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ABSTRACT

The northern North American Cordilleran margin has been active for >200 million years,

as recorded by punctuated phases of crustal growth and deformation. Accretion of the exotic
Wrangellia Composite Terrane (Insular Belt) is considered the largest addition of juvenile
crust to the Cordilleran margin, though margin-parallel translation during the Cenozoic has
obscured much of the accretionary history. Three zones of inverted metamorphism spatially
correspond to the Insular-North American suture zone from north to south: (1) Clearwater
Mountains; (2) Kluane Lake; and (3) Coast Mountains, each preserving kinematics indica-
tive of thrusting of North American-derived rocks over Insular-derived assemblages. We
performed in situ monazite petrochronology on samples collected across strike in both the
Clearwater and Coast Mountain regions. New and recently published data from these three
metamorphic belts indicate that thrust-sense deformation accompanied the formation of
inverted metamorphic isograds from 72 to 56 Ma. We leverage recent estimates of Denali
fault offset to reconstruct a >1000-km-long zone of inverted metamorphism and interpret it
as the Insular—-North America terminal suture.

INTRODUCTION

The North American Cordillera is an arche-
typal accretionary orogen recording >200 m.y.
of superimposed terrane assembly, magmatism,
and orogenesis (Busby et al., 2023). Discontinu-
ous exposures of shortened Jurassic—Cretaceous
metasedimentary assemblages along the Cordi-
llera, commonly associated with inverted meta-
morphism, record closure of a marginal marine
basin system during accretion of the Insular
Belt to western North America (Erdmer and
Mortensen, 1993; Ridgway et al., 2002; Mon-
ger et al., 1982). Although accretion of the Insu-
lar Belt has been credited as the most profound
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crustal growth event in the Phanerozoic record
of North America (Trop and Ridgway, 2007),
aspects of this event remain contentious due
to conflicting data sets informing the age and
polarity of accretionary structures (Pavlis et al.,
2019; Tikoff et al., 2023). Complicating matters
further, syn- to post-accretionary margin-paral-
lel strike-slip translation and differential exhu-
mation have dissected the orogen, obfuscating
much of the earlier accretionary history (e.g.,
Enkin, 2006; Waldien et al., 2021).

Three vestiges of inverted metamorphic
field gradients distributed along the northern
Cordillera broadly correspond to the Insular—
North America boundary: (1) the Clearwater
Mountains in south-central Alaska; (2) the
Kluane Lake area in the Yukon Territory; and
(3) the Coast Mountains in southeastern Alaska

(Fig. 1). Each locality preserves an ~5-km-thick
thrust-sense zone dipping toward North America
that exhibits an increase in metamorphic grade
from Insular-affinity rocks in the footwall struc-
turally upward into rocks of North American
provenance. Erdmer and Mortensen (1993) cor-
related these metamorphic domains based on
multi-grain thermal ionization mass spectrom-
etry analysis of monazite. However, the strength
of this correlation has degraded as subsequent
geochronologic investigations applied different
techniques in each site (e.g., Stowell and Gold-
berg, 1997). Here, we present detailed in situ
U-Pb monazite petrochronology from two tra-
verses across inverted metamorphic field gradi-
ents within the Coast and Clearwater Mountains
of Alaska (Fig. 1). We synthesize our data with
data from the Kluane Lake region of southwest-
ern Yukon (McKenzie et al., 2024) and a recent
palinspastic reconstruction of the Denali fault
(Waldien et al., 2021) to argue that the three
metamorphic domains represent along-strike
equivalents of a single zone of Cretaceous—
Paleogene inverted metamorphism that formed
during terminal suturing of the Insular Belt to
the North American margin.

BACKGROUND

The Alaska Range suture zone is a wedge
of variably deformed supracrustal and plutonic
rocks between the Denali and Talkeetna faults
in south-central Alaska (Fig. 1). Within the
Alaska Range suture zone, the Valdez Creek
shear zone (VCsz) is an ~4-km-thick north-
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Figure 1. (A) Simplified geologic map of the northern Cordillera highlighting inverted metamorphic belts associated with the Insular-North
American suture. (B) Cross sections of inverted metamorphic belts with sample locations and structural measurements from this study.

dipping thrust-sense shear zone (Smith, 1981;
Davidson et al., 1992; Davidson and McPhil-
lips, 2007) that formed along the inboard mar-
gin of the Insular Belt during terminal suturing
(Ridgway et al., 2002). The VCsz preserves a
complete inverted metamorphic field gradient
ranging from sub-greenschist facies slate in the
south to upper amphibolite-facies sillimanite-

Reaan

garnet gneisses in the north (Smith, 1981).
The boundary between Insular Belt—derived
and peri-Laurentian—derived metasediments is
transposed within the shear zone (Link, 2017).

The boundary between North American
affinity rocks and the accreted Insular Belt in
the Coast Mountains near Juneau (Alaska) is
an east-dipping package of strongly deformed

supracrustal rocks with an inverted metamor-
phic gradient (Himmelberg et al., 1991). The
structurally lowest package belongs to Jurassic—
Cretaceous overlap assemblage of the Gravina
belt (Yokelson et al., 2015) structurally beneath
polydeformed allochthonous Laurentian-affinity
Taku (Saleeby, 2000), Yukon-Tanana (Gehrels,
2001), and Coast Gneiss Complex (Gehrels
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Figure 2. Representative structural and petrochronologic results from this study. All uncertainties listed are provided at the 2¢ level. (A) Full
thin section Mg Ka map from sample 20VCsz-12 with S-C geometries and s-type asymmetries indicating south-vergent deformation. (B, C)
Y La X-ray maps of monazite from sample 20VCsz-18 displaying high-Y cores surrounded by low-Y rims both of which are parallel to host
rock folia. (D) Full thin section Mg Ko map from sample 23PT-6 displaying west-vergent shear bands. (E, F) Y La X-ray maps of monazite from
sample 23PT-3 displaying characteristic low-Y cores and high-Y rims with distinctive age populations. (G) Summary of monazite U-Pb results
from the Kluane Schist (McKenzie et al., 2024) and this study split into low-Y and high-Y populations plotted along structural height relative
to the garnet-in isograd. VCsz—Valdez Creek shear zone.

et al., 2009) panels. Although parallel to the
Coast shear zone, defined as a ca. 65-57 Ma
east-side-up contractional structure (Gehrels
etal., 2009), Stowell and Goldberg (1997) inter-
preted the inverted metamorphic belt to have
formed at ca. 90 Ma based on Sm-Nd garnet
geochronology. Subsequent interpretations of
the Coast shear zone in southeastern Alaska have
been relegated to discrete structures inferred
between lithotectonic packages with disparate
provenance, or drawn within variably deformed
70 Ma tonalitic rocks (Hollister and Andronicos,
1997; Stowell and Crawford, 2000).

CLEARWATER MOUNTAINS

We conducted a south-to-north transect
across the VCsz from sub-greenschist facies
Clearwater metasedimentary rocks to amphib-
olite-facies gneisses of the Laurentian-derived
Maclaren Glacier metamorphic belt (Fig. S1 in
the Supplemental Material'). At the base of the
phyllite zone (Smith, 1981) deformation is local-
ized into thrust faults, which we interpret as the
base of the VCsz. Rocks in the VCsz exhibit

'Supplemental Material. Methods, sample loca-
tions, and laser ablation split stream data. Please visit
https://doi.org/10.1130/GEOL.S.27156984 to access
the supplemental material; contact editing@ geoso-
ciety.org with any questions.

a strong west-striking foliation with moderate
north dip and a pervasive down-dip stretching
lineation (Fig. 1). Intersection lineations are
predominately oblique to stretching lineations,
though locally parallel to stretching lineations
near meta-intrusive rocks. Reverse-sense kine-
matic indicators including o-clasts and S-C
asymmetries are present throughout the shear
zone (Fig. 2A).

Four samples (Table S1) from above the gar-
net-in isograd were collected for in situ U-Th-Pb
monazite petrochronology (Table S2; Fig. 3).
The structurally lowest sample, 20VCsz-06,
is a garnet-biotite schist with garnet that dis-
plays sharp compositional zonation and inclu-
sion trails parallel to the external foliation.
Monazite exhibits mottled chemical zonation
with minor intra-grain variability in Y and Th.
206pPh/238U ages range continuously from 63 to
55 Ma and preserve an increase in heavy rare
earth element dispersion with decreasing age.
Sample 20VCsz-12 was collected from the
structural base of the gneiss unit (mapping of
Smith, 1981) immediately beneath the tonalitic
sill and is a granoblastic garnet-biotite-stauro-
lite gneiss (Fig. 2A). Monazite grains contain
low-Y cores (71.1 £ 0.9 Ma; mean squared
weighted deviation [MSWD]: 1.39) and high-Y
rims (57.1 & 0.4 Ma; MSWD = 0.58). Sample
20VCsz-17 is a sillimanite-garnet gneiss with a
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pronounced down-dip lineation. Monazite from
sample 20VCsz-17 exhibits three concentric
compositional domains (low Y-cores, high-Y
inner rims, and low-Y outer rims). Resulting
206pp/238U weighted averages for each compo-
sitional domain are 66.9 + 0.5 Ma (MSWD:
1.48), 63.7 £ 0.6 Ma (MSWD: 1.48), and
62.4 £ 0.5 Ma (MSWD: 2.15), respectively.
Sample 20VCsz-18 is a garnet protomylonitic
gneiss containing monazite with low-Y cores,
elongated high-Y rims, and rare irregular outer
rims with scalloped margins interpreted to
reflect post-kinematic fluid-mediated dissolu-
tion-reprecipitation (Figs. 2B and 2C). Elon-
gate cores and rims yield a 2°Pb/3¥U weighted
average of 67.6 £ 0.4 Ma (MSWD: 2.29) and
63.7 + 0.3 Ma (MSWD: 1.6), respectively. We
interpret these data to reflect progressive con-
tractional deformation that decreases in age
from ca. 72 Ma to 56 Ma structurally downward
within the VCsz (Fig. 3).

COAST MOUNTAINS

We conducted a transect along Blackerby
Ridge outside of Juneau from greenschist-facies
Gravina belt rocks into the amphibolite-facies
Yukon-Tanana Terrane (Fig. S2). Rocks exhibit
a pervasive east-dipping cleavage to gneissos-
ity and strong down-dip stretching lineation
(Fig. 1). Asymmetric features including o-type
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Figure 3. (A) Bivariant principal component analysis of monazite composition and loading vectors forY + HREE, which covary with reported
206pp/238Y age. (B) Summary of geochronologic data from Clearwater and Coast Mountain regions plotted against structural height. New mona-
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heights for the Valdez Creek shear zone and Juneau area are relative to basal faults of each inverted metamorphic belt.

garnet porphyroblasts and shear bands are con-
sistent with east-side-up reverse sense motion
throughout the traverse (Fig. 2D). Intrafolial
folds and well-defined strike-parallel intersec-
tion lineations in the structurally lowest rocks
indicate that the predominant fabric formed
from transposition of older cleavage(s). Meta-
morphic isograds identified in this study match
those mapped by Ford and Brew (1973) and
extend through the sillimanite isograd over a
map distance of 7 km. The predominant folia-
tion is also present within ca. 70 Ma tonalitic
rocks in the upper reaches of the traverse, indi-
cating that this phase of deformation post-dated
or accompanied emplacement of tonalite sills
(Himmelberg et al., 1991).

Five samples (Table S1) from the traverse
were targeted for in situ monazite petrochro-
nology. Samples 23BLK-3 and -4 were col-
lected immediately above the garnet-in isograd
(Table S3; Fig. 1). The two samples contain very
fine-grained (<15 pm) monazite. The analyzed
grains lack zoning and likely formed as prograde
products of allanite, typical of the transition from
greenschist to amphibolite facies (Gasser et al.,
2012). Owing to the fine grain sizes it was dif-
ficult to avoid imperfections during analysis, and
results are mostly discordant. A subset of analy-
ses not flagged for compositional issues yields
a 27Pb-corrected weighted mean age from the
11 most concordant analyses of 57.8 4+ 1.0 Ma
(MSWD: 7.5). Sample 23PT-6 is an S-C-C’
mylonite with coarse garnet porphyroblasts with
top-to-the west shear bands (Fig. 2D). Monazite
grains are small (~5-25 pm), exhibit mottled Y
and Th zonation, and yield a range of 2°Pb/>¥U
ages from 68 to 58 Ma. Sample 23PT-3 is a gar-
net-biotite-sillimanite protomylonitic gneiss.
Monazite exhibits low-Y cores often aligned
in the plane of the foliation and sporadic high-
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Y rims (Figs. 2E and 2F). Low-Y cores yield
a 2°Pb/8U weighted mean of 67.5 + 0.5 Ma
(MSWD: 0.7) whereas high-Y rims yield a
weighted mean age of 59.7 &+ 2.0 Ma (MSWD:
3.4). Sample 23PT-12 is a fine-grained garnet-
biotite gneiss with abundant garnet. Monazite
grains display mottled low-Y cores with local
high-Y rims with *Pb/>*U weighted means
of 61.0 £ 0.7 MSWD: 0.97) and 59.3 + 1.4
(MSWD: 0.59). These results link deformation
to the development of inverted metamorphic iso-
grads during west-directed contractional uplift
of the Coast Mountains metamorphic complex
over the Insular Belt from 72 to 56 Ma. In addi-
tion, all samples aside from 23PT-12 show a
systematic decrease in age structurally down-
ward (Fig. 3B).

RECONSTRUCTION OF THE
INSULAR-NORTH AMERICA SUTURE
Our new monazite results indicate that the
inverted metamorphism in the Coast Mountains
near Juneau and the Clearwater Mountains was
contemporaneous. Near Juneau, inverted meta-
morphism formed within a thick (~5 km) duc-
tile shear zone from 72 to 56 Ma during under-
thrusting of Insular-derived western Gravina
belt beneath peri-Laurentian rocks of the Taku
and Yukon-Tanana terranes. Similarly, inverted
metamorphism within the VCsz formed during
thrusting of North America—derived Maclaren
schist over the Insular-derived Clearwater
metasediments from 72 to 56 Ma. A third site
of inverted metamorphism between the Coast
and Clearwater Mountains, the Kluane schist,
was also the focus of recent monazite petrochro-
nology (McKenzie et al., 2024). There, inverted
metamorphism was demonstrated to have
formed from 72 to 56 Ma through underthrust-
ing of Insular-derived metasediments beneath

the peri-Laurentian Yukon-Tanana Terrane. The
systematic decrease in monazite U-Pb ages
structurally downward (Fig. 2G), a hallmark of
other inverted metamorphic systems (e.g., Mot-
tram et al., 2014), is now documented in each
locality and is consistent with the incorporation
of footwall rocks into the base of the propagat-
ing shear zone during progressive deformation,
syn-kinematic prograde metamorphism of foot-
wall affinity rocks, and extrusion of the ther-
mally weakened hanging wall where 72-58 Ma
plutons are abundant (Davidson et al., 1992;
Gehrels et al., 2009; Waldien et al., 2021). The
new petrochronology data presented here sug-
gest that inverted metamorphism in the north-
ern Cordillera resulted from orogen-scale thrust-
sense ductile shearing along the Insular—North
American boundary at ca. 72-56 Ma. We inter-
pret metamorphic inversion as a consequence of
advective heating (Pavlis, 1986; Davidson et al.,
1992) during non-coaxial flow.

Erdmer and Mortensen (1993) postulated
that the three localities discussed here formed
a single ~1200-km-long metamorphic-plutonic
belt that was dissected by the Denali fault. We
leverage a recent palinspastic restoration of the
Denali fault (Waldien et al., 2021; Fig. 4) and the
new monazite data to test this hypothesis. The
restoration of Waldien et al. (2021) uses detrital
zircon U-Pb age spectra and regional map pat-
terns to argue that the Maclaren schist, Clear-
water metasediments, and associated plutonic
rocks (Clearwater Mountains, Alaska; A—A’ on
Fig. 1) correlate with the Kluane schist, Deza-
deash Formation, and associated plutonic rocks
(Kluane Lake, YT; B-B’ on Fig. 1). We contend
that the identical U-Pb monazite petrochronol-
ogy between these two localities strengthens
the interpretation that they represent a single
metamorphic belt dissected by ~480 km of
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displacement on the Denali fault since 52 Ma
(Fig. 4) (Waldien et al., 2021). Critically, the
Coast Mountains and Kluane Lake localities
both lie northeast of the Denali fault and host
synchronous inverted metamorphism where
Insular-derived metasediments were thrust
beneath the Yukon-Tanana Terrane. In each of
the three localities considered here, inverted
metamorphism formed between the Insular Belt
and North America at 72-56 Ma within a thick
ductile shear zone that uplifted melt-weakened
North American rocks over the Insular Belt.
Reconstruction of this structural system through
Denali fault restoration reveals a >1000-km-
long shear zone (Fig. 4) that represents the ter-
minal suture of the most profound crustal growth

event in the Phanerozoic record of the northern
North American Cordillera.
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