [25]. They are defined on any smooth surface Σ but, in the

present manuscript, we restrict ourselves to the diffeomorphism type of the plane

Σ = R
2. In appearance, these diagrams are similar to the planar diagrams appear-

ing in Soergel calculus [37, 38]; there are nevertheless key distinctions. We refer

to our diagrams as weaves, as they are a particular instance of the symplectic con-

structions in [25].

Definition 4.1. Let ´1,´2 be two positive n-braid words. By definition, a weave

w of degree n from ´2 to ´1, denoted w : ´2 → ´1, is the image of a continuous

map

w :

n−1⋃

i=1

Gi −→ R× [1,2],
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where each Gi, i ∈ [1,n− 1] is a trivalent graph and the following conditions are

satisfied:

(i) The restriction w|Gi
: Gi → R× [1,2] is a topological embedding for all

i ∈ [1,n−1], which is a smooth embedding away from the trivalent vertices of the

graph Gi.

(ii) The images w(Gi) and w(Gi+1) are only allowed to intersect at trivalent

vertices, i ∈ [1,n− 2], and the planar edges around this intersection point must

alternatingly belong to Gi and Gi+1. In addition, for |i− j| g 2 the intersections

between w(Gi) and w(Gj) are transverse, and these are not allowed to intersect at

trivalent vertices.

(iii) In a neighborhood of R×{j} ¦ R× [1,2], j = 1,2, the image im(w) is

given by l(´j) vertical lines, such that the kth line belongs to G
Ã
(j)
ik

, where Ã
(j)
ik

is

the kth crossing of ´j .

See Figure 5 for two explicit examples with n = 2,3. The image im(w) of a

weave w is often referred to as a weave itself and denoted w, to ease notation. The

intersection of a weave w with a small neighborhood of R×{2}, resp. of R×{1},

is said to be the top of the weave, resp. its bottom.

Figure 5. (Left) A 3-weave from ´2 = (Ã1Ã2)
4Ã1 ∈ Br+3 down to ´1 = Ã2Ã1Ã2 ∈ Br+3 .

The darker shade indicates a transposition label s1 ∈ S3 and the lighter shade indicates the

transposition label s2 ∈ S3. (Right) A 2-weave from ´2 = Ã16
1 ∈ Br+2 to ´1 = Ã2

1 ∈ Br+2 ,

all black edges are labeled with the unique transposition s1 ∈ S2. Trivalent vertices are

emphasized in orange in both weaves.

Following [25, Section 4], we also introduce a notion of weave equivalence,

represented by the local moves in Figure 6. That is, by definition, two weaves

w1,w2 are said to be (weave) equivalent if they differ by a sequence consisting of

moves from Figure 6. See also [24, Section 3.1] and [18, Section 4.2].
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Figure 6. Weave equivalences, after [25, Theorem 1.1].

By definition, there is also an additional move called a weave mutation, after

[25, Section 4.8], which is not considered as an equivalence. Weave mutation is

depicted in Figure 7.

←→

Figure 7. Weave mutation, after [25, Theorem 4.21]. This is not an equivalence.

The definition of weaves and weave equivalence in [25] are manifestly rota-

tionally symmetric. In this paper we would like to break this symmetry by choos-

ing a generic vertical direction and reading a weave top to bottom, allowing only

certain local models to appear in such scanning. Similarly to Definition 4.1 (iii)

above, a generic horizontal cross-section at the jth level of this type of weave is

then a sequence of colored points in w which we interpret as a braid word

´j(w) = s
(j)
i1
s
(j)
i2
· · ·s

(j)
iℓ(´j )

∈ Br+n .

This particular type of weave w can then be understood as a “movie” of different

braid words:

w := (´0(w)→ ´1(w)→ ·· · → ´ℓ(w)(w)).
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The initial braid word ´0(w) being read at the (top) horizontal cross-section R×

{2}, and the last braid word ´ℓ(w)(w) is read at the (bottom) horizontal cross-

section R×{1}. The number ℓ(w) ∈ N will be referred to as the length of the

weave Σ.

Definition 4.2. Let ´1,´2 be positive n-braid words. A weave w of degree

n from ´2 to ´1 is said to be sliced if its cross-sections change top to bottom

according to one of the following six situations, depicted in Figure 8:

Figure 8. The six local models for sliced n-weave. In (a),(c),(d),(e), and (f), we have

j,k ∈ [1,n− 1]. In (b), we have k ∈ [1,n− 2], and |j−k| g 2. The inverse of the local

model in (b), with sk+1sksk+1 on top and sksk+1sk on the bottom, is also allowed.

(a) Two consecutive edges labeled with the same transposition sk come to-

gether, and continue moving down as one unique edge, also labeled with sk, k ∈

[1,n− 1]. This is referred to as a trivalent vertex, and correspond to the model

around (the image of) a trivalent vertex of the graph Gk in Definition 4.1. Alge-

braically, we represent this local model by sksk→ sk.

(b) Three consecutive edges labeled by sk, sk+1, sk come together, and con-

tinue moving down as three edges but now labeled sk+1, sk, sk+1. This is referred

to as a hexavalent vertex, and correspond to the model around an intersection point

of the (images of the) graphs w(Gk)∩w(Gk+1) in Definition 4.1. Algebraically,

we represent this local model by sksk+1sk→ sk+1sksk+1. In addition, we also al-

low the same move, but reversed: sk+1sksk+1 → sksk+1sk, with sk+1sksk+1 on

top and sksk+1sk at the bottom.

(c) Two consecutive edges labeled with two different transpositions sk, sj ,

with |j − k| g 2, come together, and continue moving down as two edges, now

labeled by sj , sk. This is referred to as a 4-valent vertex, and correspond to the

model around a (transverse) intersection point of w(Gk) and w(Gj) in Defini-

tion 4.1. Algebraically, we represent this local model by sksj → sjsk.
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(d) Two consecutive edges labeled with the same transposition sk come to-

gether, merge and there is no edge continuing down. This is referred to as a cup,

and we represent this local model by sksk→ 1.

(e) The inverse of the move in (d), where two consecutive edges are created

as moving downwards from the empty set. This is referred to as a cap, and we

represent this local model by 1→ sksk.

(f) There is an edge labeled by sk and it continues moving down as the

same edge labeled by sk, i.e. nothing occurs. This local model is represented

algebraically by sk→ sk.

By definition, we require that all 3-,4- and 6-vertices, cups and caps appear at

different heights, and all horizontal tangencies are isolated. Note that 4-valent and

hexavalent vertices represent (the Coxeter projection of the) braid relations. Finally,

the following two are special types of sliced weaves that we use:

(ii) By definition, a simplifying weave is a sliced weave with no caps; thus the

only allowed local models are (a),(b),(c),(d) and (f), not (e).

(ii) By definition, a Demazure weave is a sliced weave with no cups nor caps;

thus the only allowed local models are (a),(b),(c) and (f), not (d),(e).

Note that a sliced weave is simplifying if and only if the length of a braid

word is not increasing as we scan down the weave with horizontal cross-sections.

The reasons behind the choice of the name Demazure weaves will be explained

in Section 4.4. Demazure weaves prominently feature in [18]. In this article, all

weaves we discuss are sliced and thus from now onwards weave will refer to sliced

weave unless otherwise indicated.

Remark 4.3. A cautious reader might have noticed that some local weave pic-

tures are allowed by the general setup of [25] but do not directly appear in our list

(a)–(f) in Figure 8. The upside-down trivalent vertices, i.e. the horizontal flip of

model (a), given by sk → sksk, can be constructed using the above trivalent ver-

tices and caps, see Section 4.3.2. Similarly, one may encounter a 6-valent vertex

with a incoming and (6− a) outgoing edges for any 0 f a f 6. All these can be

modeled using the usual 6-valent vertices, cups and caps, possibly in several dif-

ferent ways. We declare all such weaves (fixing a and the coloring of edges at the

top) equivalent. The same applies to “non-standard” 4-valent vertices, see Sections

4.3.4 and 4.3.3 below for details.

Remark 4.4. For context with [25, Section 7.1.2], we note that Demazure

weaves w : ´2→ ´1 are free, in that their fronts can be realized by embedded exact

Lagrangian cobordisms from the Legendrian associated to ´1 to the Legendrian

associated to ´2. Indeed, this is implied by the fact that the three models (a),(b),(c)

above are decomposable Lagrangian cobordisms. For (b),(c) this follows from the

fact that they are traces of Legendrian isotopies, e.g. (b) is the Lagrangian trace of

the Legendrian Reidemeister III move. For (a), this follows from the generic Leg-

endrian perturbation of theD−4 front, as drawn in [25, Figure 36], or by comparison
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to the pinching saddle cobordism, as established in [63, Prop. 3.1]. In particular,

a Demazure weave w : ´→∆ yields a unique embedded exact Lagrangian filling

of the Legendrian associated to ´∆, as the Legendrian unlink, associated to ∆2,

admits a unique embedded exact Lagrangian filling.

4.2. Equivalence of Demazure weaves. Let us now introduce a series of

situations, all representing an equivalence between two weaves w1,w2 whose top

and bottom ends coincide, i.e., ´0(w1) = ´0(w2) and ´ℓ(w1)(w1) = ´ℓ(w2)(w2). The

majority of equivalences we describe compare two local models, and an equiva-

lence between two different weaves w1,w2 will be obtained by applying several of

the local equivalences listed here. We focus on Demazure weaves and their equiva-

lences which only pass through Demazure weaves. In this section, we translate the

moves of Figure 6 to our formalism.

Remark 4.5. A cautious reader may choose to call the equivalence relation in

this section Demazure equivalence. In principle, it might be possible that two De-

mazure weaves are not equivalent through Demazure weaves, but are equivalent

through the more general weave equivalences from Figure 6. We have not investi-

gated this problem. This fine point is irrelevant for the results of this paper, and we

use the same notion of equivalence to simplify the exposition.

Remark 4.6. In what follows, we also require that the horizontal reflection of

each of the upcoming relations explained in Sections 4.2.1–4.2.6 below is also a

relation.

4.2.1. Changing the height of vertices. We allow to change relative

heights of any pair of crossings in a weave provided that they are not connected

by an edge and there are no crossings between them. (This is commonly called the

interchange law in the context of 2-categories.)

4.2.2. Canceling pairs of 4- and 6-valent vertices. The following weaves

are declared to be equivalent:

This corresponds to moves (I) and (V) from Figure 6. From the algebraic per-

spective, i.e. studying the braids in the horizontal cross-sections, this is the dia-

grammatic incarnation of the fact that the two moves sksk+1sk→ sk+1sksk+1 and

sk+1sksk+1→ sksk+1sk, and the two moves sisj→ sjsi and sjsi→ sisj , |i−j| g

2, are inverse to each other. That is, performing a Reidemeister III move and then

its inverse is considered to be (equivalent to) the trivial weave. Similarly, perform-

ing a commutation move in the braid group, and then the same move in reverse, is
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also considered to be (equivalent to) the trivial weave. In the notation above, we are

declaring the weave w1 = sk+1sksk+1→ sksk+1sk→ sk+1sksk+1 to be equivalent

to the constant weave w2 = sk+1sksk+1, and the weave w1 = sisj → sjsi→ sisj
to be equivalent to the constant weave w2 = sisj .

4.2.3. Commutation with distant colors. We declare that an edge of the

weave labeled with a color (i.e. a transposition) which is distant to the rest of the

colors at a given vertex can be moved past this vertex. That is, we declare that the

following weaves are equivalent:

Similarly, we declare that three lines with pairwise distant colors can be re-

arranged according to the weave equivalence depicted above. As illustrated in the

equivalences above, the particular sequences of braid moves that we are declar-

ing to be equivalent are read from taking horizontal cross-sections in the above

diagrams; we will thus not necessarily indicate them any longer.

4.2.4. 1212- and 2121-relations. We require that the following two ways

of getting from Ã1Ã2Ã1Ã2, denoted 1212 for simplicity, to Ã1Ã2Ã1, i.e. 121, are

equivalent:

This corresponds to the move (II) from Figure 6.

We also impose equivalences for other interpretations of the move (II) from

Figure 6 using Demazure weaves, corresponding to other paths around the penta-

gon on the left of the above figure. Namely, we require that the two ways of getting

from 1121 to 212 are equivalent, and that the two ways of getting from 2122 to 121

are equivalent, and so forth. The equivalence of the two ways of getting from 1121
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to 212 corresponds to the equivalence of the following two simplifying weaves:

We also require that the two ways of getting from 1211 to 212 are equivalent,

which is the same as requiring that the two ways of getting from 2121 to 212

are equivalent and so on. The weaves are obtained from the ones above by the

symmetry along the vertical line:

There are also similar relations for any pair of adjacent colors in either order

which we do not draw here.

4.2.5. Cycles for 12121. As an example for the previous relation, we ob-

serve that there are many paths in the Demazure graph from 12121 to 212, related

by consecutive application of the 1212-relation:
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(A) 12121→ 21221→ 2121→ 2212→ 212

(B) 12121→ 11211→ 1211→ 2121→ 2112→ 212

(C) 12121→11211→1211→121→212∼ 12121→11211→1121→121→212

(D) 12121→ 11211→ 1121→ 1212→ 2122→ 212

(E) 12121→ 12212→ 1212→ 2122→ 212

Note that the equivalence between (A) and (E) corresponds to the move (III) from

Figure 6.

4.2.6. Zamolodchikov relation. Diagrammatically, the Zamolodchikov

relation is the equivalence of the following diagrams, relating various braid words

for the longest element w0 ∈ S4:

This corresponds to the move (IV) from Figure 6.

4.2.7. Mutations. In contrast with Soergel calculus, we do not declare the

two ways of getting from sisisi to si via sisi to be equivalent. They are related by

the following special type of move, which we call a weave mutation:

This concludes the list of diagrammatic equivalences 4.3.5–4.2.6, and the mu-

tation non-equivalence 4.2.7.

4.3. Equivalence of simplifying weaves. In this section we define an

equivalence relation for simplifying weaves. The complete list of equivalences

includes:

(1) All of the equivalences for Demazure weaves from Section 4.2.
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(2) Changing the relative height of cups and vertices, see Section 4.3.1.

(3) Additional moves with cups listed in Sections 4.3.2 (a), 4.3.3 (a), and

4.3.4 (a).

Remark 4.7. One can check that the additional equivalence relations for sim-

plifying weaves do not change the total number of cups. Therefore, two Demazure

weaves are equivalent through simplifying weaves if and only if they are equivalent

through Demazure weaves.

By reflecting these relations along a horizontal axis, we get a similar notion

of equivalence for weaves with caps, see Sections 4.3.2 (b), 4.3.3 (b), and 4.3.4 (b).

There is an additional “zig-zag” move in section 4.3.5 which allows one to create

or delete a cup and a cap simultaneously.

Remark 4.8. Just as in Remark 4.6, we will require that the horizontal reflection

of the relations 4.3.1–4.3.4 are also relations.

4.3.1. Changing the height of vertices II. We allow to change relative

heights of any crossing with a cup or cap in a weave, provided that they are not

connected by an edge and there are no crossings, cups, or caps between them.

4.3.2. Non-standard trivalent vertices.

(a) We can consider a trivalent vertex with 3 inputs and 0 outputs, defined by

either of the pictures:

We require that the two pictures are equivalent, note that both weaves are simpli-

fying.

(b) We can define an upside-down trivalent vertex in the following ways which

are required to be equivalent:

Since both weaves include a cap, these are not simplifying, and we do not allow

upside-down trivalent vertices in simplifying weaves.

A horizontal reflection of these relations would express a ”standard” trivalent

vertex using an upside-down trivalent vertex and a cup. There is a similar picture

to Section 4.3.2 (a) with 0 inputs and 3 outputs.
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4.3.3. Non-standard 6-valent vertices. The following relations corre-

spond to different ways to a look at a single 6-valent vertex. We require that all of

them are equivalent, provided that the numbers of inputs and outputs are fixed.

(a) We illustrate simplifying weaves with 4 inputs and 2 outputs, and 5 inputs

and 1 output, defined using standard 6-valent vertex and cups. The former in fact

implies the latter.

Finally, we can define a 6-valent vertex with 6 inputs and 0 outputs, and the

following diagram shows that all ways to do so are equivalent:

121212

212212 112112 122122 121121

2112 1122 1221

22 11

/0

(b) The symmetric pictures with 2 inputs and 4 outputs, 1 input and 5 outputs,

and 0 inputs and 6 outputs, are obtained by reflection in the horizontal axis and

using caps. These are not simplifying.

4.3.4. Non-standard 4-valent vertices.

(a) Similarly, we can define non-standard 4-valent vertices by simplifying

weaves with 3 inputs and 1 output, or 4 inputs and 0 outputs.
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(b) By reflecting these, we get weaves with 1 input and 3 outputs (or 0 inputs

and 4 outputs) which use caps. These are not simplifying.

4.3.5. Planar isotopies. A weave in the plane is, in particular, a planar di-

agram. We declare planar isotopic diagrams to define equivalent weaves. In partic-

ular, we need to require the following zigzag relation with canceling pairs of caps

and cups:

Algebraically, the weave w1 = sk → sksksk → sk · 1 = sk, where first a cap

creates 1→ (sksk) to the left of the initial sk, and then a cup erases (sksk)→ 1 to

the right of the leftmost sk, is equivalent to the constant weave w2 = sk.

PROPOSITION 4.9. Assume the zigzag relation and the equivalence relations

4.3.2–4.3.4. Then any two planar isotopic weaves are equivalent.

Proof. By [37, Proposition 3.2] it is sufficient to prove that every vertex is

cyclic, that is, invariant under the 360 degree rotation. For a trivalent vertex, we

use the definition of the upside down trivalent vertex and relations 4.3.2 to show

that a 60 degree rotation changes either of the trivalent vertices to another one of

the same type, e.g.:

This implies that a trivalent vertex is invariant under 120 degrees rotation, and

hence invariant under 360 degree rotation. Similarly, we can use the relations 4.3.3

to show that the 6-valent vertex is invariant under rotation by 60 degrees, and hence

by 360 degrees:

The proof for a 4-valent vertex is similar. We refer to [37, Section 3] and references

therein for more details on cyclicity and isotopy invariance. □

4.3.6. Rotational invariance. We expect that, similarly to the proof of

Proposition 4.9 and the results of [37], the equivalence relations above are rota-

tionally invariant. That is, any rotation of an equivalence relation follows from the
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relations. We do not need and do not prove it here, but give a couple of examples

which illustrate this point:

Note that these two pictures, as planar graphs, are similar to the ones that we

already considered (cancellation 121→ 212→ 121 and 1212-move), but in this

case they are drawn differently.

Both of these are actually consequences of the above relations. The former

follows from the equivalence 4.3.3. For the latter, we can consider the diagram:

12121

21221 11211 12212

211 1121 1212

21 2122

All cycles in this diagram are covered by the above relations.

4.4. Demazure product and Demazure weaves. We will use the notion

of Demazure product of a word (equivalently, of an expression) in the alphabet

of simple reflections {si}. This terminology is introduced in [74], but the notion

goes back at least to [31]. We refer the reader to [29, Section 2.2] for a detailed

discussion on this notion and its relation to 0-Hecke algebras over F2.
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The Demazure product of a word Q = si1
si1
. . . sil(´), denoted by ¶(Q), is the

largest element of Sn in the Bruhat order such that Q contains some reduced ex-

pression of this element as a subword. This element is well defined. It admits an

equivalent inductive definition by the following rule:

¶(si) := si, ¶(Qsi) :=

{
¶(Q)si if ℓ(¶(Q)si) = ℓ(¶(Q))+1

¶(Q) if ℓ(¶(Q)si) = ℓ(¶(Q))−1.

It can be verified from either definition that for any Q,Q′ we have

¶(QsisiQ
′) = ¶(QsiQ

′);

¶(Qsisi+1siQ
′) = ¶(Qsi+1sisi+1Q

′);

¶(QsisjQ
′) = ¶(QsjsiQ

′), |i− j| g 2.

(4.1)

Given two permutations u,v ∈ Sn, we define their star product u ⋆ v as the

Demazure product of the concatenation of an arbitrary reduced expression of u

and an arbitrary reduced expression of v. By construction, we have

(u⋆v)⋆w = ¶(uvw) = u⋆ (v ⋆w).

By the Demazure product of an element ´ of the positive braid monoid we

mean

¶(´) := ¶(si1
si2
. . . sil(´))

for a positive braid word Ãi1
Ãi2

. . .Ãil(´) for ´. This is well defined: by equations

(4.1), ¶(´) does not depend on the choice of positive braid word.

Example 4.10. The inductive definition of the Demazure product of a word and

the definition of the star product of permutations imply that

w⋆si =

{
wsi if ℓ(wsi) = ℓ(w)+1,

w if ℓ(wsi) = ℓ(w)−1.

Note that the Demazure power of a simple transposition is simply si ⋆si ⋆ · · ·⋆si =

si for any number of multiples. Note also that for any w ∈ Sn we have the equality

w⋆w0 = w0 ⋆w = w0.

In fact, the Demazure product is the product in a monoid known as Cox-

eter monoid [106], 0-Hecke monoid [43, 60], Coxeter ∗-monoid, or Richardson-

Springer monoid in the literature. Richardson and Springer studied its action on

the set of orbits of the flag variety under the action of the fixed point subgroup of

an involution on the algebraic group [94, 95]. Norton [87] constructed a bijection

between the set Sn and the underlying set of this monoid. As the examples above

show, the multiplication in the monoid is quite different from the one in the per-

mutation group. More generally, given a positive braid ´, ¶(´) does not coincide
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with the image of ´ under the canonical surjection onto Sn. A first relation to the

weaves introduced above is given in the following lemma.

LEMMA 4.11. Let w be a Demazure weave. Then the Demazure product of the

associated braid words ´j(w), j ∈ [0, l(w)], remains unchanged, i.e. ¶(´0(w)) =

¶(´j(w)).

Proof. Equations (4.1) imply that 3-, 6- and 4-valent vertices preserve the De-

mazure product. □

Lemma 4.11 shows that Demazure weaves provide a transparent diagrammatic

interpretation of the Demazure product and of the 0-Hecke monoid. This motivated

our nomenclature.

4.5. Classification of weaves. We call two weaves equivalent if they are

related by a sequence of elementary equivalence moves from Section 4.2 (with no

mutations), and mutation equivalent if they are related by a sequence that might

involve both equivalence moves and mutations.

THEOREM 4.12. (a) Let w1,w2 be two weaves such that the source braids of

w1,w2 coincide and the target braids of w1,w2 coincide. If w1,w2 only have 6-

and 4- valent vertices, then w1,w2 are equivalent.

(c) Let w1,w2 be two Demazure weaves such that the source braids of w1,w2

coincide and the target braids of w1,w2 coincide. If the target is reduced, then

w1,w2 are mutation equivalent.

Proof. The theorem follows from the main result of [36], which we briefly

recall. For part (a), consider the graph where vertices correspond to braid words and

edges to braid moves (that is, 6- or 4-valent vertices). Then the cycles in this graph

are generated by commutation with distant colors and Zamolodchikov relations,

hence any two paths in this graph are equivalent.

For (b), consider the Hecke-type algebra with generators Ti and relations

T 2
i = ³Ti+´,

TiTi+1Ti = Ti+1TiTi+1 + lower order terms,

TiTj = TjTi, (|i− j|> 1).

Using these relations, it can be verified that every product of Ti can be written as

a linear combination of reduced expressions, possibly in a non-unique way. This

non-uniqueness appears from ambiguities: applying the relations in different order

could yield different results.

B. Elias proved in [36, Proposition 5.5] that (modulo commutation with dis-

tant colors) there are exactly 5 types of potential ambiguities that one needs to

consider: iii, ii(i+ 1)i, i(i+ 1)ii, i(i+ 1)i(i+ 1)i, i(i+ 1)(i+ 2)i(i+ 1)i, which
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are nothing but the trivial move, the 5-cycles corresponding to 1121 and 1211 from

Section 4.2.4, the cycle from Section 4.2.5 for the word 12121, and the Zamolod-

chikov relation. Note that the ambiguity iii corresponds to different ways of getting

from iii to i. There are two such ways without cups, and they are related by the

mutation from Section 4.2.7. □

Remark 4.13. The assumption in (b) that the target is reduced is important.

Indeed, the two trivalent vertices (ss)s→ ss and s(ss)→ ss are neither equivalent

nor mutation equivalent.

Remark 4.14. Note that by Theorem 4.12(a), any two simplifying weaves re-

lating two positive braid words for the same braid are equivalent. Thus, we will

oftentimes not specify such a weave.

Let us continue studying conditions for equivalences. Suppose that a positive

braid word ´ contains a piece siusj . Following [59], the pair of crossings (si, sj)

is said to be a deletion pair if siu= usj . (Note that unlike [59], we do not require

u to be a reduced word.) Let us define a relation z on the crossings of the braid ´

according to si z sj if (si, sj) form a deletion pair. The following two lemmas are

used in the proof of the criterion Theorem 4.17 below.

LEMMA 4.15. (i) The relationz is a partial order on the set of crossings of ´.

(ii) The set of crossings of ´ is a disjoint union of linearly ordered sets.

Proof. Assume that we have a piece of a braid siusjvsk and (si, sj) and

(sj , sk) are deletion pairs so that siu= usj , sjv = vsk. Then

si ·usjv = usjsjv = usjv ·sk,

and (si, sk) is a deletion pair. This proves (i). To prove (ii), assume (si, sj) and

(si, sk) are deletion pairs, and assume wlog that sj is to the left of sk. We must

show that (sj , sk) is a deletion pair. We have

siu= usj , siusjv = usjvsk,

and siusjv = siuvsk. Hence sjv = vsk, and (sj , sk) is a deletion pair. The case

when (si, sk) and (sj , sk) are deletion pairs is analogous. □

We call a deletion pair (si, sj) close if siz sj is a cover relation, i.e. no crossing

in-between si and sj forms a deletion pair with si or sj .

LEMMA 4.16. Suppose that (si, sj) is a close deletion pair, then the following

Demazure weaves are equivalent:

(4.2) siusj → sisiu→ siu→ usj ∼ siusj → usjsj → usj .
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Note that the condition that the deletion pair is close is necessary, see Re-

mark 4.13.

Proof. First, note that by Theorem 4.12(a) we can choose a sequence of braid

relations relating siu and usj arbitrarily, and all such weaves would be equivalent.

Furthermore, we can choose a braid word for u arbitrarily. Indeed, if u′ is related

to u by braid relations then we get the diagram:

siusj

sisiu siu
′sj usjsj

sisiu
′ u′sjsj

siu
′ u′sj

siu usj

The quadrilaterals on the left and on the right are isotopies, and the rest are built en-

tirely from braid relations and hence are equivalences by Theorem 4.12 (a). There-

fore the outside pentagon is equivalent to the inside one.

We now prove the statement by induction on the length of u. If u is empty, the

statement is clear. Otherwise, by definition of deletion pair we get siu = usj . If u

ends with sj then we do not have a close pair, contradiction. Otherwise we need to

apply some braid relation to usj which involves sj . We have the following cases:

(1) If u= vsk and |k−j|> 1 then usj = vsksj = vsjsk while siu= sivsk, so

vsj = siv. We get the following diagram:

sivsksj vsjsksj vsksjsj

sivsjsk vsjsjsk vsksj

sisivsk sivsk vsjsk

The top square is an isotopy, and the pentagon on the right is commutation with

distant colors. By the assumption of induction, two Demazure weaves (4.2) cor-

responding to sivsj are equivalent, which implies that the bottom pentagon is an

equivalence as well.
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(2) If u= vsjsj+1 then usj = vsjsj+1sj = vsj+1sjsj+1 while siu= sivsjsj+1,

so siv = vsj+1. We get the following diagram:

sivsjsj+1sj vsj+1sjsj+1sj vsjsj+1sjsj

sivsj+1sjsj+1 vsj+1sj+1sjsj+1 vsjsj+1sj

sisivsjsj+1 sivsjsj+1 vsj+1sjsj+1

The top square is an isotopy, and the pentagon on the right is 5-cycle from Sec-

tion 4.2.4. By the assumption of induction, two Demazure weaves (4.2) corre-

sponding to sivsj+1 are equivalent, and the bottom pentagon is an equivalence

as well.

The case when u= vsjsj−1 is analogous. □

Given a Demazure weave w : ´2→ ´1, we have an injection ºw from the set of

crossings in the bottom ´1 to the set of crossings in the top ´2. For a 6-valent vertex

it is a bijection which exchanges left and right crossings, for a 4-valent vertex it is

a bijection exchanging crossings, and for a 3-valent vertex the injection sends the

crossing in the target to the right crossing in the source. We refer to the crossings

not in the image of ºw as missing. Note that the number of missing crossings equals

the number of trivalent vertices and equals ℓ(´2)− ℓ(´1). The following result is a

characterization of the equivalence between Demazure weaves in a special case.

THEOREM 4.17. Let ´1,´2 be two braid words such that

ℓ(´1) = ℓ(´2)−1.

Then two Demazure weaves w1,w2 : ´2 → ´1 are equivalent if and only if they

have the same missing crossing in ´2.

Proof. Since ℓ(´1) = ℓ(´2)− 1, any Demazure weave between ´2 and ´1 has

one trivalent vertex. Let us prove that equivalent weaves have the same missing

crossing. It is verified that commutations with distant colors and Zamolodchikov

relations induce the same bijections between crossings, so any two weaves with the

same source and target and only 6- and 4-valent vertices induce the same bijection.

Finally, for the 5-cycle from Section 4.2.4 we observe that in either weave for 1121

the first crossing is missing, while in either weave for 1211 the third crossing is

missing.

Conversely, assume that the Demazure weaves w1,w2 : ´2→ ´1 have the same

missing crossing. It is sufficient to prove that they can be related by a sequence of

cycles from Lemma 4.16 and equivalences. Note that a trivalent vertex corresponds

to a close deletion pair. We have the following cases, where the deletion pair is

underlined:
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(1) Assume that (si, sj) is a close deletion pair and we apply a 4-valent vertex

to sj :

siusjsk = siusksj , |k− j|> 1,

then (si, sj) is a close deletion pair in the resulting braid, and Lemma 4.16 applies.

(2) Assume that we apply a 6-valent vertex with sj on the left:

siusjsj+1sj = siusj+1sjsj+1

then (si, sj+1) is a close deletion pair in the resulting braid, and Lemma 4.16 ap-

plies.

(3) Assume that we apply a 6-valent vertex with sj on the right:

siusjsj+1sj = siusj+1sjsj+1

Note that siusjsj+1 = usjsj+1sj = usj+1sjsj+1 implies siu = usj+1, and

(si, sj+1) is again a close deletion pair.

(4) Finally, assume that we apply a 6-valent vertex with sj in the middle, then

we no longer get a deletion pair. Instead, u = vsj+1 and sivsj+1 = vsj+1sj . By

considering possible braid moves, we can write v = wsj , then

siwsjsj+1 = wsjsj+1sj = wsj+1sjsj+1,

hence siw = wsj+1.We get the following diagram:

siwsjsj+1sjsj+1 siwsjsjsj+1sj wsj+1sjsjsj+1sj

siwsj+1sjsj+1sj+1 wsj+1sjsj+1sjsj+1 wsjsj+1sjsjsj+1

wsj+1sj+1sjsj+1sj+1 wsj+1sjsj+1sj+1 wsjsj+1sjsj+1

Here the squares are isotopies and 5-cycle is an equivalence from Section 4.2.4.

By combining all these cases (and the ones obtained by changing j+1 to j−1,

or applying braid moves to si), we can find equivalent weaves w1 ∼ w′′1 ◦w
′
1 and

w2 ∼w′′2 ◦w
′
2 where

• w′1,w
′
2 : ´2→ ´′ are weaves between equivalent braid words.

• w′′1,w
′′
2 : ´′ → ´1 are weaves obtained by finding a close deletion pair in

´′ and applying either weave from Lemma 4.16, followed by a sequence of braid

moves.

Note that w′1 ∼ w′2, so it is enough to check that w′′1 ∼ w′′2 . Since w1,w2 have

the same missing crossing in ´2, w′′1 and w′′2 have the same missing crossing in ´′.

Thus, w′′1 and w′′2 use the same close deletion pair in ´′, so the result now follows

from Lemma 4.16. □
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Remark 4.18. Although it is natural to consider the above injection and miss-

ing crossings for more general weaves, these notions are not invariant under the

equivalence relation. Indeed, one can check that the two paths in the 5-cycle for

1121 yield two different injections on crossings (with the same image), and the

different paths for 12121 have different missing vertices.

For a positive braid word ´, we define the mutation graph of ´ to be a graph

with vertices given by the equivalence classes of Demazure weaves w : ´∆→∆,

from ´∆ to ∆, i.e. w ∈ HomWn
(´∆,∆), and edges corresponding to mutations.

Note that, by Theorem 4.12(b), any two equivalence classes of Demazure weaves

in HomWn
(´∆,∆) are related by mutations.

CONJECTURE 4.19. Suppose we oriented each mutation in the direction

(ss)s→ s(ss). For any positive braid ´, this orientation descends to the mutation

graph of ´. With this orientation, the mutation graph has no oriented cycles.

The conjecture is motivated by [14], where a similar statement was proven for

the exchange graphs for quivers and cluster algebras; see also [15].

4.6. Examples. Let us study two explicit examples in detail, illustrating the

material and results presented above.

Example 4.20 (2-strand braids). A braid on two strands is an element of Br2:

we denote by Ã the unique Artin generator of this group, and by s the corresponding

Coxeter generator (12) ∈ S2. Each positive braid ´ ∈ Br2 has a unique braid word,

which has the form Ãl, l g 0, and note that ∆ = Ã. By abuse of notation, we will

also write this word as sl. We refer to the braid Ãl as the (2, l)-torus braid, since its

(rainbow) closure is the (2, l)-torus link.

We have no braid moves in Br2, so each weave w ∈ HomW2
(´,´′) contains

only trivalent vertices, cups and caps (and no 6- or 4-valent vertices). Each De-

mazure weave w∈HomW2
(´ ·∆,∆) is naturally a rooted binary tree as it contains

only trivalent vertices. By construction, all such binary trees with l(´)+ 1 leaves

are mutually non-equivalent, but they are all related by mutations. If we orient

each mutation (ss)s→ s(ss), the oriented mutation graph will coincide with the

classical Hasse graph of the Tamari lattice. It is known to be the 1-skeleton of a

combinatorial polytope: the (l(´)− 1)-dimensional associahedron, see e.g. [93].

We can summarize this discussion as follows.

LEMMA 4.21. The mutation graph of the (2, l) torus braid is the 1-skeleton of

the (l−1)-dimensional associahedron.

We can also understand each Demazure weave w ∈ HomW2
(sl ·∆,∆) as a

sequence of openings of crossings in the braid sl ·∆ = sl+1. As we understand

trivalent vertices ss→ s as openings of the left crossing, w is actually a sequence

of openings of crossings in ´; the only crossing of ∆ is the crossing of the con-

cave end of w. Naturally, the sequence of crossings being opened can be seen as a
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permutation in Sl. The Tamari lattice is known to be both a sublattice and a lattice

quotient of the weak order on permutations, see [93]. Note that a permutation is

the same as a maximal chain in the Boolean lattice 2[l] of the subsets of the set of

crossings of ´.

Finally, another way to look at Demazure weaves w ∈ HomW2
(sl ·∆,∆) is to

consider them as monotone paths along the edges in the l-dimensional cube, with

2−dimensional faces representing elementary moves (equivalences or mutations)

between weaves. We illustrate this on the example of the (2,3)-torus braid ´ = sss

in Figure 9. Each edge of the cube is oriented downwards and corresponds to one

trivalent vertex in a weave. Equivalently, it corresponds to opening a single crossing

in ´. Each vertex represents a horizontal cross-section away from the vertices of a

Demazure weave w∈HomW2
(ssss,s); equivalently, it corresponds to a braid word

obtained from ´ by the opening of some crossings. The underlined letters represent

crossings that have been opened. For each edge of the weave in a horizontal slice,

we can trace back its parents in ssss; these parents are in parentheses. The cube

has the unique top vertex representing the braid ssss, and the unique bottom vertex

representing s. Each Demazure weave can be seen as a monotone path along the

edges from the top vertex to the bottom vertex.

(ssss)

(ss)(ss)

(sss)s

s(sss)

(ss)ss

ss(ss)

ssss

s(ss)s

opening crossings

mutations

Figure 9. The Hasse graph of the Boolean lattice 2[3]. The top vertex is the initial braid

word ´ ·∆ = s3 · s = s4, the bottom vertex represents ∆ = s. Demazure weaves w ∈
HomW2

(ssss,s) correspond to monotone paths from the top vertex to the bottom vertex.

The light gray face in the cube in Figure 9 illustrates the weave mutation given

by

((s (s s)) s) (s ((s s) s))
oo //
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The dark gray face is the only face that does not represent a mutation. Two

monotone paths related by the flip in this face correspond to two different possi-

bilities to draw the same weave in such a way that each horizontal cross-section

contains at most one trivalent vertex:

((s s) (s s)) ((s s) (s s))

Two weaves are related by a single mutation if they are related by a polygonal

flip in a non-gray face. In Figure9, mutations (ss)s→ s(ss) correspond to replace-

ments of two “left” sides of a square by its two “right” sides. The mutation graph

is the 1-skeleton of 2-dimensional associahedron, that is, a pentagon. It is drawn

on Figure 10 as the Hasse graph of the Tamari lattice of rooted binary trees with

4 leaves. This concludes this example, focused on 2-stranded braids. The study of

n-stranded braids and their weaves is, in general, more intricate (and interesting as

well). This is illustrated in the next example.

(((s s) s) s)

((s (s s)) s) (s ((s s) s))

((s s) (s s))

(s (s (s s)))

77

))

//

$$

55

Figure 10. The mutation graph of the (2,3) torus braid sss. All mutations are oriented in

the direction (ss)s→ s(ss). It coincides with the Hasse graph of the Tamari lattice.

Example 4.22 (The (3,2) torus braid). Consider the (3,2) torus braid ´ =

Ã1Ã2Ã1Ã2 = 1212. Figure 11 illustrates Demazure weaves 1212 ·∆= 1212121→

212 and relations between them. In Figure 11, we allow weaves with trivalent ver-

tices 11→ 1,22→ 2 and 6-valent vertices representing braid moves only in one

direction: 121→ 212. Edges of the graph in Figure 11 represent single moves. We

assume that each weave is drawn in such a way that each horizontal cross-section

contains at most one vertex. Each vertex on Figure 11 represents a horizontal cross-

section without vertices of an (a priori, not unique) weave. All edges are oriented

downward. The weaves then correspond to monotone paths from the top vertex to

the bottom vertex on the figure.
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1221221

121221 122121

2121 1212

1212121

2122121

212121

221221

22121

22212

2212

212

2122212

212212

21212

22122

2212

212212

1212212

121212

122122

12122

21222

2122

2122

12212

212221

21221

12121

21221

122212

12212

Figure 11. The top vertex is the initial braid word ´ ·∆ = s1s2s1s2 · s1s2s1, the bot-

tom vertex represents s2s1s2. Demazure weaves ´ ·∆→ ∆ with only 6-valent vertices

s1s2s1 → s2s1s2 and 3-valent vertices allowed correspond to monotone paths from the

top vertex to the bottom vertex.

It appears that there is a way to draw the graph as a 1-skeleton of a 3-

dimensional polytope with 21 facets, although we did not try to find an explicit

polytopal realization. The 2-dimensional (polygonal) faces correspond to the

elementary moves between the paths. All the 2-dimensional faces are 4- or 8-gons:

(1) Gray quadrilaterals correspond to mutations between the pairs of paths

from sss to s.

(2) Other quadrilaterals correspond to isotopies exchanging the heights of ver-

tices in a weave.

(3) Octagons correspond to the outer octagons in Section 4.2.5, they are

formed by paths (A) and (E). Note that the inner vertices and paths do not appear

since the moves 212→ 121 are not allowed.

We have no words containing 1121 or 1211 in our example, so the pentagons

from Section 4.2.4 do not appear. In order to cover all Demazure weaves, we should

allow the moves 212→ 121. In Figure 11, we should then replace each octagonal

face by 5 faces from Section 4.2.5.
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Two weaves are equivalent if the corresponding paths are separated by several

white faces, and related by a single mutation if they are separated by one gray

face and several white faces. If we start from some monotone path, replace its part

given by some edges of a 2-dimensional face by all the other edges of this face,

and repeat this procedure by modifying paths across 2-dimensional faces until we

come back to the original path (making the 360 degrees turn around the vertical

axis in the polytope along the way), we go by all edges of the mutation graph of

equivalence classes of paths exactly once. The mutation graph is a pentagon.

Each Demazure weave w : 1212121 = ´ ·∆→∆= 121 is equivalent to a De-

mazure weave w′ : ´ ·∆→ 212 concatenated with a single 6−valent vertex 212→

121. Indeed, if the last vertex in w is a 6−valent vertex ´ℓ(w)−1(w) = 212→ 121 =

´ℓ(w)(w), then we define w′ to be w with this vertex being removed. By construc-

tion, w is then the concatenation of w′ with this vertex ´ℓ(w)−1(w)→ ´ℓ(w)(w).

Otherwise, we define w′ to be w concatenated with a vertex 121→ 212. Then

w is equivalent to w′ concatenated with a vertex 212→ 121 via a cancellation

move from Section 4.2.2. These arguments show that the mutation graph of De-

mazure weaves ´ ·∆→∆ is isomorphic to the mutation graph of Demazure weaves

´ ·∆→ 212. Thus, the former, i.e. the mutation graph of ´, is also a pentagon.

The appearance of the pentagon is not completely unexpected. Indeed, it coin-

cides with the mutation graph of the torus braid (2,3). Since the Legendrian links

Λ(3,2) = Λ(2,3) coincide, and the corresponding augmentation varieties are iso-

morphic, the fact that the mutations graphs of Demazure weaves of these two braids

are isomorphic to each other is to be expected.

Let us conclude this subsection on examples with two conjectures. First, in-

spired by the (Legendrian) equivalence between certain Legendrian (2,n)- and

(n,2)-torus links, and Lemma 4.21, we state the following conjecture.

CONJECTURE 4.23. For the (n,2) torus braid ´, the mutation graph of De-

mazure weaves ´ ·∆→∆ is the 1-skeleton of the (n−1)-dimensional associahe-

dron.

Our conjectural 3-dimensional polytope on Figure 11 is similar to polytopes

from [82, Figure 1] where the vertices encode equivalence classes of reduced ex-

pressions of elements in the braid group and edges correspond to braid moves (also

oriented from sisi+1si to si+1sisi+1). Reduced expressions are considered to be

equivalent if they are related by a sequence of moves sisj → sjsi, |i− j| g 2.

This equivalence relation is trivial in our 3-strand case. It would be interesting to

construct such polytopes for other braids.

Remark 4.24. The polytopes in [82] are the Hasse graphs of second higher

Bruhat orders introduced by Manin and Schechtman [80, 81], see also [107]. Given

an arbitrary braid ´, we can consider a similar oriented graph D´ . First, we as-

sociate a vertex to the braid ´. We draw edges corresponding to moves ss→ s,
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sisi+1si → si+1sisi+1, and sisj → sjsi, |i− j| g 2. We then contract all edges

corresponding to moves sisj → sjsi, |i− j| g 2. This defines a poset with cov-

ering relations defined by edges. An element of the poset is an equivalence class

of positive braid words with Demazure product ∆, with a certain extra decoration.

Words are considered to be equivalent if they are related by a sequence of moves

sisj→ sjsi, |i−j| g 2. The decoration can be understood in terms of subsets of the

set of crossings of the braid ´; however, it is non-trivial to give a precise definition

because of the issue discussed in Remark 4.18. We can also define the decoration

in a non-combinatorial way by using variables from Section 5.6.

If we forget the decoration, this poset becomes a poset on the set of words with

Demazure product ∆. Its analogue for all expressions of ∆ and covering relations

ss→ s replaced by ss→ e was defined by Elias [36] as an extension of the second

higher Bruhat order to not necessarily reduced words. It was used in the proof of

the main result of the work [36], which we translated to our language as Theorem

4.12. Our weaves thus resemble saturated chains in the second higher Bruhat order,

which in turn can be seen as elements of the third higher Bruhat order. However, our

equivalence relations differ from the one considered by Manin and Schechtman.

Note also that Thomas [105] defined the 0th Bruhat order to be the Boolean lattice.

As we discussed in Example 4.20, Demazure weaves in W2 can be seen as maximal

chains in the 0th Bruhat order. In the present article, we will not explore the link

between weaves and the theory of higher Bruhat orders further.

The graph D´ is not always a 1-skeleton of a polytope: e.g. D12122 is only

a 1-skeleton of a union of two quadrilaterals. However, we have the following

expectation.

CONJECTURE 4.25. For an arbitrary positive braid word ´, the poset complex

of the oriented graph D´ is either a sphere or a ball. If it is a sphere, it admits a

polytopal realization.

4.7. Triangulations and weaves. This subsection provides two types of

constructions for weaves, by using certain labeled triangulations, and a relation

between them. Specifically, we present the following constructions:

(1) From an admissible triangulation Ä , as in Definition 4.26 below, we con-

struct a weave w(Ä). There are choices in the construction of w(Ä), but any two

sets of choices lead to equivalent weaves.

(2) From a Demazure triangulation Ä , as in Definition 4.30 below, we construct

a weave w(Ä). There are choices in the construction of w(Ä) and, in contrast to

(1) above, different choices might lead to non-equivalent weaves. Nevertheless,

any two weaves constructed from the same Demazure triangulation Ä are mutation

equivalent.

(3) In Proposition 4.39 below we show that any Demazure triangulation can

be subdivided to an admissible triangulation, and explain how the resulting weaves

– via (1) and (2) above – are related.
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In this subsection, weaves are not a priori sliced. The use of the word weave in this

subsection will refer to Definition 4.1 unless otherwise specified.

4.7.1. Admissible triangulations and weaves. Given a positive braid word

´, let us write the letters (crossings) of ´ ·∆ on the sides of a (ℓ(´)+ ℓ(w0))-gon.

Definition 4.26. Let P ¦R
2 be a regular n-gon. Consider triangulation Ä of P

such that the vertices and edges of P are vertices and edges of the triangulation Ä ,

though Ä may contain vertices inside of P . By definition, Ä is said to be admissible

if each of the edges is oriented and labeled by a permutation u such that every

triangle is one of the following two types:

si si

si

u v

uv

That is, either all three sides of one triangle of Ä are labeled by the same simple

reflection si and the edges do not form a 3-cycle, or the sides are labeled by per-

mutations u,v and u · v such that ℓ(u · v) = ℓ(u) + ℓ(v) as depicted above (and

edge orientations also are as in the figure). By definition, we call such triangles

admissible.

Remark 4.27. Note that the edges in Ä are oriented, but the triangles are not

oriented, and so neither is the triangulation Ä itself. The orientation on edges is

used below only to illustrate the way we read and concatenate edge labels: if we

follow the edge labeled by u in the direction opposite to its orientation, then we

read the label as u−1.

Now, given an admissible triangulation Ä as in Definition 4.26, we can algorith-

mically construct a weave w(Ä) associated to it. For this, we make some additional

choices. This is done as follows:

(1) Choose a reduced expression for the permutation on every edge. For tri-

angles of the second type, we then concatenate the reduced expressions for u and

v and get a reduced expression for uv. This can be represented by a (piece of a)

weave with no vertices at all. Now, this resulting reduced expression for uv is pos-

sibly different from the one initially assigned to uv. Since two reduced expressions

are related by a sequence of braid moves, which are translated to 6- and 4-valent

vertices for weaves, we can draw a weave (just with 4- and 6-valent vertices) repre-

senting that sequence and connecting these two reduced expressions for uv. Note

that the resulting weave on such a triangle of the second type depends on this choice

of a sequence of braid moves. That said, any two such weaves are related by weave

equivalences, by Theorem 4.12 (a).
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(2) For triangles of the first type, with edges labeled by si, we associate a

weave consisting of a single trivalent vertex of the corresponding color si.

In summary, the possible choices in (1) give equivalent weaves and there are no

choices in (2), for triangles of the first type. Therefore, this assignment of a weave

for each triangle in Ä glues up to a weave w(Ä) on the entire polygon P , well

defined up to weave equivalence. (Cf. Remark 4.14.)

We can encode some of the moves between weaves in terms of admissible

triangulations, as follows:

(i) Given three permutations u, v and w such that ℓ(uvw) = ℓ(u) + ℓ(v) +

ℓ(w), we can make the following moves, which clearly do not change the weave,

up to equivalence:

u

v

w

uvw

uv ∼u

v

w

uvw

vw

u vw

uvw

v

uv w

∼ u vw

uvw

For unlabeled triangulations, these are precisely the Pachner moves (also known

as bistellar flips) in dimension 2. The result of Pachner [88] states that all triangu-

lations of a polygon are related by such moves (the general version of this result

holds for piecewise linear manifolds and bistellar flips in higher dimensions).

(ii) If we have four permutations u,v,w,t such that uv = tw, then u−1t =

vw−1. Assuming that all these products are reduced, we have a move

u

v

w

t

uv = tw ∼u

v

w

t

u−1t= vw−1

Note that in this case we get the equations

ℓ(u)+ ℓ(v) = ℓ(t)+ ℓ(w), ℓ(u)+ ℓ(t) = ℓ(v)+ ℓ(w)

which imply

ℓ(u) = ℓ(w), ℓ(v) = ℓ(t).
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(iii) We can encode the 1212-move from Section 4.2.4 as the following move

between triangulations:

Example 4.28. The weave corresponding to either of the following two dia-

grams is a 6-valent vertex:

The choice of a reduced expression (121 or 212) on the diagonal determines the

triangle containing this 6-valent vertex. This illustrates (ii) above.

Remark 4.29. Conversely to the construction above, given a weave we can

consider the dual planar graph. It has triangular regions corresponding to 3-valent

vertices in the weave, hexagonal regions corresponding to 6-valent vertices, and

quadrilateral regions corresponding to 4-valent vertices. By choosing any admissi-

ble triangulation of each hexagon and quadrilateral, we get a triangulation of the

entire polygon. The choice of the triangulation does not matter—for example, for

the hexagon with sides labeled 1,2,1,2,1,2 there are 14 triangulations and 12 of

them (those that do not contain triangles formed by three diagonals) are admis-

sible. From Example 4.28, any two of them can be related by a sequence of the

above moves, and correspond to equivalent weaves. In conclusion, we have a con-

struction starting with a weave and resulting in a triangulation and vice versa. These

constructions depend on choices and neither of them is a bijection. For future work,

it would be interesting to find a complete set of moves between triangulations such

that the corresponding equivalence classes are in bijection with the equivalence

classes of weaves.

4.7.2. Demazure triangulations. The correspondence between weaves

and admissible triangulations in Section 4.7.1 above is clear combinatorially.

Nevertheless, it has a disadvantage: given a triangulation, it is unclear if the corre-

sponding weave is simplifying or Demazure (more precisely, it is unclear whether
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the underlying colored graph can be drawn as a sliced weave which is simplifying

or Demazure, respectively) or, geometrically, if the corresponding Lagrangian

surface is embedded in R
4 (instead of merely immersed). In order to resolve this

issue, we now introduce a special class of triangulations – with different labeling

rules – which we refer to as Demazure triangulations. We stress that Demazure

triangulations are not necessarily admissible triangulations, as defined in Section

4.7.1 above. That said, Proposition 4.39 below explains how to produce admissible

triangulations from Demazure triangulations by a subdivision process.

Let ´ be a positive n-braid word with Demazure product ¶(´) = w0 and set

N := ℓ(´)+ 1. Consider an N -gon P whose vertices are labeled clockwise with

integers from 0 to N −1. Label the first N −1 sides clockwise by the letters of ´,

and label the last (or bottom) side connecting N − 1 and 0 by w0. By definition,

such labeled polygon P is said to be labeled according to ´.

Definition 4.30. Let ´ be a positive n-braid word with Demazure product

¶(´) = w0 and P a polygon labeled according to ´. By definition, a Demazure

triangulation Ä(P,´) is a non-oriented triangulation of P with edges labeled by

permutations such that:

(1) The only vertices of Ä(P,´) are the vertices of P .

(2) Every edge is labeled by a permutation as follows. An edge e in Ä(P,´)

divides the boundary ∂P into two connected components, and the labels in the

connected component of ∂P that does not contain the w0-label spell a subword

´′ ¦ ´. Then the permutation assigned to e is the Demazure product ¶(´′) of such

subword ´′.

Figure 12. (Left) A Demazure triangulation for the braid word ´ = Ã2Ã
2
1Ã

2
2Ã

2
1Ã2Ã

2
1Ã2.

The Demazure product w0 = s1s2s1 and its associated edge are depicted in green for

visual emphasis. (Right) A possible weave associated to this Demazure triangulation.

First, a Demazure triangulation, as in Definition 4.30, is not necessarily admis-

sible, as in Definition 4.26. Note also that the edges of a Demazure triangulation
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are diagonals of the polygon P and we sometimes refer to them as diagonals. Sec-

ond, there are no choices in the definition of a Demazure triangulation beyond the

triangulation of the polygon P itself and the braid word for ´. These two uniquely

specify the labeling of the edges. Additional choices will be needed when we try to

associate a weave to a Demazure triangulation. By definition, any Demazure trian-

gulation of a polygon labeled according to ´ is said to be a Demazure triangulation

of ´, and we often simply write Ä(´) for such a Demazure triangulation.

Example 4.31. Figure 12 (left) illustrates an instance of a Demazure triangula-

tion. The positive 3-braid word is ´ = Ã2Ã
2
1Ã

2
2Ã

2
1Ã2Ã

2
1Ã2, whose Demazure product

is indeed w0 = s1s2s1.

Definition 4.32. Given a Demazure triangulation, we define the height of the

bottom w0-side to be 0. Given any other side or edge, we define its height as the

number of edges separating it from the bottom side plus one.

Example 4.33. The following picture illustrates edges in a triangulation labeled

by height, where the bottom side is labeled with w0:

0

w0
23

24

24

11

23

By definition, in any triangle in a Demazure triangulation we have two sides of

equal height h labeled by some permutations u,v and the third side of height h−1

labeled by u⋆v.

Definition 4.34. Let△ be a triangle with sides u,v and u⋆v. The defect of△

is

def(△) = ℓ(u)+ ℓ(v)− ℓ(u⋆v).

The following fact relates defects to the length of the boundary braid.

LEMMA 4.35. Let ´ be a positive braid word and△ a triangle in a Demazure

triangulation of ´. Then ∑

△

def(△) = ℓ(´).

Proof. Set r := ℓ(´) to ease notation and let us prove the following more gen-

eral statement: “Suppose that a diagonal, or the side with vertices 0 and N , encloses

a braid ´′ with k crossings, and carries the label u= ¶(´′). Then the sum of defects
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of the triangles above this diagonal equals k− ℓ(u).” The required statement in the

lemma follows from this by setting u=w0, so that we have r+ℓ(w0)−ℓ(w0) = r.

To prove this general statement, we use induction in k ∈ N. Consider the tri-

angle adjacent to the diagonal with u, its other sides are labeled v and w such that

v ⋆w= u. By the assumption of induction, sum of defects above v equals k1−ℓ(v)

and the sum of defects above w equals k2− ℓ(w), with k1 + k2 = k, so the total

sum of defects equals k1− ℓ(v)+k2− ℓ(w)+ ℓ(v)+ ℓ(w)− ℓ(u) = k− ℓ(u). □

The next result justifies the chosen nomenclature for a Demazure triangulation.

PROPOSITION 4.36. Let ´ be a positive braid word with Demazure product

¶(´) = w0, ∆ a reduced word for w0, and Ä(´) a Demazure triangulation asso-

ciated to ´. Then there exists a non-deterministic algorithm that constructs a De-

mazure weave w(Ä(´)) ∈ HomWn
(´,∆) from the Demazure triangulation Ä(´).

Before its proof, we emphasize that there are choices in the construction

of a Demazure weave w(Ä(´)) from the Demazure triangulation Ä(´). Differ-

ent choices for the same Ä(´) lead to mutation-equivalent, but not necessarily

weave-equivalent, weaves.

Proof. First, observe that for any two permutations u,v there exists a (non-

unique) Demazure weave from the concatenation of any reduced braid words for

u and v at the top to any reduced word for u⋆ v at the bottom. This is immediate

by the definition of Demazure product: we can go from uv to u⋆v by a sequence

of braid relations and moves sisi → si, which correspond to 6-, 4- and 3-valent

vertices. Therefore, for each triangle of the Demazure triangulation, we have a

Demazure weave from the concatenation of the reduced words for the labels of the

sides of height h to the reduced word for the label of the height h− 1. Note that

such Demazure weaves associated to a triangle might not be unique, but at least

one exists. Given a Demazure triangulation, we now construct a Demazure weave

as follows.

For each possible height h there is a unique polygonal chain Lh inside the

Demazure triangulation, consisting of diagonals of the triangulation of height h

and (some) sides of the polygon of height at most h, and satisfying the following

conditions:

(i) Its two endpoints coincide with the endpoints of the bottom side.

(ii) It contains all diagonals of height h precisely once, and each side of the

polygon at most once.

For each diagonal or side appearing in Lh, we choose a reduced expression

of its label; for the bottom side, we choose ∆ as a reduced word for w0, and for

each other side its label is a letter of ´. The clockwise orientation of the boundary

of the polygon induces an orientation on the bottom side. We define ´h to be the

concatenation of all the words appearing as labels of the line segments appearing

in Lh, where we orient Lh from the target of the oriented bottom side to its source.
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Note that we have ´0 =∆ and ´N−3 = ´. By the discussion above, for each height

h, there exists a (non-unique) Demazure weave from ´h to ´h−1. By choosing such

a weave for each height h and concatenating them we obtain a Demazure weave

from ´ to w0. □

Remark 4.37. As stated in the proof above, note that there are several ways to

fill a triangle of a Demazure triangulation with a (piece of a) weave. For instance,

if all sides are labeled with the same permutation 121, we have the two options

in Figure 13 (right), which are mutation equivalent but not weave-equivalent. In

Figure 14 we depict (some) possible pieces of weaves that can appear in triangles

of a Demazure triangulation with only 2 colors, i.e. for permutations in s1, s2 ∈ S3.

Figure 13. (Left) A weave mutation. (Right) A move obtained from composing a sequence

of weave equivalences, one weave mutation and another sequence of weave equivalences.

4.7.3. Relation between Demazure triangulations and admissible trian-

gulations. Demazure triangulations, discussed in Section 4.7.2, relate to admis-

sible triangulations, discussed in Section 4.7.1, as follows.

To ease notation, we say that a weave is compatible with a Demazure triangu-

lation Ä if it can be obtained from Ä using the construction in the proof of Proposi-

tion 4.36. Note that there are typically different (non-equivalent) weaves compati-

ble with the same Demazure triangulation Ä , cf. Remark 4.37. Similarly, a weave

is said to compatible with an admissible triangulation Ä if it can be obtained from

Ä using the construction in Section 4.7.1. In this case, any two weaves compatible

with the same admissible triangulation Ä are weave equivalent.

Let ´ a positive braid word with Demazure product w0 and fix a reduced ex-

pression ∆ for w0 as in Proposition 4.36. Consider a Demazure triangulation Ä of

´. This is a triangulation Ä of a polygon with l(´)+1 sides, where the summand 1

accounts for the edge that is labeled with w0. In order to relate it to an admissible

triangulation for ´, which triangulates a polygon with l(´)+ l(w0) sides, we need

to account for this difference in the number of sides. This is achieved as follows:

Definition 4.38. Let Ä(´) be Demazure triangulation of ´, ∆ a reduced ex-

pression for w0 and Ä(∆op) a Demazure triangulation for ∆op. By definition, a

∆-expansion of Ä(´) is the triangulation of a polygon with l(´)+ l(w0) sides ob-

tained by gluing Ä(´) and Ä(∆op) along their (correspondingly unique) w0-edges.

By definition, a w0-expansion is a ∆-expansion, for some (unspecified) reduced

expression ∆ of w0.
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Figure 14. Possible weaves associated to triangles of a Demazure triangulation as in the

proof of Proposition 4.36, using only two colors s1,s2 ∈ S3. Note that fourth (i.e. the first

in the second row) and seventh diagrams coincide as (pieces of) weaves; and the same is

true for the sixth, ninth and fourteenth diagrams.

We refer to any such triangulation, as in Definition 4.38 for some choice of

reduced expression for ∆, as a w0-expansion of Ä(´).

PROPOSITION 4.39. Let ´ be a positive braid word. Any w0-expansion of a

Demazure triangulation Ä(´) for ´ can be subdivided and oriented to obtain an

admissible triangulation Ä(´) for ´. In addition, any weave compatible with Ä(´)

is compatible with Ä(´).

Proof. Consider a triangle in a Demazure triangulation with sides u,v and

u⋆v = ¶(uv). If u⋆v = uv, then this triangle is admissible. Otherwise, we use in-

duction in ℓ(v). Let v1 be the longest prefix of v such that uv1 is reduced. Then we

[1
2
8
.1

2
0
.2

3
5
.7

2
] 
  
P

ro
je

c
t 
M

U
S

E
 (

2
0
2
5
-0

7
-0

8
 1

8
:4

4
 G

M
T

) 
 U

n
iv

e
rs

it
y
 o

f 
C

a
lif

o
rn

ia
, 
D

a
v
is

 



1548 R. CASALS, E. GORSKY, M. GORSKY, AND J. SIMENTAL

can write v= v1sv2 such that ℓ(uv1) = ℓ(u)+ℓ(v1) but ℓ(uv1s)< ℓ(u)+ℓ(v1)+1.

Therefore we can find a reduced expression w such that uv1 = ws, and draw the

following diagram:

u v

w
s

s s

v1

v2

u⋆v

The unmarked edges are labeled by ws= uv1,ws and sv2. Now

u⋆v = u⋆v1 ⋆s⋆v2 = w⋆s⋆s⋆v2 = ws⋆v2,

and by the assumption of induction we can subdivide the marked triangle with

sides ws and v2 into admissible ones. In this manner, we subdivide each triangle

in an arbitrary Demazure triangulation into admissible triangles. Therefore, we can

subdivide each w0-expansion of Ä(´) (recall that it is glued out of two Demazure

triangulations) into a triangulation consisting of admissible triangles, which is then

admissible by definition. Let us denote this admissible triangulation by Ä(´).

For the statement about the weave, let us describe an arbitrary weave compat-

ible with Ä(´) as a sequence of braid words. First, given a subdivided triangle as

above, we choose some word for u,v1,v2 and use a sequence of braid relations

uv→ uv1sv2→ wssv2

Next, we insert a trivalent vertex in the central triangle and get wsv2, and proceed

by induction. This yields one possible sequence of moves computing the Demazure

product u⋆v. This gives a Demazure weave for each triangle in Ä(´). Gluing them

together, we get a Demazure weave w1 compatible with Ä(´), as in the proof of

Proposition 4.36. Doing the same for each triangle in our chosen Demazure tri-

angulation for ∆op, where we fixed the word ∆op on the bottom side, we obtain a

Demazure weave w2 from ∆op to itself. Now we can glue these two weaves w1,w2

together along their w0-edges and declare that all the consecutive edges that spell

∆op, i.e. all the edges from w2 except its w0-edge, are to be considered as one edge

(indeed, since the polygons for ´ and for ∆op have opposite orientations, the gluing

can in fact be interpreted as the concatenation of w1 with the half-turn of w2, the

latter being a Demazure weave from ∆ to itself). By labeling this particular edge

with w0, the result of gluing w1 and w2 and performing this identification gives a
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weave compatible with Ä(´). Indeed, it is compatible with Ä(´) because w2 con-

sists only of 4- and 6-valent vertices. In fact, this resulting weave is equivalent to

w1 by Theorem 4.12 (a). □

5. Algebraic weaves, morphisms, and correspondences. This section de-

velops the relative geometry of braid varieties, studying morphisms and correspon-

dences between them. These correspondences are defined using weaves, and pro-

vide a functor from the category of algebraic weaves to the category of algebraic

varieties and their correspondences. Here and below, a correspondence between X

and Y is an algebraic variety Z with two regular maps Z → X and Z → Y . In

general, we do not require that Z is a subset of X × Y . That said, this stronger

condition does hold for correspondences associated with simplifying weaves, see

Remark 5.10.

5.1. Correspondences. In this section, we use horizontal dashed segments

in order to keep track of certain variables, corresponding to the zi-variables in

the braid variety. By definition, a horizontal segment inside the domain R× [1,2],

where a weave is drawn, is any connected segment contained in a line of the form

R×{r}, for some real value r ∈ [1,2]. In addition, we also consider particular

types of weaves. Altogether, this leads to the following definition.

Definition 5.1. An algebraic weave of degree n is a sliced weave w¦R× [1,2]

of degree n such that:

(i) The edges have been oriented downwards, with the models according to

Figure 15 for cups and caps. By convention, diagrams are oriented from top to

bottom, from R×{2} down to R×{1}.

(ii) The weave w is decorated with horizontal dashed rays, as follows. By

definition, dashed rays are horizontal rays of the form (−∞, b]×{r} ¦ R× [1,2],

for some b ∈ R and r ∈ (1,2), such that the dashed ray starts at a trivalent vertex,

or at the bottom of a cup, or at the top of a cap. The first three diagrams in Figure

15, excluding the rightmost picture, depict the three possible starts of a dashed ray.

In other words, the starting point (b,r) ∈ R× [1,2] of a dashed ray must either be

a trivalent vertex, the lowest point of a cup or the highest point of a cap.

(iii) The weave w is such that any horizontal line R×{h}, for some h ∈ [1,2],

contains at most one of the following types of points: a vertex of w, the lowest

point of a cup or the highest point of a cap.

In particular, all vertices, cups and caps of w have different heights, and dashed

rays never pass through another vertex, cup or cap (in addition to the starting point),

dashed rays are all parallel to each other and are all transverse to the edges of w.

Therefore, the only local models involving an intersection between a dashed ray

and w are as depicted in Figure 15.

By definition, a (transverse) intersection point of a dashed ray with a weave

edge, distinct from the starting point of the dashed ray, will be referred to as a

virtual vertex. A virtual vertex is drawn in the rightmost diagram of Figure 15.
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Remark 5.2. Throughout this section, we refer to the valency of a vertex in

the original weave w, without accounting for any additional valency due to dashed

rays. In particular, trivalent vertices will be still called trivalent despite an addi-

tional edge starting at them.

Figure 15. Local models for algebraic weaves, compare with Figure 8. The starting point

of a dashed ray must be at a trivalent vertex, a cup or a cap. These cases are respectively

labeled with (a), (d) and (e). A virtual vertex is shown on the right.

By Definition 5.1, the new local models for algebraic weaves involving dashed

rays are those in Figure 15. The weave edges of the original weave w are subdi-

vided by the virtual vertices into smaller segments, and dashed rays are subdivided

into intervals, which we often refer to as dashed segments.

Figure 16. The space V
w for this algebraic weave w is C

15 × (C(
3
2) × (C∗)3)4. Indeed,

there are 15 weave segments, each labeled with a variable zi ∈ C, and 4 dashed segments,

each labeled with an invertible triangular matrix Uj . The correspondence M(w) associ-

ated to this algebraic weave is a closed subvariety of Vw.

Let w : ´2→ ´1 be an algebraic weave from ´2, at the top, to ´1, at the bottom.

We now construct a correspondence between the two braid varieties X0(´1) and

X0(´2). To each segment of an edge labeled by i we associate a variable z and

the braid matrix Bi(z). Segments of a weave edge separated by a virtual vertex

carry different variables. In addition, each dashed segment (a segment of a dashed

ray) is labeled by an invertible upper triangular matrix whose entries are considered
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variables as well. All these variables and matrices can be considered as coordinates

in the space

V
w := C

weave segments×
(
C(

n
2)× (C∗)n

)dashed segments
,

where we are identifying the space of invertible upper triangular n×n-matrices

with C(
n
2)× (C∗)n. See Figure 16 for an example. The correspondence associated

to an algebraic weave w is a closed subvariety of Vw. This correspondence is de-

fined using the following notion of monodromy.

Definition 5.3. Let w be an algebraic weave and Ä : [0,1]→R× [1,2] a regular

parametrization of an oriented embedded path transverse to both w and its dashed

rays. By definition, the monodromy of the weave w along Ä , also referred to as the

monodromy of Ä , is the ordered product of the following matrices:

(i) Bi(z), if the path Ä crosses an edge labeled by i with variable z from left to

right,

(ii) Bi(z)
−1, if the path Ä crosses an edge labeled by i with variable z from

right to left,

(iii) U , if the path Ä crosses a dashed segment colored by U from top to bottom,

(iv) U−1, if the path Ä crosses a dashed segment colored by U from bottom to

top.

In detail, let {t1, . . . , tf} ∈ [0,1] with t1 < .. . < tf be the times such that Ä(ti)

intersects either the weave or a dashed ray, and let M(ti) be the matrix associated

to that intersection point and its intersection sign, according to (i) through (iv)

above. Then the monodromy of Ä is the product M(t1) · · · · ·M(tf ).

Definition 5.4. Let w be an algebraic weave. By definition, the correspondence

varietyM(w) associated to the weave w is the affine algebraic subvariety of Vw

cut out by the following two conditions:

(1) The monodromy of a closed loop around a neighborhood of every vertex

of w is the identity.

(2) The monodromy of a closed loop around a neighborhood of every virtual

vertex is the identity.

The two conditions (1) and (2) in Definition 5.4 can be written in terms of

polynomial equations on the z-variables and the coefficients of the invertible upper-

triangular matrices. ThereforeM(w)¦ V
w is a closed affine algebraic subvariety.

5.2. Properties of correspondences. From the ambient space V
w associ-

ated to w : ´2→ ´1, we have two natural projections

C
ℓ(´1)← V

w→ C
ℓ(´2).

The projection V
w → C

ℓ(´2) is given by reading the labels zj associated to

the weave segments at the top boundary of w, corresponding to crossings of ´2.



1552 R. CASALS, E. GORSKY, M. GORSKY, AND J. SIMENTAL

Similarly, the projection V
w→ C

ℓ(´1) is given by reading the labels zj associated

to the weave segments at the bottom boundary of w, which correspond to crossings

of ´1. By considering the braid matrices associated to ´1 and ´2, we obtain the

corresponding maps

GL(n)
B´1←−− V

w
B´2−−→ GL(n).

These two maps can be thought of as monodromies along the left to right horizontal

paths near the top boundary of w, in the case of B´2
, and near the bottom boundary

of w, for B´1
. More generally, if a horizontal slice of w spells out a braid word ´,

the corresponding braid matrix defines a map B´ : Vw→ GL(n).

Definition 5.5. Let w : ´2→ ´1 be an algebraic weave of degree n and Ã ∈ Sn

a permutation. The closed subvariety M(w,Ã) ¦ M(w) ¦ V
w is given by the

condition that B´1
Ã is upper triangular. There exists a natural map M(w,Ã)→

X0(´1,Ã) given by projecting to the labels associated to the bottom boundary seg-

ments of w, which spell ´1.

PROPOSITION 5.6. Let w1 : ´1 → ´0 and w2 : ´2 → ´1 be algebraic weaves

and w :=w1 ◦w2 their composition. Then the following hold:

(a) Let Ã ∈ Sn be a permutation, which we represent by a homonymous per-

mutation matrix Ã ∈ GLn(C). Suppose that the matrix B´1
·Ã is upper-triangular.

Then B´2
· Ã is upper-triangular and M(w2,Ã) is a correspondence between

X0(´1;Ã) and X0(´2;Ã).

(b) The composition of weaves corresponds to the following diagram:

M(w,Ã)

M(w1,Ã) M(w2,Ã)

X(´0;Ã) X(´1;Ã) X(´2;Ã),

In addition, the middle square is Cartesian. In other words,M(w,Ã) is a convo-

lution of correspondencesM(w1,Ã) andM(w2,Ã).

Proof. For Part (a), Definition 5.4 implies that the monodromy around any

closed loop is the identity. The monodromy around the closed loop encircling the

whole weave with ´2 on the top and ´1 on the bottom must then be the iden-

tity. The monodromy around this particular loop equals B´2
B−1

´1
Ũ−1, where Ũ

is the product of the upper-triangular matrices assigned to the dashed segments

to the left of w. Therefore we have the equality B´2
= ŨB´1

. By the discussion

above, projecting to the labels associated to the top boundary of w defines a map

M(w,Ã)→X0(´2,Ã).
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For (b), recall that the composition w=w1◦w2 of weaves is defined by vertical

stacking, with w2 on top and w1 at the bottom. Therefore, we can concatenate

the labels in V
w1 and V

w2 if they agree along ´1. In that case, there are natural

maps M(w)→M(wi), i = 1,2, given by restriction, because the monodromy

conditions in w1 and w2 are independent. The z-variables for labels along ´1 form

a space Cl(´1) and restriction to the top, resp. bottom, gives a mapM(w1)→C
l(´1),

resp.M(w2)→ C
l(´1). It follows from above that we obtain a Cartesian square:

M(w)

M(w1) M(w2).

C
ℓ(´1)

By Part (a), the condition that B´0
Ã is upper-triangular implies that both B´1

Ã

and B´2
Ã are upper-triangular, and thus we also have the same Cartesian diagram

now incorporating Ã. □

Remark 5.7. Note that flipping an algebraic weave w : ´2→ ´1 upside down

and reversing orientations on the edges corresponds to switching ´1 and ´2 and

transposing the associated correspondence.

Proposition 5.6 (a) for the case where Ã = 1 is the identity gives a correspon-

denceM(w,1) between the braid varieties X0(´2) and X0(´1). Note thatM(w,1)

is a closed subvariety ofM(w) and, in general,M(w,1) ̸=M(w). By Proposi-

tion 5.6 (b), it suffices to describe these correspondences for elementary weaves in

order to understand them for general algebraic weaves. These correspondences, in

the case of elementary weaves, are described as follows:

(1) For a trivalent vertex colored by i, the correspondenceM(w,Ã) embeds into

X(´2;Ã) as the open locus {z1 ̸= 0} and projects onto X(´1;Ã) with fibers P
1 \

{0,∞}= C
∗. In terms of matrices, we have the identity

Bi(z1)Bi(z2) =

(
−z−1

1 1

0 z1

)
Bi(z2 +z−1

1 ).

(2) For 6-valent and 4-valent vertices, the corresponding braid varieties X(´2;Ã)

and X(´1;Ã) are isomorphic, andM(w,Ã) realizes this isomorphism. In terms of

matrices, this corresponds to the identities

Bi(z1)Bi+1(z2)Bi(z3) =Bi+1(z3)Bi(z2−z1z3)Bi+1(z1),

Bi(z1)Bj(z2) =Bj(z2)Bi(z1) (|i− j|> 1).
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(3) For a cup colored by i, the correspondenceM(w,Ã) embeds into X(´2;Ã)

as the closed locus {z1 = 0} and projects onto X(´1;Ã) with fibers P1 \{∞}= C.

In terms of matrices, we have the identity

Bi(0)Bi(z) =

(
1 z
0 1

)
.

For a cap, we just use the transposed correspondence.

(4) A virtual vertex corresponds to the identity

Bi(z)U = ŨBi(z
′)

from Lemma 2.20. In particular, we have z′=
ui+1,i+1z+ui,i+1

ui,i
. Here U and Ũ are the

labels for the segments of the dashed ray to the right and to the left of the virtual

vertex, respectively:

z

z′

Ũ U

These four rules are justified by the following result.

PROPOSITION 5.8. In the construction of the correspondence varietyM(w):

(a) The invertible triangular matrices labeling dashed segments are uniquely

determined by the variables on the edges.

(b) The output variables of each 3-, 6-, or 4-valent vertex are determined by

the input variables.

Proof. It follows from the proof of Lemma 2.20 that the equation Bi(z)U =

ŨBi(z
′) uniquely determines Ũ and z′ for given z and U . This establishes Part

(a) near a virtual vertex. It remains to consider the dashed segments near trivalent

vertices, cups, and caps. We verify both Part (a) and Part (b) in the necessary cases,

as follows:

(1) For a 6-valent vertex, we have that

Bi(z1)Bi+1(z2)Bi(z3) =Bi+1(w1)Bi(w2)Bi+1(w3)

implies w1 = z3,w2 = z2− z1z3,w3 = z1, so the output variables are determined

by the input ones. The proof for a 4-valent vertex is similar. Note that there are no

dashed segments in this case of 4- and 6-valent vertices, so it is only to do with

part (b).

(2) For a 3-valent vertex, we have an equation Bi(z1)Bi(z2) =UBi(w) which

can be written as
(

1 z2

z1 1+z1z2

)
=

(
0 1

1 z1

)(
0 1

1 z2

)
=

(
a b
0 c

)(
0 1

1 w

)
=

(
b a+ bw
c cw

)
.
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This equality implies b= 1, c= z1,w= (1+z1z2)/c= z2+z−1
1 and a= z2−bw=

−z−1
1 . In particular, z1 must be non-zero.

(3) For a cup, we have Bi(z1)Bi(z2) = U and similarly z1 = 0 and U is deter-

mined by z2. The case of a cap follows analogously. □

By combining these facts, we obtain the following result:

THEOREM 5.9. Let w : ´2→ ´1 be a simplifying algebraic weave with m cups

and r trivalent vertices. Then:

(1) There exists an isomorphism

M(w,Ã)∼= C
m× (C∗)r×X0(´1;Ã)

such that the map M(w,Ã)→ X0(´1,Ã) is given by the projection to the third

factor.

(2) The mapM(w,Ã)→X0(´2,Ã) is injective.

Proof. The map to X0(´2;Ã) is injective by Proposition 5.8. This proves part

(2). For part (1) we read our weave inductively from bottom to top. At the bottom,

the bottom edges of w spell the braid word ´1, and the corresponding z-variables

parametrize a point in X0(´1;Ã). As we move up, we encounter the following

cases:

(i) If we cross a 6-valent vertex, similarly to Proposition 5.8 the variables

z1, z2, z3 above the vertex are determined by the variables w1,w2,w3 below it.

(ii) If we cross a 3-valent vertex v, we get an identity Bi(z1)Bi(z2) =

UBi(z3). We can choose z1 ∈ C
∗ arbitrarily, then by Proposition 5.8 we have

z2 = z3− z−1
1 and U is determined by z1 and z3. The z-variables right below the

dashed ray starting at v and the matrix U uniquely determine the z-variables above

the dashed ray and the upper-triangular matrices on the dashed ray.

(iii) If we cross a cup, we get an identity Bi(0)Bi(z2) = U . The choice of z2

in C is arbitrary and, similarly to the previous case, U propagates to the left in a

unique way.

(iv) The case of a 4-valent vertex is immediate.

Therefore, each trivalent vertex contributes with a C
∗-factor, each cup contributes

with a C-factor and neither 4-valent nor 6-valent vertices contribute additional fac-

tors. This gives an isomorphism as in Part (1) and, by construction, it satisfies

that the mapM(w,Ã)→ X0(´1,Ã) is given by the projection to the third factor,

projecting away the C and C
∗-factors from the cups and trivalents. □

Remark 5.10. If w : ´2→ ´1 is a simplifying algebraic weave, then the maps

M(w,Ã)→ X0(´1;Ã) andM(w,Ã)→ X0(´2;Ã) identifyM(w,Ã) with a sub-

variety of the product X(´1;Ã)×X(´2;Ã) and we obtain a correspondence in the

sense of [79].
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COROLLARY 5.11. Let w : ´2 → ´1 be a Demazure weave with r trivalent

vertices. Then

M(w,Ã) = (C∗)r×X(´1;Ã),

and the mapM(w,Ã)→X(´2;Ã) is an open embedding.

Corollary 5.11 follows from 5.9 because we have ℓ(´1)+ r = ℓ(´2), and thus

M(w,Ã) and X0(´2,Ã) have the same dimension.

We now state the invariance of the correspondencesM(w) under weave equiv-

alence, which will be proven in Section 5.4:

THEOREM 5.12. Let w1,w2 be equivalent Demazure weaves between ´2 and

´1, i.e. w1,w2 are related by a sequence of elementary moves (not mutations).

Then, their associated correspondencesM(w1) andM(w2) are isomorphic. Fur-

thermore, there exists such an isomorphism that induces an isomorphism between

M(w1,Ã) andM(w2,Ã) for all permutations Ã ∈ Sn.

Remark 5.13. It is shown in [25] that two Legendrian weaves related by an ele-

mentary move (or compositions of thereof) yield Hamiltonian isotopic Lagrangian

projections, and also yield the same maps between the corresponding Legendrian

Contact DGAs. Theorem 5.12 is an algebraic analogue of this statement.

5.2.1. An aside on flag moduli. We could have followed [25, Section 5]

and have also defined the following correspondence MOBS(w), called the flag

moduli space of w in [25, Section 5]. This flag moduli is defined as follows. To each

region of (R× [1,2]) \w we associate a flag in C
n, if w goes between n-braids,

and two regions separated by a line colored by i have flags in relative position si.

The flags separated by a dashed segment are required to coincide. Recall the defini-

tion of the open Bott-Samelson variety from Section 2.7, cf. Definition 2.42. There

are two natural projectionsMOBS(w)→OBS(´0),MOBS(w)→OBS(´1), so that

MOBS(w) is a correspondence between OBS(´0) and OBS(´1). We can also define

MOBS′(w)¦MOBS(w) as the closed subvariety given by the additional condition

that the flag corresponding to the unbounded region on the far left of the weave

coincides with the flag corresponding to the unbounded region on the far right. The

variety MOBS′(w) is a correspondence between OBS′(´0) and OBS′(´1). In this

setting, in line with Theorem 2.43, we can conclude the following.

PROPOSITION 5.14. Let G= GL(n) and B ¦G the Borel subgroup of upper-

triangular matrices. There is a free action of B on G×M(w) that preserves G×

M(w,1) and we have isomorphisms

MOBS(w)∼= (G×M(w))/B, MOBS′(w)∼= (G×M(w,1))/B.

Proof. An element in G=GL(n,C) corresponds to the choice of a basis in one

of the regions on the plane. Given a point inM(w), we can define a basis in every
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other region, and the trivial monodromy condition ensures that this assignment

is well defined. The flags in regions are induced by these bases. The action of B

changes the basis in the rightmost region, but does not affect the flag in it. Similarly

to the proof of Theorem 2.43, we can propagate this action to the left and obtain

the required isomorphism. □

5.3. Opening crossings. Let us now shift the focus to studying the relation

between these correspondences and opening crossings of a positive braid; the latter

having been a crucial ingredient in Sections 2.1 and 3.

Definition 5.15. Let ´ be a positive braid word on n strands and Ã = Ãi a letter

in ´, and let ´′ be the result of removing Ã from ´. We define an equivalence class

of Demazure weaves from ´∆ to ´′∆ as the composition of the following three

weaves:

(a) Move ∆ next to Ãi and change the braid word for w0 to one which starts

from Ãi. This only uses braid relations, or, equivalently, 6- and 4-valent vertices,

(b) Apply the trivalent vertex ÃiÃi→ Ãi,

(c) Move ∆ back to the end of the word.

We will call any such weave an opening weave for (´,Ã). Any choice of braid

relations in (a) and (c) yields equivalent weaves.

Let us remark that the element ∆ is not central in the braid group, and care is

needed in Steps (a) and (c) of Definition 5.15: if ´ = µ1Ãiµ2 then the procedure in

Definition 5.15 is

µ1Ãiµ2∆→ µ1Ãi∆µ′2→ µ1Ãi∆
′µ′2→ µ1∆

′µ′2→ µ1∆µ′2→ µ1µ2∆

where ∆′ is a minimal braid lift of a reduced expression of w0 that starts with Ãi
(and is related to ∆ by a sequence of braid moves), the opening of the crossing Ãi
is performed in the third step, and all other arrows only involve braid moves or,

equivalently, 4- and 6-valent vertices. Let us now give a concrete example of this

procedure.

Example 5.16. (a) Suppose that ´ = 1212 and we want to open the second

crossing in ´ ·∆= 1212121. The above moves have the following form, where we

have underlined ∆ and ∆′:

1212121 = 1212121 = 1212121→ 1221221→ 121221→ 112121

= 112121 = 112121.

The corresponding weave has the form
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(b) For another example, suppose that ´ = 12112 and we want to open the

second crossing in ´ ·∆= 12112121. The above moves have the following form,

where we have underlined ∆ and ∆′:

12112121 = 12112121 = 12112121→ 12121221

= 12121221→ 12212221→ 1212221→ 1121221

= 1121221→ 1112121 = 1112121 = 1112121.

The corresponding weave has the form

From these examples, we can see that some steps required to move ∆ next to Ãi in

Definition 5.15 simply require us to use associativity of braid words, without using

braid relations, and can be interpreted as the identity. These moves are marked with

an equality sign in both examples above.

LEMMA 5.17. Let Ãi be a letter in ´, and let w be an opening weave for

(´,Ãi). Then the correspondenceM(w) agrees with the graph of the rational map

ΩÃi
from Definition 2.21.

Proof. Observe that the trivalent vertex ÃiÃi→ Ãi corresponds to opening the

left crossing Ãi. Indeed, applying Lemma 2.22 yields a sequence of matrix identi-

ties

Bi(z1)Bi(z2) =

(
−z−1

1 1

0 z1

)(
1 0

z−1
1 1

)
Bi(z2) =

(
−z−1

1 1

0 z1

)
Bi(z2 +z−1

1 )

followed by pushing the upper-triangular matrix to the left. This agrees with the

correspondence associated to the trivalent vertex (see also the proof of Proposi-

tion 5.8). It is a direct verification that opening a crossing commutes with braid

relations in (a) and (c) not involving this crossing, and the result follows. □

As a result, opening all crossings in a braid ´, in some order, corresponds to a

Demazure weave. Interestingly, the converse is also true, up to equivalence relation

on weaves.

THEOREM 5.18. Let w : ´∆→∆ be a Demazure weave. Then w is equivalent

to a weave obtained by opening crossings in some order.
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Proof. Similarly to the proof of Theorem 4.17, any Demazure weave between

braids ´ and ´′ such that

ℓ(´) = ℓ(´′)+1

is equivalent to a weave corresponding to opening a crossing in ´ followed by some

braid moves. Let us prove the statement of the theorem by induction on the length

of ´. When ℓ(´) = 0, we have a weave from ∆ to ∆; since ∆ is reduced, the

cancellation relation in Section 4.2.2 and the Zamolodchikov relation in Section

4.2.6 guarantee that all weaves ∆→∆ are equivalent to the identity weave. Given

a weave from ´∆ to ∆, choose a slice ´′ right below the first trivalent vertex.

By the above argument the weave is equivalent to opening a crossing in ´ (which

results in a braid ´′′∆) followed by some braid moves to ´′, and followed by the

rest of the weave. By the assumption of induction, the weave from ´′′∆ to ∆ is

equivalent to opening crossings in ´′′ in some order. □

COROLLARY 5.19. Let w be a Demazure weave between ´∆ and ∆. Then the

open chartM(w,w0) ↪→X0(´∆,w0) coincides with one of the toric charts from

Section 2.3.

Proof. By Theorem 5.18 the weave w is equivalent to the weave w′ obtained by

opening crossings in some order. By Theorem 5.12 the open charts in X0(´∆,w0)

corresponding to w and w
′ coincide. □

5.4. Proof of Theorem 5.12. Let us prove Theorem 5.12. In order to do so,

we directly check each elementary move from Section 4.2 separately. Cancellation

of 4- and 6-valent vertices and commuting with distant colors are clear, and we

do not include them in the list. Similarly, all the ways to resolve 12121 are related

to each other by a sequence of 1212-moves, as explained in Section 4.2.5, so it

is sufficient to check the latter. Below are the remaining verifications needed for

proving Theorem 5.12.

5.4.1. Changing the heights of vertices. Changing the height of vertices

does not change the graph, but can change the dashed segments. Specifically, we

need to understand how to slide dashed segments past 3-, 4- and 6-valent vertices,

cups and caps. Here are the cases:

z1

s−1z1 sz2 +k

z2

s(z2 +z−1
1 )+k

UU ′′

A

z1 z2

z2 +z−1
1

s(z2 +z−1
1 )+k

B

U ′ U



1560 R. CASALS, E. GORSKY, M. GORSKY, AND J. SIMENTAL

The most interesting case is sliding through a 3-valent vertex. In this case we

have identity

(
0 1

1 z1

)(
0 1

1 z2

)(
a b
0 c

)
=

(
0 1

1 z1

)(
c 0

0 a

)(
0 1

1 b+cz2

a

)

=

(
a 0

0 c

)(
0 1

1 az1

c

)(
0 1

1 b+cz2

a

)
.

(5.1)

Therefore we have a transformation (z1, z2)→ (s−1z1, sz2 + k) where s = c
a

and

k= b
a

. Note that z1 ̸= 0 is equivalent to s−1z1 ̸= 0. The transformation correspond-

ing to the same dashed segment on the right figure sends z2+z−1
1 → s(z2+z−1

1 )+

k, see the first of the identities (5.1) (or Lemma 2.20). On the left figure, we also

obtain s(z2+z−1
1 )+k, now as the result of going down through the trivalent vertex:

(sz2 +k)+(s−1z1)
−1 = s(z2 +z−1

1 )+k.

Let us now analyze the labels of the dashed segments on the far left, that we

have indicated by U ′′ and A on the left weave, and by B and U ′ on the right weave.

In the left-hand side weave we have:

Bi(z1)Bi(z2)U = U ′′Bi(s
−1z1)Bi(sz2 +k) = U ′′ABi(s(z2 +z−1

1 )+k).

In the right-hand side weave we have:

Bi(z1)B2(z2)U =BBi(z2 +z−1
1 )U =BU ′Bi(s(z2 +z−1

1 )+k).

Comparing, we obtain the equality U ′′A = BU ′. It follows that, should there be

more edges on the left of the weave, the labels of these edges remain constant

below both dashed lines, as needed.

For a 6-valent vertex we have

Bi(z1)Bi+1(z2)Bi(z3)



a b c
0 d e
0 0 f


=



f 0 0

0 d 0

0 0 a


Bi(z̃1)Bi+1(z̃2)Bi(z̃3),

where

z̃1 =
1

d
(e+z1f), z̃2 =

1

a
(c+z3e+z2f), z̃3 =

1

a
(b+z3d).

Similarly,

Bi+1(z
′
1)Bi(z

′
2)Bi+1(z

′
3)



a b c
0 d e
0 0 f


=



f 0 0

0 d 0

0 0 a


Bi+1(z̃1

′)Bi(z̃2
′)Bi+1(z̃3

′),

where

z̃1
′ =

1

a
(b+z′1d), z̃2

′ =
1

ad
(cd− be−z′3bf +z′2df), z̃3

′ =
1

d
(e+z′3f).
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Now for (z′1, z
′
2, z
′
3) = (z3, z2− z1z3, z1) we get (z̃1

′, z̃2
′, z̃3

′) = (z̃3, z̃2− z̃1z̃3, z̃1).

We show all these changes of variables in the following figure:

We leave the check for 4-valent vertices to the reader.

For a cup, we can apply (5.1) to write (z1, z2)→ (s−1z1, sz2 + k). Note that

the cup is defined whenever z1 = 0, which is equivalent to s−1z1 = 0, so we can

still apply a cup below the dashed segment. We can also check the compatibility of

the labels on the dashed segments left of the cup, as follows. If

Bi(0)Bi(z2) =A, Bi(0)Bi(sz2 +k) =B

for upper-triangular matrices A,B, then we have

AU =Bi(0)Bi(z2)U = U ′′Bi(0)Bi(sz2 +k) = U ′′B.

The computation for a cap is similar.

5.4.2. The 1212-relation. We refer to the notations in Section 4.2.4. Two

weaves declared to be equivalent have one trivalent vertex each, so the correspond-

ing algebraic weaves have one dashed segment each:

The path 1212→ 2122→ 212→ 121 on the left corresponds to changes of

variables

(z1, z2, z3, z4)→ (z3, z2−z1z3, z1, z4)→ (z2,−z2z
−1
1 +z3, z4 +z−1

1 )

→ (z4 +z−1
1 , z3 +z2z4, z2).
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Note that the second step corresponds to opening third crossing, which affects all

other crossings:

B2(z3)B1(z2−z1z3)B2(z1)B2(z4)

=B2(z3)B1(z2−z1z3)




1 0 0

0 −z−1
1 1

0 0 z1






1 0 0

0 1 0

0 z−1
1 1


B2(z4)

=B2(z3)B1(z2−z1z3)




1 0 0

0 −z−1
1 1

0 0 z1


B2(z1

−1 +z4)

=B2(z3)



−z−1

1 0 1

0 1 z2−z1z3

0 0 z1


B1(−z2z

−1
1 +z3)B2(z

−1
1 +z4)

=



−z−1

1 1 0

0 z1 0

0 0 1


B2(z2)B1(−z2z

−1
1 +z3)B2(z

−1
1 +z4).

The dashed segment on the left weave is divided by edges of the weave into

three segments corresponding to the upper triangular matrices appearing in this

sequence of matrix identities. Namely, if U,Ũ ,
˜̃
U are the matrices corresponding to

these segments, from right to left, then we have

U =




1 0 0

0 −z−1
1 1

0 0 z1


 , Ũ =



−z−1

1 0 1

0 1 z2−z1z3

0 0 z1


 ,

˜̃
U =



−z−1

1 1 0

0 z1 0

0 0 1


 .

The right weave 1212→ 1121→ 121 corresponds to changes of variables

(z1, z2, z3, z4)→ (z1, z4, z3 +z2z4, z2)→ (z4 +z−1
1 , z3 +z2z4, z2),

so the end result is the same as for the sequence of transformations for the left

weave.

For completeness, we also include the computation for some of the other dia-

grams in Section 4.2.4. For 1121 we get two paths

(z1, z2, z3, z4)→ (z2 +z−1
1 , z3, z4)→ (z4, z3−z4(z2 +z−1

1 ), z2 +z−1
1 )

and

(z1, z2, z3, z4)→ (z1, z4, z3−z2z4, z2)→ (z3−z2z4, z4−z1(z3−z2z4), z1, z2)

→ (z4,−z
−1
1 (z4−z1(z3−z2z4)), z2 +z−1

1 )

Note that

−z−1
1 (z4−z1(z3−z2z4)) = z3−z4(z2 +z−1

1 ).
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For 1211 we get two paths

(z1, z2, z3, z4)→ (z2−z1z3, z
−1
3 z2, z4 +z−1

3 )

→ (z4 +z−1
3 , z−1

3 z2− (z4 +z−1
3 )(z2−z1z3), z2−z1z3)

and

(z1, z2, z3, z4)→ (z3, z2−z1z3, z1, z4)→ (z3, z4, z1−z4(z2−z1z3), z2−z1z3)

→ (z4 +z−1
3 , z1−z4(z2−z1z3), z2−z1z3).

Note that

z−1
3 z2− (z4 +z−1

3 )(z2−z1z3) = z−1
3 z2−z4z2 +z1z3z4−z−1

3 z2 +z1

= z1−z4(z2−z1z3).

The proof for other pair of adjacent colors is similar.

5.4.3. The Zamolodchikov relation. The left diagram in Section 4.2.6 rep-

resents the following path:

123121→ 121321→ 212321→ 213231→ 231213→ 232123→ 323123

which induces the following change of variables:

(z1, z2, z3, z4, z5, z6)

→ (z1, z2, z4, z3, z5, z6)→ (z4, z2−z1z4, z1, z3, z5, z6)

→ (z4, z2−z1z4, z5, z3−z1z5, z1, z6)→ (z4, z5, z2−z1z4, z3−z1z5, z6, z1)

→ (z4, z5, z6, z̃3, z2−z1z4, z1)→ (z6, z5−z4z6, z4, z̃3, z2−z1z4, z1).

Here z̃3 = z3− z1z5− z2z6 + z1z4z6. The right diagram represents the following

path:

123121→ 123212→ 132312→ 312132→ 321232→ 321323→ 323123

which induces the following change of variables:

(z1, z2, z3, z4, z5, z6)

→ (z1, z2, z3, z6, z5−z4z6, z4)→ (z1, z6, z3−z2z6, z2, z5−z4z6, z4)

→ (z6, z1, z3−z2z6, z5−z4z6, z2, z4)→ (z6, z5−z4z6, z̃3, z1, z2, z4)

→ (z6, z5−z4z6, z̃3, z4, z2−z1z4, z1)→ (z6, z5−z4z6, z4, z̃3, z2−z1z4, z1).

This concludes the proof of Theorem 5.12, as required. Hence, we have estab-

lished invariance of the correspondences M(w) under equivalence of Demazure

weaves.
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5.5. Correspondences for simplifying weaves.

PROPOSITION 5.20. Let w1,w2 be two equivalent simplifying weaves. Then

the associated correspondences M(w1) and M(w2) are isomorphic. Further-

more, there exists such an isomorphism that induces an isomorphism between

M(w1,Ã) andM(w2,Ã) for all permutations Ã ∈ Sn.

Proposition 5.20 is proved in Sections 5.5.1–5.5.3 below by verifying that the

non-standard vertices yield well-defined correspondences using the diagrams in

Sections 4.3.2 (a), 4.3.3 (a), and 4.3.4 (a). That is, that equivalent weaves in these

Sections give isomorphic correspondences. Indeed, by definition of the equivalence

for simplifying weaves, Proposition 5.20 then follows from Theorem 5.12.

Remark 5.21. Proposition 5.20 can be also deduced from Proposition 5.14 as

follows. The flag moduli spaceMOBS(w) can be defined for any weave w and is

invariant under rotations. The general equivalence moves from Figure 6 can be ob-

tained by rotations of Demazure equivalence moves, and hence define isomorphic

correspondences by Theorem 5.12.

5.5.1. Non-standard trivalent vertex. Let us check that the two ways to

define an upside down trivalent vertex in Section 4.3.2 (b) are equivalent. Indeed,

the left picture corresponds to the changes of variables

(z)→ (0,u,z)→ (−u,z+u−1)

while the right picture corresponds to

(z)→ (z−w,0,w)→ ((z−w)−1,w).

Here the cap on the left produces variables (0,u) while the cap on the right pro-

duces variables (0,w). We can identify the two diagrams by setting w = z+u−1,

u=−(z−w)−1.

Next, we compare two ways in Section 4.3.2 (a) corresponding to the paths

111→ 11→ /0. The left one corresponds to a sequence of changes of variables

(z1, z2, z3)→ (z2 +z−1
1 , z3)→ /0,

and the cup is well defined if z2 +z−1
1 = 0, that is, 1+z1z2 = 0. The right diagram

corresponds to

(z1, z2, z3)→ (z1 +z−1
2 , z3 +z−1

2 )→ /0,

and the cup is well defined if z1 +z−1
2 = 0, which leads to the same equation. Note

that 1+ z1z2 = 0 implies that both z1 and z2 are invertible, so that both trivalent

vertices are well defined.
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5.5.2. Non-standard 6-valent vertex. Let us check the vertex with 5 inputs

and one output from Section 4.3.3 (a).

One can check that in all weaves we require z1 = z2 = 0. Now the movie

12121→ 21221→ 211→ 2 results in a sequence of changes of variables:

(0,0, z3, z4, z5)→ (z3,0,0, z4, z5)→ (z3,0, z5)→ z3,

the movie 12121→ 11211→ 2 yields

(0,0, z3, z4, z5)→ (0, z4, z3,0, z5)→ z3,

and the movie 12121→ 12212→ 112→ 2 yields

(0,0, z3, z4, z5)→ (0,0, z5, z4−z3z5, z3)→ (0, z4−z3z5, z3)→ z3.

Now consider 4 inputs and 2 outputs, in both cases, we require z1 = 0. For the

movie 1212→ 2122→ 21 we get

(0, z2, z3, z4)→ (z3, z2,0, z4)→ (z3 +z2z4, z2),

while the movie 1212→ 1121→ 21 yields

(0, z2, z3, z4)→ (0, z4, z3 +z2z4, z2)→ (z3 +z2z4, z2).

5.5.3. Non-standard 4-valent vertex. In both cases from Section 4.3.4 (a),

we have z1 = 0, and 131→ 311→ 3 corresponds to (0, z2, z3)→ (z2,0, z3)→ z2,

while 131→ 113→ 3 corresponds to (0, z2, z3)→ (0, z3, z2)→ z2.

This completes the proof of Proposition 5.20. □

5.5.4. Isotopies. Finally, let us check the zigzag relation. On the left we

have (z)→ (0,0, z)→ (z) while on the right we have

(z)→ (z−u,0,u)→ (u)

which is well defined if z−u= 0, so that z = u.

Since the weaves (and the associated correspondences) and the equivalence

relations for non-standard 6- and 4-valent vertices from Sections 4.3.3 (b) and

4.3.4 (b) are reflections across the horizontal axis of those from Sections 4.3.3 (a)

and 4.3.4 (a), the calculations in Sections 5.5.2 and 5.5.3 show that such equiva-

lent weaves also give isomorphic correspondences. Proposition 4.9 then implies

the following.

COROLLARY 5.22. Let w1 and w2 be two planar isotopic weaves. Then the

associated correspondencesM(w1) andM(w2) are isomorphic.
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5.6. Mutation equivalence and rational maps. The previous subsections

have discussed weave equivalence thoroughly. In this subsection, we address weave

mutations. First, note that any Demazure weave w from ´2 to ´1 defines a rational

map Φw from X0(´2,Ã) to X0(´1,Ã), that is, the variables associated to crossings

in ´1 can be expressed as rational functions in variables associated to crossings in

´2. This rational map Φw is defined on the image ofM(w,Ã), but we can extend

it to its maximal domain; we denote such extension by Φ̂w.

Example 5.23. The weave (ss)s → ss corresponds to the rational map

(z1, z2, z3) 7→ (z2 + z−1
1 , z3), while the weave s(ss) → ss corresponds to the

rational map (z1, z2, z3) 7→ (−z2−z1z
2
2 , z3 +z−1

2 ).

Recall that two weaves are mutation equivalent if they are related by a sequence

of equivalences and mutations. We now explain the natural relation between the

maps associated to mutation equivalent weaves.

THEOREM 5.24. Let w,w′ be two weaves which are mutation equivalent.

Then, the corresponding maximal extensions of rational functions Φ̂w, Φ̂w′ coin-

cide.

Proof. By Theorem 5.12 the maps Φw and Φw′ coincide for equivalent weaves

even before mutations. Therefore it is sufficient to check mutations, using Example

5.23. One of the trivalent graphs involved in a mutation corresponds to the rational

map

(z1, z2, z3) 7→ z3 +(z2 +z−1
1 )−1 = z3 +

z1

1+z1z2

while the other corresponds to the rational map

(z1, z2, z3) 7→ z3+z−1
2 +(−z2−z1z

2
2)
−1 = z3+

1

z2

−
1

z2(1+z1z2)
= z3+

z1

1+z1z2

.

Note that in the first case the map Φw is defined on the toric chart {z1 ̸= 0,

1+z1z2 ̸= 0}while in the second case it is defined on the chart {z2 ̸= 0, 1+z1z2 ̸=

0}, but in both cases it extends to the locus {1+ z1z2 ̸= 0} and the extensions

agree. □

Remark 5.25. Alternatively, we may state that the rational maps Φw and Φw′

agree on the intersection of their corresponding domains, hence their maximal ex-

tensions must agree too.

5.7. Torus actions and augmentation varieties. In this subsection, given

a simplifying weave w from ´2 to ´1, we will construct an action of the torus

T = (C∗)n/C∗ on the correspondence varietyM(w) so that for every Ã ∈ Sn both

projections M(w,Ã)→ X0(´i;Ã), i = 1,2, are T -equivariant. In particular, this

allows us to define a correspondence between augmentation varieties by Theorem

2.39.
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First, we modify the action of T on X0(´;Ã) defined in Section 2.2 as follows.

Take ´ = Ãi1
· · ·Ãiℓ ∈ Br+n and let w ∈ Sn be its corresponding permutation. We

define an action of T on C
ℓ by

(5.2) t ·´ (z1, . . . , zℓ) = (d1z1, . . . ,dℓzℓ)

where dk = twÄ
k
(ik)

t−1
w

Ä
k
(ik+1)

. Here, wÄ
ℓ−k = siℓ · · ·siℓ−k+1

= (siℓ−k+1
· · ·siℓ)

−1 (the

superscript Ä stands for right, as we read the braid word ´ right-to-left, as opposed

to Section 2.2 above). Thanks to (2.9) we have that B´(t ·´ z) =D−1
w−1(t)

B´(z)Dt,

so for every permutation Ã ∈ Sn we have an induced action on X0(´;Ã).

Example 5.26. Let us take the braid word ´ = Ã1Ã2Ã2Ã1Ã2. If t = (t1, t2, t3)

we have

t ·´ (z1, z2, z3, z4, z5) =

(
t3

t1

z1,
t2

t1

z2,
t1

t2

z3,
t1

t3

z4,
t2

t3

z5

)
.

Comparing with Example 2.11 above, we see that the action we define here and

that we define in Section 2.2 are different, in general. Note, however, that the two

actions coincide up to the transposition t2´ t3.

Remark 5.27. More generally, this torus action on X0(´;Ã) differs from the

action in Section 2.2 by conjugation by the permutation matrix w. The action used

in Section 2.2 coincides with that considered in [84], while the action used in this

section behaves better under morphisms given by weaves, as we will see below.

Remark 5.28. Similarly to Remark 2.12, one can read the weight of the z-

variables from the braid diagram ´. Indeed, to find the weight of zk look at the

strands that are incident to the k-th crossing of ´ on the right and follow them all

the way to the right. For example, the next figure computes that the weight of z3 in

Example 5.26 above is t1/t2.

LEMMA 5.29. Let µ1,µ2 ∈ Br+n and denote r := ℓ(µ1).

(1) Let ´2 = µ1ÃiÃi+1Ãiµ2 and ´1 = µ1Ãi+1ÃiÃi+1µ2. Then, the map

f : Cℓ(´2)→ C
ℓ(´1), f(z) = (z1, . . . , zr, zr+3, zr+2−zr+1zr+3, zr+1, zr+4, . . . , zℓ)

satisfies f(t ·´2
z) = t ·´1

f(z).

(2) Let ´2 = µ1ÃiÃjµ2 and ´1 = µ1ÃjÃiµ2, where |i− j|> 1. Then, the map

f : Cℓ(´2)→ C
ℓ(´1), f(z) = (z1, . . . , zr, zr+2, zr+1, zr+3, . . . , zℓ)

satisfies f(t ·´2
z) = t ·´1

f(z).
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Proof. This is verified by direct computation. □

If D = diag(a1, . . . ,an) is a diagonal matrix and w ∈ Sn, we write wD :=

diag(aw−1(1), . . . ,aw−1(n)). The following lemma will be used to construct a (well-

defined) torus action.

LEMMA 5.30. Let R be a C-algebra with a rational T = (C∗)n-action by

algebra automorphisms. Let w ∈ Sn be a permutation and z ∈ R an element of

weight ew(j)−ew(j+1) for some j= 1, . . . ,n−1. Let z0 ∈R be an invertible element

of weight ei+1− ei and define z′ by the equation

Bj(z)
wDi(z0) =

wsjDi(z0)Bj(z
′),

see (2.9). Then, the weight of z′ is wt(z′) = esiw(j)− esiw(j+1).

We remark that this Lemma, just as Remark 2.27, is valid for an arbitrary

rational T-action on a C-algebra R, and not just for the action considered in this

section or Section 2.2.

Proof. First, note that z having weight ew(j)− ew(j+1) is equivalent to saying

that for any t ∈ T:

t.Bj(z) =Dwsj(t)Bj(z)D
−1
w(t),

cf. Remark 2.27. Also, since Di(z0) = diag(1, . . . ,−z−1
0 , z0,1, . . . ,1), where −z−1

0

is in the i-th place, we have that t.wDi(z0) =Dw(t)
wDi(z0)D

−1
siw(t). Now we com-

pute

t.Bj(z
′)

= (t.wsjDi(z0)
−1)(t.Bj(z))(t.

wDi(z0))

= (Dsiwsj(t)
wsjDi(z0)

−1D−1
wsj(t)

)(Dwsj(t)Bj(z)D
−1
w(t))(Dw(t)

wDi(z0)D
−1
siw(t))

=Dsiwsj(t)Bj(z
′)D−1

siw(t)

and the result follows. □

Finally, the desired statement regarding torus actions on our correspondences

reads as follows.

PROPOSITION 5.31. Let w be a simplifying algebraic weave from ´2 to ´1.

Then, there is an action of the algebraic torus T = (C∗)n/C∗ onM(w) such that

for every permutation Ã ∈ Sn:

(1) T preserves the correspondence varietyM(w,Ã).

(2) The projections M(w,Ã)→ X0(´2;Ã),M(w,Ã)→ X0(´1;Ã) are equi-

variant.
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Proof. Thanks to Proposition 5.8 we have M(w) ¦ C
ℓ(´2), and we have an

action of T on C
ℓ(´2) given by (5.2). Again by Proposition 5.8, this induces an

action onM(w).

Note that, more generally, we have projections M(w)→ C
ℓ(´2), M(w)→

C
ℓ(´1). We will show that both of these maps are T -equivariant. This implies (1)

and (2) above. By the definition of the T -action, the map M(w)→ C
ℓ(´2) is T -

equivariant. To show that the mapM(w)→ C
ℓ(´1) is T -equivariant, it suffices to

do it for elementary weaves. For four and six-valent vertices, the result follows

from Lemma 5.29 and Proposition 5.8.

Now we move on to three-valent vertices; we have ´2 = µ1ÃiÃiµ2 and

´1 = µ1Ãiµ2. By Proposition 5.8 the map M(w) → C
ℓ(´1) is given by z 7→

(z′1, . . . , z
′
r, zr+1 + z−1

r , zr+2, . . . , zℓ), where z′1, . . . , z
′
r are determined by the equa-

tions

Bir−d(zr−d)U
d = Ud+1Bir−d(z

′
r−d), U 0 = Ui(zr)Di(zr).

Note that the weights of zr+2, . . . , zℓ are clearly preserved under the projection,

so for simplicity we may assume that µ2 = 1. We split this into a two-step process,

first “sliding Ui to the left” and then ‘sliding Di(zr) to the left’. To slide Ui to the

left, we define z̃1, . . . , z̃r via

Bir−d(zr−d)Ũ
d = Ũd+1Bir−d(z̃r−d), Ũ 0 = Ui(zr).

And to now slide Di(zr) to the left, we define z′1, . . . , z
′
r via:

Bir−d(z̃r−d)Ū
d = Ūd+1Bir−d(z

′
r−d), Ū 0 =Di(zr).

Since Ui(zr) is unitriangular, it follows from Lemma 2.29 that the T -weight of

z̃r−d coincides with that of zr−d for d = 0, . . . , r−1. Now the result follows from

Lemma 5.30.

Finally, we check cups: we have ´2 = µ1ÃiÃiµ2 and ´1 = µ1µ2. The map

M(w)→ C
ℓ(´1) is given by z 7→ (z1, . . . , zr, zr+3, . . . , zℓ). Now, since sisi = 1,

the result follows. □

Thanks to Proposition 5.31, we are able to define correspondences between

certain augmentation varieties. Let ´1,´2 be braid words, and let t be a set of

marked points on the strands 1, . . . ,n satisfying the following conditions:

(i) There is at most one marked point per strand and, by convention, it is placed

to the right of all crossings in both ´1 and ´2 (see Figure 3),

(ii) Each component of both ´1 and ´2 contains at least one marked point.

For example, we can choose t= ts or t= tc as in Section 2.6. We can then form

the augmentation varieties Aug(´1, t) and Aug(´2, t). Now let Tt ¦ T be the torus

defined by the equations ti = 1 if the i-th strand has a marked point. Thanks to

(a straightforward generalization of) Theorem 2.39, we have Aug(´1, t)∼=X0(´1 ·

∆;w0)/Tt and Aug(´2, t)∼=X0(´2 ·∆;w0)/Tt. In combination with the correspon-

dences above, we then obtain the following result.
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COROLLARY 5.32. Let w be a simplifying algebraic weave from ´2 ·∆ to

´1 ·∆. Then, Tt acts freely onM(w) andM(w,w0)/Tt defines a correspondence

between Aug(´2, t) and Aug(´1, t).

5.8. Weaves and decompositions. In this subsection, we explain how al-

gebraic weaves can be used to decompose braid varieties; augmentation varieties

can be similarly decomposed. For that, recall that a simplifying weave w with a

braid ´2 on the top and ´1 on the bottom defines an injective map

M(w,Ã) : X0(´1;Ã)×C
a× (C∗)b ↪→X0(´2;Ã),

where a is the number of cups and b is the number of trivalent vertices. Since each

cup decreases the length by 2, and each trivalent vertex by 1, we get the equation

2a+ b= ℓ(´2)− ℓ(´1).

We will be interested in simplifying weaves w with some braid µ on the top

and the half twist ∆ on the bottom. Since X0(∆;w0) is a point, see Example 2.5,

we obtain an injective map

M(w,w0) : Ca× (C∗)b ↪→X0(µ;w0), 2a+ b= ℓ(µ)−

(
n

2

)
.

Definition 5.33. We say that a collection of simplifying weaves (w1, . . . ,wk)

decomposes the braid variety X0(µ,w0) if the images ofM(wi) do not intersect

each other and their union is X0(µ,w0).

Remark 5.34. The reason why use the term decomposition (as opposed to strat-

ification) is that, in some parts of the literature, a condition on a stratification is that

the closure of a stratum is a union of strata. This is not the case in, for example, the

Deodhar decomposition (cf. [33] or [103, Section 4.3]), which is a special case of

the decompositions we discuss here.

THEOREM 5.35. (a) Let µ be a positive braid word. Then there exists a finite

collection of simplifying weaves (w1, . . . ,wk), where each wi has µ on the top

and the half twist ∆ on the bottom, which decomposes X0(µ,w0) in the sense of

Definition 5.33.

(b) Furthermore, given any Demazure weave w from µ to ∆, there is a decom-

position of X0(µ,w0) by a collection of simplifying weaves (w1 = w,w2, . . . ,wk)

as in (a), where the correspondence

M(w)∼= (C∗)ℓ(µ)−(
n
2)

is the unique piece of maximal dimension.

Proof. Let us first prove (a) by induction on ℓ(µ) ∈ N. If µ is reduced, then

the matrix Bµ(z1, . . . , zℓ(µ)) contains 1’s corresponding to the permutation matrix

for µ and independent variables elsewhere. Then Bµ(z1, . . . , zℓ(µ))w0 contains 1′s
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corresponding to the permutation matrix for µw0, so it is never upper-triangular

unless µw0 = 1. We conclude that X0(µ;w0) is empty for µ ̸=∆ and it is a point

for µ =∆. In both cases the variety can be obviously decomposed.

If µ is not reduced, then after applying some braid moves we get a braid with

two crossings Ãi next to each other. Let z1 and z2 be the variables corresponding to

these crossings. If z1 ̸= 0, we can apply a trivalent vertex and get a braid µ′, and if

z1 = 0, we can apply a cup and get a braid µ′′. By the assumption of induction, we

can decompose X0(µ
′;w0) and X0(µ

′′;w0) by simplifying weaves.

For (b), let us decompose w into elementary weaves: w(1) between µ = µ(0)

and µ(1), w(2) between µ(1) and µ(2) etc. Clearly, we can decompose X0(µ;w0) as

follows:

X0(µ;w0) =M(w)⊔
(
X0(µ;w0)\ ImM(w(1))

)

⊔
(

ImM(w(1))\ ImM(w(1)
w

(2))
)
⊔·· ·

Let us prove that all these pieces can be further decomposed by simplifying weaves.

Indeed, if w(i) is a 6- or 4-valent vertex, thenM(w(i)) is an isomorphism and

ImM(w(1) · · ·w(i−1)) = ImM(w(1) · · ·w(i)).

If w(i) is a trivalent vertex with variables z1 and z2 then

ImM(w(1) · · ·w(i−1))\ ImM(w(1) · · ·w(i)) =M(w(1) · · ·w(i−1))(Wi)

where Wi is the locus {z1 = 0}¢X0(µ
(i−1);w0). In this case we can apply a cup to

µ(i−1) and obtain a new braid µ̃(i). Then Wi as an image of the correspondence for

this cup, and by (a) we can decompose X0(µ̃(i);w0) by simplifying weaves. □

Finally, we obtain the following consequence.

COROLLARY 5.36. The braid variety X0(µ;w0) is not empty if and only if µ

contains some reduced expression for w0 as a subword, or, equivalently, the De-

mazure product of µ equals w0. In this case, X0(µ;w0) is an irreducible complete

intersection of dimension ℓ(µ)−
(
n
2

)
.

Proof. By [74, Lemma 3.4] a braid word µ contains some reduced expression

for w0 as a subword if and only if ¶(µ) =w0. If ¶(µ) =w0 then there is a Demazure

weave from µ to w0, so X0(µ;w0) is not empty. By Theorem 5.35, if X0(µ;w0) is

not empty then there is a simplifying weave from µ to ∆, and µ contains some

reduced expression for w0 as a subword.

Since X0(µ;w0) is cut out by
(
n
2

)
equations in the affine space of dimension

ℓ(µ), all its components have dimension at least ℓ(µ)−
(
n
2

)
. On the other hand, if

¶(µ) = w0 then by Theorem 5.35(b) the braid variety X0(µ;w0) has unique piece

of dimension ℓ(µ)−
(
n
2

)
and all other pieces have smaller dimension, therefore this

variety is an irreducible complete intersection. □
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Remark 5.37. In [84] it is proven that the complement to the toric chart in

X0(´∆;w0) from Section 2.5 can be decomposed into pieces of the form C
a×

(C∗)b with 2a+ b = ℓ(´). Similarly to the proof of Theorem 2.37, one can check

that these strata (originally defined in terms of Bruhat cells) can be realized by

simplifying weaves.

The decompositions we presented in Theorem 5.35 are far from unique. How-

ever, the number of pieces of given dimension a+ b= ℓ(µ)−
(
n
2

)
−a does not de-

pend of the decomposition. The topological significance of these numbers is given

by the following result.

LEMMA 5.38. Suppose that there are na pieces of the form C
a× (C∗)b, 2a+

b= ℓ(µ)−
(
n
2

)
in the decomposition from Theorem 5.35. Consider the polynomial

fµ(q) =
∑

a

naq
a(q−1)b =

∑

a

naq
a(q−1)ℓ(µ)−(

n
2)−2a.

(a) The number of points in the variety X0(µ;w0) over a finite field Fq equals

fµ(q).

(b) The coefficient in the HOMFLY-PT polynomial of the closure of µ∆−1 of

lowest a-degree is proportional to fµ(q).

See [68] for the definition of HOMFLY-PT polynomial, a related computation

and more details.

Proof. Part (a) is clear as Theorem 5.35 can be proved verbatim over any field.

Over Fq, the strata Aa× (A1 \{0})b have qa(q−1)b points, and the result follows.

For (b), we prove it by induction in ℓ(µ). If µ is reduced then we have two

cases:

(i) If µ = ∆, then µ∆−1 = 1 and the closure of µ∆−1 is the n-component

unlink. At the same time, X0(∆;w0) is a point and f∆(q) = 1.

(ii) If µ ̸= ∆, then µ∆−1 is the closure of a non-trivial negative permutation

braid and the coefficient in the HOMFLY-PT polynomial of lowest a-degree van-

ishes [68]. At the same time, X0(µ;w0) is empty and fµ(q) = 0.

Now suppose that µ is not reduced. It follows from (a) that fµ(q) is invariant

under braid relations, since so is X0(µ;w0). Finally, if µ = µ1ÃiÃiµ2,µ
′ = µ1Ãiµ2

and µ′′ = µ1µ2. Then fµ(q) = (q− 1)fµ′(q)+ fµ′′(q) which matches the skein re-

lation for HOMFLY polynomials of the braids µ∆−1, µ′∆−1 and µ′′∆−1. By the

induction hypothesis, the statement of (b) holds for µ′ and µ′′. Thus, it also holds

for µ. □
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[14] T. Brüstle, G. Dupont, and M. Pérotin, On maximal green sequences, Int. Math. Res. Not. IMRN 2014

(2014), no. 16, 4547–4586.
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46 (2013), no. 5, 747–813.

[52] E. Gorsky, M. Hogancamp, and A. Mellit, Tautological classes and symmetry in Khovanov-Rozansky

homology, preprint, https://arxiv.org/abs/2103.01212.

[53] M. A. Gorsky, Subword complexes and nil-Hecke moves, Model. Anal. Inf. Sistem 20 (2013), no. 6,

121–128.

[54] , Subword complexes and 2-truncated cubes, Russ. Math. Surv. 69 (2014), no. 3, 572–574.

[55] , Subword complexes and edge subdivisions, Proc. Steklov Inst. Math. 286 (2014), no. 1,

114–127.

[56] S. Guillermou, M. Kashiwara, and P. Schapira, Sheaf quantization of Hamiltonian isotopies and applica-

tions to nondisplaceability problems, Duke Math. J. 161 (2012), no. 2, 201–245.

[57] M. B. Henry and D. Rutherford, Equivalence classes of augmentations and Morse complex sequences of

Legendrian knots, Algebr. Geom. Topol. 15 (2015), no. 6, 3323–3353.

[58] , Ruling polynomials and augmentations over finite fields, J. Topol. 8 (2015), no. 1, 1–37.

[59] P. Hersh, Regular cell complexes in total positivity, Invent. Math. 197 (2014), no. 1, 57–114.
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