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Introduction: The Human Connectome Project (HCP) has become a keystone
dataset in human neuroscience, with a plethora of important applications in
advancing brain imaging methods and an understanding of the human brain.
We focused on tractometry of HCP diffusion-weighted MRI (dMRI) data.

Methods: We used an open-source software library (pyAFQ; https://yeatmanlab.
github.io/pyAFQ) to perform probabilistic tractography and delineate the major
white matter pathways in the HCP subjects that have a complete dMRI acquisition
(n = 1,041). We used diffusion kurtosis imaging (DKI) to model white matter
microstructure in each voxel of the white matter, and extracted tract profiles
of DKI-derived tissue properties along the length of the tracts. We explored the
empirical properties of the data: first, we assessed the heritability of DKI tissue
properties using the known genetic linkage of the large number of twin pairs
sampled in HCP. Second, we tested the ability of tractometry to serve as the basis
for predictive models of individual characteristics (e.g., age, crystallized/fluid
intelligence, reading ability, etc.), compared to local connectome features. To
facilitate the exploration of the dataset we created a new web-based visualization
tool and use this tool to visualize the data in the HCP tractometry dataset. Finally,
we used the HCP dataset as a test-bed for a new technological innovation: the
TRX file-format for representation of dMRI-based streamlines.

Results: We released the processing outputs and tract profiles as a publicly
available data resource through the AWS Open Data program’s Open Neurodata
repository. We found heritability as high as 0.9 for DKl-based metrics in
some brain pathways. We also found that tractometry extracts as much
useful information about individual differences as the local connectome
method. We released a new web-based visualization tool for tractometry—
“Tractoscope” (https://nrdg.github.io/tractoscope). We found that the TRX files
require considerably less disk space-a crucial attribute for large datasets like HCP.
In addition, TRX incorporates a specification for grouping streamlines, further
simplifying tractometry analysis.
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1 Introduction

The long-range connections between different brain areas that
form the human macro-scale connectome are essential to the
distribution and integration of information in the brain (Bassett
and Sporns, 2017). Healthy brain connections are also important
for mental and neurological health (Bassett and Bullmore, 2009).
The Human Connectome Project (HCP) is a pioneering effort
to study the structure and function of the brain macro-scale
connectome. The WU-Minn-Ox consortium of the HCP pursued
this effort by collecting a large dataset of 1,200 young adult
twin and non-twin siblings that included extensive measurements
of structural (T1-weighted and T2-weighted), functional (both
with a task and without one—i.e., at “rest”) and diffusion-
weighted MRI (dMRI), in addition to genotype information
and behavioral testing. Some of the subjects also underwent
additional electrophysiological measurements and additional MRI
measurements at 7T." Rather than relying on the state of the art
of MRI measurements at the time that the project was initiated,
the HCP advanced the field forward, developing a large number of
novel techniques for data acquisition, data processing and analysis,
and created novel ways to organize and disseminate the data.
This effort has generated a dataset that even now, more than a
decade after the project started, stands out in its high quality
and uniformity of measurement, and in the large value that the
research community has drawn from it. Thus, the HCP has become
a keystone dataset in human neuroscience, with more than 1,500
papers that acknowledge using the data, as of 2021 (Elam et al,
2021). Its approach serves as a source of inspiration to a large
number of HCP-style follow-up studies (Glasser et al, 2016),
including studies targeting life-span development (Bookheimer
et al., 2019; Howell et al,, 2019), and several different projects
targeting specific clinical populations (e.g., Demro et al., 2021).

Measurements of dMRI in the HCP dataset leveraged several
technical innovations. These included use of specialized hardware,
and particularly of a strong and fast set of gradients, with a
maximal gradient strength of 100 mT/m, and effective slew rate of
91 mT/m/s. Parallel imaging techniques that use multi-slice and
multi-band excitation were used to accelerate the acquisition of
each volume (Setsompop et al., 2012). This enabled measurements
in a large number of different directions, with multiple different
non-zero b-values (distributed in three shells of b & 1,000s/mm?,
b ~ 2,000s/ mm?, b 3,000s/ mm?), and with a high spatial
resolution of 1.25 x 1.25 x 1.25mm?>. In addition to these advanced

~
~

acquisition techniques, HCP developed novel processing methods
to address artifacts due to motion and eddy currents, and to
address geometric distortions due to susceptibility. Thus, the HCP
produced data that far exceeds, in terms of spatial and angular
resolution, what is possible in most clinical settings, even a decade
later. Therefore, these dMRI data provide unique views of the
human white matter connectome.

1 This consortium was based on a collaboration between groups at
Washington University, the University of Minnesota, and Oxford University; for
brevity, we will refer to this consortium as "HCP" henceforth, acknowledging
that another important consortium, the MGH-UCLA consortium, pursued a

different and also important approach (McNab et al., 2013)
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Tractometry analysis of dMRI data focuses on the physical
properties of major white matter pathways. It uses computational
tractography and anatomical constraints to delineate the locations
of known anatomical tracts in dMRI data, and extracts brain white
matter tissue properties along the length of each tract (Yeatman
et al., 2012). Tractometry provides important information about
brain tissue properties and individual differences, but for large
and important datasets, such as the HCP, applying cutting-edge
tractometry methods requires specialized expertise, and is also very
computationally demanding. The present work enables the study
of brain connections in the HCP dataset by providing tractometry
results in 1,041 subjects in HCP that have completed a full set
of dMRI measurements and by building a set of insights and
resources based on this data. In each subject in the dataset, 24
major white matter pathways were identified using the pyAFQ
software (https://yeatmanlab.github.io/pyAFQ) (Table 1). We used
probabilistic tractography to delineate the tracts and diffusion
kurtosis imaging (DKI) (Jensen et al., 2005) as implemented in the
open-source software DIPY (https://dipy.org) (Garyfallidis et al.,
2014; Henriques et al., 2021) to describe white matter tissue
properties along their lengths. DKI was used because it extends
diffusion tensor imaging (DTI) (Basser et al., 1994), providing a
more complete assessment of diffusion by measuring the deviation
of the diffusion patterns from a Gaussian distribution. In addition,
in previous work, we have also shown that DKI describes the HCP
dMRI data more accurately and more reliably than DTI (Henriques
et al., 2021). Here, we also used an extension of DKI that models
biophysical white matter tissue properties (Fieremans et al., 2011)
to provide additional information about the axonal white matter
fraction along the length of the major white matter pathways. The
results of this processing are all provided openly through the AWS
Open Data program in the Open Neurodata repository (Vogelstein
etal., 2018), and we provide an example of how to access this data.

We used this open dataset as a platform to examine several
different aspects of the data. First, we characterized the overall
distribution of tissue properties along the length of the white
matter pathways that we delineated. We also used the presence
of a large number of monozygotic and dizygotic twins in the
sample to characterize the heritability of DKI tissue properties
along the length of the tracts. Finally, we compared the predictive
ability of tract profiles to other diffusion processing methods. Tract
profiles of tissue properties can be used to compare different subject
groups or in order to understand individual differences (Jones et al.,
2005; Colby et al., 2012; Yeatman et al., 2012; Dayan et al., 2016;
Richie-Halford et al., 2021). However, high-dimensional data with
limited observations can challenge the accuracy of out-of-sample
predictions, providing motivation to understand if there is any
loss of predictive information with the dimensionality reduction
provided by tract profiles. In a previous study (Rasero et al,
2021), brain-behavior correlations were assessed using the local
connectome (LC) method (Yeh et al., 2016), which calculates a q-
space normalized map of the density of spins between neighboring
locations along tracts. The resulting feature sets from each method
differ in their dimensionality—tract profiles for every standard
tract results in several thousand features, while LC results in
hundreds of thousands of features. In the present study, we
compared the information provided by LC to the much more
concise information provided in tractometry tract profiles. Open
access to a standard HCP tractometry dataset will facilitate future
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TABLE 1 Abbreviations used for the tracts saved in both the TRK and TRX
format.

Tract abbreviation Formal tract name

ATR_L Left anterior thalamic

ATR_R Right anterior thalamic
CST_L Left corticospinal

CST_R Right corticospinal

CGC_L Left cingulum cingulate
CGC_R Right cingulum cingulate

Fp Forceps major

FA Forceps minor

IFO_L Left inferior fronto-occipital
IFO_R Right inferior fronto-occipital
ILF_L Left inferior longitudinal
ILF_R Right inferior longitudinal
SLF_L Left superior longitudinal
SLF_R Right superior longitudinal
UNC_L Left uncinate

UNC_R Right uncinate

ARC_L Left arcuate

ARC_R Right arcuate

Orbital Orbital corpus callosum
AntFrontal Anterior frontal callosum
SupFrontal Superior frontal callosum
Motor Motor corpus callosum
SupParietal Superior parietal corpus callosum
PostParietal Posterior parietal corpus callosum
Occipital Occipital corpus callosum
Temporal Temporal Corpus Callosum

research aimed at comparing additional methods for analysis of
brain behavior correlations.

Following the long-standing tradition of the HCP, our
development of HCP tractometry results provides a platform
for developing and advancing new technologies. We used HCP
tractometry as a platform to test TRX, a recently-proposed
community-based file format that incorporates the benefits of
several previously-developed file formats for tractography, and
that advances several new innovative features (Rheault et al,
2022). In the present work, we used HCP tractometry to test
the computational efficiency of TRX and its potential to conserve
storage space, while retaining important information about tract
profile features. Finally, interactive web-based visualization tools
for exploring large datasets lower the barrier for fruitful interaction
with these datasets, and serve as a point of entry for researchers
who are considering how to use the data (Keshavan and Poline,
2019). In previous work, we developed AFQ-Browser (https://
yeatmanlab.github.io/AFQ-Browser), an application that enables
exploration of tractometry datasets (Yeatman et al., 2018), but the
previously presented tool was limited in terms of its ability to
explore the anatomical structure of each individual subject in the
dataset. The recent development of the NiiVue software library
enables much more facile visualization of anatomical data (Hanayik
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et al., 2024), including both volumetric and tractography datasets
and their combination. Here, we present Tractoscope (https://nrdg.
github.io/tractoscope), as the next generation of web-based tools
for sharing and exploring tractometry results.

2 Methods
2.1 Data

Diffusion MRI data was collected by the Human Connectome
Project (HCP), as previously described in detail (Sotiropoulos
et al., 2013). Briefly, data was acquired on a 3T Siemens Skyra
MRI system equipped with a 32-channel coil that was modified
to accommodate gradients with Gqx = 100 mT/m (ultimately,
97.4mT/m after
optimization for gradient duty cycle). Multislice echo planar

acquisition was conducted with a G =

imaging with mulitband excitation was acquired with a TR of 5.5
s and TE of 89 ms. Three diffusion-weighted shells were acquired:
b ~ 1,000s/mm? b =~ 2,000s/mm? b ~ 3,000s/mm> and
the same TR/TE was used in each. In each shell, 90 non-colinear
directions were selected, to optimize coverage within and across
shells (Caruyer et al., 2013), resulting in the acquisition of 190 data
points in each shell, corresponding to measurements in inverse
phase encoding direction (LR and LR directions) and five non-
diffusion weighted acquisitions. The spatial resolution of the data
was 1.25 x 1.25 x 1.25mm?>.

We used data provided by HCP that had already been processed
using the HCP minimal preprocessing pipelines, as previously
described (Glasser et al., 2013). Briefly, intensity normalization
was performed across the six acquisition series based on the non
diffusion-weighted images (by). These by images were also used
to estimate and correct EPI distortions using the FSL “topup”
tool (Andersson et al, 2003). The FSL “eddy” tool was used to
correct artifacts due to eddy currents and motion (Andersson
and Sotiropoulos, 2016). Gradient spatial non-linearities were
computed (Bammer et al., 2003). A spatial transform was calculated
between the average by image and the T1-weighted data using
FreeSurfer’s “BBRegister” algorithm (Greve and Fischl, 2009).
The eddy-corrected data were transformed according to both the
gradient nonlinearity correction and T1w registration into 1.25 mm
structural volume space in a single step.

We analyzed data from 1,041 subjects from the HCP who had
complete measurements of dAMRI (i.e., where these measurements
passed the HCP quality control process, and also included all 270
diffusion MRI volumes). Among these subjects, the average age
was 28.7 years + 3.7 years (standard deviation); 479/562 were
male/female.

2.2 Tractometry analysis

We applied the pyAFQ pipeline to perform advanced
tractometry analysis (Kruper et al., 2021). We used data provided
by HCP that had already been pre-processed (Glasser et al,
20135 Sotiropoulos et al.,, 2013). Using pyAFQ, we fit constrained
spherical deconvolution (CSD) and used it as the fiber orientation
distribution function for probabilistic tractography implemented

frontiersin.org
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in DIPY (Tournier et al., 2008; Garyfallidis et al., 2014). We used
symmetric normalization (SyN) (Avants et al., 2008) diffeomorphic
non-linear registration to register subjects to the Montreal
Neurological Institute (MNI) template (Fonov et al., 2011). We
calculated the non-linear registration because the linear registration
to the Tlw volume that was already applied in preprocessing
does not take into account more subtle local differences in brain
anatomy that need to be taken into account in defining the
trajectory of major white matter pathways. Twenty-four different
white matter tracts were defined in template space based on a
combination of inclusion and exclusion regions of interest (ROI).
Sixteen are from the original AFQ templates (Wakana et al., 2007;
Yeatman et al., 2012), and eight are callosal tracts (Dougherty
et al., 2007). The tracts are enumerated in Table 1. The ROIs are
primarily planar “inclusion” ROIs, where streamlines transecting
the ROIs are assigned to be part of the bundle. However, some
of the ROIs are “endpoint” ROIs, where streamlines must either
start or end in the ROI, and some are “exclusion” ROIs, where
streamlines cannot transect the ROI, to be assigned. The ROIs for
each tract were transformed into the individual subject anatomical
coordinates using the inverse of the transformation defined by SyN
from the subject to the template space. Streamlines were selected
from the whole-brain tractography based on whether they passed
through inclusion ROIs and did not pass through exclusion ROIs
for each tract. After initial selection was conducted, individual
streamlines may additionally have been excluded based on whether
they were extreme outliers. Streamlines were considered outliers
if their Mahalanobis distance to other streamlines is greater than
three standard deviations or if their length was more than five
standard deviations from the mean length. This outlier exclusion
was conducted over five rounds, similar to the original AFQ
procedure (Yeatman et al., 2012). The diffusion kurtosis imaging
(DKI) model was fit using the DIPY implementation to create
the following maps of microstructural tissue properties: fractional
anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK)
(Henriques et al., 2021), as well as axonal water fraction (AWF)
from the White Matter Tract Integrity (WMTI) model (Fieremans
et al, 2011). In each tract, every streamline was resampled to
100 nodes, and tract profiles were generated by sampling the FA,
MD, MK, AWF maps using these positions. The contributions of
each streamline to the tract profile at each position was inversely
weighted by the distance of that node from the median of the
streamline positions for that node (Yeatman et al., 2012).

2.3 Evaluating heritability of tract profiles

The collection of data from both monozygotic (MZ) and
dizygotic (DZ) twins in the HCP dataset enables an assessment
of the genetic linkage, or heritability, of traits measured in
the data with Haseman-Elston regression (Haseman and Elston,
1972). In this method, identity by descent in each twin pair is
regressed against the square of the difference between twins in
the tissue property tract profiles at every position along each tract
(Equation 1):

Yk — Yig)® = @ + Brmis (1)
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where i is an index of the twin pair, Yij; — Yjj is the difference
between the two members of this twin pair in the tissue property
value at position j (1-100) along tract k (1-24; Table 1). The genetic
linkage 77; is assessed through the degree of identity by descent (i.e.,
1.0 for MZ and 7; = 0.5 for DZ twins). Heritability of
the tissue properties for position/tract jk, hfk is then estimated as

T =

(Equation 2):

hy = —B/Qa}p), )

where aﬁ( is the variance of the squared difference (Yijkl — Y,-jkz)z
across i.

2.4 Evaluating brain-behavior correlations
in tractometry data

We used tractometry-generated tract profiles for every tract
as input features to a regularized predictive model to investigate
the brain-behavior correlations of tractometry and a variety of
cognitive and non-cognitive phenotypes. Each phenotype was
predicted individually using a LASSO regularized linear model
where the input features were the 100 node-level FA, MD, MK
and AWF measurements from each of 24 tracts. LASSO regularized
linear models remove unimportant features by shrinking the model
weights of coefficients to zero (Tibshirani, 1996). In addition to the
LASSO regularized models, the inherent grouping of tract profiles
into tracts and tissue properties provides an opportunity to use
models that exploit such groupings, such as Sparse Group LASSO
(SGL) (Simon et al., 2013; Richie-Halford et al., 2021). In addition
to the shrinking of individual features, SGL shrinks entire groups
toward zero, eliminating both uninformative features and groups.
As a comparison, we also created LASSO models using a different
tissue property description, the local connectome (Yeh et al., 2016).
This approach calculates a q-space normalized map of the density
of spins between neighboring locations along tracts, producing a
much larger number of features (128,894 features for each subject
in LC, compared to 9,600 tract profile features). These features
were also used as input features to a LASSO regularized model. A
nested 5-fold cross-validation procedure was used to determine the
level of regularization that was used, for fitting and for evaluation.
To evaluate the reliability of our models, each model was ran 100
times, using different splits for cross validation (CV). Because the
dataset contains familial relationships, cross-validation was done
with respect to family, such that individuals within the same family
were always assigned to the same fold. Models were evaluated
on their predictive ability using the out-of-sample coefficient of
determination R? and on reliability using 95% confidence intervals
of their model weights across the different CV splits.

2.5 TRX and TRK comparison

By default, pyAFQ generates outputs using the popular
TrackVis file format (TRK) (Wang et al,, 2007). However, this
format does have limitations for our application. First of all, the
format can not represent multiple tracts in a single file, requiring
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FIGURE 1

Some of the tracts recognized in a randomly chosen HCP subject (subject ID: 550439). On the left, in (A, B), we see the 8 callosal tracts visualized. In
(C), we see the left inferior frontal occipital fasciculus in brown, and the right arcuate and superior longitudinal fasciculus in blue and white,
respectively. In (D), the cortiscopinal tract is shown in orange, the cingulum is shown in green, the uncinate is shown in yellow, and the inferior
longitudinal fasciculus is shown in pink. For this panel, all shown tracts are from the left hemisphere. In all panels, the subject T1 is used as the

background.

many files to represent all tracts. Second, TRK files are large and
slow to read, both of which impact online data visualization and
analyses. Therefore, to test the new TRX format and compare it to
TRK performance, the full and segmented tractograms generated
during processing by pyAFQ were converted from TRK format
to TRX format (Rheault et al., 2022). The data for both formats
have been made available on the Open NeuroData AWS bucket.
The TRX format allows users to set the data type of tractogram
coordinates/vertices, and we chose to save the tractograms as half
floats. We also used TRX’s built-in zip compression option. We re-
calculated tract profiles from the TRK and TRX files while profiling
for time and memory usage, in order to compare their performance.

2.6 Tractoscope

We developed a web-based application to visualize individual
subject data from the HCP. The application was built using the
Vue JavaScript framework and the NiiVue package (Hanayik et al.,
2024). The application connects directly to the AWS bucket and
uses the REST API provided by AWS buckets to query for the
presence of expected files and to render the files into the browser

Frontiersin Neuroscience

window. The application leverages the Pinia datastore library
(https://pinia.vuejs.org/) to encapsulate and manage the large
amounts of data that the application needs to operate. The source
code is managed on an open-source GitHub repository (https://
github.com/nrdg/tractoscope) and the application is deployed
using npm running on the netlify continuous delivery platform to
the GitHub Pages web service.

3 Results

3.1 Openly available pyAFQ HCP
derivatives

All of the derivatives generated by pyAFQ to perform each of
the steps in processing have been made available through the AWS
Open Data programs’ Open Neurodata bucket (Vogelstein et al.,
2018). The results of tract recognition on a single randomly selected
subject (subject ID: 550439) is shown in Figure 1. The average tract
profiles from all subjects for all tracts and tissue properties are
shown in Figures 2, 3.

The
Web

results can be accessed wusing the Amazon

Services Command Line Interface (AWS CLI
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FIGURE 2

Average profiles from the 16 standard non-callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the given bundle, discretized
into 100 positions per bundle. The thin lines that tightly hug the average profile indicate the 95% confidence interval, and they are often hard to see
as they closely follow the mean, due to the large sample size. The thinner lines indicate the interquartile range. Different rows correspond to different
tracts, with color showing the hemisphere. The different columns show different tissue properties, from left to right: axonal water fraction, fractional
anisotropy, mean diffusivity, and mean kurtosis.
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FIGURE 3

Average tract profiles from the eight absence of any commercial or financial relationships callosal pyAFQ tracts for all HCP subjects. The x-axis
encodes position along the given bundle, discretized into 100 positions per bundle. The thin lines that tightly hug the average profile indicate the 95%
confidence interval, and they are often hard to see as they closely follow the mean, due to the large sample size. The thinner lines indicate the
interquartile range. Different rows and colors correspond to different subdivisions of the callosal tracts. The different columns show different tissue

properties, from left to right: axonal water fraction, fractional anisotropy, mean diffusivity, and mean kurtosis.
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https://aws.amazon.com/cli/) at the following S3 address:
s3://open-neurodata/rokem/hcpl200/. The dataset
is organized using principles adapted from the Brain Imaging
Data Structure (BIDS), a standard for organizing and describing
neuroimaging data (Gorgolewski et al., 2016), to facilitate easy
access and exploration of the data, and interoperability with
other datasets. Detailed examples of data access using the
AWS CLI and the boto3 Python library are provided in the
Supplementary material.

3.2 Heritability of tract profiles of tissue
properties

The heritability of tract profiles varies between tissue properties,
tracts, and within each tract (Figures4, 5). Averaging across
all tracts and positions along the tracts, the heritability of the
different tissue properties is: FA: h*> = 0.33 # 0.17, MD:
h* = 029 £ 015 MK: h* = 042 + 025 AWF: h* =
0.47 £ 0.2 (standard deviations across tracts and positions are
reported). In most cases, we observe some symmetry across the
midline, mirroring the laterality of tissue properties observed
in Figures 2, 3, although this symmetry is less clear than with
the tissue properties themselves. A notable exception to this
symmetry is in the heritability of MK in the arcuate fasciculus,
which is substantially lower in the left hemisphere than in the
right hemisphere.

3.3 Accuracy and reliability of
brain-phenotype models based on tract
profile features

Regularized regression models were used to assess brain-
phenotype correlations (Figure 6). Variance explained (R?) was
assessed as a measure of the accuracy of the correlations, using
cross-validation to mitigate the potential for overfitting within the
data used for fitting. Variablility of this estimate was assessed using
bootstrapping. For both tractometry and LC features, accuracy
across a range of phenotypes varies between almost no predictive
accuracy for all models (e.g., Attention - LC: R? = 0.0064 95% CI
[0.00010, 0.030], SGL: 0.0044 [0.00011, 0.013], LASSO: R? = 0.0033
[0.00012, 0.010]) and moderate predictive accuracy (e.g., Age - LC:
R? = 0.18 [0.10, 0.26], SGL: R = 0.31 [0.21, 0.42], LASSO: R?* =
0.30 [0.19, 0.39]). Though there are nominal differences between
LC and tract profile predictions in some phenotypes (e.g., Age and
Reading Ability), we found no significant differences in accuracy or
reliability of models that used the two methods to derive features
for predictive modeling.

While model accuracy did not vary significantly by model
choice (Table 2, the reliability of the model weights for LASSO and
SGL models did) (Table 3). Across phenotypes, LASSO tended to
assign high model weights to individual nodes, with large variances
across bootstraps. In contrast, SGL assigned smaller model weights
to adjacent nodes within tracts, with much smaller variances in
model weights across bootstraps (Figure 7). This pattern occurs
across all phenotypes (Supplementary Figures S1-54).
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3.4 TRX provides a storage-efficient file
format for tractometry data

To assess the performance of the TRX file format, we calculated
tract profiles from each of the tracts using the data that was
stored in the TRX file format, and calculated the ratio of the
elapsed time for TRX/TRK. Performance did not susbstantially
differ between the file formats (Figure 8A), except in some cases
where calculation of profiles from TRX was substantially faster
than with TRK. Similarly, memory usage of TRK and TRX are
very similar (Figure 8B). A similar ratio was computed for the FA
along the length of the tracts (Figure 8C). Despite the decreased
numerical precision, and the large substantial decrease in the file
sizes on disk, which often exceed a factor of 0.5X (Figure 8D), all
differences in the tract profiles were smaller than 0.1%.

3.5 A browser-based application for
exploring the HCP tractometry results

Evaluating tractometry results and viewing them without
downloading any data is possible using the Tractoscope web
app. Tractoscope was implemented to work with both TRK and
TRX file formats, allowing users to easily explore and visualize
tractography files in the HCP dataset, as well as other datasets
that comply with a similar BIDS-inspired data layout. The tool
is available publicly (https://github.com/nrdg/tractoscope). Any
pyAFQ-compliant dataset hosted on AWS S3 buckets can be
connected to the existing application with minimal configuration
changes, by adding an entry to a datasets.json file. Once
the AWS S3 bucket is configured to be publicly available and
has HTTPS enabled, Tractoscope will be able to connect to
it and visualize the dataset. The application currently enables
visualizations of both the HCP dataset described here (Figure 9),
as well as another dataset: the HBN-POD2 dataset, previously
described in Richie-Halford et al. (2022).

4 Discussion

The open availability of datasets like HCP promotes
collaborative studies and enhances methodological approaches.
This tractometry analysis of HCP diffusion MRI data using pyAFQ
and its visualization through Tractoscope exemplifies the practical
benefits of accessible data. This approach facilitates a broad range
of research possibilities, where different groups can use the tissue
properties we share to get a more detailed understanding of white
matter pathways, which are crucial for studies on neurological
disorders, brain development, and cognitive functions. Some of
the potential uses of the resources that we have created include:
(i) as a normative sample, to be compared to various patient
populations, (ii) integration with the other data that was collected
by HCP in the same subjects (e.g., functional MRI measurements),
(iii) further exploration of the relationships between white matter
tissue properties and other phenotypic measurements, and (iv) as
an educational resource for learning about the structure of human
brain white matter.
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indicate 95% confidence interval. Different rows correspond to different tracts, with color showing the hemisphere. The different columns show

Heritability profiles from the 16 standard non-callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the bundle. Thin lines
different tissue properties, from left to right: axonal water fraction, fractional anisotropy, mean diffusivity, mean kurtosis.
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FIGURE 5

Heritability profiles from the eight callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the bundle. Thin lines show the 95%
confidence interval. Different rows and colors correspond to different subdivisions of the callosal tracts. The different columns show different tissue
properties, from left to right: axonal water fraction, fractional anisotropy, mean diffusivity, mean kurtosis.
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The granular approach of tractometry potentially enables
a more nuanced understanding of white matter variation.
Additionally, by focusing on known tracts, the results of
tractometry have been shown to be reliable across scans and
robust to choice of model (Kruper et al, 2021). To improve
interoperability between this dataset and others, we used the
BIDS standard as inspiration for organizing and describing the
data (Gorgolewski et al., 2016). BIDS is structured to improve
the accessibility, organization, and ease of sharing complex brain
imaging datasets. It employs a consistent naming scheme and
directory structure, making it easier for researchers to store,
analyze, and share their data with others in the field.

Analysis methods focus on various aspects of dMRI data.
For example, many analysis approaches focus on generating
connectivity matrices, or graphs. Connectivity results from the
HCP dataset have already been published (Kiar et al., 2018).
We provide a complement here, using tractometry, which allows
for the evaluation of diffusion characteristics along the lengths
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of known tracts. Similar, tractometry-based analysis results for a
subset of HCP subjects have been published as a part of larger
data releases containing subjects from multiple datasets (Avesani
et al., 2019; Lerma-Usabiaga et al., 2020; Hayashi et al., 2023).
Here, we provide tractometry results for all subjects in HCP
that have a complete dMRI acquisition. We also provide an
initial characterization of population-level tract profiles in Figure 2.
This characterization replicates previously known properties of
human brain tract profiles. For example, there is a substantial
lateralization of tissue properties in the arcuate fasciculus
compared to other tracts, which is known feature of this tract
(Bain et al., 2019).

4.1 The heritability of tract profiles

Brain structure and function has a substantial genetic
component. Heritability assesses the amount of variance within
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TABLE 2 Variances of SGL and LASSO model weights for each phenotype
across tracts.

SGL LASSO
Age 5.7e-03 1.5e-02
Crystalized intelligence 8.5e-03 3.0e-02
Fluid intelligence 7.4e-03 2.4e-02
Global intelligence 1.2¢-02 3.6e-02
Impulsivity 5.4e-05 1.8¢-04
Endurance 7.4e-03 2.8e-02
Verbal memory 8.1e-04 3.4e-03
Reading ability 9.1e-03 2.6e-02
Attention 3.5e-06 2.6e-05
Spatial orientation 3.4e-03 1.1e-02

a studied trait that can be explained by genetic differences.
Because of their known shared genetic background, twin pairs
are often studied to assess heritability. The HCP was designed
with this in mind, recruiting 149 MZ and 94 DZ twin pairs
(138 MZ pairs and 75 DZ pairs were included in our heritability
analysis, because of missingness of DWI data in some participants).
Previous research has already demonstrated that DTI-derived
tissue properties are heritable at the level of tract averages
both in the HCP (Kochunov et al, 2015; Gao et al., 2021),
as well as in other datasets (Gustavson et al., 2019). In a few
cases, heritability of DTI metrics was also assessed along the
length of tracts (Lee et al, 2015). In line with these previous
findings, we also found that DKI metrics can have substantial
heritability up to approximately h = 0.9 for the DKI-specific
metrics (MK and AWF) and slightly lower for metrics that are
estimated in both DTI and DKI (FA and MD, which both do not
exceed h2 = 0.8). Higher heritability seems to correspond to
smaller error bars in the tract profiles, suggesting that heritability
of a white matter tissue property is easier to discern when
the signal is more reliably measured. The spatial variability
of heritability across the length of the tracts is notable and
mirrors to some extent the spatial variability of tract profiles of
tissue properties. Variability in the heritability of tissue properties
themselves may reflect interactions with other parts of the tissue,
or different sensitivity of portions of the tracts to environmental or
genetic factors.

4.2 Comparing tract profiles and local
connectome

One of the promises of the large-scale data collection
of the HCP was that the data would illuminate individual
variability in a variety of behavioral measures and differences
in cognitive abilities. There are a variety of different ways to
assess brain-behavior correlations that are at the foundation of
establishing the brain basis of individual differences. Here, we
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TABLE 3 Average accuracy for each phenotype and model.

LASSO LC SGL
Age 3e-01 1.8e-01 3.1e-01
Crystalized intelligence 7.2e-02 9e-02 7.6e-02
Fluid intelligence 3.5e-02 2.7e-02 4.8e-02
Global intelligence 6.8e-02 7.7e-02 8.9e-02
Impulsivity 7.1e-03 2.7e-02 8.2e-03
Endurance le-01 le-01 le-01
Verbal memory 3.3e-03 1.2e-02 3.7e-03
Reading ability 3.9¢-02 8.1e-02 4.8e-02
Attention 3.3e-03 6.4e-03 4.4e-03
Spatial orientation 7e-02 6.1e-02 7.2e-02

assessed the information that is available in white matter tract
profiles using regularized regression approaches. As a baseline
for comparison, we used features of the white matter extracted
using the local connectome (LC) approach (Yeh et al, 2016).
We found that both tract profiles and local connectome had
small predictive skill for most phenotypes, with nominal but
insignificant differences in predictive accuracy of models using
tract profiles or LC as their input features (Figure 6). In line
with previous literature, we found that phenotypes varied by
their ability to be predicted regardless of input features, with
some phenotypes like attention, verbal memory, and impulsivity
having predictive accuracies near zero (Rasero et al, 2021;
Roy et al, 2024). Other phenotypes, like age, had average R?
values around 0.30 for all models. Though SGL and LASSO
did not differ in terms of their average accuracy, they differ
substantially in terms of the variability in their feature selection
properties. SGL provides much smoother and less variable selection
of features.

Taken together this set of results suggests that tractometry of
the human white matter extracts much of the useful information
about individual differences that is present in the LC method,
but the number of features is smaller by approximately an
order of magnitude. This indicates that tractometry dramatically
reduces the dimensionality of dMRI data, while preserving
many of the features that are relevant to individual differences,
to the extent that those are reflected in brain white matter
tissue properties.

4.3 Comparing TRK and TRX

The availability of comprehensive and accessible data resources
is instrumental in driving forward research in understanding
brain function in health and disease. File formats and standards
for storing scientific data are an important key component
of the cyberinfrastructure used to disseminate and reuse
scientific results, as intended here. The TRX format is a
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recent proposal to improve storage and access to datasets of
computational tractography results (Rheault et al., 2022). The
use of the TRX file format should help address the challenges
of efficiently managing large neuroimaging datasets that contain
such results.

Our study includes a performance comparison between TRK
and TRX formats in profiling the tracts that we delineated in
HCP. From Figures 8A, B, we see that the means are centered
on the vertical red line, indicating that the time and memory
required for calculation of tract profiles using TRX are comparable
to those using TRK. From Figure 8C, we see that the differences
in the resulting profiles are typically much smaller than 0.01%,
with one outlier having a difference of approximately 0.01%.
Additionally, TRX’s integrated zip functionality and flexible data
saving options enable more efficient use of disk space for
storing tractograms, providing a potential for more than 2X
improvement in storage, with almost no loss in information.
Furthermore, the use of TRX’s built-in grouping feature for
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segmented tractograms offers a more convenient approach
compared to TRK to manage results of tractometry analysis.
In TRK, segmented tracts typically necessitate additional files
for storing tract identification metadata, whereas TRX simplifies
this process, enhancing the efficiency of data management in
neuroimaging studies.

4.4 Visualizing the data with Tractoscope

We developed Tractoscope, a NiiVue-based web-viewer
for neuroimaging data that allows users to visualize large
datasets hosted on the cloud. Tractoscope enables visualization
and exploration of cloud-hosted pyAFQ-processed datasets.
Tractoscope is built to work with the Amazon Web Services API,
which allows it to interact dynamically with datasets that comply
with the structure expected for outputs of the pyAFQ software.
This significantly decreases the amount of work developers would
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have to do to connect the tool to future datasets. The tool
is also highly configurable, allowing developers to select which
scans and tracts should be made available to the user for
selection through the application graphical user interface. The
tool also has the ability to display tract profiles, such as those
generated by pyAFQ, so long as those are stored in the graphical
output format that pyAFQ generates per default. The result is
a user-friendly, configurable website that can display any and
all structural and diffusion imaging for datasets in the pyAFQ
output format. If available, Tractoscope uses TRX files due to their
increased efficiency, but it is still compatible with datasets that use
TRK files.
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Tractoscope demonstrates that the development of standard
ways to represent large datasets facilitates the development of
a wide range of standards-compliant applications, which can
be universally applied to any dataset formatted according to
the standard (Pestilli et al., 2021). By doing so, we ensure
compatibility and interoperability across various research tools
and datasets, significantly enhancing the efficiency and scope
of neuroimaging research. pyAFQ operates according to these
principles, as does Tractoscope. For example, Tractoscope already
also visualizes subjects from the Healthy Brain Network (Alexander
2017; Richie-Halford et al, 2022), in addition to
HCP tractometry.
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of subject 550,436, also shown in Figure 1

Interactive visualization of tractometry results with Tractoscope. Tractoscope is a web application designed to enable interactive exploration of
results of pyAFQ processing. The application uses the NiiVue library to load data from the TRX file format. The implementation of streamline groups
within TRX allows selection of different tracts. Here, we show the arcuate fasciculus, corticospinal tract, cingulum cingulate all in the left hemisphere
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