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ABSTRACT

With the rise in the application of unmanned aerial vehicles (UAVs),

security concerns associated with them have become paramount.

Similar to other cyber-physical systems, the primary working prin-

ciple behind UAVs follows the sensor-controller-actuation cycle.

Errors between the setpoints and sensor data are computed through

a PID controller and translated to pulse width modulated (PWM)

signals that control the orientation and movement of a UAV. Recent

research has demonstrated intentional electromagnetic interfer-

ence (IEMI)-based alteration of PWM signals causing unauthorized

maneuvers and crashes in UAVs. PWM alteration attacks can be

carried out in various ways. For instance, hardware Trojans (HTs)

can manipulate the PWM signals, and given the untrusted supply

chain, HTs are a critical threat. Adversaries can exploit the PWM

signals to manipulate UAV operations subtly, bypassing traditional

intrusion detection systems (IDSs) that only monitor sensor data.

Therefore, ensuring the integrity of PWM signals and their cor-

relation with sensor and controller data is crucial for end-to-end

UAV security. We address this need by proposing ConFIDe (Control-

Fused Intrusion Detection system), a novel defense technique for

UAVs. It veri�es the integrity of the �ight controller-generated

PWM signals, ensuring the motors receive the signals free from

hidden exploits. We validated our proposed IDS on di�erent PWM

alteration attack scenarios. In particular, we implemented a hard-

ware Trojan attack targeting the PWM signals on a PX4-UAV to

test the e�cacy of the proposed IDS on a real system. ConFIDe per-

formed well on all the attack scenarios, achieving a high ROC-AUC,

including sensor attacks like GPS spoo�ng.
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1 INTRODUCTION

The unmanned aerial vehicle (UAV) industry has experienced expo-

nential growth, and by 2031, the global UAV market is projected to

rise to $97.65 billion [1, 2]. UAVs are integral in varied applications

such as surveillance for smart grids [3], crowd analysis [4], disas-

ter monitoring [5], urban monitoring [6], agriculture [7], remote

sensing [8], logistics [9], and defense sectors [10, 11]. To pro�-

ciently handle these tasks, UAVs must ensure end-to-end security

and resiliency without sacri�cing safety. As shown in Fig. 1, UAV’s

working principle follows the sensor-control-actuation technique.

Initially, UAVs receive navigation targets or setpoints via inputs

from radio controls or ground control stations. The onboard sensors

then gather real-time data, which is essential for the proportional-

integral-derivative (PID) controller. This controller evaluates the

position and attitude errors between the actual sensor readings

and the prede�ned setpoints. It then computes a control value to

rectify these errors. Subsequently, the �ight controller interprets

this control value to generate pulse width modulated (PWM) or

signals (throughout the paper, we use the term PWM and actuation

signals interchangeably). These signals are essential in regulating

the power supply to the UAV’s motors, thereby controlling its ori-

entation, direction, and speed. This working mechanism exposes

UAVs to various cyber-physical attack vectors.

Intrusion detection is a hot research topic in the UAV security

domain, and existingworks have devised various AI/Machine Learn-

ing techniques to detect anomalous behaviors in UAVs [12], [13],

and [14]. These works have proposed e�cient security mechanisms

for detecting and mitigating the impacts of sensor spoo�ng, sensor
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Figure 1: Sensor-control-actuation working principle in UAVs and

potential attack vectors. Red shows vulnerabilities like PWMmanip-

ulations and hardware attacks, while green shows existing security

solutions for sensor command data in UAVs.

jamming, and network intrusion attacks. However, most of these

techniques predominantly focus on threats such as GPS spoo�ng,

signal jamming, and network intrusions, which exploit the UAV’s

sensor-command domain, encompassing sensor data and mission

commands transmitted via the MAVlink protocol. Attacks targeting

the PWM signals (remotely or through hardware manipulation)

are often overlooked. a state-of-the-art framework is the PID-Piper

framework, created by Dash et al., which aims to safeguard UAVs

from GPS spoo�ng and transduction attacks [15]. While it considers

the sensor and controller behavior, it does not fully address the

vulnerabilities that occur after the control signals are physically

translated into PWM outputs, as PWM generation takes place after

the PID control. This aspect is critical since alterations in PWM

signals can covertly a�ect UAV operation, evading detection by

systems focused solely on sensors and controllers. Additionally,

Dayanikli et al. investigated how intentional electromagnetic inter-

ference (IEMI) can modify PWM signals, resulting in unauthorized

movements and possible crashes in UAVs [16].

Moreover, given the complex and globally distributed supply

chain of UAV components, manufacturing the �ight controllers of-

ten involves multiple outsourced entities. This raises the potential

for hardware Trojan insertion, which can be selectively triggered to

alter the PWM signals as per their payload [17]. As the PWM signals

govern the overall movement and orientation in UAVs, their adver-

sarial alteration can result in signi�cant deviations from intended

UAV behavior, from subtle changes in the desired trajectory to com-

plete operational failures. However, despite the signi�cant risks

associated with PWM signal manipulation, the security of these

PWM signals has not been extensively studied. Modern hardware

Trojans are no longer simple, always-active threats that can be eas-

ily identi�ed during routine test �ights or through basic operational

checks. Instead, these Trojans can be intricately designed to remain

dormant, undetectable through conventional means, and activated

only under highly speci�c conditions that may not be replicated in

standard testing environments. Trojans can be designed to remain

dormant until triggered by speci�c conditions, such as altitude, ge-

ographic location, or even speci�c payloads, making their existence

and activation far from straightforward. This sophistication facili-

tates the Trojans to remain undetected during routine test �ights

or inspections [18, 19]. For instance, activation could depend on a

particular sequence of commands, speci�c geographic locations, al-

titudes, or even the UAV’s interaction with certain wireless signals.

This speci�city ensures that the Trojan remains dormant during

the test �ight phase, thus bypassing detection mechanisms that do

not replicate these unique conditions.

To overcome this research gap, we propose novel Control-Fused

Intrusion Detection system (ConFIDe), which is speci�cally de-

signed to secure the end-to-end process of UAV �ight control. Con-

FIDe employs deep learning techniques to analyze the relationship

between the sensing, controlling, and the subsequent generation of

PWM signals. It e�ectively detects a wide spectrum of attacks rang-

ing from GPS spoo�ng and jamming to intrusions in sensor and

controller systems and, crucially, in the PWM signals. By employing

a holistic approach that utilizes a deep learning-based auto-encoder

for one-class classi�cation, it veri�es the PWM signal’s integrity be-

fore sending it to the motors, ensuring the UAVs are secured against

any tampering. The proposed approach ensures that any discrep-

ancy originating from either FDIs or direct hardware interventions

is detected based on the resultant PWM signals. We validated our

IDS through experiments on an S500-Pixhawk 2.4.8 quad-copter

UAV using a comprehensive dataset from multiple �ights on di�er-

ent trajectories. We utilized synthetic attack samples to evaluate

the performance of the approach. We also implemented a hard-

ware Trojan attack emulated on a Pixhawk UAV to selectively alter

the PWM signal in real time. We have made the datasets available

at [20] to encourage further research. To summarize, we make the

following contributions:

• We develop ConFIDe, a novel intrusion detection system

for UAVs to ensure the integrity of PWM/actuation signals,

which are crucial for UAV’s orientation and movement. Con-

FIDe detects a broad spectrum of sensor, controller, actuation,

or hardware attacks in UAVs.

• Using an S500-Pixhawk 2.4.8 quad-copter, we emulate hard-

ware Trojan attacks targetting the alternating of PWM signal

and evaluate ConFIDe’s performance. The results show up

to 92.5% ROC-AUC on synthetic data and 100% on real data.

The remainder of the paper is organized as follows. Section 2 re-

views the related work. Section 3 explains the UAV work�ow, sheds

light on the PWM control in UAVs, and establishes our motivation

for Control-Fused Intrusion Detection. We discuss the threat model,

the attacker’s intent, and our synthetic attack data generation in

Section 4. Section 6 covers the details of the formation of our IDS,

and Section 7 shows the implementation. We discuss the evaluation

results and potential countermeasures in Section 8 and conclude

the paper in Section 9.

2 RELATED WORK

Existing literature has extensively investigated IDS-based defense

strategies for UAVs, adopting various techniques, including game

theory, blockchain, spectral tra�c analysis, and AI/Machine Learn-

ing, alongside behavior rule de�nitions, arti�cial immune systems

(AIS), and hybrid approaches. We categorize these studies according

to the technologies they utilize for the defense.
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Table 1: Related Work

Work
Defense

Technique
Layer

Targeted
Attacks

Considered
Control
Aware?

[21]
Game
Theory

Sensor DoS, Sybil, false alarm ×
[22] Sensor GPS spoo�ng ×
[23] Network DoS, Sybil, false alarm ×

[24] Blockchain Network
DoS, Remote to User,
User to Remote, probing

×

[25]
Spectral
Tra�c
Analysis

Network DDoS ×

[26]
AI/

Machine
Learning/
Deep

Learning

Network SYN-�ood, de-authentication ×

[27] Network
Eavesdropping, sni�ng,
bu�er over�ow

×

[28] Network
DoS, Remote to User,
User to Remote, probing

×

[29] Hardware GPS Spoo�ng, GPS Jamming ×
[15] Hardware GPS Spoo�ng,Transduction ✓

[30] Behavior
Rules

Network
Resource depletion, capturing,
data corruption

×

[31] Network Physical Invariants ×
[32] Network Misbehavior ×

[33]
Arti�cial
Immune

System (AIS)
Network Blackhole, sybil, �ooding ×

[34] Hybrid Network Replay, MiTM, impersonation ×

ConFIDe
Machine
Learning

Hardware
Hardware Trojan,
PWM manipulation

✓

Sun et al. apply Bayesian Game Theory-based IDS to spot mali-

cious nodes in UAV networks, using hierarchical monitoring and

optimal node counts for e�ciency [21]. Eldosouky et al. introduce

a cooperative localization countermeasure against GPS spoo�ng

on UAVs, framing it as a Stackelberg game to optimize defense [22].

Meanwhile, Sedjelmaci et al. present a security game framework

(SGF) based on Bayesian game theory, safeguarding mobile ground

nodes with UAVs, addressing two attack-defense scenarios [23].

This involves suspicious units, leading to two attack-defense sce-

narios, employing unique and e�ective strategies to safeguard a

robust UAV network against potential threats.

Khan et al. use blockchain and federated learning for IDS in

multi-UAV networks, leveraging multiple ML algorithms for de-

centralized analytics [24]. Condomines et al. enhance drone �eet

IDS by combining a linear controller/observer with tra�c spectral

analysis. Their wavelet approach detects intrusions, and the linear

system gauges attack intensity [25].

Basan et al. introduce a neural network to spot denial-of-service

attacks onUAVs by observing entropy changes in tra�c patterns [26].

Al-Haija et al. apply deep convolutional neural networks, dubbed

UAV-IDS-ConvNet, to detect threats in encrypted Wi-Fi tra�c of

notable UAVs such as Parrot Bebop and DJI Spark [27]. Meanwhile,

Praveena et al. use a deep reinforcement learningmethodwith black

widow optimization (DRL-BWO) to bolster UAV network security,

leveraging an enhanced deep belief network (DBN) IDS [28].

Furthermore, Whelan et al. present MAVIDS, employing novelty-

based one-class classi�cation to tackle the scarcity of labeled data

for UAV IDS. Validated against GPS spoo�ng and jamming, it also

enacts mitigation strategies [29]. Also, Mitchell and Chen utilize a

behavior rule-based UAV-IDS (BRUIDS), derived from threat models,

to guard against cyber-attacks, aiming for a balance between secu-

rity and performance [30]. Kwon et al. introduce a real-time threat

evaluation technique grounded in reachability assessment [32].

Fotohi et al. introduce SID-UAV, which employs a self-matching

method in the MAPE-K loop to �nd secure UAV paths, utilizing
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Figure 2: UAV’s typical work�ow: Flight controller receives input

commands, processes them through its �rmware, and produces PWM

values to drive the motor, directing motion.

agents for analysis and defense against adversarial UAVs [33]. Ku-

mar et al. suggest a blockchain and deep learning-based data-

sharing system for UAVs, incorporating a Proof-of-Authentication

consensus mechanism and a neural network �ow analyzer to de-

tect fraud, enhancing intrusion detection with SCSAE-ALSTM [34].

Quinonez et al.’s SAVIOR employs machine learning to leverage

physical invariants in autonomous vehicle systems, preventing

sensor and control system attacks [31]. Meanwhile, Dash et al.’s

PID-Piper uses a feed-forward controller-based parallel PID con-

trol to recover robotic vehicles from sensor-based attacks, �ltering

attack-induced sensor and control disruptions [15] As shown in

Fig. 2 and summarized in Table. 1, operate either only at the sen-

sor /network level or up to the PID control level, but the physical

translation of control signals to PWM signals takes place after it.

None of the aforementioned techniques take the PWM signals into

consideration, even though these are the primary signals governing

the UAV’s movement and orientation. To the best of our knowledge,

this is the �rst work that addresses the critical security concerns

related to the PWM actuation signals in UAVs. By integrating ad-

vanced intrusion detection mechanisms speci�cally targeting PWM

signal manipulation, ConFIDe extends beyond the sensor/network

level or PID control level security measures, directly safeguarding

the physical translation of control signals to PWM outputs and

detecting sensor, controller, actuator, or hardware attacks.

3 BACKGROUND

This section overviews the UAV’s operation PWM control for BLDC

motors and outlines the research motivation.

3.1 Working Principle in UAVs

A UAV’s control and monitoring tasks are complex due to the non-

linear aerodynamics of the embedded system [35]. Four key terms

clarify a UAV’s operation: (1) Roll: the UAV’s longitudinal rotation,

moving left or right. (2) Pitch: lateral rotation tilting the UAV for-

ward or backward. (3) Yaw: rotation about the vertical axis, pivoting

the UAV clockwise or counterclockwise. (4) Throttle: controls the

UAV’s vertical motion, dictating its speed, illustrated in Fig. 3. UAVs,

controlled remotely or autonomously, use inertial measurement

units (IMUs) for sensor data re�ned by noise and Kalman �lters.

After ADC sampling, this data informs PID controllers to determine



ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Muneeba Asif, Ahmad Mohammad∗ , Mohammad Ashiqur Rahman, and Kemal Akkaya

ROLL

x

L
o
n
g
it
u
d
in

a
l 

a
x
is

y

z

PITCH

YAW

Lateral axis

P
e
rp

e
n

d
ic

u
la

r 

a
x
is

2 1

43

CCW

CCW

CW

CW

FRONT

Figure 3: Illustration of a UAV’s roll, pitch, and yaw axes for orien-

tation and movement control and clockwise (CW) and counterclock-

wise (CCW) motors in a quadcopter UAV.

roll, pitch, and yaw error signals. These signals then guide PWM

outputs for themotors, as shown in Fig. 2. Then, �rmware acts as the

intermediary software layer, guiding the UAV’s operations by trans-

lating high-level commands into actionable hardware responses. By

understanding the PWM output generated by this control process

(being “control-fused"), an IDS can e�ectively identify a broad spec-

trum of attacks anywhere in the sensor-control-actuation process.

3.2 PWM Control and UAV Dynamics

The dynamics of UAV movement are fundamentally governed by

the motors’ response to PWM signals, which control their speed

and, consequently, the thrust generated by each rotor. The angular

velocity of motor ğ , denoted as Ĉ8 , is a function of the PWM signal

provided to it, as shown in the following Equation 1:

Ĉ8 = Ĝ (PWM8 ) (1)

where Ĉ8 is the angular velocity of motor ğ , and PWM8 is the PWM

signal to motor ğ . The function Ĝ maps PWM signals to motor speed.

The thrust generated by eachmotor, Ă8 , is proportional to the square

of its angular velocity, which is represented by the Equation 2:

Ă8 = ġ · Ĉ2

8 (2)

where Ă8 is the thrust produced by motor ğ , and ġ is the thrust

coe�cient. Roll motion is controlled by creating a di�erential in

the speed of motors on either side of the UAV’s longitudinal axis,

as shown in Equation 3.

�Ĉroll = ĝroll (PWM2 + PWM4 − PWM1 − PWM3) (3)

where �Ĉroll is the change in roll motion, and ĝroll is a gain factor

for roll. Pitch motion is similarly controlled through a di�erential

in the speed of front and back motors, as described by Equation 4:

�Ĉpitch = ĝpitch (PWM1 + PWM2 − PWM3 − PWM4) (4)

where �Ĉpitch is the change in pitch motion, and ĝpitch is a gain

factor for pitch. Yaw motion is achieved by varying the speed of

motors spinning in opposite directions, which is mathematically

formulated as in Equation 5:

�Ĉyaw = ĝyaw

(

∑

8∈CW

Ĉ8 −
∑

8∈CCW

Ĉ8

)

(5)

where �Ĉyaw represents the change in yaw motion, and ĝyaw is

a gain factor for yaw. CW and CCW denote the sets of motors

spinning clockwise and counterclockwise, respectively.

Đtotal =

4
∑

8=1

Ă8 (6)

Finally, the overall thrust, which controls the UAV’s altitude, is the

sum of the thrusts from all four motors as in Equation 6 whereĐtotal
is the total thrust for altitude control. For further understanding of

PWM-governed movement control in UAVs, refer to Appendix A.

These equations collectively illustrate how PWM signals are critical

to achieving precise control over the UAV’s orientation and altitude,

enabling it to perform complex maneuvers and maintain stable

�ight. The PWM signal consists of alternating high (Đ$# ) and low

(Đ$�� ) pulses. The motor speed depends on the pulse duration: a

longer pulse indicates greater voltage and faster rotation. Typically,

a motor expects a pulse between 1ms and 2ms in a 400Hz waveform.

For UAVs, especially those with Pixhawk �ight controllers, the pulse

duration typically ranges from 1.1ms to 1.9ms. When Đ$# is high

100% of the time, full bus voltage drives the motor. At 50%, half the

bus voltage is applied and none during Đ$�� .

Pixhawk Control Pipeline: In a Pixhawk UAV, the PWM value,

ranging from 1100µs-1900µs, is derived from sensor input, the de-

sired UAV attitude, and control commands. Pixhawk employs a

control pipeline wherein control groups (inputs) map to output

groups (PWM outputs) via a mixer. This mixer translates force

commands, like turning left, into actuator commands in�uencing

roll, pitch, or yaw. For instance, a control group might indicate a

desired vehicle attitude, scaled from -1 to +1. The mixer then maps

this to a PWM output channel, such as 1500µs [36].

3.3 PWM Security and Research Motivation

As intricate cyber-physical systems, UAVs often undertake mission-

critical tasks where precision and adherence to a speci�c trajec-

tory are paramount. While tampering with the hardware supply

chain demands profound knowledge, resources, and access, some

alarming instances of such breaches have been reported. Notably,

the 2018 compromise of Supermicro servers used by tech giants

resulted from illicitly embedded chips during manufacturing, facili-

tating unauthorized data access [37]. Similarly, concealed hardware

Trojans have shown potential for remote deactivation of sophisti-

cated defense systems and insidious privilege escalation attacks,

as evidenced by Yang et al.[38]. Intel’s Management Engine (ME),

revealed in 2018, epitomizes another latent vulnerability, grant-

ing unmitigated control over computers and undermining user

security[39]. This requires the UAVs to be secured from end-to-end

and be resilient to attacks in their network, �rmware, and hardware.

While existing IDSs e�ectively counter input-space threats, such

as GPS spoo�ng and DDoS attacks, they predominantly rely on

sensor data. This leaves them oblivious to a UAV’s �ight control.

For instance, a covert hardware Trojan embedded within a �ight

controller could manipulate the PWM values, altering motor speeds

and disrupting the UAV’s intended trajectory. Moreover, traditional

IDS solutions adeptly address sensor-based threats like GPS spoof-

ing and network-based DDoS attacks but fall short in detecting

PWM-manipulative attacks. The PWM signals can be manipulated

in the following ways to disorient UAVs:
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• Jamming: Adversarial interference within the PWM com-

munication frequency causing UAV control loss.

• Replay Attacks: Replaying previously captured legitimate

PWM signals to disorient UAVs.

• Malware or Firmware Attacks Altering PWM signals via

�rmware in�ltration.

• Electromagnetic Interference (EMI): Stealthy modi�cation of

PWM signals via induction.

• Physical Tampering: A direct threat to PWM integrity through

hardware Trojan insertion.

A PWM-exploitative attack can have ranging impacts. The attack’s

e�cacy is demonstrated by directly manipulating PWM values,

introducing a sizeable increment, and drastically altering the ex-

pected motor outputs. This calculated injection of erroneous control

signals can lead to pronounced alterations in roll, pitch, or yaw

movements, compelling the UAV to subtly deviate from its pre-

scribed trajectory at �rst, then more noticeably over time. Unless

�nely tuned to detect such anomalies, the UAV’s control system

may not immediately recognize the malicious intent, attributing

the deviations to environmental factors or sensor errors, thus al-

lowing the adversary to achieve their objective of redirecting the

UAV without raising immediate alarms. It’s important to note that

while traditional intrusion detection systems (IDSs) are designed to

correct positional and attitude errors, they typically operate before

the generation of PWM signals. Therefore, if an attack targets these

positional errors, any corrective actions taken by these IDSs can be

e�ectively negated. This happens because the manipulated PWM

signals generated after the IDS intervention continue to direct the

UAV erroneously, undermining the IDS’s corrective measures and

leading to severe consequences. Hence, an IDS integrating advanced

intrusion detection mechanisms speci�cally targeting PWM signal

manipulation is essential to address this.

4 THREAT MODEL

This section brie�y discusses the threat model considered in this

research. We list the assumptions, explain the adversary’s knowl-

edge, analyze the attack goal, summarise our attack techniques,

and explain the synthetic attack sample generation to validate the

IDS’s detection performance.

4.1 Assumptions

• The PWM attacks faced by UAVs manifest as stealthily in-

stalled hardware Trojan that manipulates the PWM output

values after the �ight controller generates them.

• The hardware Trojan insertion is an insider attack, meaning

the attacker in the untrusted supply chain has physical access

to the target components of UAVs.

• The attacker has the knowledge of the PWM control of mo-

tors in a UAV (detailed in Section. 3.2) and can exploit vul-

nerabilities accordingly.

• The manipulated PWM values cannot be out of band (1100µs

- 1900µs). (Detailed in Appendix B).

• ConFIDe is integrated into the UAV ecosystem at the user

(trusted) side after the conventional supply chain. Hence, it

is free from supply chain attacks. To ensure this, ConFIDe

will be installed in a trusted computing base (TCB) [40].
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Figure 4: Benign and malicious samples for a PWM-manipulative

hardware Trojan attack in (a) channel 4 and (b) 1.

4.2 Knowledge of the Adversary

In our study, we assume an adversary knowledgeable of the relation-

ship between the PWM signals generated by the �ight controller

and the servo motor functions in a UAV. Whether guided remotely

or autonomously, a UAV’s �ight is executed by its PWM signals,

providing the adversary a great motivation to exploit.

4.3 Attack Goal

The primary attack goal considered in this research is the stealthy

alteration of the PWM signals to lead the UAV to stray from its

intended behavior. To alter the signal, the attacker can use the

techniques mentioned in Section 3.3. However, as a test case for

our research, we implement a hardware Trojan to alter the PWM

selectively. We also simulate the impacts of other hardware Trojans-

based PWMalterations via softwaremodi�cations due to equipment

restrictions. These techniques are described in the next subsection.

4.4 Attack Technique

This subsection examines hardware Trojan and �rmware modi-

�cation attacks, highlighting their impact on UAV security and

emphasizing the need for ConFIDe.

4.4.1 Hardware Trojan (HT). A hardware Trojan is an intentional

modi�cation within an integrated circuit (IC) that consists of a

trigger and an associated action known as a payload. The trigger

is activated when speci�c conditions are met, leading the payload

to execute its malicious operation. These modi�cations can bypass

security mechanisms, impairing or completely disabling parts of

the IC. Despite advancements in semiconductor technology, ICs

remain susceptible to HTs placed by adversaries. By subtly altering

the PWM signal timings, even a minuscule Trojan can have signi�-

cant repercussions. Our research demonstrates a PWM-focused HT

attack in two ways: �rst, through synthetic generation, and second,

via practical implementation on an actual UAV. We assume that

the Trojan is active 25% of the time. As a payload, we introduce

a selective signal inversion, altering the PWM signal’s duty cycle

and a�ecting motor speed and, subsequently, UAV movement.

Sorig (Ī) =

{

1 0 ≤ (Ī mod Đtotal) < Ā ·Đtotal

0 Ā ·Đtotal ≤ (Ī mod Đtotal) < Đtotal
(7)

The original PWM signal, Sorig (Ī), de�ned in Equation 7, is de�ned

by its duty cycle Ā , which represents the fraction of Đtotal during

which the signal is active. Speci�cally, for time t, the signal is "on"

between 0 and Ā ×Đtotal. The Trojan-infected PWM signal has a

duty cycle, Āatt, altered by �Ā from the original one (Equation 8).

The infected PWM signal is expressed by Equation 9.

Āatt = Ā + �Ā (8)
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Algorithm 1: Synthetic Attack Sample Generation

Input: BenignData, Trigger

Result: BenignDatağĤĬěĨĪěĚ
- ←Trigger

for 4E4A~ Ĕ

100
B0<?;4 in BenignData do

PWMąĤĬěĨĪěĚ = 01B (2500`B − B0<?;4.%," )

sample.PWM← PWMąĤĬěĨĪěĚ end

for B0<?;4 in BenignData do

if sample.PWM < 1100µs then
sample.PWM = 1100µs

end

if sample.PWM > 1900µs then
sample.PWM = 1900µs

end

end

return BenignData;

Satt (Ī) =

{

1 0 ≤ (Ī mod Đtotal) < Āatt ·Đtotal

0 Āatt ·Đtotal ≤ (Ī mod Đtotal) < Đtotal
(9)

4.4.2 Simulation Through Firmware Modification. Other hardware

Trojan-based PWM attacks can be simulated by software/�rmware

modi�cations. For example, an attack to invert a motor’s PWM out-

puts employs a trigger-payload logic: motor outputs are inverted

only when a speci�c condition is met. Algorithm 2 provides a con-

cise outline. It inputs current motor outputs and their count, then

iterates through each motor output and examines for reversibility.

If the trigger condition is satis�ed, it adjusts the value accordingly,

storing the result in the inverted_outputs array.

4.5 Attack Data Generation

Our study also simulated internal attacks on UAVs, like hardware

Trojans, by creating synthetic PWM anomalies within the oper-

ational range of 1100µs to 1900µs for Pixhawk-based UAVs. This

approach maintained the data’s integrity and tested our IDS’s abil-

ity to detect subtle control disruptions within the normal PWM

signal range. Given that T$# and T$�� are respective on and o�

times of the PWMwaveform, the total period of the waveformĐtotal
can be computed as shown in Equation 10.

Đtotal = T$# + T$�� (10)

We use the given equation to produce synthetic attack samples

based on hardware Trojan logic. Given the PWM waveform period

for a Pixhawk �ight controller is 2500µs, a benign PWM value,

denoted as PWM�4=86= , can be inverted to yield PWM�=E4AC43 , as

illustrated in Equation 11.

PWM�=E4AC43 = abs(2500čĩ − PWM�4=86=) (11)

A Pixhawk �ight controller limits the band of its computed PWM

values as shown in Equation 12, ensuring that the synthetic attack

samples are within the speci�ed bounds of PWM.

e�ective_PWM = control_value×

max_PWM −min_PWM

2
+
ģėĮ_Čēĉ +ģğĤ_Čēĉ

2

(12)

The mixer sets control values, ensuring that PWM signals adhere to

the UAV’s operational range. Any value outside this range, such as

Algorithm 2: Firmware Modi�cation Attack

Input: outputs[MAX_ACTUATORS], num_outputs

Output: inverted_outputs[MAX_ACTUATORS]

for i = 0 to num_outputs - 1 do

function = _mixing_output.outputFunction(i)

is_reversible = reversible_outputs & (1u << i)

output = outputs[i]

if ((int)function ≥ (int)OutputFunction::Motor1) &&

((int)function ≤ (int)OutputFunction::MotorMax) &&

!is_reversible then
if function == OutputFunction::Motor1 | | function ==

OutputFunction::Motor2 then
output = (output - PWM_SIM_PWM_MIN_MAGIC) /

(PWM_SIM_PWM_MAX_MAGIC -

PWM_SIM_PWM_MIN_MAGIC)

end

end

inverted_outputs[i] = output

end

below 1100s, is auto-corrected to the minimum limit. The process

is outlined in Algorithm 1. Attack samples for channels 4 and 1 are

illustrated in Figs. 4(a) and 4(b), showing subtly aligned benign and

altered PWM values.

5 CASE STUDY: ATTACK IMPACTS

We implemented hardware Trojan attacks, both practically and

through software modi�cation in jMAVsim simulator.

Physical Attack Implementation The attack circuit is shown in Fig. 21

and impact in Fig. 22 in Appendix D. To execute the practical Trojan

attack, we undertake the following procedure:

(1) Use a NAND logic gate inverter IC to modify the PWM

waveform from the �ight controller’s output.

(2) Direct both the original and modi�ed PWM values to a

switch.

(3) Connect the switch outputs to the ESCs.

(4) Activate the switch every 4 seconds, simulating the hardware

Trojan’s trigger-payload mechanism.

Simulated Attack We simulated hardware Trojan attacks with two

characteristics: (i) random alteration of PWM values for the motors

and (ii) targeted alteration in PWM values with an incremental o�-

set, ultimately crashing the drone. Fig. 5(a) shows the stealthiness of

attack (i)impacting UAV’s duty cycle, angular velocity, and causing

unhealthy vibrations as seen in Fig. 5(c) and Fig. 5(d), which may

result in increased motor wear and compromised mission outcomes.

As Fig. 5(b) illustrates, a UAV might complete its mission without

�agging the intrusion. For (ii), the attack applies a large, oscillating

o�set to the PWM signals, incrementing or decrementing by 500

units in Fig. 6(a), and 525 in Fig. 6(b) with each iteration to induce

an increment in the o�set. The impacts are shown in Fig. 6(a), which

causes increased system vibration, but still the mission is carried

out, and Fig. 6(b), where the UAV crashes.

Discussion: (i) Random alteration of PWM values for the motors,

subtly impacting the UAV’s duty cycle and angular velocity. This

can result in unhealthy vibrations and increasedwear on themotors,
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Figure 5: Simulated Trojan-based PWM attack with random PWM

alteration. (a) PWM signals (minor di�erences in attacked wave-

forms), (b) UAV mission (completed without detecting the attack),

(c) duty cycle, and (d) angular velocity (attack introduces noise, in-

creasing system vibration).

as seen in Fig. 5(c) and Fig. 5(d). A UAV might complete its mission

under such conditions without triggering internal failsafes or �ag-

ging the intrusion, as illustrated in Fig. 5(b). (ii) Targeted alteration

in PWM values with incremental o�sets, potentially leading to a

UAV crash. The alteration amount, denoted by the attack parameter

(�), is varied to observe di�erent outcomes. With an incremental

o�set, we witness increased vibrations within the system but not

enough to halt the mission, as shown in Fig. 6(a). Conversely, a

larger o�set of � = 525 units in Fig. 6(b) results in a UAV crash.

It’s critical to note that the attack parameter (�) directly corre-

lates with the impact severity. A minimal � may cause the UAV

to experience only slight disruptions, whereas a moderate � can

lead to operational instability. As demonstrated, a signi�cant �

leads to a loss of control and subsequent crash. This shows that the

impact of PWM signal manipulation is a function of both the mag-

nitude of alteration and the operational context, including �ight

conditions and environmental factors. Thus, the attack model, as

summarized in Equation 8 and 9, albeit appearing simplistic, can

yield a spectrum of operational consequences, substantiating the

complex nature of such cyber-physical attacks.

6 PROPOSED CONTROL-FUSED IDS

The proposed IDS has three phases, each discussed at length along

with technical details in this section.

6.1 Flight-Control and PWM Mapping phase

Selecting accurate features for �ight controller modeling is cru-

cial for simulating a UAV’s �ight control process. Precision in

PWM value prediction is achieved by minimizing the root mean

squared error (RMSE). Given the non-linear relationships inherent

in UAV features, we use a neural network-based Keras regressor [41].

The link between control features and PWM values stems from

their use as inputs to the �ight controller’s �rmware, generating
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Figure 6: In a simulated Trojan-based PWM attack, altering the

duty cycle value by 500 units (a) allowed the mission to proceed with

increased system vibration, whereas an alteration of 525 units (b)

resulted in a UAV crash.
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Figure 7: (a) Regression model’s training and validation losses show

e�ective PWM prediction. (b) Strong correlation underscores the

e�ectiveness of the chosen features in anomaly detection.

motor-driving PWM signals. ConFIDe’s regressor, as described in

Section C.2, models this relationship using training data. Devia-

tions from expected PWM outputs are thus identi�ed as anomalies.

This mapping, which helps integrate the entire sensor-control-

actuation cycle, is at the heart of ConFIDe’s real-time intrusion

detection mechanism. This mapping was developed using a diverse

dataset collected from real-world missions, covering a wide spec-

trum of UAV behaviors and environmental conditions. This dataset

was speci�cally designed to encapsulate the variability in control

feature-to-PWM value mappings that might arise due to di�erences

in varied �ight parameters.

Regressor Architecture: Our model, featuring 33 �ight control

inputs and �ve hidden layers, predicts four PWM outputs. The

model was trained over 200 epochs with a batch size of 270 and

yields a mean absolute error of 0.058, MSE of 0.0066, and RMSE of

0.0814. The training loss and PWM predictions are illustrated in

Fig.7(a) and Fig.7(b), respectively.

6.2 Training phase

Our approach uses one-class classi�cation algorithms to create a

decision boundary from existing data. Signi�cant deviations are

�agged as anomalies in testing and real-time operations [42]. We
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Figure 8: ConFIDe Overview: (a) Dataset Formation - Data collection and preparation. (b) PWMMapping - Regression for control optimization.

(c) Training - Utilizing an AutoEncoder (AE). (d) Classi�cation - Setting thresholds and categorizing data.

employ neural network-based Auto-Encoder (AE), as alternatives

like OCSVM and DBSCAN are computationally intensive and less

adept at understanding the nuanced non-linear relationships in UAV

�ight data. The autoencoder provides a more robust framework for

understanding the intricate dynamics of UAV �ight control data.

This is primarily due to its ability to learn a dense, low-dimensional

representation of the data, which inherently captures the complex

relationships within the UAV’s operational signals. The autoencoder

reconstructs original network tra�c at its output layer by learning

intrinsic network tra�c attributes [43].

Network Architecture: Autoencoder comprises sequentially con-

nected encoder and decoder networks. Encoder, using function

f with parameters W and b, maps input X to a feature represen-

tation (Equation13). Decoder, with g and parameters W ′ and b′,

reconstructs the input from this (Equation14).

H = f (WX + b) (13)

Z = g(W ′H + b′) (14)

Hyperparameter tuning: To minimize MSE loss, we adjust the

architecture. It features input and output layers with 37 nodes and

�ve palindromic hidden layers consisting of 52, 40, and 24 nodes,

getting MSE of 4.76e-04 after 1000 epochs.

6.3 Classi�cation phase

The model’s decision-making phase checks anomalies based on

learned �ight control and PWM mapping.

Classi�cation: Using the autoencoder, classi�cation hinges on the

reconstruction error. Test samples are reconstructed, and their MSE

against the original data is determined. If this error exceeds the

trained threshold, the sample is marked as an outlier; otherwise,

it’s considered benign.

Threshold Selection: To determine the anomaly detection thresh-

old, we analyze MSEs from training samples, with the highest quan-

tile setting the threshold T . We select a threshold ensuring 98.99%

of data is benign, as shown in Equation15. Based on this threshold,

classi�cation rules are speci�ed in Equation16. Here, MSE repre-

sents the MSE per training sample, and ħ indicates the benign data
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Figure 9: AE-based classi�cation thresholding using quantile

method. Balancing ROC_AUC score with accuracy/F1; higher ROC

signi�es superior performance

fraction (0.9899 in our scenario). Classi�cation rules are further

detailed in Equation 16.

T = quantile(MSE, ħ) (15)

ĈėĘěĢ =

{

“Anomaly", if MSEsample > T

“Benign", if MSEsample f T
(16)

Our selected threshold, 0.000917, balances ROC-AUC (0.9049)

with accuracy and F1 scores. This threshold, as shown in Fig.9,

guides ConFIDe’s performance in real-time UAV monitoring, de-

tecting hardware/PWM threats by analyzing control data and PWM

values. For reproducibility, our code is available at[44]. ConFIDe

system, illustrated in Fig. 8, operates in real-time on hardware, pro-

cessing control data from the �ight controller and PWM values

directing the ESCs.

7 IMPLEMENTATION OF CONFIDE

Implementing ConFIDe in UAVs requires real-time data manage-

ment and classi�cation. This section outlines hardware speci�-

cations and �ight control data capturing, with its Pixhawk UAV

application as in Fig.10(a) and Fig.10(b).

7.1 Layer of Implementation

Unlike conventional IDSs in the UAV’s sensor/network layer, Con-

FIDe integrates the knowledge of PWM signals in its system. Hence,

it operates after the �ight controller has generated the PWM sig-

nals. ConFIDe monitors the PWM outputs from the �ight controller,
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(a) (b)

Figure 10: ConFIDe was evaluated in-lab on an S500 Pixhawk 2.4.8

UAV, propellers removed for safety. The setup included a UAV, radio

controller, and a hardware Trojan for PWM inversion. Readings were

processed via Arduino and Pymavlink

verifying their legitimacy based on the �ight control. Only non-

anomalous PWM outputs then reach the ESCs for motor operation.

ConFIDe’s hardware framework consists of (1) the target UAV, (2) a

data collection unit, and (3) a computational device for either its

training or classi�cation.

7.2 Hardware Speci�cation

Here, we detail the technical speci�cations for the components

central to the ConFIDe system.

7.2.1 UAV to be defended. ConFIDe was implemented on an S500

Pixhawk 2.4.8 quadcopter UAV, powered by a 32-bit ARM CortexM4

processor and running the NuttX Real-Time Operating System

(RTOS). For navigation, the UAVwas equippedwith aNeo-M8NGPS

and an integrated compass. Additionally, an ESP8266-NodeMCU

WiFi module was integrated for telemetry purposes, facilitating

communication with ground control at a baud rate of 921600.

7.2.2 Data collector module. ConFIDe utilizes two datasets for

detection: 1) �ight control data encompassing modules like con-

trol, estimator status, and position attributes, and 2) post-routine

execution PWM outputs. We leverage the Pymavlink Python li-

brary for intra-UAV communication [45]. This library facilitates

real-time UAV data transfer. MAVlink connection is initiated, and

data is continuously fetched. We analyze PWM outputs with varied

pulse durations. For real-time PWM analysis, we use the Arduino-

Mega2560, employing ArduinoIDE routines for data automation.

7.2.3 Computational Device. Weuse an 11th Gen Intel(R) Core(TM)

i7-1195G7 @ 2.90GHz with 16.0 GB RAM. This 64-bit system pro-

cesses data from Pymavlink and Arduino and manages ConFIDe’s

training and classi�cation.

8 EXPERIMENTAL EVALUATION

ConFIDe’s e�ectiveness was validated theoretically using synthetic

attack data and practically via a Trojan emulation of UAV hardware.

We evaluated its performance using standard metrics (1) Accuracy,

representing the ratio of correct identi�cations to all points; (2)

Precision, indicating the fraction of correct classi�cations out of all

classi�ed instances; (3) Recall, denoting the fraction of correctly

identi�ed cases among all instances; (4) F1 score, which balances

recall and precision. We used the ROC-AUC score to assess the

model’s ability to di�erentiate between classes. Higher the AUC,

better the model’s discriminatory power. The following nine re-

search questions (RQs) guided our evaluation process.

Table 2: Performance metrics evaluated on di�erent combi-

nations of channels attacked
No. of

channels
attacked

Channels Accuracy F1-
Score

ROC-
AUC
score

Precision Recall

4 1234 0.925 0.949 0.927 0.975 0.924

3

123 0.909 0.938 0.893 0.953 0.924
124 0.899 0.933 0.875 0.941 0.923
134 0.932 0.953 0.939 0.984 0.924
234 0.933 0.954 0.941 0.985 0.924

2

12 0.783 0.864 0.641 0.812 0.924
13 0.904 0.935 0.885 0.947 0.924
14 0.905 0.936 0.887 0.948 0.924
23 0.905 0.936 0.886 0.948 0.924
24 0.896 0.930 0.868 0.936 0.924
34 0.931 0.953 0.934 0.983 0.924

1

1 0.836 0.894 0.747 0.866 0.924
2 0.822 0.886 0.719 0.851 0.924
3 0.905 0.936 0.886 0.949 0.924
4 0.889 0.926 0.855 0.928 0.924
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Figure 11: Performance varies based on the number of attacked

channels, with the highest e�cacy observed when three channels

are simultaneously targeted.

RQ1: How e�ectively can ConFIDe perform when di�erent com-

binations of PWM channels are under attack?

RQ2: Is ConFIDe able to detect PWM attacks when the trigger

frequency of the hardware Trojan is varied?

RQ3: Is the chosen feature set optimal for training ConFIDe?

What are the e�ects of using more or fewer features?

RQ4: How does ConFIDe compare to other ML models?

RQ5: What is ConFIDe’s computation time?

RQ6: Can ConFIDe detect real-time hardware attacks?

RQ7: Can ConFIDe detect simulated PWM-based attacks??

RQ8: How can removing individual modules a�ect ConFIDe’s

performance, and how can this be optimized?

RQ9: Can ConFIDe detect common sensor attacks?

8.1 Evaluation Results

RQ1 - Performance evaluation when di�erent combinations of

PWM channels are a�acked: A quadcopter UAV has four PWM

channels, each driving the corresponding BLDC motor. An adver-

sary can carry out a PWM-manipulative hardware Trojan attack on

either one, two, three, or all four channels. Furthermore, attacking

two and three sets of channels can be carried out in various combi-

nations. As summarized in Section 4.4, we carry out PWM inversion

with a trigger of 25% in our test set to generate synthetic attack data

for each possible combination of the channels. The accuracy, F1-

score, ROC-AUC score, precision, and recall for all these scenarios

are summarized in Table 2. Fig. 11 visualizes the ROC-AUC scores

for the same. It can be seen that ConFIDe successfully classi�ed the
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Figure 12: ConFIDe’s performance was assessed by altering the

percentage of outliers in the test set, indicative of Trojan’s trigger

frequency. ConFIDe e�ectively identi�es even covert attacks.

attacks on all di�erent combinations of channels with the highest

AUC for a combination of attacks on three channels.

RQ2 - Performance evaluation when the trigger frequency of

the hardware Trojan a�ack is varied: As entailed in Section 4.4,

a hardware Trojan attack has a payload (the attack impact), which

is launched whenever the trigger is satis�ed. An adversary can vary

the trigger frequency based on their attack goal. The less frequent

the trigger, the stealthier the attack, and vice versa. Synthetically,

this variation in the trigger frequency can be represented by varying

the number of outliers or the attack data in the test set. For example,

in a test set consisting of 100,000 benign samples, a hardware Trojan

triggered 10% of the time would correspond to 10,000 malicious

samples and 90,000 benign ones. We evaluated ConFIDe’s perfor-

mance across various trigger frequencies and channel combinations,

generating multiple test sets with varying numbers of malicious

PWM samples. The results, visualized in Fig. 12, demonstrate that

ConFIDe e�ectively detects even stealthy attacks with less frequent

triggers. Notably, the detection accuracy remains robust even at

lower trigger frequencies, a scenario typically challenging for IDS

systems due to reduced attack signatures.

RQ3 - Performance comparison of ConFIDe with di�erent sets

of features: ConFIDe has been trained on a set of features pertain-

ing to the �ight control in a UAV. The initial feature set, comprising

33 pivotal features, was carefully chosen based on their relevance to

UAV �ight control dynamics and their potential impact on identify-

ing anomalous behaviors. These features encompass control inputs,

positional accuracy, GPS data, and core motion angles, among oth-

ers, which are crucial for the real-time detection capabilities of

ConFIDe. These features were manually �ltered out from the �ight

logs based on the documentation of the working mechanism of

the �ight controller [36]. The number of features accounts for the

dimensionality of a model. Higher dimensionality can often result

in models being unable to distinguish between classes adequately.

To validate the feature selection for ConFIDe, we train two other

AE models with a set of features obtained from principal compo-

nent analysis (PCA) on the �ight logs, accounting for 95% of the

variance, and a set of features from the controller module of the

�ight controller, respectively, and compare their performances for

di�erent combinations of channels attacked. The ROC-AUC scores

representing the performance of each of these models can be seen

in Fig. 13. As shown in Fig. 13(a), Fig. 13(b), and Fig. 13(c), Con-

FIDe outperforms both the models when all four, three, and/or one

channel(s) are attacked, respectively.

RQ4 - Comparative e�ectiveness of ConFIDe with other ma-

chine learning (ML) models: Comparing AE-based ConFIDe’s

performance with other ML models is essential to determine its

e�ectiveness. One such algorithm is One-Class Support Vector Ma-

chine (OCSVM), widely used in anomaly detection applications.

This comparison can provide insights into the strengths and weak-

nesses of each technique. We implemented OCSVM at the third

phase of ConFIDe (Fig. 8(c)) and compared the performance with

AE implemented in the third phase. As shown in Fig. 14, ConFIDe

outperforms OCSVM due to OCSVM’s inability to capture the non-

linear relationship between UAV control features. While OCSVM is

adaptable with radial basis function (RBF) for non-linear scenarios,

our �ndings show that ConFIDe exhibits superior performance in

the context of UAV security. This is due to its deep learning ar-

chitecture, which e�ectively captures and analyzes the intricate

patterns and dependencies characteristic of UAV control data. his

discrepancy can be attributed to the unique challenges of UAV con-

trol signals, which exhibit highly complex and dynamic behaviors.

The potential limitations of OCSVM in this context stem from its

reliance on a prede�ned kernel function to transform the input

space, which might not fully encapsulate the intricate dynamics

of PWM signals in UAVs. Moreover, recent studies have shown

that autoencoders can outperform traditional SVMs o�ering higher

accuracy and reliability [46].

RQ5 - Computation time for ConFIDe: We record the time it

takes for ConFIDe to make an attack or benign prediction on each

sample. The total computation time is the sum of the time taken to

reconstruct the incoming sample by the AE and the time taken by

the classi�er phase. These times are calculated for each combina-

tion of the channels attacked. Hence, for one channel under attack,

ConFIDe detected all the malicious samples in 2.42ms. Similarly,

two, three, and four channels under attack take 2.56ms, 2.56ms, and

2.98ms, respectively. On average, the time ConFIDe takes to predict

whether an incoming sample is benign or malicious is approxi-

mately 2.63ms. The experiments were carried out on the device

speci�ed in Section. 7.2.3. It is to be noted that in an in-�ight sys-

tem, this IDS will be implemented using �eld programmable gate

arrays (FPGA) technology within a TCB, which can reduce the de-

tection latency and increase the computational speed signi�cantly,

as demonstrated by Zhang et al., who were able to increase the de-

tection speed by 128 times [47]. It must be noted that implementing

ConFIDe on an FPGA directly within the system’s secure processing

framework does not introduce new supply chain vulnerabilities [48].

This approach capitalizes on the inherent capabilities of FPGAs for

high-speed processing while ensuring system integrity through a

trusted con�guration and veri�cation process. The implementation

will be carefully designed to utilize the FPGA’s �exibility and speed

in a secure manner, e�ectively strengthening the system’s defenses

without complicating the supply chain.

RQ6 - Practical performance evaluation of ConFIDe: To answer

RQ6, we carried out multiple experiments on real-life UAVs. As ex-

plained in Section 4, the hardware Trojan attack is emulated using

an inverter IC. In total, 2 data sets were formed in real-time: An

attack data set with channel 1’s PWM values attacked (20 samples)

and a routine operation data set (10 samples). After receiving the

�ight control data in real time, ConFIDe activates the classi�cation
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Figure 13: Performance comparison of ConFIDe with models trained on di�erent feature sets, i.e., PCA-based and controller-only models.

(a) Shows the ROC-AUC score of all the models when all four channels, (b) three channels, and (c) only one channel is/are under a PWM-

manipulative hardware Trojan attack, respectively. The attack selectively alters the duty cycle of the PWM signals sent to the motors. ConFIDe

outperforms all the other models.
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Figure 14: In the performance evaluation, ConFIDe outperforms

OCSVM due to its ability to capture the non-linear relationship

between UAV control features, as OCSVM falls short in this regard.

module. It was seen that ConFIDe correctly classi�ed all 20 of the

attack samples in real time. Moreover, all 10 of the routine samples

(benign) were also correctly classi�ed. For both cases, the number of

false negatives was zero, achieving 100% accuracy on practical im-

plementation. Fig. 10 shows the implementation ofConFIDe system

on an S500 Pixhawk 2.4.8 UAV. The experiments were conducted in

a lab setup with the propellers removed for safety.

RQ7 - Performance evaluation of ConFIDe under simulated at-

tacks: To answer RQ7, we simulated PWM-altering attacks through

�rmware modi�cation on PX4 �rmware as entailed in Section 5

where the PWM output for motors 1 and 2 is changed in a trigger-

payload fashion, altering the duty cycle of the PWM signal. Despite

high vibration in the system, as shown in Fig. 5(d), this attack went

undetected as no failsafe was internally triggered by the system.

Nonetheless, ConFIDe detected 30 out of the 31 attack samples with

an accuracy of 99.2% and a ROC-AUC score of 98.38% with one

false positive and zero false negatives as illustrated in the confusion

matrix in Fig. 17. The implications of such attacks extend beyond

immediate threats. Fig. 16 shows the actuator controls’ frequency

peaks exceeding 20Hz, indicating detrimental vibrations. These

not only a�ect drone performance but also cause motor wear and

tear. ConFIDe’s ability to detect these anomalies highlights its ef-

fectiveness in identifying �rmware manipulations that can silently

degrade UAV hardware health.

RQ8 - Impact of eliminating individual modules on ConFIDe’s

performance: To thoroughly assess ConFIDe’s overall performance

and the contribution of its components, we conduct an ablation
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Figure 15: Results from an ablation study evaluating individual

ConFIDe modules’ performance under various combinations of at-

tacked channels consistently show ConFIDe outperforming other

methods with the highest scores.

study comprising two parts. This study aims to scienti�cally analyze

the impact of removing key elements within ConFIDe and evaluate

the performance degradation resulting from these changes. This ap-

proach enables us to understand each component’s importance and

e�ectiveness in intrusion detection. The �rst part involves remov-

ing phase-2 (Fig. 8(b)), the �ight control and PWM mapping. With

phase 2 removed, we used feature engineering techniques to design

a feature vector for the autoencoder (phase 3). The second part

of this ablation study investigates the removal of the autoencoder

(phase-3) in (Fig. 8(c)). Since the autoencoder carries out the main

detection for ConFIDe, in case of its removal, we set a threshold of

mean squared error of the PWM outputs predicted by the regressor

in the �ight control and PWM mapping (phase-2) for attack detec-

tion. We evaluate the performance of eliminating these individual

modules under di�erent combinations of channels attacked. The

performance metrics, i.e., accuracy, F1, and ROC-AUC scores, are

shown in Fig. 15. ConFIDe performs better in all the cases, with the

highest scores for all performance metrics.

RQ9 - Sesnor a�acks: To ensure ConFIDe o�ers end-to-end se-

curity, we tested it against common sensor attacks such as GPS

spoo�ng. We launched the attack with three di�erent deviation

levels: small, medium, and large. The attack goal was to ultimately

deviate the UAV from its planned trajectory. The attack data �les

and graphs (Fig. 23, Appendix D) can be found at [44]. As seen in

Table. 3, ConFIDe has a detection accuracy of up to 100% when the

attack becomes more evident.
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Figure 16: Frequency plot of roll, pitch, and yaw axes from PID ac-

tuator controls during a randomly PWM-altered �ight. Peaks above

20Hz indicate harmful vibrations and potential motor wear.

8.2 Discussion

After an attack is detected by ConFIDe, mitigation can involve trig-

gering the failsafe so necessary remedial actions may be taken. A

possible mitigation strategy can involve imputation of the PWM

signals based on the learning of ConFIDe (using a time-series model

such as LSTM or ARIMA as used by Dash et al. [15], such that at the

point where anomalies are detected, ConFIDe can provide PWM

signals to keep the mission going. The scope of this paper is detec-

tion and not mitigation, but this will be taken on as a future work

where the timing criticality of imputing data on attack detection

will also be evaluated. In the case of UAV security, false positives

are considered bearable and better because they trigger a failsafe

mechanism that prevents a potentially compromised UAV from

continuing its mission. The failsafe mechanism can send the UAV

back to the base station or take other remedial actions to ensure its

data are not compromised, i.e., the mission might fail. Contrarily,

a false negative, or the inability to identify an actual breach, can

have disastrous e�ects because it would permit a compromised

UAV to carry out its mission, possibly harming people or releasing

critical information. Hence, false positives are preferable over false

negatives in UAV security because they add extra protection. The

false-positive threshold in determining security levels depends on

the speci�c use case; for higher data security, a lower false-positive

rate can be achieved by increasing the detection threshold. Striking

a balance between security and operational e�ciency is crucial, as

overly conservative thresholds can lead to increased false alarms,

potentially disrupting UAV operations unnecessarily.

Moreover, it is to be noted that the control-PWMmapping phase

is a one-time o�ine DL model in the design of ConFIDe. Once this

mapping is understood, it is leveraged to further the ConFIDe IDS

design in its detection of any anomalous behavior. Moreover, the

training for the autoencoder module in Fig. 8(c) is also o�ine. Only

the testing and classi�cation phase of the autoencoder in Fig. 8(c) is

in real-time. For future work, the e�ectiveness of ConFIDe on more

diverse UAV platforms and attack scenarios can be evaluated further

to validate its robustness and reliability in real-world situations.

Furthermore, we can incorporate �ight control from various models

and investigate how hardware limitations and environmental fac-

tors a�ect ConFIDe’s performance, o�ering optimization insights.

Furthermore, we acknowledge the critical importance of minimiz-

ing delay in UAV operations. Our approach introduces a latency

of 2+ms, as identi�ed in our evaluation. This latency is within the

operational parameters’ tolerable limits for UAV systems, ensuring

no compromise to mission-critical functionalities. Arya et al. elab-

orate on ground-to-UAV communication challenges, emphasizing
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Figure 17: ConFIDe’s performance on simulated PWM attack. 30

out of 31 attack samples were correctly predicted with zero FNs.

that slight delays are often acceptable in exchange for enhanced

security and reliability, even in low-latency network designs [49].

To enhance ConFIDe’s generalizability, our future work will utilize

a training dataset to encompass multiple UAV models, capturing

a broad spectrum of operational nuances and manufacturing vari-

ances. This will be essential for our neural network to generalize

PWM mapping patterns e�ectively, avoiding model-speci�c biases.

Simultaneously, we will re�ne our anomaly detection threshold

through rigorous statistical analysis of PWM values across varied

UAVmodels. This will ensure the threshold’s broad applicability, ac-

curately distinguishing between normal and anomalous behaviors

in a way that accounts for the inherent variability in UAV systems.

Table 3: Performance in Detecting GPS Spoo�ng Attacks

Metric Small Deviation Medium Large

Accuracy 0.9972 0.9993 1.0

F1 Score 0.9986 0.9995 1.0

ROC AUC 0.9986 0.9995 1.0

Precision 1.0 1.0 1.0

9 CONCLUSION

In this work, we have proposed a Control-Fused Intrusion Detec-

tion (ConFIDe) system that can defend against insider attacks in the

hardware/�rmware of UAVs instead of the existing IDSs securing

the sensor/network space. We trained ConFIDe on a comprehen-

sive UAV dataset consisting of multiple �ight controls for PWM

signal duty cycle computation. It veri�es the integrity of the �ight

controller- generated PWM signals, ensuring the motors receive

the signals free from hidden exploits. Further, to experimentally

validate our proposed IDS, we simulate and emulate a hardware

Trojan attack synthetically and in a real-life UAV system. The per-

formance results are evaluated under di�erent attack scenarios.

Overall, ConFIDe performs well in all these scenarios achieving a

ROC-AUC score up to 92.5% on synthetic attack samples, 99.2% on

simulated data, and 100% accuracy when applied to real-time data.
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A UAV MOVEMENT CONTROL VIA PWM

In Fig. 3, motors 1 and 3 rotate counterclockwise (CCW), while

motors 2 and 4 rotate clockwise (CW). To control the UAV’s motion,

PWM signals are varied as follows:

Forward Movement (Pitch Control): Increase the PWM signal

to motors 3 and 4 and decrease to motors 1 and 2.

�PWMforward = PWM3,4 − PWM1,2 (17)

Backward Movement (Pitch Control): Increase the PWM signal

to motors 1 and 2 and decrease to motors 3 and 4.

�PWMbackward = PWM1,2 − PWM3,4 (18)

Rightward Movement (Roll Control): Increase the PWM signal

to motors 1 and 3 and decrease to motors 2 and 4.

�PWMright = PWM1,3 − PWM2,4 (19)

Leftward Movement (Roll Control): Increase the PWM signal

to motors 2 and 4 and decrease to motors 1 and 3.

�PWMleft = PWM2,4 − PWM1,3 (20)

Increase Altitude (Thrust Control): Increase the PWM signal

equally to all motors.

�PWMup =↑ PWM1,2,3,4 (21)

Decrease Altitude (Thrust Control): Decrease the PWM signal

equally to all motors.

�PWMdown =↓ PWM1,2,3,4 (22)

Yaw Control (Rotation Control): For right (clockwise) rotation,

increase PWM to motors 1 and 4 and decrease to motors 2 and 3.

�PWMyaw-right = (↑ PWM1,4) − (↓ PWM2,3) (23)

For left (counterclockwise) rotation, increase PWM to motors 2 and

3 and decrease to motors 1 and 4.

�PWMyaw-left = (↑ PWM2,3) − (↓ PWM1,4) (24)

In these equations, �PWMmovement represents the change in

the PWM signal required for a speci�c movement. The symbol ↑

indicates an increase and ↓ indicates a decrease in the PWM signal’s

duty cycle. The magnitude of PWM adjustments depends on the

desired movement intensity, quadcopter characteristics, and motor

response.

B PWM OUTPUT CONSTRAINT
CALCULATION

This function scales the input value according to the motor’s con-

�guration. Fig. 18 shows the code snippet in the mixer_module

code that limits the PWM outputs to ensure they are not out of the

speci�ed band. This function, output_limit_calc_single, takes

two inputs: the index i for the motor channel and the normalized

control input value. It calculates the e�ective output for the motor

channel by scaling the input value based on the motor’s minimum

and maximum values, which are stored in the arrays _min_value

and _max_value, respectively. First, the function checks for invalid

or disabled channels by verifying if the input value is �nite. If the

input value is not �nite, the function returns the disarmed value for

the motor channel, which is stored in the array _disarmed_value.

Next, the function checks if the motor output should be reversed by

examining the _reverse_output_mask. If the corresponding bit

for the motor channel is set, the input value is multiplied by -1 to

reverse its direction. The function then calculates the e�ective out-

put by scaling the input value according to the motor’s minimum

and maximum values. This scaling ensures that the output value is

within the valid range for the motor. Finally, the function uses the

math::constrain function as a last line of defense to ensure that

the calculated e�ective output is within the motor’s valid range.

The function returns the constrained e�ective output value so the

PWM values are within range.

C DATASET FORMATION

Existing UAV datasets primarily feature camera images, lacking

control data vital for IDS training. Hence, we developed a dataset

with essential �ight control attributes.

C.1 Flight Data Collection

We experimented with various �ights from a Pixhawk 2.4.8 UAV,

closely emulating real-world missions, which include circular paths,

polygonal paths, paths with multiple waypoints with increasing or

decreasing speed and altitude, and survey missions in which the

UAV �ies through various obstacles. Throughout these complex

�ights, the �ight controller logs the sensor, control, actuation, and

other data, which will facilitate understanding the mapping of the

�ight control with PWM signals. After the �ights, we download the

�ight logs and begin the preprocessing. The trajectories are shown

in Appendix. D.

C.2 Data Preprocessing

Data preprocessing is pivotal for IDS e�cacy because imbalanced

datasets can skew classi�cations. We extracted .ulg �les from our

seven trajectories’ logs via QGroundControl and converted these to

.csv format, yielding 495 �les—around 70 for each trajectory. These

�les, documenting varying features at distinct �ight controller in-

stances, present asynchronous data recordings. E.g., a sensor data

logged at time Ī1 might have its corresponding controller action

recorded at Ī1+Į , where x represents the delay in timeslots. To pro-

vide a coherent view, we combined individual �les per trajectory

into a single �le, encompassing timestamps and features.

Figure 18: Snippet of the Output Constraint Calculation Func-

tion illustrating the method used to limit and calculate the

e�ective output for a given channel.
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Data collection trajectories for ConFIDe: (a)-

(b) polygonal paths, (e) complex route with varied alti-

tudes/speeds, (f) survey path, and (g)-(h) jMAVsim simula-

tions. While (g) is under normal conditions, (h) depicts PWM-

manipulation attack e�ects. The trajectories remain consis-

tent, but attack impacts are evident in Fig. 20(a) and 20(b).

(a) (b)

Figure 20: (a) shows the PWM outputs achieved under a

normal trajectory as shown in Fig. 19(f), whereas (b) un-

der a PWM-manipulative attack for the trajectory shown

in Fig. 19(e).

HandlingMissing Data and Duplicates: To address missing data,

we employ interpolation techniques between Ī1 and Ī1+Į , amalga-

mating data from all seven �ights into a uni�ed dataset. Upon
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Figure 21: Implemented hardware Trojan circuit
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Figure 22: Duty cycle alteration in PWM due to hardware

Trojan attack.

further interpolation, duplicate removal, and discarding zero-value

columns, our dataset encompasses 225,921 samples spanning 636

feature columns. We perform feature selection and select 33 piv-

otal ones. These essential features capture the heart of the UAV’s

control process: control inputs, positional accuracy, GPS data, alti-

tude, orientation metrics, and core motion angles. The methodology

considers the real-time nature of the system by selecting features

(Appendix. E) that can be acquired in real-time from the UAV via

MAVlink. This is important for developing a real-time IDS to detect

attacks and anomalies during the UAV’s �ight, allowing immediate

corrective actions. In contrast, data obtained from �ight logs are

only available after the mission is complete and may not be suitable

for real-time IDS. Therefore, selecting features that can be obtained

in real-time is necessary for developing an e�ective real-time IDS.

D FLIGHT TRAJECTORIES FOR DATA

COLLECTION

We conducted various �ight experiments using a Pixhawk 2.4.8

UAV, closely simulating real-world mission scenarios. These �ights

included circular, polygonal, multi-waypoint paths with varying

speeds and altitudes and survey missions where the UAV navi-

gated various obstacles. These trajectories are detailed in Fig. 19(a)

through 19(f).



ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Muneeba Asif, Ahmad Mohammad∗ , Mohammad Ashiqur Rahman, and Kemal Akkaya

Figure 23: GPS Spoo�ng Attack

Table 4: List of Features and Their Descriptions for Con�de

No. Feature Name Description

1 control[0] Control signal for channel 1

2 control[1] Control signal for channel 2

3 control[2] Control signal for channel 3

4 control[3] Control signal for channel 4

5 pos_horiz_accuracy Horizontal position accuracy

6 pos_vert_accuracy Vertical position accuracy

7 mag_test_ratio Magnetic data test ratio

8 vel_test_ratio Velocity data test ratio

9 pos_test_ratio Positional data test ratio

10 hgt_test_ratio Height data test ratio

11 lat Latitude position

12 lon Longitude position

13 alt Altitude

14 x Linear x-position

15 y Linear y-position

16 z Linear z-position

17 yaw Drone’s orientation

18 pwm[0] PWM signal for channel 1

19 pwm[1] PWM signal for channel 2

20 pwm[2] PWM signal for channel 3

21 pwm[3] PWM signal for channel 4

22 yawspeed Yaw speed of drone

23 q[0] Quaternion component 1

24 q[1] Quaternion component 2

25 q[2] Quaternion component 3

26 q[3] Quaternion component 4

27 roll_body Drone’s body roll orientation

28 pitch_body Drone’s body pitch orientation

29 yaw_body Drone’s body yaw orientation

30 thrust_body[2] Thrust related to body frame

31 roll Global roll orientation

32 pitch Global pitch orientation

33 yaw Global yaw orientation

34 eph Positional error in horizontal

35 epv Positional error in vertical

36 output[0] Output signal 1

37 output[1] Output signal 2

38 output[2] Output signal 3

39 output[3] Output signal 4

E FEATURE SELECTION FOR CONFIDE

The features selected for Con�de encompass a comprehensive set

of parameters critical for assessing the drone’s �ight dynamics,

orientation, and control. Features such as control signals provide

insights into the immediate commands dispatched to the drone, en-

suring that real-time decisions are made based on authentic and un-

altered signals. Positional metrics, including lat, lon, alt, and lin-

ear positions (x, y, z), are essential to accurately track the drone’s

location and movement in 3D space. Quaternion orientation and

body metrics give a nuanced perspective on the drone’s orientation

in three-dimensional space, which is crucial for maintaining stabil-

ity during �ight. Additionally, test ratios, such as mag_test_ratio,

ensure the authenticity of various data streams, guarding against

potential anomalies or intrusions. Lastly, PWM signals and output sig-

nals reveal the drone’s motor control dynamics, a vital component

for �ight control and maneuvering. These features were selected

to ensure a robust and holistic view of the drone’s operation, mak-

ing ConFIDe an e�ective tool for detecting and mitigating possible

anomalies. The features are enlisted in Table. 4. ConFIDe’s detailed

feature selection, including quaternion components, yaw speed,

and thrust_body[2], enhances its monitoring capabilities, vital for

drone security in the rapidly evolving cyber threat landscape. These

features critically track spatial orientation, aiding in detecting unau-

thorized intrusions or malfunctions. Additionally, error metrics like

eph and epv bolster ConFIDe’s precision, �agging even minor posi-

tional deviations. Such meticulous attention to detail is crucial for

UAVs, as small errors can lead to signi�cant navigational issues over

time. ConFIDe thus plays a pivotal role in protecting operational

integrity, ensuring airspace safety, and safeguarding ground assets.

Lastly, incorporating MAVlink communication metrics, ConFIDe ef-

fectively interprets signal integrity and timing, critical for verifying

command execution �delity. Signal-to-noise ratio (SNR) measure-

ments of GPS signals are also utilized, enhancing the detection of

spoo�ng attempts by analyzing deviations from expected trans-

mission pro�les. These speci�c metrics further enhance ConFIDe’s

diagnostic capabilities, ensuring comprehensive surveillance over

the UAV’s communication and control systems.
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