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Abstract. We apply Menke’s JSJ decomposition for symplectic fillings to several families of contact 3-manifolds.
Among other results, we complete the classification up to orientation-preserving diffeomorphism of strong sym-
plectic fillings of lens spaces. We show that exact symplectic fillings of contact manifolds obtained by surgery on
certain Legendrian negative cables are the result of attaching a Weinstein 2-handle to an exact filling of a lens space.
For large families of contact structures on Seifert fibered spaces over S2, we reduce the problem of classifying
exact symplectic fillings to the same problem for universally tight or canonical contact structures. Finally, virtually
overtwisted circle bundles over surfaces with genus greater than one and negative twisting number are seen to
have unique exact fillings.

1. Introduction and statement of results

When studying symplectic fillings of contact manifolds, one often wonders whether decompositions which
exist for the contact manifold extend to its fillings. For instance, Eliashberg proved the following result.

Theorem 1.1 ([Eli90; CE12]). Suppose that a 3-dimensional contact manifold (M, ξ) is obtained from another contact
manifold (M ′, ξ′) via connected sum. Then every symplectic filling of (M, ξ) is obtained by attaching a Weinstein
1-handle to a symplectic filling of (M ′, ξ′).

So the symplectic fillings of a contact manifold obtained by connected sum are determined by the fillings
of the parties to the connected sum. Thus, one may attempt to classify the symplectic fillings of a contact
manifold (M, ξ) by identifying an embedded sphere along which (M, ξ) decomposes as a connected sum, and
then classifying the symplectic fillings of the contact manifolds resulting from this decomposition. Recently,
Menke established a result analogous to that of Eliashberg, decomposing a contact manifold along a torus
rather than a sphere; Menke calls this result a JSJ decomposition for symplectic fillings, in reference to work of
Jaco-Shalen [JS78] and Johannson [Joh79].

While Eliashberg’s connected sum result allows us to split a contact 3-manifold along any convex sphere,
the tori along which Menke’s result may be applied are required to satisfy an additional geometric criterion.
A mixed torus is an embedded convex torus T ⊂ (M, ξ) admitting a virtually overtwisted neighborhood of
the form T 2 × [0, 2], where T is identified with T 2 × {1} and each of T 2 × [0, 1] and T 2 × [1, 2] is a basic slice.
One can then define the notion of splitting (M, ξ) along T as follows. Let si denote the slope of T 2 × {i}. The
identification of T 2 with R2/Z2 may be normalized so that s0 = −1 and s1 = ∞. With this normalization,
splitting (M, ξ)with slope s along T will produce a contact manifold (M ′, ξ′). Here

M ′ := S0 ∪ψ0 (M \ T ) ∪ψ1 S1,

where each Si is a solid torus and ψi : ∂Si → Ti is chosen so that the image of a meridian in ∂Si has slope s
in Ti. Notice that the dividing set is vertical, and thus smust be an integer. We define ξ′ to agree with ξ on
M \T , and on Si ⊂M ′, ξ′ is the unique tight contact structure determined by the characteristic foliation of ∂Si.

Finally, where Theorem 1.1 constructs fillings of a contact manifold (M, ξ) by attachingWeinstein 1-handles
to fillings of a decomposed contact manifold (M ′, ξ′), the JSJ decomposition for symplectic fillings attaches
round symplectic 1-handles to fillings. Round symplectic 1-handle attachment is described in [Ada17] and
[Avd21], and is equivalent to Weinstein 1-handle attachment followed by Weinstein 2-handle attachment.
In particular, attaching a round symplectic 1-handle to a symplectic filling (W,ω) along Legendrian knots
L0, L1 in its boundary is equivalent to attaching a Weinstein 1-handle to (W,ω) along points pi ∈ Li, i = 0, 1,
and then attaching a Weinstein 2-handle to the resulting filling along the knot L obtained by surgering L0

and L1 along p0 and p1. See [Avd21, Section 4.2] or [Chr21, Section 4] for further details.
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Figure 1. Handlebody diagram for a filling of L(p, q). We produce a contact structure on
L(p, q) by putting each of the unknots in Legendrian position and stabilizing appropriately.

At last, we may state Menke’s JSJ decomposition for symplectic fillings.

Theorem 1.2 ([Men18, Theorem 1.1]). Let (M, ξ) be a closed, cooriented 3-dimensional contact manifold, and let
(W,ω) be an exact symplectic filling of (M, ξ). If there exists a mixed torus T 2 ⊂ (M, ξ), with normalized embedding
T 2 × [0, 2], then there exists a (possibly disconnected) symplectic manifold (W ′, ω′) such that:

• (W ′, ω′) is an exact filling of its boundary (M ′, ξ′);
• (M ′, ξ′) is the result of splitting (M, ξ) with some slope 0 ≤ s ≤ s2 − 1 along T ;
• (W,ω) can be recovered from (W ′, ω′) by round symplectic 1-handle attachment.

If (M ′, ξ′) is a contact manifold obtained from (M, ξ) via Legendrian surgery along a Legendrian knot
L ⊂ (M, ξ) which has been stabilized both positively and negatively, a remarkable application of Menke’s JSJ
decomposition shows that the symplectic fillings of (M ′, ξ′) correspond to those of (M, ξ).

Theorem 1.3 ([Men18, Theorem 1.3]). Let L ⊂ (M, ξ) be a Legendrian knot in a contact 3-manifold, and let
(M ′, ξ′) be the result of contact surgery on (M, ξ) along S+S−(L). Then every exact symplectic filling of (M ′, ξ′) may
be obtained from an exact symplectic filling of (M, ξ) by attaching a Weinstein 2-handle along S+S−(L).

The purpose of this note is to observe some consequences of Theorems 1.2 and 1.3 for the classification
of symplectic fillings of virtually overtwisted lens spaces, spaces resulting from surgeries on Legendrian
negative cables, certain tight contact structures on Seifert fibered spaces, and virtually overtwisted circle
bundles.

1.1. Lens spaces. Our first application of Menke’s result is to virtually overtwisted lens spaces. Namely, we
prove the following result.

Theorem 1.4. Let ξ be a virtually overtwisted tight contact structure on the lens space L(p, q), with p > q > 0 and
(p, q) = 1. Then every strong (respectively, exact) symplectic filling of (L(p, q), ξ) is obtained by attaching a sequence
of Weinstein 2-handles to a strong (respectively, exact) symplectic filling of a connected sum of universally tight lens
spaces.

Remark. This result has also been obtained by Etnyre-Roy in [ER21], where the consequences of this classifi-
cation are more fully explored. Moreover, if the universally tight lens spaces which result from Theorem 1.4
have their fillings classified up to symplectomorphism, then Etnyre-Roy give a classification of the fillings of
the original lens space up to symplectomorphism.

Note that, while Theorem 1.2 is stated for exact symplectic fillings, Theorem 1.4 includes statements for
both strong and exact symplectic fillings. For lens spaces, the classification problems for strong and exact
symplectic fillings are equivalent. Per Wendl [Wen10], every strong symplectic filling of a contact 3-manifold
supported by a planar open book decomposition is symplectic deformation equivalent to a blow-up of a Stein
filling of the contact manifold. But all tight contact structures on lens spaces are supported by planar open
book decompositions, according to Schonenberger [Sch07, Theorem 3.3]. Thus a classification of the exact
symplectic fillings of a lens space provides a classification of the strong symplectic fillings, up to symplectic
deformation equivalence and blow-up.
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By work of Giroux [Gir00] and Honda [Hon00a], all tight contact structures on L(p, q) can be described
as the contact boundary of a Stein handlebody. For p > q > 0, we write

(1) −p
q
= [a0, a1, . . . , an] := a0 −

1

a1 −
1

. . . −
1

an

,

for some uniquely determined integers a0, . . . , an ≤ −2. Then L(p, q) admits |Πni=1(ai + 1)| distinct tight
contact structures, up to isotopy. We realize these contact structures by putting the unknots of Figure 1 into
Legendrian position and stabilizing until the framing coefficient becomes −1 with respect to the contact
framing. In particular, the knot labeled ai is stabilized −2 − ai times, giving us −1 − ai choices for how
this stabilization is performed. The universally tight contact structures on L(p, q) are those for which every
stabilization (across all knots) is of a single sign.

If, in the virtually overtwisted case, our handlebody diagram features a knotK which has been stabilized
both positively and negatively, then we may immediately apply Theorem 1.3 to conclude that all fillings of
(L(p, q), ξ) result from attaching a Weinstein 2-handle to (L(p′, q′), ξ′)#(L(p′′, q′′), ξ′′), the connected sum
that remains whenK is removed from the diagram. Note that this recovers a result of Plamenevskaya–Van
Horn-Morris [PV10] which says that (L(p, 1), ξvot) has a unique exact filling, for all p. Thus the work of
proving Theorem 1.4 is reduced to the case where each knot in the handlebody diagram for (L(p, q), ξ)
features stabilizations of only one sign, but for which these signs do not all agree. In such a case we are
still able to find a mixed torus, but the contact manifold ∂(W ′, ω′) which results from applying Theorem
1.2 to a filling (W,ω) of (L(p, q), ξ) is not uniquely determined. The possibilities are enumerated in Section 2.1.

The classification of symplectic fillings for lens spaces has a long history. Work of Gromov [Gro85] and
Eliashberg [Eli90] implies that the unique tight contact structures on S3 and S1 × S2 admit unique exact
fillings. Later, McDuff [McD90] showed that the standard tight contact structure on L(p, 1) is uniquely
fillable, except in the case p = 4, when there are precisely two exact fillings, up to symplectomorphism.
More generally, Lisca [Lis08] obtained a classification up to orientation-preserving diffeomorphism of the
symplectic fillings of (L(p, q), ξstd). In the case of a virtually overtwisted contact structure on L(p, q), we
have the above-cited result of Plamenevskaya–Van Horn-Morris, as well as results due to Kaloti [Kal13],
Fossati [Fos19], and others for several families of lens spaces. Theorem 1.4 reduces the virtually overtwisted
problem to the universally tight problem, and thus completes the classification of strong symplectic fillings
of lens spaces up to orientation-preserving diffeomorphism.

1.2. Surgeries on Legendrian negative cables. Next we consider spaces obtained from (S3, ξstd) via contact
surgery along certain Legendrian knots. Theorem 1.3 is the first instance of such a result, showing that these
surgeries have unique fillings when the Legendrian knot has been stabilized both positively and negatively.
In this section we study fillings in the case that our knot is a Legendrian negative cable of a Legendrian with
stabilizations of opposite sign.

First defined in [Ng01], a thorough study of Legendrian satellite knots can be found in [EV18], some
notation of which we now recall. We consider a contact manifold (V, ξV ) defined by V = D2

y,z × S1
θ ,

ξV = ker(dz − ydθ). Any Legendrian knot L ⊂ (S3, ξstd) has a neighborhood ν(L) which is contactomor-
phic to (V, ξV ), and given any Legendrian knot Q ⊂ V , we denote by Q(L) ⊂ ν(L) the image of Q under
this contactomorphism. We pay special attention to the case where Q ⊂ V is a Legendrian (p, q)-torus
knot, for some coprime p, q with q > 0, in which case we call Q(L) a Legendrian cable of L. We point out
that if Q is a (p, q)-torus knot and K is the knot type of L, then the knot type of Q is Kp+q tb(L),q, that of
a smooth (p + q tb(L), q)-cable of L. The reason for this is that the contactomorphism between ν(L) and
V identifies the product framing on V with the contact framing on ν(L); see [EV18, Section 5] for more details.

We will also need a particular embedding of (V, ξV ) into itself. Notice that the core C of V is a Legendrian
curve, and that (V, ξV ) = ν(C) is a standard neighborhood of C. We may stabilize C to obtain S+(C) ⊂ V
and identify a standard neighborhood ν(S+(C)) ⊂ V of the stabilization. We have a contactomorphism
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between ν(C) = (V, ξV ) and ν(S+(C)) ⊂ (V, ξV ), giving us an embedding ζ : (V, ξV ) ↪→ (V, ξV ). Given some
Legendrian Q ⊂ V , this embedding produces ζ(Q) ⊂ V , a Legendrian cable of the stabilization S+(C).

Next we point out that a Legendrian knot Q ⊂ V which is smoothly a (p, q)-torus knot can be used to
determine a tight contact structure ξQ on L(q2, pq − 1). The construction is as follows: let S ∼= (D2 × S1, ξstd)
be a tight solid torus, glued to V in such a way that V ∪ S ∼= (S2 × S1, ξstd). Then (L(q2, pq − 1), ξQ) is the
result of Legendrian surgery on (S2 × S1, ξstd) along ζ(Q).

The result of this section will consider fillings of the contact manifold which results from Legendrian
surgery on (S3, ξstd) along a knot Q(S+S−(L)), under certain conditions on this knot. In particular, we will
show that all such fillings may be obtained by attaching a Weinstein 2-handle to a filling of (L(q2, pq − 1), ξQ)
along a Legendrian knot LQ ⊂ (L(q2, pq − 1), ξQ). Our final preparation before stating the result is to
identify the knot LQ. First, consider the knotK = {pt} × S1 in (S2 × S1, ξstd); we takeK to be disjoint from
Q ⊂ S2 × S1. By performing the contact connected sum (S2 × S1, ξstd)#(S3, ξstd) along points x ∈ K and
y ∈ S−(L), we obtain K#S−(L) as a Legendrian knot in (S2 × S1, ξstd). Finally, we perform Legendrian
surgery on (S2 × S1, ξstd) along ζ(Q), andK#S−(L) passes to a Legendrian knot in (L(q2, pq − 1), ξQ). This
is the Legendrian knot LQ of interest to us.

We are now prepared to state our result.

Theorem 1.5. Let L ⊂ (S3, ξstd) be a Legendrian knot with smooth knot typeK, and letQ(S+S−(L)) be a Legendrian
negative cable of S+S−(L), the smooth knot type of which is Kp,q. Suppose that the Thurston-Bennequin number of
Q(S+S−(L)) is maximal among Legendrian knots of typeKp,q , and let (M, ξ) be the contact manifold which results from
Legendrian surgery on (S3, ξstd) along Q(S+S−(L)). Then every exact symplectic filling of (M, ξ) may be obtained
by attaching a Weinstein 2-handle to an exact symplectic filling of (L(q2, pq − 1), ξQ) along LQ ⊂ L(q2, pq − 1).

Remark.
(1) Because Q(S+S−(L)) has the smooth knot type Kp,q , this knot is a Legendrian (p+ q(2− tb(L)), q)-

cable of S+S−(L). Since Q(S+S−(L)) is a Legendrian negative cable, p < q(tb(L)− 2).
(2) According to [EV18, Theorem 5.16], the Thurston-Bennequin number of Q(S+S−(L)) is pq, and thus

M is the result of (pq−1)-surgery alongKp,q . By [Gor83, Corollary 7.3], this surgery is diffeomorphic
to (pq − 1)/q2-surgery along K.

1.3. Seifert fibered spaces over S2. In this section we apply Menke’s result to large classes of contact struc-
tures on spaces which are Seifert fibered over S2, with at least three singular fibers. Our results reduce
the classification of fillings of these spaces to the classification problem for lens spaces — a problem which
is settled by the previous section. We will first consider Seifert fibered spaces whose Euler number e0 is
non-negative, and then consider spaces with e0 ≤ −3. Here the Euler number of a Seifert fibered space
M(r1, . . . , rn) over S2 is defined to be e0 := Σ⌊ri⌋. Starkston [Sta15] and Choi-Park [CP19] have previously
studied fillings of small Seifert fibered spaces satisfying e0 ≤ −3, but we consider a distinct collection of
contact structures on these spaces.

On small Seifert fibered spaces — those with precisely three singular fibers — the contact structures
satisfying e0 ≥ 0 or e0 ≤ −3 have been classified by Ghiggini-Lisca-Stipsicz [GLS06] and Wu [Wu04], and
we will see that Menke’s results apply to a great many of these structures. For Seifert fibered spaces over S2

with more than three singular fibers, the tight structures have not been fully classified, but we can construct
large classes of tight structures for which Menke’s result applies.

1.3.1. The case e0 ≥ 0. We now consider a Seifert fibered space over S2 with n ≥ 3 singular fibers. Choose
coprime integers qi, pi > 0, i = 1, . . . , n, which satisfy qi < pi for i = 1, . . . , n − 1. We may construct a
tight contact structure ξ on M = M( q1p1 , · · · ,

qn
pn

) by realizing M as the boundary of a Stein domain with
handlebody description as in Figure 2. Here

(2) −pi
qi

= [ai0, a
i
1, . . . , a

i
li ] for i = 1, . . . , n,
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Figure 2. Handlebody decomposition of a Stein filling ofM = M( q1p1 , · · · ,
qn
pn

). A contact
structure is produced onM by putting each of the knots in Legendrian position and stabiliz-
ing appropriately.

for some uniquely determined integers

an0 ≤ −1 and a10, . . . , a
n−1
0 , ai1, . . . , a

i
li ≤ −2.

We obtain a Stein structure on the handlebody in Figure 2 by putting each unknot in Legendrian position with
clockwise orientation and stabilizing until the framing coefficient becomes −1with respect to the contact
framing. It is possible for distinct choices of stabilizations to lead to the same tight contact structure onM —
that is, there are equivalence relations among the handlebody diagrams. For small Seifert fibered spaces,
Ghiggini-Lisca-Stipsicz show in [GLS06] that there are precisely⃓⃓⃓⃓

⃓⃓
(︄

3∏︂
i=1

(ai0 + 1)−
3∏︂
i=1

ai0

)︄
3∏︂
i=1

li∏︂
j=1

(aij + 1)

⃓⃓⃓⃓
⃓⃓

positive tight contact structures onM , up to isotopy. IfM has four singular fibers, Medetoğullari shows in
[Med10] that the number of distinct Stein fillable contact structures is between⃓⃓⃓⃓

⃓⃓
(︄

4∏︂
i=1

(ai0 + 1)−
4∏︂
i=1

ai0

)︄
4∏︂
i=1

li∏︂
j=1

(aij + 1)

⃓⃓⃓⃓
⃓⃓ and 2

⃓⃓⃓⃓
⃓⃓
(︄

4∏︂
i=1

(ai0 + 1)−
4∏︂
i=1

ai0

)︄
4∏︂
i=1

li∏︂
j=1

(aij + 1)

⃓⃓⃓⃓
⃓⃓ .

Generally, if n ≥ 4, thenM contains incompressible tori and therefore admits infinitely many tight contact
structures according to work of Colin [Col01a; Col01b] and Honda-Kazez-Matić [HKM02].

Our first result for spacesM which are Seifert fibered over S2 applies to tight contact structures which
are thoroughly mixed, a notion we define shortly. The definition is designed so that each singular fiber ofM
admits a tubular neighborhood whose boundary is a mixed torus. Applying Theorem 1.2 to a filling of (M, ξ)
will then leave us with a boundary connected sum of fillings of lens spaces.
Definition. Let ξ be a tight contact structure onM( q1p1 , · · · ,

qn
pn

). We will call ξ thoroughly mixed if ξ admits a
Stein filling as in Figure 2 such that one of the following holds:

• if e0 = 0, then each of K1, . . . ,Kn has been stabilized positively (or, equivalently, each has been
stabilized negatively);
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K1

K2

K3

(a) A thoroughly mixed contact structure.

K1

K2

K3

(b) A lightly mixed contact structure.

Figure 3. Contact structures onM( 13 ,
1
2 ,

1
2 ).

• if e0 > 0, then each ofK1, . . . ,Kn−1 has been stabilized positively, and the nearest stabilized unknot
adjacent to Kn has also been stabilized positively (or, equivalently, each of these stabilizations is
negative.

Notice thatKn has no stabilizations in the case e0 > 0.
See Figure 3 for an example of a thoroughly mixed contact structure. In Section 2.3.1 we will provide

another construction of thoroughly mixed tight contact structures and explain how to produce a mixed torus
for each singular fiber.

Theorem 1.6. Let ξ be a tight contact structure on the Seifert fibered spaceM =M( q1p1 , · · · ,
qn
pn

), for some n ≥ 3 and
coprime positive integers qi, pi with qi < pi for 1 ≤ i ≤ n − 1 and pi ≥ 2 for 1 ≤ i ≤ n. If ξ is thoroughly mixed,
then there are tight contact structures ξi on L(qi,−pi) for i = 1, . . . , n and Legendrian knots L−

i ⊂ (L(qi,−pi), ξi),
L+
i ⊂ (L(qi+1,−pi+1), ξi+1) for i = 1, . . . , n− 1 such that every exact symplectic filling of (M, ξ) is obtained from

a disjoint union of exact fillings of (L(q1,−p1), ξ1), . . . , (L(qn,−pn), ξn) by attaching a round symplectic 1-handle
along L±

i , for i = 1, . . . , n− 1.

Several families of tight lens spaces are known to have unique exact fillings, and from these we obtain
families of tight Seifert fibered spaces with unique exact fillings.

Corollary 1.7. Let ξ be a thoroughly mixed tight contact structure on M = M
(︂
q1
p1
, · · · , qnpn

)︂
, with qi < pi for

1 ≤ i ≤ n − 1 and pi ≥ 2 and gcd(qi, pi) = 1 for 1 ≤ i ≤ n. If any of the following conditions hold, then (M, ξ)
admits a unique exact symplectic filling, up to symplectomorphism:

(a) qi ∈ {1, 2, 3};
(b) for some b(i)0 − 2 > b

(i)
1 ≥ 2 andm1, . . . ,mn−1 ≥ 2,mn ≥ 1, we have

qi
pi

=
b
(i)
0 b

(i)
1 + 1

mi(b
(i)
0 b

(i)
1 + 1)− b

(i)
1

for i = 1, . . . , n;
(c) for some b(i)0 , b

(i)
1 ≥ 5 andm1, . . . ,mn−1 ≥ 2,mn ≥ 1, we have

qi
pi

=
b
(i)
0 b

(i)
1 − 1

mi(b
(i)
0 b

(i)
1 − 1)− b

(i)
1

for i = 1, . . . , n.

Proof. Theorem 1.6 provides a recipe for constructing any exact filling of (M, ξ) from fillings of (L(qi,−pi), ξi),
so this is simply a matter of observing that if any of these conditions hold, then (L(qi,−pi), ξi) is uniquely
fillable. If condition (a) holds, then either L(qi,−pi) = L(qi, 1) or L(qi,−pi) = L(3, 2). In either case, the
tight contact structures on L(qi,−pi) are all uniquely fillable by work of Eliashberg [Eli90], McDuff [McD90],
and Plamenevskaya–Van Horn-Morris [PV10]. When condition (b) holds, we are considering tight contact
structures on L(b(i)0 b

(i)
1 + 1, b

(i)
1 ). Universally tight structures on such a lens space were shown to be uniquely
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fillable by Lisca [Lis08]. In particular, we have p = b
(i)
0 b

(i)
1 + 1 and q = b

(i)
1 , so

p

p− q
=

b
(i)
0 b

(i)
1 + 1

b
(i)
0 b

(i)
1 + 1− b

(i)
1

= [2, . . . , 2, b
(i)
1 + 1],

where the number of copies of 2 at the start of this continued fraction is b(i)0 . In Lisca’s notation, it follows that
the unique exact symplectic filling of L(p, q) isWp,q((1, 2, . . . , 2, 1)). The virtually overtwisted structures on
L(b

(i)
0 b

(i)
1 +1, b

(i)
1 ) are uniquely fillable according to work of Kaloti [Kal13, Theorem 1.10]. Similarly, condition

(c) produces lens spaces of the form L(b
(i)
0 b

(i)
1 − 1, b

(i)
1 ), the fillings of which are known to be unique by work

of Lisca [Lis08] in the universally tight case and Fossati [Fos19, Theorem 1] in the virtually overtwisted case.
The relevant continued fraction for applying Lisca’s work to these lens spaces is

b
(i)
0 b

(i)
1 − 1

b
(i)
0 b

(i)
1 − 1− b

(i)
1

= [2, . . . , 2, 3, 2, . . . , 2],

which begins with b(i)0 − 2 copies of 2 and ends with b(i)1 − 2 copies. Once again, the unique exact filling is
given byWp,q((1, 2, . . . , 2, 1)) in Lisca’s notation. The observation that

b
(i)
0 b

(i)
1 − 1

b
(i)
1

= [b
(i)
0 , b

(i)
1 ]

allows us to apply Fossati’s result. □

Another class of contact structures on Seifert fibered spaces which admit abundant mixed tori are those
which are lightly mixed.
Definition. Let ξ be a tight contact structure on M( q1p1 , · · · ,

qn
pn

). We will call ξ lightly mixed if ξ is not
thoroughly mixed, but admits a Stein filling as in Figure 2 for which at least n− 2 ofK1, . . . ,Kn have been
stabilized both positively and negatively. We say that ξ is lightly mixed about Ki and Kj to indicate that ξ
admits a Stein filling for which each of K1, . . . ,Kn except Ki and Kj have been stabilized positively and
negatively.

Like their thoroughly mixed counterparts, exact symplectic fillings of lightly mixed contact structures on
Seifert fibered spaces may also be decomposed into lens space fillings, though one of the lens spaces will
have a slightly more complicated expression.

Theorem 1.8. Let ξ be a tight contact structure on the Seifert fibered spaceM =M( q1p1 , · · · ,
qn
pn

), for some coprime
positive integers qi, pi with qi < pi for 1 ≤ i ≤ n − 1 and pi ≥ 2 for 1 ≤ i ≤ n. Let each −pi/qi have continued
fraction as above. Suppose that ξ is lightly mixed aboutKi andKj , and let

−p
′

q′
= [aili , . . . , a

i
1, a

i
0 + aj0, a

j
1, . . . , a

j
lj
].

Then there exist (1) a tight contact structure ξk on L(qk,−pk), for each k ̸= i, j; (2) a tight contact structure ζ ′
on L(p′, q′); (3) Legendrian knots K ′

k in #k ̸=i,j(L(qk,−pk), ξk)#(L(p′, q′), ζ ′) for k ̸= i, j, such that every exact
symplectic filling of (M, ξ) is obtained from an exact symplectic filling of

#
k ̸=i,j

(L(qk,−pk), ξk)#(L(p′, q′), ζ ′)

by attaching a Weinstein 2-handle along eachK ′
k, k ̸= i, j.

As with Theorem 1.6, we may use Theorem 1.8 and the classification of exact fillings of some lens spaces
to identify families of tight Seifert fibered spaces whose exact fillings we may classify. One example of such a
family is given by the following corollary.

Corollary 1.9. Choose p1, p2, p3 ≥ 2. If ξ is a tight contact structure onM =M( 1
p1
, 1
p2
, 1
p3
) which is lightly mixed

aboutKi−1 andKi+1 — where subscripts are labeled modulo 3 — and pi−1 + pi+1 ̸= 4, then (M, ξ) admits a unique
exact filling, up to symplectomorphism.
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Proof. Applying Theorem 1.8 to such a filling leaves us with a filling of S3#L(pi−1+ pi+1, 1), with some tight
contact structure. By work of Eliashberg [Eli90] this filling must be the boundary connected sum of a filling
of (S3, ξstd) with a filling of (L(pi−1 + pi+1, 1), ζ). Because pi−1 + pi+1 is not equal to 4, results of McDuff
[McD90] and Plamenevskaya–Van Horn-Morris [PV10] show that (L(pi−1 + pi+1, 1), ζ) is uniquely fillable,
as is the case for (S3, ξstd). So (M, ξ) is uniquely fillable. □

We will see in Section 2.3.1 that there are precisely six tight contact structures onM( 1
p1
, 1
p2
, 1
p3
) which are

neither lightly nor thoroughly mixed, and we will show that each of these structures is universally tight.
According to Corollaries 1.7 and 1.9, these six are the only tight structures onM( 1

p1
, 1
p2
, 1
p3
) which we cannot

conclude have unique exact fillings if, say, p1, p2, p3 ≥ 3.

Corollary 1.10. Choose integers p1, p2, p3 ≥ 2, no two of which sum to 4. If ξ is a virtually overtwisted tight
contact structure onM =M( 1

p1
, 1
p2
, 1
p3
), then (M, ξ) admits a unique exact filling (W,ω), up to symplectomorphism.

Moreover,W is simply connected, and has H2(W ) = Z2.

Proof. The uniqueness of the filling (W,ω) follows from Corollaries 1.7 and 1.9. To see that W is simply
connected and has H2(W ) = Z2, consider the handlebody diagram forW given by Figure 2. This diagram
consists of a single 1-handle, with three 2-handles attached along parallel knotsK1,K2,K3 which pass over
the 1-handle. We may handleslide K2 and K3 over K1 and then cancel K1 with the 1-handle to obtain a
handlebody diagram forW which consists of two 2-handles attached to a 0-handle. Such a handlebody is
simply connected, with H2(W ) = Z2. □

Wrapping up loose ends, we have the following result. In this result, we refer to a horizontal link in Figure 2,
which consists of someKi along with the attached chain of Legendrian unknots.

Theorem 1.11. Let ξ be a tight contact structure on a small Seifert fibered spaceM , with surgery diagram as in Figure
2. If any of the horizontal links have both positive and negative stabilizations, then every exact symplectic filling of
(M, ξ) can be obtained from a disjoint union of a filling of a universally tight small Seifert fibered space, along with
fillings of universally tight lens spaces, by attaching a sequence of round symplectic 1-handles.

1.3.2. The case e0 ≤ −3. Finally, we discuss Seifert fibered spaces over S2 with Euler number e0 ≤ −3. In
particular, we consider M = M(− q1

p1
, · · · ,− qn

pn
) with pi ≥ 2, qi ≥ 1, and (pi, qi) = 1 for i = 1, . . . , n. The

Euler number is then given by

e0 =

n∑︂
i=1

⌊︃
− qi
pi

⌋︃
≤ −n.

We have continued fraction expansions
− qi
pi

= [ai0, . . . , a
i
li ],

for some uniquely determined integers satisfying ai0 = −(⌊ qipi ⌋+ 1) and aij ≤ −2 for j ≥ 1. ThenM admits a
surgery diagram as in Figure 4. Notice that e0 = Σni=1a

i
0.

We may construct contact structures onM by putting the knots in Figure 4 into Legendrian position and
stabilizing until the framing coefficient becomes −1with respect to the contact framing. We see that there are⃓⃓⃓⃓

⃓⃓(e0 + 1)

n∏︂
i=1

ℓi∏︂
j=1

(aij + 1)

⃓⃓⃓⃓
⃓⃓

choices for these stabilizations, and in case we have a small Seifert fibered space, Wu shows in [Wu04] that
each such choice leads to a distinct contact structure up to isotopy, and indeed all contact structures onM
can be constructed in this way.
Definition. LetM =M(− q1

p1
, · · · ,− qn

pn
) be as above, and construct a tight contact structure ξ onM by putting

the knots of Figure 4 into Legendrian position. We say that (M, ξ) is centrally mixed if the central knot of
Figure 4 is stabilized both positively and negatively.

Remark. Notice that if (M, ξ) is centrally mixed, then e0 ≤ −4.



SOME APPLICATIONS OF MENKE’S JSJ DECOMPOSITION FOR SYMPLECTIC FILLINGS 9

e0

a11 an1

a12 an2

a1ℓ1−1 anℓn−1

a1ℓ1 anℓnK1
1

Kn
1

K1
2

Kn
2

K1
ℓ1−1

Kn
ℓn−1

K1
ℓ1

Kn
ℓn

Figure 4. A surgery diagram forM(− q1
p1
, · · · ,− qn

pn
), e0 ≤ −3.

Our Seifert fibered spaceM admits a canonical contact structure as the boundary of a plumbing 4-manifold.
The 4-manifold is a plumbing of disc bundles of 2-spheres, with plumbing graph as in Figure 5. Each node
of the graph corresponds to a symplectic 2-sphere, and each edge represents an orthogonal intersection
between them; in this way we produce a symplectic structure on the plumbing 4-manifold, and a canonical
contact structure on its boundaryM . The fillings of this canonical contact structure were studied by Starkston
[Sta15] and Choi-Park [CP19], each under some additional assumptions onM . Starkston provided topo-
logical restrictions on the strong symplectic fillings of dually positive Seifert fibered spaces over S2. In some
cases, these restrictions produce classifications up to diffeomorphism of minimal strong symplectic fillings.
Choi-Park classified all minimal symplectic fillings of small Seifert 3-manifolds M(− q1

p1
,− q2

p2
,− q3

p3
), with

e0 ≤ −4 and with the canonical contact structure. An infinite family of Seifert fibered spaces with canonical
contact structure and e0 = −3 also saw their fillings classified by Schönenberger in [Sch07, Theorem 4.4].

We point out that the canonical contact structure is not centrally mixed. Indeed, the Legendrian surgery
diagram for the canonical contact structure has all of its stabilizations of a single sign.

Proposition 1.12. IfM =M(− q1
p1
, · · · ,− qn

pn
) has canonical contact structure ξ as described above, and Legendrian

surgery diagram as in Figure 4, then all the stabilizations in the Legendrian surgery diagram are of a single sign.

Proof. As described above, there is a symplectic 4-manifold (W,ω), obtained by plumbing disc bundles of
2-spheres, which fills (M, ξ). For each symplectic sphere Sji , the adjunction formula takes the form

⟨c1(W ), [Sji ]⟩ = [Sji ] · [S
j
i ] + 2.

At the same time, Sji corresponds to surgery along the Legendrian knotKj
i in Figure 4, and thus

[Sji ] · [S
j
i ] = fr(Kj

i ) = tb(Kj
i )− 1.

e0

a11 a12 a1ℓ1

an1 an2 anℓn

Figure 5. The plumbing graph associated to the surgery diagram in Figure 4.
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So ⟨c1(W ), [Sji ]⟩ = tb(Kj
i ) + 1. Finally, [Gom98, Proposition 2.3] allows us to compute the rotation number

ofKj
i :

rot(Kj
i ) = ⟨c1(W ), [Sji ]⟩ = tb(Kj

i ) + 1.

This rotation number can only be obtained by taking every stabilization to be negative. Note that taking all
stabilizations to be positive gives a contactomorphic (though not isotopic) contact structure. □

A straightforward consequence of the definition of centrally mixed and Theorem 1.3 is the following.

Proposition 1.13. LetM = M(− q1
p1
, . . . ,− qn

pn
), with pi ≥ 2, qi ≥ 1, with n ≥ 3. If ξ is a centrally mixed tight

contact structure onM , then every exact symplectic filling of (M, ξ) may be obtained from an exact symplectic filling of
n

#
i=1

(L(p′i, q
′
i), ξi)

by attaching a Weinstein 2-handle in a specified manner, where −p′i
q′i

= [ai1, . . . , a
i
li
] and ξi is a tight contact structure

determined by ξ.

More generally, we have the following result for any contact structures constructed from Figure 4.

Theorem 1.14. LetM = M(− q1
p1
, · · · ,− qn

pn
) be as above, and let ξ be a tight contact structure onM obtained by

putting the knots of Figure 4 into Legendrian position. Then every exact symplectic filling of (M, ξ) can be obtained by
attaching a sequence of round symplectic 1-handles to a disjoint union of fillings of universally tight lens spaces and a
Seifert fibered space with canonical contact structure.

This result will bemademore precise through a sequence of propositions in Section 2.3.3. We point out that,
together with Lisca’s classification of fillings for universally tight lens spaces and Choi-Park’s classification of
fillings for the canonical contact structure onM(− q1

p1
,− q2

p2
,− q3

p3
), e0 ≤ −4, Theorem 1.14 allows us to classify

the exact symplectic fillings of any contact structure onM(− q1
p1
,− q2

p2
,− q3

p3
), e0 ≤ −4.

1.4. Virtually overtwisted circle bundles over surfaces. Our final application of Menke’s JSJ decomposition
completes the classification of exact symplectic fillings for virtually overtwisted tight contact structures on
circle bundles over closed surfaces. We let π : M → Σ be a circle bundle over a closed Riemann surface Σ
of genus g, and we let ξ be a tight contact structure onM . Honda [Hon00b] defines the twisting number
t(S1) ≤ 0 of ξ to be the maximum non-positive twisting number achieved by a closed Legendrian curve in
M which is isotopic to the S1-fiber. Here the twisting number is measured relative to the fibration framing,
and is defined to be zero ifM admits a fiber-isotopic Legendrian curve with positive twisting number. In
[Hon00a] and [Hon00b], Honda classifies the tight contact structures onM , and in this note we classify the
exact symplectic fillings ofM , provided ξ is virtually overtwisted and t(S1) < 0.

Proposition 1.15. LetM → Σ be a circle bundle over a closed Riemann surface of genus g > 1, and let ξ be a virtually
overtwisted tight contact structure onM with t(S1) < 0. Then (M, ξ) admits a unique exact symplectic filling, up to
symplectomorphism.

Remark. The only circle bundles over S2 which admit virtually overtwisted contact structures have the form
L(|e|, 1), where e ≤ −2 is the Euler number of the circle bundle. Any virtually overtwisted contact structure
on such a lens space is uniquely exactly fillable, per Plamenevskaya–Van Horn-Morris [PV10, Theorem 1.2],
so the conclusion still holds. In the g = 1 case we have a circle bundle over T 2, which can also be realized as a
parabolic torus bundle over S1. If e ≤ −2, the conclusion again holds, but for e ≥ 2 the virtually overtwisted
structures admit no exact symplectic fillings. See [Chr21, Theorem 1.1].

The only virtually overtwisted circle bundles not addressed by Proposition 1.15, the lens spaces treated in
[PV10], or the torus bundles treated in [Chr21] are those with g > 1 and t(S1) = 0. In [LS03; LS04] Lisca-
Stipsicz verify a conjecture of Honda, which says that these structures are not symplectically semi-fillable,
and thus are not symplectically fillable. In Section 2.4, we will establish the following corollary.

Corollary 1.16. LetM → Σ be a circle bundle over a closed Riemann surface, with virtually overtwisted tight contact
structure ξ, and let t(S1) ≤ 0 be the twisting number. If t(S1) = 0, then (M, ξ) does not admit an exact symplectic
filling; if t(S1) < 0, then (M, ξ) admits a unique exact symplectic filling, up to symplectomorphism.



SOME APPLICATIONS OF MENKE’S JSJ DECOMPOSITION FOR SYMPLECTIC FILLINGS 11

Acknowledgements. The authors thank an anonymous referee for many helpful comments, and thank
Hyunki Min for a very useful correspondence. The first author was partially supported by NSF grant DMS-
1745583. The second author was partially supported by Grant No. 11871332 of the National Natural Science
Foundation of China.

2. Proofs

2.1. Lens spaces. Throughout this section we will consider a lens space L(p, q), p > q > 0with a virtually
overtwisted contact structure as depicted in Figure 1. Namely,

−p
q
= [a0, a1, . . . , ak]

for uniquely determined integers ai ≤ −2, and the stabilizations applied to the knots in Figure 1 do not all
have the same sign. We will prove Theorem 1.4 by showing that every strong or exact symplectic filling of
(L(p, q), ξ) can be obtained by attaching a Weinstein 2-handle to a filling of a connected sum of the form

(L(p′, q′), ξ′)#(L(p′′, q′′), ξ′′),

obtained by deleting a single knot from the diagram describing (L(p, q), ξ). Beginning with an arbitrary
filling of (L(p, q), ξ), this decomposition may be inductively applied (in conjunction with Theorem 1.1) until
we have a symplectic filling of a connected sum of the form

ℓ

#
i=1

(L(pi, qi), ξi),

where each (L(pi, qi), ξi) is a universally tight lens space. To produce a complete list of the fillings of (L(p, q), ξ),
we consider the fillings of all connected sums of this form which may result from (L(p, q), ξ).

In case one of the knots in Figure 1 has been stabilized both positively and negatively, we may directly
apply Theorem 1.3, as described in Section 1, to realize our symplectic filling as the result of attaching a
Weinstein 2-handle to a connected sum. We now focus on the case where no knots have been stabilized both
positively and negatively. In this case we may identify knotsK+ andK−, each of which has been stabilized
at least once, with all stabilizations being positive or negative, respectively. Moreover, we may chooseK+

andK− to be adjacent, in that none of the knots between them have been stabilized. Finally, our argument
loses no generality by assuming thatK+ is to the right ofK− in Figure 1.

We now define
−p

′

q′
= [a0, . . . , ak−1, ak + 1],

where we identify [a0, . . . , ak−1, ak + 1] with [a0, . . . , ak−2, ak−1 + 1] if ak = −2. Now [Hon00a, Section 4.6]
allows us to write L(p, q) = V0 ∪A V1, where V0 and V1 are solid tori with a map A : ∂V0 → ∂V1, the dividing
curves of ∂V0 are vertical, and the dividing curves of ∂V1 have slope −p′/q′. Moreover, we may decompose
V1 as

V1 = N ∪ (V1 \N),

with V1 \N ∼= T 2 × I , such that s0 = −1 and s1 = −p′/q′. Here we denote by si the slope of the dividing
curves of T 2 × {i}, for i = 0, 1.

The thickened torus T 2 × I has a basic slice decomposition which we now describe. Let
0 ≤ i1 < i2 < · · · < iℓ ≤ k

be the indices for which aij ≤ −3. Then T 2 × I decomposes into ℓ continued fraction blocks, with a total of
|(ai1 + 2)(ai2 + 2) · · · (aiℓ + 2)|

basic slices. The basic slices in each continued fraction block will all be of a single sign, and the continued
fraction blocks corresponding to K+, K− will be adjacent, of opposite sign. We immediately see that the
boundary convex torus T sitting between the continued fraction blocks associated toK+ andK− is a mixed
torus, sandwiched between basic slices S+ ⊂ K+ and S− ⊂ K− of opposite sign.
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Let −p′1/q′1 be the slope of the dividing curves on T , and let −p′2/q′2, −p′0/q′0 be the opposite slopes of S+,
S−, respectively. We would like to normalize this neighborhood of T . After observing that

q′1p
′
2 − p′1q

′
2 = 1 and q′0p

′
1 − p′0q

′
1 = 1,

we see that applying the transformation(︃
1 0

p′2q
′
0 − q′2p

′
0 − 1 1

)︃(︃
−p′1 −q′1
p′2 q′2

)︃
∈ SL(2,Z)

leaves us with the slopes
s0 = −1, s1 = ∞, s2 = p′2q

′
0 − q′2p

′
0 − 1.

According to Theorem 1.2, applying the JSJ decomposition to a filling of (L(p, q), ξ) will produce a filling of
(M ′, ξ′), obtained from (L(p, q), ξ) by splitting with slope 0 ≤ s ≤ p′2q

′
0 − q′2p

′
0 − 2 along T .

We now claim that p′2q′0 − q′2p
′
0 − 2 = m+1, wherem is the number of unstabilized knots betweenK+ and

K− in Figure 1. According to [Hon00a, Lemma 4.12], the slopes of the basic slice decomposition of T 2 × I
are obtained by incrementing the last entry of the continued fraction expansion of −p′/q′ until we have −1.
In particular, we may write

−p
′
2

q′2
= [a0, a1, . . . , an,

m+1⏟ ⏞⏞ ⏟
−2, . . . ,−2]

for some n < k with an ≤ −3 and then see that

−p
′
1

q′1
= [a0, a1, . . . , an + 1]

and
−p

′
0

q′0
= [a0, a1, . . . , an + 2], if an ≤ −4 or − p′0

q′0
= [a0, a1, . . . , an−1 + 1], if an = −3.

We can now verify our claim inductively. If an ≤ −4 we have

[an + 2] = −an + 2

−1
and [an,

m+1⏟ ⏞⏞ ⏟
−2, . . . ,−2] = − (m+ 2)an + (m+ 1)

−(m+ 2)

and observe that
(−1)((m+ 2)an + (m+ 1))− (−(m+ 2))(an + 2) = m+ 3.

If we instead have an = −3, then

[an−1 + 1] = −an−1 + 1

−1
and [an−1,−3,

m+1⏟ ⏞⏞ ⏟
−2, . . . ,−2] = − (2m+ 5)an−1 + (m+ 2)

−(2m+ 5)
,

so
(−1)((2m+ 5)an−1 + (m+ 2))− (−(2m+ 5))(an−1 + 1) = m+ 3.

In either case, we may now apply the following inductive step. If a/b and a′/b′ satisfy ab′ − a′b = m+3, then

[r, a/b] =
ar − b

a
and [r, a′/b′] =

a′r − b′

a′

satisfy
(ar − b)a′ − a(a′r − b′) = ab′ − ba′ = m+ 3.

This proves our claim, so we see that every filling of (L(p, q), ξ) is obtained by attaching a round symplec-
tic 1-handle to a filling of a contact manifold which is obtained from (L(p, q), ξ) by splitting with slope
0 ≤ s ≤ m+ 1 along T .

It is now straightforward to check that splitting with slope s = 0 along T produces a disjoint union of lens
spaces, obtained from Figure 1 by deletingK− and realizing the two resulting chains of unknots in separate
diagrams. Attaching a round symplectic 1-handle to this disjoint union corresponds to first attaching a
Weinstein 1-handle which produces the connected sum of these lens spaces, and then attaching a Weinstein
2-handle alongK−. Similarly, splitting (L(p, q), ξ) with slope s = m+ 1 along T corresponds to deleting the
knot K+. Each intermediate slope corresponds to deleting an unstabilized knot between K− and K+. In
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⊔

Figure 6. Every filling of the top lens space L(89, 24) with the given contact structure is
obtained by attaching a round symplectic 1-handle to a filling of the disjoint union S3 ⊔
L(24, 7) below; the round 1-handle is attached along the dashed knots. Fillings of L(24, 7)
can be further decomposed as seen in Figure 7.

any case we see, as claimed above, that every filling of (L(p, q), ξ) can be obtained by attaching a Weinstein
2-handle to a symplectic filling of a connected sum of lens spaces which is obtained by erasing a single knot
from Figure 1. If the constituent lens spaces in this connected sum are virtually overtwisted, we may repeat
this process until we have a connected sum of universally tight lens spaces. This proves Theorem 1.4.

Theorem 1.4 and its proof provide a recipe for classifying the fillings of a virtually overtwisted lens space
(L(p, q), ξ). Given a depiction of the lens space as in Figure 1, we can produce a tree whose leaves are disjoint
unions of universally tight lens spaces, and every filling of (L(p, q), ξ) can be obtained by attaching a specified
sequence of round symplectic 1-handles to a filling of one of these disjoint unions. An example of such a
tree is given by taking Figures 6 and 7 together. The root of our tree is (L(p, q), ξ), and we move to a new
level of the tree by applying the decomposition described in this section. If the mixed torus leading to the
decomposition comes from a knot which has been stabilized both positively and negatively, we have a single
branch. If the mixed torus is associated to a pairK+,K− of adjacent knots with opposite signs, then we have
m+ 2 branches, wherem is the number of unstabilized knots betweenK+ andK−.

We observe that this argument recovers Fossati’s classification of fillings for virtually overtwisted structures
on lens spaces which result from contact surgery on the Hopf link ([Fos19, Theorem 1]). Consider −p

q =

[a1, a2], for some a1, a2 ≤ −2, and let ξvot be a virtually overtwisted contact structure on L(p, q). Our
decomposition tells us that every filling of (L(p, q), ξvot) is obtained by a specified Weinstein 2-handle
attachment to a filling of eitherL(−a1, 1) orL(−a2, 1), with a particular (not necessarily virtually overtwisted)
contact structure. With the exception of a universally tight structure on L(4, 1), each lens space L(−ai, 1) has
a unique exact filling. Moreover, we see from our decomposition that attaching a Weinstein 2-handle to such

⊔

⊔

⊔

Figure 7. Applying the JSJ decomposition to a filling of L(24, 7)with the contact structure
seen in Figure 6 yields a filling of one of the three disjoint unions seen here. We recover a
filling of L(24, 7) by attaching a round symplectic 1-handle along the dashed knots.
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a standard filling in the manner prescribed will always yield the standard filling of (L(p, q), ξvot). So we have
the following corollary.

Corollary 2.1 (c.f. [Fos19, Theorem 1]). Let (L(p, q), ξvot) be a virtually overtwisted lens space, with−p
q = [a1, a2],

for some a1, a2 ≤ −2. Then (L(p, q), ξvot) has
• a unique exact filling, up to diffeomorphism, if a1 ̸= −4 and a2 ̸= −4, or if at least one of a1, a2 is −4 and the

corresponding knot has been stabilized both positively and negatively;
• precisely two exact fillings, up to diffeomorphism, if at least one of a1, a2 is −4, and the corresponding knot
has stabilizations of a single sign.

2.2. Surgeries on Legendrian negative cables. In this section we prove Theorem 1.5. As in the statement of
the theorem, we let L ⊂ (S3, ξstd) be a Legendrian knot with smooth knot type K, and let Q(S+S−(L)) be a
Legendrian negative cable of S+S−(L)with smooth knot type Kp,q, p < q(tb(L)− 2). We suppose that the
Thurston-Bennequin number of Q(S+S−(L)) is maximal among such knots, and we let (M, ξ) be the contact
manifold obtained by Legendrian surgery along Q(S+S−(L)).

We may use the stabilizations on S+S−(L) to identify a mixed torus in (M, ξ). In particular, let ν(S−(L)) ⊂
(S3, ξstd) be a standard neighborhood of S−(L). We let V1 be the solid torus obtained from this neighborhood
via Legendrian surgery along Q(S+S−(L)), and let V2 = S3 \ ν(S−(L)). ThenM = V1 ∪ V2, and we claim
that the common boundary ∂V1 = ∂ν(S−(L)) = ∂V2 is a mixed torus. Indeed, consider the three convex
tori ∂ν(L), ∂ν(S−(L)), and ∂ν(S+S−(L)). The tori ∂ν(L) and ∂ν(S−(L)) cobound a negative basic slice inM .
The tori ∂ν(S−(L)) and ∂ν(S+S−(L)) cobound a positive basic slice in ν(S−(L)), but this may not survive to
a basic slice inM , since Q(S+S−(L)) may not be disjoint from ∂ν(S+S−(L)). However, we can subdivide
this basic slice to find a boundary parallel convex torus cobounding a positive basic slice with ∂ν(S−(L)) (c.f.
[EH01, Lemma 3.15]). So ∂ν(S−(L)) sits between basic slices of opposite sign, and is therefore a mixed torus.

Now because of our assumptions that p < q(tb(L) − 2) and that the Thurston-Bennequin number of
Q(S+S−(L)) is maximal, [EV18, Theorem 5.16] tells us that tb(Q(S+S−(L)) = pq. So the Legendrian surgery
used to produce V1 from ν(S−(L)) is smoothly pq−1-surgery. According to Lemmas 7.2 and 7.3 of [Gor83], V1
is then a solid torusD2 ×S1 whose meridional curves have slope (pq− 1)/q2 in the coordinates of ∂ν(S−(L))
given by the meridian µ and the preferred longitude λ. We now apply(︃

1 0
1− tb(L) 1

)︃
∈ SL(2,Z)

to the coordinates of ∂ν(S−(L)). In the original coordinates, the dividing curves of ∂ν(L) and ∂ν(S−(L))
had slopes 1/ tb(L) and 1/(tb(L)− 1), respectively. In our new coordinates we find that Γ∂ν(L) has slope 1,
Γ∂ν(S−(L)) is vertical, and the meridional slope of µV1 is represented by the vector (pq− 1 + q2(1− tb(L)), q2)

in Z2.

Having made these preparations, we now suppose that (W,ω) is an exact symplectic filling of (M, ξ).
Applying Theorem 1.2 to this filling yields (W ′, ω′), an exact symplectic filling of its boundary (M ′, ξ′), which
we may write as

M ′ =M1 ⊔M2 := (V1 ∪ S) ⊔ (V2 ∪ S),
for some identifications ∂S → ∂Vi, where S is a solid torus. The gluing maps ∂S → ∂Vi identify dividing
curves, but the meridian µS of S could in principle take any number of values. Our first observation is that,
because ΓVi

is vertical, µS = (1,m) ∈ Z2 for somem ∈ Z. Next, the fact that (M ′, ξ′) is fillable means that each
ofM1 andM2 is tight. OnM1, we see that as wemove from the core of S to ∂V1 and then towards the core of V1,
the contact planes rotate from the slope of µS towards that ofΓV1 , and finally towards the slope of µV1 . Because
of our assumption that p < q(tb(L)−2), we find that−1 < µV1

< 0. Tightness demands that the total rotation
of the contact planes is through an angle smaller than π, meaning thatm ≥ 0. See Figure 8. OnM2 we see that
the contact planes rotate counterclockwise from 1, the slope of Γ∂ν(L), to the slope of Γ∂ν(S−(L)), and finally to
the slopem of µS . Because this rotationmust be smaller than π, we see thatm ≤ 0. So we conclude thatm = 0.

Because the solid torus S is attached with slopem = 0, we find thatM1 = L(q2, pq−1) andM2 = V2∪S =
S3. Moreover, we see from the definition ofM1 thatM1 results from surgery on (S2 × S1, ξstd) along ζ(Q),



SOME APPLICATIONS OF MENKE’S JSJ DECOMPOSITION FOR SYMPLECTIC FILLINGS 15

µS

Γ∂ν(L)
Γ∂ν(S−(L))

µV1

Figure 8. If the slope of µS were negative, then V1 ∪ S would be overtwisted; if the slope
were positive, then V2 ∪ S would be overtwisted. So µS is horizontal.

as described in Section 1. SoM1
∼= (L(q2, pq − 1), ξQ); on S3 we have the unique tight contact structure ξstd.

Now Theorem 1.2 tells us that we recover (W,ω) from (W ′, ω′) by attaching a round symplectic 1-handle
along the cores of the two copies of S — one inM1 and the other inM2. InM1 this core is given by the image
of {pt} × S1 ⊂ (S2 × S1, ξstd) after performing surgery along ζ(Q) ⊂ S2 × S1. That is, the core ofM1 is the
image ofK after surgery, which we abusively callK. InM2 the core is given by S−(L). We attach the round
symplectic 1-handle by first attaching a Weinstein 1-handle along a pair of points x ∈ K and y ∈ S−(L), and
then attaching a Weinstein 2-handle along the resulting knotK#S−(L). So we obtain (W,ω) from (W ′, ω′)
by attaching a Weinstein 2-handle to

(L(q2, pq − 1), ξQ)#(S3, ξstd) ∼= (L(q2, pq − 1), ξQ)

alongK#S−(L). Since this is precisely the knot LQ identified in the statement of Theorem 1.5, our proof is
complete.

2.3. Seifert fibered spaces over S2. Before proceeding to the proofs of the results in Section 1.3, we first recall
in Section 2.3.1 what it means for a tight contact structure ξ on a Seifert fibered spaceM =M( q1p1 , · · · ,

qn
pn

)

to be thoroughly or lightly mixed, and we identify the universally tight contact structures on small Seifert
fibered spaces. Sections 2.3.2 and 2.3.3 then contain the proofs in the e0 ≥ 0 and e0 ≤ −3 cases, respectively.

2.3.1. Mixed contact structures on Seifert fibered spaces. As in Section 1, we take n ≥ 3, qi, pi > 0 coprime, and
assume that qi < pi for i = 1, . . . , n− 1. We also have continued fraction expansions as in (2), and we denote
by e0 = ⌊ qnpn ⌋ the Euler number ofM .

To accommodate for the fact that we may have qn > pn, we introduce auxiliary coefficients bn0 , . . . , bnl′n
defined by

−pn
qn

= [an0 , a
n
1 , ..., a

n
ln ] = [−1,−2, ...,−2, bn0 − 1, bn1 , ..., b

n
l′n
],

where l′n = ln − e0, meaning that the number of −2s preceding bn0 − 1 is e0 − 1.

In Section 1.3, we defined thoroughly mixed tight contact structures via surgery diagrams; we now present
these structures as those which result from a particular construction. We let Σ be a planar surface with n
boundary components, and write

−∂(Σ× S1) = T1 + T2 + · · ·+ Tn

for the torus boundary components of Σ × S1. Now let ξ be an S1-invariant, virtually overtwisted tight
contact structure on Σ× S1 such that

(1) each Ti is a minimal convex torus, with dividing curves of slope −1 for i < n and slope −e0 − 1 for
i = n;
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∞
+

−e0 − 1

T ′
n

Tn

−1

T1
+

T ′
1

∞

−1

T2
+

T ′
2

∞

−1

Tn−1

+

T ′
n−1

∞

Figure 9. The first layer of basic slices attached to Σ× S1.

(2) adjacent to each Ti is a positive basic slice Li, with ∂Li = Ti − T ′
i ;

(3) each T ′
i is a minimal convex torus, with dividing curves of slope ∞.

Such a contact structure exists by [Hon00b, Section 5].

For each i = 1, . . . , n− 1, we will attach −2− ai0 basic slices to (Σ× S1, ξ), with slopes

−1,−1

2
,−1

3
, . . . ,

1

ai0 + 1
,

starting at Ti. Similarly, we attach −2− bn0 basic slices, starting from Tn, with slopes

−e0 − 1,−e0 −
1

2
, . . . ,−e0 +

1

bn0 + 1
.

For i = 1, . . . , n, we call the boundary of the outermost basic slice T ′′
i . Finally, we let Vi be a solid torus and

choose a tight contact structure on Vi such that ∂Vi is minimal, convex, and has dividing curves of slope

[aili , a
i
li−1, . . . , a

i
2, a

i
1 + 1]

for 1 ≤ i ≤ n− 1, and slope
[bnl′n , b

n
l′n−1, . . . , b

n
2 , b

n
1 + 1]

for i = n. Notice that there are |
∏︁li
j=1(a

i
j + 1)| (respectively, |

∏︁l′n
j=1(b

n
j + 1)|) such tight structures on Vi, per

Honda’s classification [Hon00a]. We then attach each Vi to Σ× S1 by identifying the dividing curves and
meridians of ∂Vi with those of T ′′

i . The result is a tight contact structure onM , and we call any structure
resulting from this construction thoroughly mixed. It is not difficult to check that these are precisely the
structures identified in Section 1.3.

Note that this construction is not unique. For instance, we may shuffle the order in which we attach basic
slices within a given continued fraction block without changing our contact structure. But the important
feature is that by ensuring that the innermost basic slice around each boundary component is positive, we
may find nmixed tori.

Lemma 2.2. In a thoroughly mixed tight contact structure, each torus T ′
i , 1 ≤ i ≤ n, is a mixed torus with vertical

dividing curves.
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∞
+

−e0 − 1

T ′
n

Tn

−
1 T ′

−1

T1
+

T ′
1

∞

A1
−1

T2
+

T ′
2

∞

A2
−1

Tn−1

+

T ′
n−1

∞

An−2

Figure 10. Each torus T ′
i is mixed.

Proof. We show that T ′
n is mixed; the other tori are similar. In Σ× S1, consider a collection A1, . . . , An−2 of

vertical annuli as in Figure 10, with Ai connecting Ti to Ti+1. Each annulus will have parallel horizontal
dividing curves, and we consider the neighborhood

N = N(T1 ∪ · · · ∪ Tn−1 ∪A1 ∪ · · · ∪An−2),

whose boundary is given by ∂N = T1 ∪ · · · ∪ Tn−1 ∪ T ′. Here T ′ has dividing curves of slope 1, measured in
the coordinates of Tn. Because each of the basic slices Li is positive, the toric annulus

(Σ× S1) \ (N ∪ Ln)

is a negative basic slice with boundary slopes ∞ and 1. So T ′
n is sandwiched between basic slices of opposite

sign whose slopes are −e0 − 1,∞, and 1, meaning that T ′
n is a mixed torus. □

Recall that we also defined lightly mixed tight contact structures in Section 1.3; for convenience, we repeat
the definition here.
Definition. Let ξ be a tight contact structure on M( q1p1 , · · · ,

qn
pn

). We will call ξ lightly mixed if ξ is not
thoroughly mixed, but admits a Stein filling as in Figure 2 for which at least n− 2 ofK1, . . . ,Kn have been
stabilized both positively and negatively. We say that ξ is lightly mixed about Ki and Kj to indicate that ξ
admits a Stein filling for which each of K1, . . . ,Kn except Ki and Kj have been stabilized positively and
negatively.

Consider the tight contact structures on a small Seifert manifoldM =M( q1p1 ,
q2
p2
, q3p3 ), with pi, qi > 0 chosen

as above, so that e0 ≥ 0. According to [GLS06], each of these can be represented as in Figure 2. LetK ′
3 be

the nearest unknot adjacent toK3 which has been stabilized — meaning thatK ′
3 = K3 if e0 = 0. If each of

K1,K2,K
′
3 has been stabilized positively at least once (or, according to the classification in [GLS06], if each

has been stabilized negatively at least once), then the tight contact structure is thoroughly mixed. On the
other hand, if one ofK1,K2,K3 has been stabilized both positively and negatively while the other two have
stabilizations of a single sign (the signs on the two knots being opposite), then the tight structure is lightly
mixed. This leaves precisely 6|Π3

i=1Π
li
j=1(a

i
j + 1)| tight contact structures onM which are neither lightly nor

thoroughly mixed. In these structures, each ofK1,K2,K
′
3 has all of its stabilizations of a single sign, but the

three knots do not all use the same sign. If the stabilizations of adjacent knots in Figure 2 always match, then
the following lemma says that we have a universally tight contact structure; note that there are precisely six
such structures.
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s3

0

T3
−

∞
T ′
3

0

s1

T1
+

T ′
1

∞

0

s2

T2
+

T ′
2

∞

Figure 11. The surface Σ × S1 sits inside of a Seifert fibered space M( q1p1 ,
q2
p2
, q3p3 ) which

is neither lightly nor thoroughly mixed. This surface may be extended to Σ̃ × S1, whose
boundary components have horizontal dividing curves.

Lemma 2.3. Let ξ be a tight contact structure onM( q1p1 ,
q2
p2
, q3p3 ) for some 0 < qi, pi, with qi < pi for i = 1, 2, which

is neither lightly mixed nor thoroughly mixed. If each of the horizontal links in Figure 2 has stabilizations of only one
sign, then ξ is universally tight.

Proof. Notice that the Euler number ofM satisfies e0 ≥ 0. Per the classification of tight contact structures
due to Wu [Wu04] and Ghiggini-Lisca-Stipsicz [GLS06] on such Seifert fibered spaces, we may write

M =M

(︃
q1
p1
,
q2
p2
,
q3
p3

)︃
∼= (Σ× S1) ∪(φ1∪φ2∪φ3) (V1 ∪ V2 ∪ V3),

where each Vi is a soid torus, −∂(Σ × S1) = T1 + T2 + T3, and φi : ∂Vi → Ti is an orientation-preserving
diffeomorphism. Moreover, we may take si, the slope of the dividing curves of Ti = ∂Vi in the coordinates of
Ti, to satisfy

1

ai0 + 1
< si < − qi

pi
for i = 1, 2, and − e0 +

1

b30 + 1
< s3 < − q3

p3
.

Here ai0 and b30 are as above. In particular, we have s1, s2 ∈ (−1, 0) and s3 ∈ (−e0 − 1,−e0).

Continuing to follow [Wu04, Section 3.3], we may thicken each Vi to a solid torus V ′
i such that T ′

i := ∂V ′
i is

a minimal convex torus with vertical dividing curves when measured in the coordinates of Ti. Now V ′
i \ Vi is

a toric annulus bounded by Ti and T ′
i which we may factor into basic slices. Because ξ fails to be thoroughly

or lightly mixed, all of the basic slices between Ti and T ′
i must have the same sign, but the signs for i = 1, 2, 3

are not all the same. For instance, Figure 11 depicts a case where the basic slices between Ti and T ′
i are

positive for i = 1, 2, but negative for i = 3. Now consider attaching basic slices of matching sign to each
Ti until we obtain Σ̃× S1, whose boundary components all have horizontal dividing curves. According to
[Hon00b, Lemma 5.1], Σ̃× S1 is universally tight; because Σ̃× S1 contains Σ× S1, we see that Σ× S1 is also
universally tight. Each solid torus Vi is universally tight because the stabilizations used to produce the tight
structure on Vi are all of one sign. Moreover, the homomorphism

i∗ : π1(Σ× S1) → π1(M)

induced by inclusion is a surjection. We conclude thatM is universally tight. □
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Following this observation, Corollary 1.10 follows from Corollaries 1.7 and 1.9.

Finally, we consider the remaining contact structures onM( q1p1 ,
q2
p2
, q3p3 ) — those which are neither thor-

oughly nor lightly mixed, and to which Lemma 2.3 does not apply. All such contact structures are virtually
overtwisted.

Lemma 2.4. Let ξ be a tight contact structure onM( q1p1 ,
q2
p2
, q3p3 ), with surgery diagram as in Figure 2. If any of the

horizontal links have both positive and negative stabilizations, then ξ is virtually overtwisted.

The proof of Lemma 2.4 will make use of the following topological fact about small Seifert fibered spaces.

Lemma 2.5. Any small Seifert fibered spaceM admits a finite sheeted cover M̃ such that the induced Seifert fibration
on M̃ has no exceptional fibers.

Proof. In case the fundamental group π1(M) is infinite, this follows from [Bri07, Lemma 2.4.22], so we focus
on the case where π1(M) is finite. The universal cover of a small Seifert fibered space with finite fundamental
group is S3, so we have a diagram

S3 M

B̃ B

p

π̃ π

p

,

where B is S2 with three cone points, π : M → B is the Seifert fibration onM , p : S3 → M is the covering
map, and π̃ : S3 → B̃ is the induced Seifert fibration on S3. Because π1(M) is finite, we have B = S2(a, b, c)
for some (a, b, c) ∈ {(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5)}. That is,M is a platonic Seifert fibered space. The map
p : B̃ → B is an orbifold covering map. We notice that since B has positive orbifold characteristic, the same is
true of B̃, and also that B̃ has at most two cone points, since B̃ is the base of a Seifert fibration of S3. So p
is a positive orbifold covering map of the form S2(a′, b′) → S2(a, b, c); such maps are classified by [Boy18,
Proposition 5.5], from which we conclude that B̃ = S2(d, d) for some d ≥ 1.

At the same time, we use [GL18, Proposition 5.2] to write the Seifert fibration π̃ as

M(0; (α1, β1), (α2, β2)),

for some natural numbers α1 ≥ α2 and integers β1, β2 satisfying 0 ≤ β1 < α1 and α1β2 + β1α2 = 1. The base
of this Seifert fibration is S2(α1, α2), so we conclude that α1 = α2 = d ≥ 1. But this means that dβ2 +β1d = 1,
so we must have d = 1. We conclude that B̃ = S2(1, 1) has no cone points, and thus π̃ has no exceptional
fibers. □

Proof of Lemma 2.4. Let us decomposeM :=M( q1p1 ,
q2
p2
, q3p3 ) as in the proof of Lemma 2.3, writing

M = (Σ′ × S1) ∪(φ1∪φ2∪φ3) (V
′
1 ∪ V ′

2 ∪ V ′
3),

where −∂(Σ′ × S1) = T ′
1 + T ′

2 + T ′
3, and the dividing curves on each T ′

i have slope∞. For i = 1, 2, 3, we may
express the orientation-preserving diffeomorphism φi : ∂Vi → Ti via

φi =

(︃
pi −ui
−qi vi

)︃
,

for some ui, vi satisfying pivi − qiui = 1. In the coordinates of ∂V ′
i , the dividing curves thus have slope

represented by

φ−1
i

(︃
0
1

)︃
=

(︃
vi ui
qi pi

)︃(︃
0
1

)︃
=

(︃
ui
pi

)︃
.

So V ′
i is a solid torus whose boundary has dividing curves of slope pi/ui, for i = 1, 2, 3. If V ′

i is virtually
overtwisted, then lifting ξ|V ′

i
via the pi-fold cover Ṽ ′

i → V ′
i produces an overtwisted contact structure on

Ṽ
′
i. (See, for example, [Etn04, Exercise 6.45].) Now Lemma 2.5 allows us to construct a finite sheeted cover

p : M̃ →M such that V ′
i lifts to several copies of Ṽ ′

i, for i = 1, 2, 3. Because (M, ξ) has a horizontal link with
both positive and negative stabilizations, at least one of V ′

1 , V
′
2 , and V ′

3 is virtually overtwisted, and thus a lift
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Kn−1an−1
0

an−1
1

an−1
2 an−1

li

K ′

Knan0

an1

an2 anlj

Figure 12. In the handlebody diagram for (Mn−2, ζn−2), bothKn−1 andKn pass over the
1-handle. To realize (Mn−2, ζn−2) as a lens space, we slide Kn over Kn−1 to produce K ′,
which has framing an−1

0 + an0 , and then cancelKn−1 with the 1-handle.

of this solid torus in M̃ is overtwisted. We conclude that (M̃, p∗ξ) is overtwisted, and thus (M, ξ) is virtually
overtwisted. □

Lemma 2.4 applies to any contact structure which is neither thoroughly nor lightly mixed, and to which
Lemma 2.3 does not apply. Lemma 2.4 also applies to all lightly mixed contact structures and, if e0 > 0,
all but two thoroughly mixed contact structures. If e0 = 0 andM( q1p1 ,

q2
p2
, q3p3 ) does not have qi = pi − 1 for

i = 1, 2, 3, then each horizontal link in Figure 2 has more than one stabilization, and the classification of tight
contact structures [GLS06, Theorem 2.7] allows us to change the sign of one stabilization on each horizontal
link to ensure that Lemma 2.4 applies to at least one of these links. On the other hand, if qi = pi − 1 for
i = 1, 2, 3, then each horizontal link has exactly one stabilization, so Lemma 2.4 does not apply. Altogether,
we see that if e0 > 0 there are at most 8 universally tight contact structures onM( q1p1 ,

q2
p2
, q3p3 ), while if e0 = 0,

there are at most 7 universally tight contact structures. If e0 = 0 and qi ̸= pi − 1 for some i = 1, 2, 3, then
there are precisely 6 universally tight contact structures onM( q1p1 ,

q2
p2
, q3p3 ).

2.3.2. The case e0 ≥ 0. Theorem 1.8 is a straightforward consequence of Theorem 1.3 of [Men18] and the
definition of lightly mixed contact structures, so we prove this result first.

Suppose thatM =M( q1p1 , · · · ,
qn
pn

) is a Seifert fibered space, for some n ≥ 3 and coprime positive integers
qi, pi. If ξ is a lightly mixed tight contact structure onM , then we may realize (M, ξ) as the boundary of a
Stein handlebody as in Figure 2, with n− 2 of the horizontal knotsK1, . . . ,Kn having been stabilized both
positively and negatively. Without loss of generality, we may assume that each of K1, . . . ,Kn−2 has been
stabilized both positively and negatively. Notice that (M, ξ) is obtained from the contact manifold

(L(q1,−p1), ξ1)#(M1 =M(
q2
p2
, · · · , qn

pn
), ζ1)

by Legendrian surgery alongK1. Here we are using the fact that if −pi/qi = [ai0, a
i
1, . . . , a

i
li
], then

qi
pi + ai0qi

= [ai1, a
i
2, . . . , a

i
li ].

The contact structures ξ1 and ζ1 are the obvious ones, obtained from the Stein handlebody diagram in Figure
2 by erasingK1. According to [Men18, Theorem 1.3], every exact symplectic filling of (M, ξ) is obtained from
an exact filling of (L(q1,−p1), ξ1)#(M1, ζ1) by attaching a Weinstein 2-handle alongK1. In the language of
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−e0 − 1

Figure 13. IfM( q1p1 ,
q2
p2
, q3p3 ) is thoroughly mixed, then T ′

1 is a mixed torus.

round handles, we have Legendrian knots L−
1 ⊂ (L(q1,−p1), ξ1) and L+

1 ⊂ (M1, ζ1) along which we may
attach a round symplectic 1-handle to a filling of (L(q1,−p1), ξ1) ⊔ (M1, ζ1).

We have presented (M1, ζ1) as the boundary of the Stein handlebody depicted in Figure 2, with the chain of
knots with framings a10, a11, . . . , a1l1 deleted. By its construction, (M1, ζ1) is lightly mixed, withK2, . . . ,Kn−2

having been stabilized both positively and negatively. We may thus repeat the above procedure to decompose
a filling of (M, ξ) into a filling of

(L(q1,−p1), ξ1) ⊔ (L(q2,−p2), ξ2) ⊔ (M2, ζ2).

We continue this procedure until we are left with
(L(q1,−p1), ξ1) ⊔ · · · ⊔ (L(qn−2,−pn−2), ξn−2) ⊔ (Mn−2, ζn−2),

where (Mn−2, ζn−2) is as in Figure 12: there are two horizontal knots, neither of which has stabilizations of
both signs. This is a Seifert fibered space over S2, and thus a lens space. Indeed, after slidingK2 overK1, we
may cancel the 2-handle attached alongK1 with the 1-handle. We are left with a chain of unknots whose
framings are given by

an−2
ln−2

, . . . , an−2
1 , an−2

0 + an0 , a
n
1 , . . . , a

n
ln ,

and thusMn−2
∼= L(p′, q′), where

−p
′

q′
= [an−2

ln−2
, . . . , an−2

1 , an−2
0 + an0 , a

n
1 , . . . , a

n
ln ].

See Figure 12. This proves Theorem 1.8.

There are some thoroughly mixed contact structures for which n− 1 of the knotsK1, . . . ,Kn have been
stabilized both positively and negatively. For these, the proof of Theorem 1.6 proceeds as did the proof of
Theorem 1.8. But the condition of being thoroughly mixed is more relaxed than this, and we will in fact use
Theorem 1.2 directly in our proof, rather than Theorem 1.3.

Our argument proceeds by induction on the number n of singular fibers. Consider first the case where
n = 3. Then, as depicted in Figure 13, we have a mixed torus T ′

1 with vertical dividing curves, sandwiched
between basic slices whose other tori have dividing curves of slope −1 and e0 + 1, respectively. Theorem 1.2
would have us splitM =M( q1p1 ,

q2
p2
, q3p3 ) open along this torus and attach a solid torus to each of the resulting
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µS

ΓT ′
1

µV ′
1

Figure 14. Because 0 < q1/p1 < 1, we must havem = 0.

pieces. Because the dividing curves of T ′
1 are vertical, the meridian µ(S) of the solid torus S must have slope

m ∈ Z. In fact, [Men18, Theorem 1.1] tells us that we must have 0 ≤ m ≤ e0, since the slopes adjacent to our
mixed torus are −1 and e0 + 1.

Now one of the two closed contact manifolds is L1 = S ∪T ′
1
V ′
1 , a gluing of two solid tori. The meridian of

V ′
1 has slope q1/p1, with 0 < q1 < p1. Wemay consider a family of tori T 2× [0, 1] inL1 such that T 2×{0} ⊂ V ′

1

has dividing curves with slope q1/p1, T 2 ×{1/2} = T ′
1, and T 2 ×{1} ⊂ S has dividing curves of slopem. As

the dividing curves rotate counterclockwise from q1/p1 to ∞ tom, they must not rotate through an angle in
excess of π, since L1 is fillable and thus tight. This restriction is only satisfied whenm = 0. So we conclude
thatm = 0 and L1 = L(q1,−p1). See Figure 14.

The other closed contact manifold produced by our application of Theorem 1.2 is obtained fromM by
deleting the neighborhood V ′

1 of a singular fiber and replacing it with the solid torus S, glued in with
horizontal meridians. The result isM( 01 ,

q2
p2
, q3p3 ) =M( q2p2 ,

q3
p3
). We may now apply Theorem 1.2 to this Seifert

fibered space (which is in fact a lens space) along the mixed torus T ′
2. Arguing as before, we find that the solid

torus which is glued in at this stage must have horizontal dividing curves. The result of this decomposition
is a disjoint union of fillings of some contact structures on

L(q2,−p2) and M

(︃
0

1
,
q3
p3

)︃
= L(q3,−p3).

Altogether, we have decomposed a filling ofM with a thoroughly mixed tight contact structure into a disjoint
union of fillings of L(qi,−pi), i = 1, 2, 3, with some tight contact structures, and Theorem 1.2 provides the
Legendrian knots described in Theorem 1.6. This establishes the base case of our induction.

For the inductive step, the analysis above proceeds as before. Splitting a filling ofM = M( q1p1 , . . . ,
qn
pn

)

open along the mixed torus T ′
1 produces symplectic fillings of

L(q1,−p1) and M

(︃
0

1
,
q2
p2
, . . . ,

qn
pn

)︃
.

The latter is a thoroughly mixed Seifert fibered space with n− 1 singular fibers, for which we assume that
Theorem 1.6 holds, and thus the decomposition may continue until we have a disjoint union of filling of
L(qi,−pi), for i = 1, . . . , n. This proves Theorem 1.6.

At last, we address fillings of those contact structures on small Seifert fibered spaces which have at least
one horizontal link with both positive and negative stabilizations — these are the structures considered in
Lemma 2.4. In this case, each of K1,K2, and K ′

3 has stabilizations of a single sign, but these signs do not
all agree. Here, as above,K ′

3 is the nearest unknot adjacent toK3 which has been stabilized, meaning that
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K1

K2

K3

K1

K2

K3

K1

K2

K3

Figure 15. Decomposing a filling of a contact structure which is neither thoroughly nor
lightly mixed. The result is a filling of a disjoint union of a universally tight small Seifert
fibered space and some universally tight lens spaces.

K ′
3 = K3 if e0 = 0. For i = 1, 2, 3, we let ˆ︁Ki denote the nearest knot adjacent toKi with a stabilization of a

different sign from those onKi (orK ′
3). By our assumption, at least one ˆ︁Ki exists. Let us write

(3) M =M

(︃
q1
p1
,
q2
p2
,
q3
p3

)︃
∼= (Σ× S1) ∪

⎛⎝ 3⋃︂
i=1

li⋃︂
j=1

Li,j

⎞⎠ ∪

(︄
3⋃︂
i=1

Vi

)︄
,

where each Vi is a solid torus,−∂(Σ×S1) = T1+T2+T3, and each Li,j ∼= T 2× I is a continued fraction block
corresponding to a knot in the surgery diagram for (M, ξ). Specifically, letLi,ji be the continued fraction block
corresponding to ˆ︁Ki, for i = 1, 2, 3. Then the boundary torus ˆ︁Ti betweenLi,ji andLi,ji−1 is a mixed torus, and
each continued fraction block precedingLi,ji has basic slices of a single sign, matching the stabilizations ofKi.

Notice that simultaneously splitting (M, ξ) along the mixed tori ˆ︁T1, ˆ︁T2, and ˆ︁T3 yields a disjoint union of a
universally tight small Seifert fibered space and three lens spaces, independent of the slopes which are used
to perform this splitting. It follows that by applying the JSJ decomposition to an exact symplectic filling of
(M, ξ), we may obtain this filling from a disjoint union of an exact filling of a universally tight small Seifert
fibered space with exact fillings of three lens spaces. By applying Theorem 1.4 to the three lens space fillings,
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we prove Theorem 1.11.

Observe that for contact structures which are thoroughly or lightly mixed, the conclusion of Theorem
1.11 follows from Theorems 1.4, 1.6, and 1.8. So, with the small number of exceptions pointed out at the
conclusion of Section 2.3.1, we have reduced the problem of classifying exact symplectic fillings for small
Seifert fibered spaces to the same problem for universally tight lens spaces and for universally tight small
Seifert fibered spaces. See Figure 15.

2.3.3. The case e0 ≤ −3. Throughout this section, wewill consider a Seifert fibered spaceM =M(− q1
p1
, · · · ,− qn

pn
)

with pi ≥ 2, qi ≥ 1, and (pi, qi) = 1 for i = 1, . . . , n. Every tight contact structure ξ onM that we consider
will be constructed by putting the knots of Figure 4 into Legendrian position and stabilizing appropriately.

In case ξ is centrally mixed —meaning that the central knot of Figure 4 is stabilized both positively and
negatively — Proposition 1.13 tells us that the exact symplectic fillings of (M, ξ) are obtained by attaching
a sequence of round symplectic 1-handles to a disjoint union of fillings of lens spaces. If ξ is not centrally
mixed, then the central knot has stabilizations which are either all positive or all negative; notice that, since
e0 ≤ −n ≤ −3, the central knot must have at least one stabilization. The following proposition considers the
case in which the stabilizations of the central knot are all of a single sign.

Proposition 2.6. Let (M, ξ) be as above, with the central knot in Figure 4 having stabilizations which are all of a
single sign. Then every exact symplectic filling of (M, ξ) may be obtained by attaching round symplectic 1-handles to a
disjoint union of fillings of lens spaces and a Seifert fibered space (M ′, ξ′). Moreover, (M ′, ξ′) admits a Legendrian
surgery diagram as in Figure 4, with each leg of the diagram having stabilizations of a single sign.

Proof. If the Legendrian surgery diagram for (M, ξ) is such that no leg has both positive and negative sta-
bilizations, then we have nothing to do — (M ′, ξ′) is simply (M, ξ). Otherwise, we lose no generality by
assuming that the first leg of Figure 4 has both positive and negative stabilizations. We will reduce to a case
where the first leg does not have both positive and negative stabilizations; by applying this argument to each
leg of the diagram, we obtain the desired result.

Note that if the first leg of our diagram contains a knot which is stabilized both positively and negatively,
then we may apply Theorem 1.3 to this knot, amputating from the diagram this knot and all those below it
in the leg. Thus we assume that each knot in the first leg of our diagram has stabilizations of a single sign.
We then have knots K1

i and K1
j , 1 ≤ i < j ≤ ℓ1, which have stabilizations of opposite signs, and are such

that any knotK1
k , with i < k < j, has no stabilizations. Let us assume that i and j are minimal among such

indices. (Here we are using the notation established in Figure 4.) We will identify a mixed torus in (M, ξ)
associated to this mismatch of signs.

To this end, we decompose (M, ξ) as
M ∼= (Σ× S1) ∪(φ1∪···∪φn) (V1 ∪ · · · ∪ Vn),

where
• Σ is a planar surface such that −∂(Σ× S1) = T1 + · · ·+ Tn;
• each Ti is a minimal convex torus with dividing curves of slope ⌊ qipi ⌋;

• each Vi is a solid torus, and ∂Vi has dividing curves of slope −
qi − ⌊ qipi ⌋pi
q′i − ⌊ qipi ⌋p

′
i

, where pi ≥ p′i > 0,

qi ≥ q′i > 0, and piq′i − qip
′
i = 1;

• the gluing maps φi : ∂Vi → Ti are defined by

φi =

(︃
pi p′i
qi q′i

)︃
.

The solid torus (V1, ξ|V1
) may be further decomposed by peeling off basic slices until we are left with a

solid torus whose boundary has dividing curves of slope −1. In this decomposition, we have a continued
fraction block of basic slices for each knotK1

1 , . . . ,K
1
ℓ1

which has been stabilized. In particular, the knotsK1
i

andK1
j correspond to adjacent continued fraction blocks. By assumption, these continued fraction blocks
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Figure 16. In this example, there are three contact manifolds which might result from the
JSJ decomposition for symplectic fillings. Notice that each consists of universally tight lens
spaces, and possibly a Seifert fibered space with canonical contact structure.

are universally tight and of opposite sign, and thus their common boundary T is a mixed torus. We may
normalize the slope of the dividing curves on T to be ∞, and on the opposite boundary of the negative basic
slice to be−1. As in previous iterations of this argument, the slope s on the opposite boundary of the positive
basic slice will depend on the number of unstabilized knots which exist betweenK1

i andK1
j . In particular, s

will be two more than the number of these knots.

We now apply Theorem 1.2 to a filling of (M, ξ) along T . There are s contact manifolds which might be
produced by this decomposition, and these correspond diagrammatically to deleting eitherK1

i ,K1
j , or one

of the intermediate knots from Figure 4. In any case, the contact manifold is a disjoint union of a lens space
(whose surgery diagram is given by the link below the deleted knot) and a Seifert fibered space (M ′, ξ′). The
stabilizations in the first leg of the Legendrian surgery diagram for (M ′, ξ′) — of which there may be none —
all have the same sign as those of K1

i . In particular, the first leg does not have both positive and negative
stabilizations. By applying this theorem to each leg with both positive and negative stabilizations, we reduce
to the case of lens spaces and Seifert fibered spaces each of whose legs has stabilizations of a single sign. □

Proposition 2.6 leads us to consider the case where (M, ξ) is not centrally mixed, and each of its legs has
stabilizations of a single sign — though these signs may not all agree.

Proposition 2.7. Let (M, ξ) be as above, with the central knot in Figure 4 having stabilizations which are all of a
single sign, and with each leg having stabilizations of a single sign. Then every exact symplectic filling of (M, ξ) may
be obtained by attaching round symplectic 1-handles to a disjoint union of fillings of lens spaces and a canonical Seifert
fibered space.

Proof. We lose no generality by assuming that the stabilizations of the central knot of (M, ξ) are all positive —
as noted above, the central knot must have at least one stabilization. If the ith leg of the Legendrian surgery
diagram for (M, ξ) has negative stabilizations, we will identify a mixed torus which allows us to amputate
this leg. Now consider decomposing (M, ξ) as

M ∼= (Σ× S1) ∪(φ1∪···∪φn) (V1 ∪ · · · ∪ Vn),
as in the proof of Proposition 2.6. Namely, −∂(Σ× S1) = T1 + · · ·+ Tn, where each Ti is a minimal convex
torus with dividing curves of slope ⌊ qipi ⌋. We claim that there is a positive basic slice adjacent to Ti in Σ× S1.
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For ease of notation, let us assume that i = n. Then we have a collection A1, . . . , An−2 of vertical annuli
in Σ × S1, with Ai connecting Ti to Ti+1 (c.f. the proof of Lemma 2.2). Each annulus will have parallel,
horizontal dividing curves, and we consider the neighborhood

N = N(T1 ∪ · · · ∪ Tn−1 ∪A1 ∪ · · · ∪An−2),

the boundary of which is ∂N = T1 ∪ · · · ∪Tn−1 ∪T . The minimal convex torus T has dividing curves of slope
−(n− 2)− Σn−1

i=1 ⌊
qi
pi
⌋, and thus the toric annulus (Σ× S1) \N is a continued fraction block with boundary

slopes −(n− 2)− Σn−1
i=1 ⌊

qi
pi
⌋ and ⌊ qnpn ⌋. This continued fraction block consists of⌊︃

qn
pn

⌋︃
−

(︄
−(n− 2)−

n−1∑︂
i=1

⌊︃
qn
pn

⌋︃)︄
= (n− 2) +

n∑︂
i=1

⌊︃
qn
pn

⌋︃
= |e0 + 2|

basic slices, each of which is positive, since the stabilizations of the central knot are all positive. In particular,
we have a positive basic slice adjacent to Tn whose opposite slope is ⌊ qnpn ⌋ − 1, measured in the coordinates of
Tn. We may normalize via the map (︃ ⌊ qnpn ⌋ −1

1− 2⌊ qnpn ⌋ 2

)︃
to obtain a positive basic slice with slopes −1 and∞. The same holds for any 1 ≤ i ≤ n.

Finally, because the ith leg of our Legendrian surgery diagram has a negative stabilization, we identify a
negative basic slice in the solid torus Vi which is adjacent to ∂Vi. After gluing via φi, we see that Ti = ∂Vi is a
mixed torus. The opposite slope s of the basic slice in Vi will depend as usual on the number of unstabilized
knots (if any) which lie between the central knot and the first stabilized knot of the ith leg. In particular,
s will be two more than the number of such knots. There are then s possible results of applying the JSJ
decomposition along the mixed torus Ti, and these correspond to deleting either the central knot of our
surgery diagram, the first stabilized knot of the ith leg, or an intermediate, unstabilized knot. Deleting
the central knot leaves us with a connected sum of lens spaces, while deleting a knot contained in the ith
leg leaves us with a disjoint union of a lens space and a Seifert fibered spacewhose ith leg has no stabilizations.

Clearly the above argument may be applied to each leg with negative stabilizations (still assuming that the
central knot is stabilized positively), allowing us to reduce to the case where all stabilizations in our surgery
diagram have the same sign. □

Remark. In the classification of tight contact structures on small Seifert fibered spaces, the cases e0 = −1 and
e0 = −2 are exceptional, as these are the only cases in which our space could possibly have infinitely many
tight contact structures. The case e0 = −2 has been studied by Ghiggini [Ghi08] and Tosun [Tos20], while
the e0 = −1 case has been studied by Ghiggini-Lisca-Stipsicz [GLS07] and Matkovič [Mat18]. The existence
of fillings of Sifert fibered spaces was studied in [LL11]. As in the case e0 ≤ −3, we may construct fillable
contact manifolds with e0 = −2 by putting the link in Figure 4 into Legendrian position. We may then apply
Proposition 2.6 to such a diagram, to ensure that each leg has stabilizations of only one sign. However, the
lack of stabilizations on the central knot prevents us from applying Proposition 2.7. In case e0 = −1, still
less can be said. In this case, Lisca-Stipsicz provide in [LS07] a surgery diagram which can produce all tight
contact structures with maximal twisting equal to zero, but, per Etnyre-Honda [EH02, Theorem 1.1 & Lemma
3.3], some such tight contact structures are not fillable. For further analysis of these structures, see [LL11]
and [Mat18].

From Propositions 2.6 and 2.7 we see that the problem of classifying exact symplectic fillings for Seifert
fibered spaces as in Figure 4 is reduced to the same problem for lens spaces, and for canonical Seifert fibered
spaces. Per above results, the lens spaces may be further reduced to universally tight lens spaces, and thus
Theorem 1.14 is established. The results of this section provide us with the usual diagrammatic calculus for
reducing the classification of fillings problem: see Figure 16 for an example.

2.4. Virtually overtwisted circle bundles over surfaces. Honda classified the tight contact structures on
circle bundles over closed Riemann surfaces in [Hon00b, Part 2]. We will borrow his notation here, letting
π : M → Σ be an oriented circle bundle over a closed, oriented surface Σ with genus g. Once we have fixed a
contact structure onM , Honda defines the twisting number t(S1) to be the maximum non-positive twisting
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stabilizations K

Figure 17. Stein handlebody diagrams for filling the tight contact structures on a circle
bundle π : M → Σ with t(S1) = −1. The diagram has 2g 1-handles, and the knot K has
2g − 2− e stabilizations in the marked region.

number among all closed Legendrian curves inM isotopic to the S1-fiber, relative to the fibration framing.
The twisting number is taken to be zero ifM admits a fiber-isotopic Legendrian curve with positive twisting
number. We denote by e the Euler number of the bundle π : M → Σ.

If 2g − 2 > e, Honda shows that there are (2g − 1)− e tight contact structures onM with t(S1) = −1; of
these, exactly two are universally tight. There are no virtually overtwisted contact structures onM with
t(S1) < −1. There are some exceptional cases of virtually overtwisted contact structures on circle bundles
with t(S1) = 0, but these are not subject to Proposition 1.15. Instead, these exceptional cases are treated by
Lisca-Stipsicz [LS04].

Proposition 1.15 follows immediately from Honda’s description of these virtually overtwisted contact
structures, as well as Theorem 1.3 of [Men18]. Namely, Honda constructs each of the (2g−1)−e tight contact
structures on M by performing Legendrian surgery on a knot K in (#2g(S1 × S2), ξstd) which has been
stabilized (2g − 2)− e times. Here ξstd is the unique-up-to-isotopy tight contact structure on #2g(S1 × S2).
The universally tight structures onM are precisely those for which all of these stabilizations have the same
sign, while each virtually overtwisted contact structure ξvot results from surgery along a knot which has been
stabilized both positively and negatively. According to [Men18, Theorem 1.3], every exact filling of (M, ξvot)
is therefore obtained from such a filling of (#2g(S1 × S2), ξstd) by attaching a Weinstein 2-handle alongK.
But (#2g(S1 × S2), ξstd) has a unique exact filling up to symplectomorphism, and thus the same is true of
(M, ξvot). This proves Proposition 1.15.

Finally, we prove Corollary 1.16.

Proof of Corollary 1.16. Following the discussion in Section 1.4, we only need to verify the corollary in case
M → Σ is a circle bundle over a torus. In this case, we may identify our circle bundle with a parabolic torus
bundle over S1, and Honda’s classification of tight contact structures on torus bundles [Hon00b] tells us that
a virtually overtwisted contact structure exists if and only if the Euler number e of our circle bundle satisfies
|e| ≥ 2. From [Chr21, Theorem 1.1(B)] we then know that our circle bundle admits a unique exact filling
if e ≤ −2, and admits no exact symplectic filling if e ≥ 2. So Corollary 1.16 will follow once we show that
t(S1) = 0 in case e ≥ 2 and t(S1) < 0 in case e ≤ −2.

If e ≥ 2, we simply note that, up to isotopy, the fiber of our circle bundle is a Legendrian curve γ with
t(γ) = e. By the definition of t(S1)we have t(S1) = 0.
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Next, we consider the case e ≤ −2 and suppose that γ is a fiber-isotopic Legendrian with t(γ) = 0. We will
use a trick of Kanda [Kan97] to show that such a Legendrian γ cannot exist, adapting the proof of [Hon00b,
Lemma 3.3]. By identifying T 2 as the quotient of a square P , we may pull back the circle bundleM → T 2 to
a circle bundle on P , giving us the solid torus S1 × P . We also pull back the tight contact structure onM to a
contact structure on S1 × P . In fact, by taking P → T 2 to be a many-to-one quotient map — i.e., by tiling
together many copies of P — we may ensure that γ pulls back to a closed, fiber-isotopic Legendrian curve in
S1 × P . However, S1 × P is, after edge-rounding, isomorphic to a standard neighborhood of a Legendrian
curve with twisting number e ≤ −2. But S1 × P contains a standard neighborhood of γ, which is a solid
torus with slope ∞. According to the classification of tight contact structures on S1 ×D2 [Hon00a], this is a
contradiction. We conclude that no such γ exists, and thus t(S1) < 0. □
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