SOME APPLICATIONS OF MENKE’S JS] DECOMPOSITION FOR SYMPLECTIC FILLINGS

AUSTIN CHRISTIAN AND YOULIN LI

AsstrACT. We apply Menke’s JS] decomposition for symplectic fillings to several families of contact 3-manifolds.
Among other results, we complete the classification up to orientation-preserving diffeomorphism of strong sym-
plectic fillings of lens spaces. We show that exact symplectic fillings of contact manifolds obtained by surgery on
certain Legendrian negative cables are the result of attaching a Weinstein 2-handle to an exact filling of a lens space.
For large families of contact structures on Seifert fibered spaces over S2, we reduce the problem of classifying
exact symplectic fillings to the same problem for universally tight or canonical contact structures. Finally, virtually
overtwisted circle bundles over surfaces with genus greater than one and negative twisting number are seen to
have unique exact fillings.

1. INTRODUCTION AND STATEMENT OF RESULTS

When studying symplectic fillings of contact manifolds, one often wonders whether decompositions which
exist for the contact manifold extend to its fillings. For instance, Eliashberg proved the following result.

Theorem 1.1 ([Eli90; CE12]). Suppose that a 3-dimensional contact manifold (M, £) is obtained from another contact
manifold (M’ ") via connected sum. Then every symplectic filling of (M, ) is obtained by attaching a Weinstein
1-handle to a symplectic filling of (M’,£’).

So the symplectic fillings of a contact manifold obtained by connected sum are determined by the fillings
of the parties to the connected sum. Thus, one may attempt to classify the symplectic fillings of a contact
manifold (M, £) by identifying an embedded sphere along which (M, £) decomposes as a connected sum, and
then classifying the symplectic fillings of the contact manifolds resulting from this decomposition. Recently,
Menke established a result analogous to that of Eliashberg, decomposing a contact manifold along a torus
rather than a sphere; Menke calls this result a |S] decomposition for symplectic fillings, in reference to work of
Jaco-Shalen [JS78] and Johannson [Joh79].

While Eliashberg’s connected sum result allows us to split a contact 3-manifold along any convex sphere,
the tori along which Menke’s result may be applied are required to satisfy an additional geometric criterion.
A mixed torus is an embedded convex torus T’ C (M, §) admitting a virtually overtwisted neighborhood of
the form 7% x [0, 2], where T is identified with 7% x {1} and each of 72 x [0,1] and 7% x [1, 2] is a basic slice.
One can then define the notion of splitting (M, £) along T as follows. Let s; denote the slope of 7% x {i}. The
identification of 72 with R?/Z? may be normalized so that sy = —1 and s; = co. With this normalization,
splitting (M, &) with slope s along T will produce a contact manifold (M’,£’). Here

M = So Uy (M\T) Uy, S1,

where each S; is a solid torus and 1), : 05; — T; is chosen so that the image of a meridian in 0.5; has slope s
in T;. Notice that the dividing set is vertical, and thus s must be an integer. We define ¢’ to agree with £ on
M\T,andon S; C M’, ¢’ is the unique tight contact structure determined by the characteristic foliation of 9.5;.

Finally, where Theorem 1.1 constructs fillings of a contact manifold (M, £) by attaching Weinstein 1-handles
to fillings of a decomposed contact manifold (M, '), the JSJ decomposition for symplectic fillings attaches
round symplectic 1-handles to fillings. Round symplectic 1-handle attachment is described in [Adal7] and
[Avd21], and is equivalent to Weinstein 1-handle attachment followed by Weinstein 2-handle attachment.
In particular, attaching a round symplectic 1-handle to a symplectic filling (W, w) along Legendrian knots
Ly, Ly in its boundary is equivalent to attaching a Weinstein 1-handle to (W, w) along points p; € L;, i = 0,1,
and then attaching a Weinstein 2-handle to the resulting filling along the knot L obtained by surgering Lg
and L; along py and p;. See [Avd21, Section 4.2] or [Chr21, Section 4] for further details.
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Ficure 1. Handlebody diagram for a filling of L(p, ¢). We produce a contact structure on
L(p, q) by putting each of the unknots in Legendrian position and stabilizing appropriately.

At last, we may state Menke’s JS] decomposition for symplectic fillings.

Theorem 1.2 ([Men18, Theorem 1.1]). Let (M, &) be a closed, cooriented 3-dimensional contact manifold, and let
(W, w) be an exact symplectic filling of (M, €). If there exists a mixed torus T? C (M, €), with normalized embedding
T? x [0, 2], then there exists a (possibly disconnected) symplectic manifold (W', w') such that:

o (W' W) is an exact filling of its boundary (M',£');
o (M',¢£) is the result of splitting (M, &) with some slope 0 < s < so — 1 along T;
o (W, w) can be recovered from (W', w") by round symplectic 1-handle attachment.

If (M’, &) is a contact manifold obtained from (M, §) via Legendrian surgery along a Legendrian knot
L c (M, &) which has been stabilized both positively and negatively, a remarkable application of Menke’s JS]
decomposition shows that the symplectic fillings of (M’, ") correspond to those of (M, §).

Theorem 1.3 ([Men18, Theorem 1.3]). Let L C (M, &) be a Legendrian knot in a contact 3-manifold, and let
(M', &) be the result of contact surgery on (M, €) along S+ S_(L). Then every exact symplectic filling of (M, ') may
be obtained from an exact symplectic filling of (M, &) by attaching a Weinstein 2-handle along S S_(L).

The purpose of this note is to observe some consequences of Theorems 1.2 and 1.3 for the classification
of symplectic fillings of virtually overtwisted lens spaces, spaces resulting from surgeries on Legendrian

negative cables, certain tight contact structures on Seifert fibered spaces, and virtually overtwisted circle
bundles.

1.1. Lens spaces. Our first application of Menke’s result is to virtually overtwisted lens spaces. Namely, we
prove the following result.

Theorem 1.4. Let £ be a virtually overtwisted tight contact structure on the lens space L(p, q), withp > q > 0 and
(p, q) = 1. Then every strong (respectively, exact) symplectic filling of (L(p, q), &) is obtained by attaching a sequence
of Weinstein 2-handles to a strong (respectively, exact) symplectic filling of a connected sum of universally tight lens
spaces.

Remark. This result has also been obtained by Etnyre-Roy in [ER21], where the consequences of this classifi-
cation are more fully explored. Moreover, if the universally tight lens spaces which result from Theorem 1.4
have their fillings classified up to symplectomorphism, then Etnyre-Roy give a classification of the fillings of
the original lens space up to symplectomorphism.

Note that, while Theorem 1.2 is stated for exact symplectic fillings, Theorem 1.4 includes statements for
both strong and exact symplectic fillings. For lens spaces, the classification problems for strong and exact
symplectic fillings are equivalent. Per Wendl [Wen10], every strong symplectic filling of a contact 3-manifold
supported by a planar open book decomposition is symplectic deformation equivalent to a blow-up of a Stein
filling of the contact manifold. But all tight contact structures on lens spaces are supported by planar open
book decompositions, according to Schonenberger [Sch07, Theorem 3.3]. Thus a classification of the exact
symplectic fillings of a lens space provides a classification of the strong symplectic fillings, up to symplectic
deformation equivalence and blow-up.
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By work of Giroux [Gir00] and Honda [Hon00a], all tight contact structures on L(p, ¢) can be described
as the contact boundary of a Stein handlebody. For p > ¢ > 0, we write

1
(1) —S:[ao,al,...7an] = ag —

a; —

1

Qn,

for some uniquely determined integers ao, . ..,a, < —2. Then L(p, q¢) admits [II}" ; (a; + 1)| distinct tight
contact structures, up to isotopy. We realize these contact structures by putting the unknots of Figure 1 into
Legendrian position and stabilizing until the framing coefficient becomes —1 with respect to the contact
framing. In particular, the knot labeled a; is stabilized —2 — a; times, giving us —1 — a; choices for how
this stabilization is performed. The universally tight contact structures on L(p, ¢) are those for which every
stabilization (across all knots) is of a single sign.

If, in the virtually overtwisted case, our handlebody diagram features a knot K which has been stabilized
both positively and negatively, then we may immediately apply Theorem 1.3 to conclude that all fillings of
(L(p, q), &) result from attaching a Weinstein 2-handle to (L(p’, ¢'), )#(L(p", ¢"),&"), the connected sum
that remains when K is removed from the diagram. Note that this recovers a result of Plamenevskaya—Van
Horn-Morris [PV10] which says that (L(p, 1), {,0¢) has a unique exact filling, for all p. Thus the work of
proving Theorem 1.4 is reduced to the case where each knot in the handlebody diagram for (L(p, ¢), &)
features stabilizations of only one sign, but for which these signs do not all agree. In such a case we are
still able to find a mixed torus, but the contact manifold (W', w’) which results from applying Theorem
1.2 to a filling (W, w) of (L(p, q), ) is not uniquely determined. The possibilities are enumerated in Section 2.1.

The classification of symplectic fillings for lens spaces has a long history. Work of Gromov [Gro85] and
Eliashberg [Eli90] implies that the unique tight contact structures on S and S* x S? admit unique exact
fillings. Later, McDuff [McD90] showed that the standard tight contact structure on L(p, 1) is uniquely
fillable, except in the case p = 4, when there are precisely two exact fillings, up to symplectomorphism.
More generally, Lisca [Lis08] obtained a classification up to orientation-preserving diffeomorphism of the
symplectic fillings of (L(p, q),&sta). In the case of a virtually overtwisted contact structure on L(p, ¢), we
have the above-cited result of Plamenevskaya—Van Horn-Morris, as well as results due to Kaloti [Kal13],
Fossati [Fos19], and others for several families of lens spaces. Theorem 1.4 reduces the virtually overtwisted
problem to the universally tight problem, and thus completes the classification of strong symplectic fillings
of lens spaces up to orientation-preserving diffeomorphism.

1.2. Surgeries on Legendrian negative cables. Next we consider spaces obtained from (S, £q) via contact
surgery along certain Legendrian knots. Theorem 1.3 is the first instance of such a result, showing that these
surgeries have unique fillings when the Legendrian knot has been stabilized both positively and negatively.
In this section we study fillings in the case that our knot is a Legendrian negative cable of a Legendrian with
stabilizations of opposite sign.

First defined in [Ng01], a thorough study of Legendrian satellite knots can be found in [EV18], some
notation of which we now recall. We consider a contact manifold (V,&y) defined by V' = D;Z x S,
&y = ker(dz — ydf). Any Legendrian knot L C (53, £q) has a neighborhood v(L) which is contactomor-
phic to (V, &), and given any Legendrian knot Q C V, we denote by Q(L) C v(L) the image of ) under
this contactomorphism. We pay special attention to the case where Q C V is a Legendrian (p, ¢)-torus
knot, for some coprime p, ¢ with ¢ > 0, in which case we call Q(L) a Legendrian cable of L. We point out
that if Q is a (p, ¢)-torus knot and K is the knot type of L, then the knot type of Q is Kb (1),q, that of
a smooth (p + gtb(L), g)-cable of L. The reason for this is that the contactomorphism between (L) and
V identifies the product framing on V' with the contact framing on v(L); see [EV18, Section 5] for more details.

We will also need a particular embedding of (V, &y ) into itself. Notice that the core C of V is a Legendrian
curve, and that (V,&y) = v(C) is a standard neighborhood of C. We may stabilize C' to obtain S;(C) C V
and identify a standard neighborhood v (5S4 (C)) C V of the stabilization. We have a contactomorphism



4 AUSTIN CHRISTIAN AND YOULIN LI

between v(C) = (V,&y) and v(S4(C)) C (V,&y), giving us an embedding ¢: (V,&y) < (V. &y ). Given some
Legendrian ) C V, this embedding produces ((Q) C V, a Legendrian cable of the stabilization S, (C').

Next we point out that a Legendrian knot ) C V which is smoothly a (p, g)-torus knot can be used to
determine a tight contact structure £, on L(q?, pg — 1). The construction is as follows: let S = (D? x S*, &5q)
be a tight solid torus, glued to V in such a way that V U S 2 (52 x S1, &a). Then (L(g?,pg — 1), &g) is the
result of Legendrian surgery on (S? x S, £44) along ¢(Q).

The result of this section will consider fillings of the contact manifold which results from Legendrian
surgery on (53, &sq) along a knot Q(S+S— (L)), under certain conditions on this knot. In particular, we will
show that all such fillings may be obtained by attaching a Weinstein 2-handle to a filling of (L(¢?, pqg — 1),&0)
along a Legendrian knot Ly C (L(¢%,pg — 1),£g). Our final preparation before stating the result is to
identify the knot L. First, consider the knot K = {pt} x S in (5% x S, &+a); we take K to be disjoint from
Q C S? x S'. By performing the contact connected sum (S? x S, £sq)#(5?, &xa) along points z € K and
y € S_(L), we obtain K#S_(L) as a Legendrian knot in (5% x S', &q). Finally, we perform Legendrian
surgery on (52 x S1, &q) along ¢(Q), and K#S_ (L) passes to a Legendrian knot in (L(¢%, pg — 1),&q). This
is the Legendrian knot L of interest to us.

We are now prepared to state our result.

Theorem 1.5. Let L C (S3, &sia) be a Legendrian knot with smooth knot type K, and let Q(S+S— (L)) be a Legendrian
negative cable of S4.S_(L), the smooth knot type of which is IC,, ;. Suppose that the Thurston-Bennequin number of
Q(S4+S5_(L)) is maximal among Legendrian knots of type IC,, 4, and let (M, £) be the contact manifold which results from
Legendrian surgery on (S3, &sea) along Q(S+S—(L)). Then every exact symplectic filling of (M, £) may be obtained
by attaching a Weinstein 2-handle to an exact symplectic filling of (L(¢%,pq — 1),&0) along Lo C L(q®, pg — 1).

Remark.

(1) Because Q(S+S_(L)) has the smooth knot type K, ¢, this knot is a Legendrian (p + ¢(2 — tb(L)), q)-
cable of S S_(L). Since Q(S+5_(L)) is a Legendrian negative cable, p < ¢(tb(L) — 2).

(2) According to [EV18, Theorem 5.16], the Thurston-Bennequin number of Q(S;+S_(L)) is pg, and thus
M is the result of (pg —1)-surgery along C,, ,. By [Gor83, Corollary 7.3], this surgery is diffeomorphic
to (pg — 1)/¢*-surgery along K.

1.3. Seifert fibered spaces over S2. In this section we apply Menke’s result to large classes of contact struc-
tures on spaces which are Seifert fibered over S2, with at least three singular fibers. Our results reduce
the classification of fillings of these spaces to the classification problem for lens spaces — a problem which
is settled by the previous section. We will first consider Seifert fibered spaces whose Euler number ¢ is
non-negative, and then consider spaces with e; < —3. Here the Euler number of a Seifert fibered space
M(rq,...,ry,) over S? is defined to be eg := X |r; |. Starkston [Stal5] and Choi-Park [CP19] have previously
studied fillings of small Seifert fibered spaces satisfying e; < —3, but we consider a distinct collection of
contact structures on these spaces.

On small Seifert fibered spaces — those with precisely three singular fibers — the contact structures
satisfying ey > 0 or ey < —3 have been classified by Ghiggini-Lisca-Stipsicz [GLS06] and Wu [Wu04], and
we will see that Menke’s results apply to a great many of these structures. For Seifert fibered spaces over 52
with more than three singular fibers, the tight structures have not been fully classified, but we can construct
large classes of tight structures for which Menke’s result applies.

1.3.1. The case ey > 0. We now consider a Seifert fibered space over S?2 withn >3 singular fibers. Choose
coprime integers ¢;,p; > 0,4 = 1,...,n, which satisfy ¢; < p; fori = 1,...,n — 1. We may construct a
tight contact structure £ on M = M (1%’ e %) by realizing M as the boundary of a Stein domain with
handlebody description as in Figure 2. Here

(2> _&:[aaaiw")ali-] fori:l""’n’
% '
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Ficure 2. Handlebody decomposition of a Stein filling of M = M ( e g” ). A contact
structure is produced on M by putting each of the knots in Legendrlan posmon and stabiliz-
ing appropriately.

for some uniquely determined integers
ay < -1 and ap,...,a)" 1,a11,...,a§1 < -2

We obtain a Stein structure on the handlebody in Figure 2 by putting each unknot in Legendrian position with
clockwise orientation and stabilizing until the framing coefficient becomes —1 with respect to the contact
framing. It is possible for distinct choices of stabilizations to lead to the same tight contact structure on M —
that is, there are equivalence relations among the handlebody diagrams. For small Seifert fibered spaces,
Ghiggini-Lisca-Stipsicz show in [GLS06] that there are precisely

3 3 li
<H(ag+1> 11 )HHa +1)
i=1 i=1 =1;j=1
positive tight contact structures on M, up to isotopy. If M has four singular fibers, Medetogullari shows in
[Med10] that the number of distinct Stein fillable contact structures is between

4

(H(a%—&-l) H )HH@ +1)] and 2 (H(aé—l—l)—Haé)Hﬂ(a +1)

i=1 =1 i=1

Generally, if n > 4, then M contains incompressible tori and therefore admits infinitely many tight contact
structures according to work of Colin [Col0la; Col01b] and Honda-Kazez-Mati¢ [HKMO02].

Our first result for spaces M which are Seifert fibered over S? applies to tight contact structures which
are thoroughly mixed, a notion we define shortly. The definition is designed so that each singular fiber of M
admits a tubular neighborhood whose boundary is a mixed torus. Applying Theorem 1.2 to a filling of (M, £)
will then leave us with a boundary connected sum of fillings of lens spaces.

Definition. Let ¢ be a tight contact structure on M (-, - -, 2=). We will call § thoroughly mixed if { admits a
Stein filling as in Figure 2 such that one of the following holds

e if g = 0, then each of K3, ..., K,, has been stabilized positively (or, equivalently, each has been
stabilized negatively);
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(a) A thoroughly mixed contact structure. (8) A lightly mixed contact structure.

Ficure 3. Contact structures on M (%, 1, 1).

e if g > 0, then each of K, ..., K,,_1 has been stabilized positively, and the nearest stabilized unknot
adjacent to K, has also been stabilized positively (or, equivalently, each of these stabilizations is
negative.

Notice that K,, has no stabilizations in the case e¢g > 0.
See Figure 3 for an example of a thoroughly mixed contact structure. In Section 2.3.1 we will provide

another construction of thoroughly mixed tight contact structures and explain how to produce a mixed torus
for each singular fiber.

Theorem 1.6. Let & be a tight contact structure on the Seifert fibered space M = M (-, -, I*), for some n > 3 and
coprime positive integers q;, p; with ¢; < p; for1 <i<n—1landp; > 2for1 <1 < n. If € is thoroughly mixed,
then there are tight contact structures ; on L(q;, —p;) for i = 1,...,n and Legendrian knots L, C (L(g;, —p:),&i),
LT C (L(git1, —pit1), &iv1) fori = 1,...,n — 1 such that every exact symplectic filling of (M, &) is obtainedfrom
a disjoint union of exact fillings of (L(ql, —p1),&1), -+, (L(gn, —pn), &n) by attaching a round symplectic 1-handle
along LE, fori=1,...,n — 1.

Several families of tight lens spaces are known to have unique exact fillings, and from these we obtain
families of tight Seifert fibered spaces with unique exact fillings.

Corollary 1.7. Let & be a thoroughly mixed tight contact structure on M = M (g—i, IR %), with ¢; < p; for
1<i<n-—1landp; > 2and gcd(q;,p;) = 1for 1 < i < n. If any of the following conditions hold, then (M, ¢)
admits a unique exact symplectic filling, up to symplectomorphism:

(ﬂ) qi S {1727_3};

(b) for some b((f) —-2> bgi) >2and my,...,Mp_1 > 2, my, > 1, we have
@ _ b\ +1
pi om0 4+ 1) — b
fori=1,...,n;
(c) for some b((f), bg’) >5and my,...,Mp_1 > 2, my > 1, we have
N
Pi (b b — 1) = b
fori=1,...,n

Proof. Theorem 1.6 provides a recipe for constructing any exact filling of (M, §) from fillings of (L(g;, —p;), &),
so this is simply a matter of observing that if any of these conditions hold, then (L(g;, —p;), &;) is uniquely
fillable. If condition (a) holds, then either L(q;, —p;) = L(g;,1) or L(q;, —p;) = L(3,2). In either case, the
tight contact structures on L(g;, —p;) are all uniquely fillable by work of Eliashberg [Eli90], McDuff [McD90],
and Plamenevskaya—-Van Horn-Morris [PV10]. When condition (b) holds, we are considering tight contact

structures on L(béi)b(li) +1, bgi)). Universally tight structures on such a lens space were shown to be uniquely
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fillable by Lisca [Lis08]. In particular, we have p = béi)bgi) +land g = bgi), S0

p B 1
p=a b 41— p?

=[2,....2,8%) + 1],

where the number of copies of 2 at the start of this continued fraction is b(()i). In Lisca’s notation, it follows that
the unique exact symplectic filling of L(p, ¢) is W, 4((1,2,...,2,1)). The virtually overtwisted structures on

L(b(()i)bgi) +1, bgi)) are uniquely fillable according to work of Kaloti [Kal13, Theorem 1.10]. Similarly, condition

(c) produces lens spaces of the form L(béi)bg) -1, by) ), the fillings of which are known to be unique by work
of Lisca [Lis08] in the universally tight case and Fossati [Fos19, Theorem 1] in the virtually overtwisted case.
The relevant continued fraction for applying Lisca’s work to these lens spaces is

OB 1 _
bbt — 1 — bt

which begins with b(()i) — 2 copies of 2 and ends with bgi) — 2 copies. Once again, the unique exact filling is
given by W), ,((1,2,...,2,1)) in Lisca’s notation. The observation that

b =1 iy
i [b() ’bl }
b(l)

1

allows us to apply Fossati’s result. O

Another class of contact structures on Seifert fibered spaces which admit abundant mixed tori are those
which are lightly mixed.

Definition. Let ¢ be a tight contact structure on M(L-,---, I*). We will call  lightly mixed if ¢ is not
thoroughly mixed, but admits a Stein filling as in Figure 2 for which at least n — 2 of K3, ..., K, have been
stabilized both positively and negatively. We say that § is lightly mixed about K; and K; to indicate that £
admits a Stein filling for which each of K, ..., K,, except K; and K; have been stabilized positively and
negatively.

Like their thoroughly mixed counterparts, exact symplectic fillings of lightly mixed contact structures on
Seifert fibered spaces may also be decomposed into lens space fillings, though one of the lens spaces will
have a slightly more complicated expression.

Theorem 1.8. Let & be a tight contact structure on the Seifert fibered space M = M(L-,--- , 1), for some coprime
positive integers q;, p; with ¢; < p; for 1 <i <n—1landp; > 2 for 1 < i < n. Let each —p;/q; have continued
fraction as above. Suppose that § is lightly mixed about K; and K, and let

I i i i g j
,a =la,,...,a,ag +a},al,. ..,a{j].
Then there exist (1) a tight contact structure & on L(qi, —px), for each k # i,5; (2) a tight contact structure ¢’
on L(p',q'); (3) Legendrian knots K, in #_.; ;(L(qk, —pr), &k )# (L', ¢'), () for k # i, j, such that every exact
symplectic filling of (M, &) is obtained from an exact symplectic filling of
# (L(qka 7pk)a gk)#(L(p/a q/)7 C/)

k#i,j
by attaching a Weinstein 2-handle along each K}, k # i, j.

As with Theorem 1.6, we may use Theorem 1.8 and the classification of exact fillings of some lens spaces
to identify families of tight Seifert fibered spaces whose exact fillings we may classify. One example of such a
family is given by the following corollary.

Corollary 1.9. Choose py, p2,ps > 2. If € is a tight contact structure on M = M(pil, p%’ p%) which is lightly mixed
about K;_q and K; 1 — where subscripts are labeled modulo 3 — and p;_1 + piy1 # 4, then (M, ) admits a unique

exact filling, up to symplectomorphism.
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Proof. Applying Theorem 1.8 to such a filling leaves us with a filling of S3#L(p;—1 + pi+1, 1), with some tight
contact structure. By work of Eliashberg [Eli90] this filling must be the boundary connected sum of a filling
of (53, &ta) with a filling of (L(p;—1 + pit+1,1), (). Because p;_1 + p; 11 is not equal to 4, results of McDuff
[McD90] and Plamenevskaya—Van Horn-Morris [PV10] show that (L(p;—1 + pit+1,1),¢) is uniquely fillable,
as is the case for (52, &gq). So (M, €) is uniquely fillable. O

We will see in Section 2.3.1 that there are precisely six tight contact structures on M (p—1 p% ;T3) which are

neither lightly nor thoroughly mixed, and we will show that each of these structures is universally tight.
According to Corollaries 1.7 and 1.9, these six are the only tight structures on M (=, -, L) which we cannot

p1’ p2’ p3
conclude have unique exact fillings if, say, p1, p2,p3 > 3.

Corollary 1.10. Choose integers pl, p2,ps > 2, no two of which sum to 4. If £ is a virtually overtwisted tight

contact structure on M = M(p—1 ot Fs) then (M, &) admits a unique exact filling (W, w), up to symplectomorphism.

Moreover, W is simply connected, and has Hy(W) = Z2.

Proof. The uniqueness of the filling (W,w) follows from Corollaries 1.7 and 1.9. To see that W is simply
connected and has Hy(W) = Z?, consider the handlebody diagram for W given by Figure 2. This diagram
consists of a single 1-handle, with three 2-handles attached along parallel knots K1, K5, K3 which pass over
the 1-handle. We may handleslide K> and K3 over K; and then cancel K; with the 1-handle to obtain a
handlebody diagram for W which consists of two 2-handles attached to a 0-handle. Such a handlebody is
simply connected, with Hy(W) = Z2. O

Wrapping up loose ends, we have the following result. In this result, we refer to a horizontal link in Figure 2,
which consists of some K; along with the attached chain of Legendrian unknots.

Theorem 1.11. Let & be a tight contact structure on a small Seifert fibered space M, with surgery diagram as in Figure
2. If any of the horizontal links have both positive and negative stabilizations, then every exact symplectic filling of
(M, &) can be obtained from a disjoint union of a filling of a universally tight small Seifert fibered space, along with
fillings of universally tight lens spaces, by attaching a sequence of round symplectic 1-handles.

1.3.2. The case eg < —3. Finally, we discuss Seifert fibered spaces over S? with Euler number ¢y < —3. In
particular, we consider M = M(—42 Iy ,—g—") withp; > 2,¢; > 1, and (p;,¢;) = 1 fori =1,...,n. The
Euler number is then given by

n
ey = Z {—%J < —n.
- L P
We have continued fraction expansions
—% = [ab,... ,am,
(2
for some uniquely determined integers satisfying aj) = —( [%J +1)and a} < —2for j > 1. Then M admits a

surgery diagram as in Figure 4. Notice that eg = X" ;al.

We may construct contact structures on M by putting the knots in Figure 4 into Legendrian position and
stabilizing until the framing coefficient becomes —1 with respect to the contact framing. We see that there are

n ¥
(eo+1)HHa +1)

choices for these stabilizations, and in case we have a small Seifert fibered space, Wu shows in [Wu04] that
each such choice leads to a distinct contact structure up to isotopy, and indeed all contact structures on M
can be constructed in this way

Definition. Let M = M(—1*,---, —I=)be as above, and construct a tight contact structure { on M by putting

the knots of Figure 4 into Legendrian position. We say that (M, ) is centrally mixed if the central knot of
Figure 4 is stabilized both positively and negatively.

Remark. Notice that if (M, ) is centrally mixed, then ey < —4.
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a% al
a% ay
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a%171 . . a?nfl
ay, o K} K7 \\ . \a?n
K} Ky

_/ [ ] [ )
[ J n
Kzllfl K@,Lfl
K, K,
FIGURE 4. A surgery diagram for M(_;%’ e —%), eg < —3.

Our Seifert fibered space M admits a canonical contact structure as the boundary of a plumbing 4-manifold.
The 4-manifold is a plumbing of disc bundles of 2-spheres, with plumbing graph as in Figure 5. Each node
of the graph corresponds to a symplectic 2-sphere, and each edge represents an orthogonal intersection
between them; in this way we produce a symplectic structure on the plumbing 4-manifold, and a canonical
contact structure on its boundary M. The fillings of this canonical contact structure were studied by Starkston
[Stal5] and Choi-Park [CP19], each under some additional assumptions on M. Starkston provided topo-
logical restrictions on the strong symplectic fillings of dually positive Seifert fibered spaces over S2. In some
cases, these restrictions produce classifications up to diffeomorphism of minimal strong symplectic fillings.
Choi-Park classified all minimal symplectic fillings of small Seifert 3-manifolds M (-1, — 12, — 1), with
ep < —4 and with the canonical contact structure. An infinite family of Seifert fibered spaces with canonical
contact structure and ey = —3 also saw their fillings classified by Schénenberger in [Sch07, Theorem 4.4].

We point out that the canonical contact structure is not centrally mixed. Indeed, the Legendrian surgery
diagram for the canonical contact structure has all of its stabilizations of a single sign.

Proposition 1.12. If M = M (-1, .-, —1I*) has canonical contact structure £ as described above, and Legendrian
surgery diagram as in Figure 4, then all the stabilizations in the Legendrian surgery diagram are of a single sign.

Proof. As described above, there is a symplectic 4-manifold (W, w), obtained by plumbing disc bundles of
2-spheres, which fills (M, ). For each symplectic sphere S7, the adjunction formula takes the form

(ex (W), 157]) = [57] - [S7] + 2.
At the same time, S? corresponds to surgery along the Legendrian knot K7 in Figure 4, and thus

(7] - [87] = fr(K7) = th(K7) - 1.

n n n

ay as g,

@ oo e L )
. .
€0 ° °
. .

oo o L )

1 1 1

ay az ay,

Ficure 5. The plumbing graph associated to the surgery diagram in Figure 4.
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So (1 (W), [S7]) = th(K7) + 1. Finally, [Gom98, Proposition 2.3] allows us to compute the rotation number
of K:

vot(K?) = (ea (W), [S7)) = th(K7) + 1.
This rotation number can only be obtained by taking every stabilization to be negative. Note that taking all
stabilizations to be positive gives a contactomorphic (though not isotopic) contact structure. O

A straightforward consequence of the definition of centrally mixed and Theorem 1.3 is the following.

Proposition 1.13. Let M = M(— p1 - Z") with p; > 2, ¢; > 1, with n > 3. If £ is a centrally mixed tight

contact structure on M, then every exact symplectzc filling of (M, &) may be obtained from an exact symplectic filling of
# ( (pqu) 52)

=1

by attaching a Weinstein 2-handle in a specified manner, where —2+ = [a}, ... aj ] and &; is a tight contact structure
determined by &.

More generally, we have the following result for any contact structures constructed from Figure 4.

Theorem 1.14. Let M = M(—L,---, —1=) be as above, and let § be a tight contact structure on M obtained by
putting the knots of Figure 4 into Legendrmn position. Then every exact symplectic filling of (M, &) can be obtained by
attaching a sequence of round symplectic 1-handles to a disjoint union of fillings of universally tight lens spaces and a
Seifert fibered space with canonical contact structure.

This result will be made more precise through a sequence of propositions in Section 2.3.3. We point out that,
together with Lisca’s classification of fillings for universally tight lens spaces and Choi-Park’s classification of

fillings for the canonical contact structure on M(—1Iv, -2, —4%), ¢g < —4, Theorem 1.14 allows us to classify
the exact symplectic fillings of any contact structure on M (—1It, -2, —1%) ¢y < —4.

1.4. Virtually overtwisted circle bundles over surfaces. Our final application of Menke’s JSJ] decomposition
completes the classification of exact symplectic fillings for virtually overtwisted tight contact structures on
circle bundles over closed surfaces. We let 7: M — ¥ be a circle bundle over a closed Riemann surface
of genus g, and we let £ be a tight contact structure on M. Honda [Hon00b] defines the twisting number
t(S*) < 0 of ¢ to be the maximum non-positive twisting number achieved by a closed Legendrian curve in
M which is isotopic to the S*-fiber. Here the twisting number is measured relative to the fibration framing,
and is defined to be zero if M admits a fiber-isotopic Legendrian curve with positive twisting number. In
[Hon00a] and [Hon00b], Honda classifies the tight contact structures on M, and in this note we classify the
exact symplectic fillings of M, provided ¢ is virtually overtwisted and ¢(S*) < 0.

Proposition 1.15. Let M — X be a circle bundle over a closed Riemann surface of genus g > 1, and let £ be a virtually
overtwisted tight contact structure on M with t(S') < 0. Then (M, &) admits a unique exact symplectic filling, up to
symplectomorphism.

Remark. The only circle bundles over 5* which admit virtually overtwisted contact structures have the form
L(|e|, 1), where e < —2 is the Euler number of the circle bundle. Any virtually overtwisted contact structure
on such a lens space is uniquely exactly fillable, per Plamenevskaya—Van Horn-Morris [PV10, Theorem 1.2],
so the conclusion still holds. In the g = 1 case we have a circle bundle over 72, which can also be realized as a
parabolic torus bundle over S L If e < —2, the conclusion again holds, but for e > 2 the virtually overtwisted
structures admit no exact symplectic fillings. See [Chr21, Theorem 1.1].

The only virtually overtwisted circle bundles not addressed by Proposition 1.15, the lens spaces treated in
[PV10], or the torus bundles treated in [Chr21] are those with g > 1 and ¢(S*) = 0. In [LS03; 1L.S04] Lisca-
Stipsicz verify a conjecture of Honda, which says that these structures are not symplectically semi-fillable,
and thus are not symplectically fillable. In Section 2.4, we will establish the following corollary.

Corollary 1.16. Let M — ¥ be a circle bundle over a closed Riemann surface, with virtually overtwisted tight contact
structure &, and let t(S*) < 0 be the twisting number. If t(S') = 0, then (M, €) does not admit an exact symplectic
filling; if t(S') < 0, then (M, &) admits a unique exact symplectic filling, up to symplectomorphism.
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2. Proors

2.1. Lens spaces. Throughout this section we will consider a lens space L(p, ¢), p > ¢ > 0 with a virtually
overtwisted contact structure as depicted in Figure 1. Namely,

D _
—= =lag,a1,-..,ax
q

have the same sign. We will prove Theorem 1.4 by showing that every strong or exact symplectic filling of
(L(p, q), &) can be obtained by attaching a Weinstein 2-handle to a filling of a connected sum of the form

(L', ), €)#LE", "), €,
obtained by deleting a single knot from the diagram describing (L(p, ¢),&). Beginning with an arbitrary

filling of (L(p, q), £), this decomposition may be inductively applied (in conjunction with Theorem 1.1) until
we have a symplectic filling of a connected sum of the form

for uniquely determined integers a; < —2, and the stabilizations applied to the knots in Figure 1 do not all

# (L(pisa), ),

where each (L(p;, ¢:), &) is a universally tight lens space. To produce a complete list of the fillings of (L(p, q), §),
we consider the fillings of all connected sums of this form which may result from (L(p, g), §).

In case one of the knots in Figure 1 has been stabilized both positively and negatively, we may directly
apply Theorem 1.3, as described in Section 1, to realize our symplectic filling as the result of attaching a
Weinstein 2-handle to a connected sum. We now focus on the case where no knots have been stabilized both
positively and negatively. In this case we may identify knots K and K_, each of which has been stabilized
at least once, with all stabilizations being positive or negative, respectively. Moreover, we may choose K
and K_ to be adjacent, in that none of the knots between them have been stabilized. Finally, our argument
loses no generality by assuming that K is to the right of K_ in Figure 1.

We now define
/

- = [ao,...,ak—laak + 1]’

where we identify [ao, . . ., ag—1, ax + 1] with [ag, ..., ak—2,ar—1 + 1] if a, = —2. Now [Hon00a, Section 4.6]
allows us to write L(p, ¢) = Vy Ua V1, where V; and V; are solid tori with a map A: 0V — 0V3, the dividing
curves of 0V, are vertical, and the dividing curves of 0V have slope —p’/q’. Moreover, we may decompose
Vi as

‘/1 =NU (Vl \ N)7
with V4 \ N 2 T2 x I, such that sy = —1 and s; = —p//q’. Here we denote by s, the slope of the dividing
curves of T? x {i}, fori =0, 1.

The thickened torus 77 x I has a basic slice decomposition which we now describe. Let
0<ip<ig < - <ig<k
be the indices for which a; < —3. Then T2 x I decomposes into ¢ continued fraction blocks, with a total of
(i, +2)(as, +2)- - (a, +2)|

basic slices. The basic slices in each continued fraction block will all be of a single sign, and the continued
fraction blocks corresponding to K, K_ will be adjacent, of opposite sign. We immediately see that the
boundary convex torus 7' sitting between the continued fraction blocks associated to K and K_ is a mixed
torus, sandwiched between basic slices S. C K and S_ C K_ of opposite sign.
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Let —p/ /q} be the slope of the dividing curves on T, and let —p} /q5, —p(/q} be the opposite slopes of S,
S_, respectively. We would like to normalize this neighborhood of T'. After observing that
@ipy —Pigp =1 and  qopy —pogr = 1,
we see that applying the transformation

1 0\ [—p} —qi>
€ SL(2,7
<%%—@w@—11)<pa a (2,2)

so=—1, s1=00, s2=phay—qapy— 1.
According to Theorem 1.2, applying the JS] decomposition to a filling of (L(p, ¢), §) will produce a filling of
(M’,¢"), obtained from (L(p, q), &) by splitting with slope 0 < s < phq(, — ¢bpy — 2 along T'.

leaves us with the slopes

We now claim that ph g}, — ¢5py — 2 = m + 1, where m is the number of unstabilized knots between K| and
K_ in Figure 1. According to [Hon00a, Lemma 4.12], the slopes of the basic slice decomposition of 7% x I
are obtained by incrementing the last entry of the continued fraction expansion of —p’/¢’ until we have —1.
In particular, we may write

/ m+1
_pTQZ lag,a1,...,0n,—2,...,—2
42
for some n < k with a,, < —3 and then see that
/
2~ fag, a1, + 1]
1
and
z P
) = [ag,a1,...,a, +2], ifa, <-4 or - m = [ag,a1,...,an—1 + 1], if a, = =3.
0 0
We can now verify our claim inductively. If a,, < —4 we have
m+1
[a +2]:_an+2 and [an, 2 _2:_(m—|—2)an+(m+1)
n 1 ns gy _(m+2)

and observe that
(=D)((m +2)an + (m+1)) = (=(m +2))(an +2) = m + 3.
If we instead have a,, = —3, then
m+1

n—1+1 2 5)ay,— 2
[an,1+1]=—% and [an,l,—37—2,...7—2]:—( m )(6’2 1++5§m+ )
- —(2m

SO
(=D)((2m+5)an—1+ (m+2)) — (—(2m+5))(ap—1 +1) =m+ 3.
In either case, we may now apply the following inductive step. If a/b and o’ /b’ satisfy ab’ — a’b = m + 3, then

_ 1o B
ra/bl =0 and [ra/p]= 2P0
a

al

satisfy

(ar —b)a' —a(a'r =) =abl —ba’ =m + 3.
This proves our claim, so we see that every filling of (L(p, q), £) is obtained by attaching a round symplec-
tic 1-handle to a filling of a contact manifold which is obtained from (L(p, ), ) by splitting with slope
0<s<m+1lalongT.

It is now straightforward to check that splitting with slope s = 0 along T" produces a disjoint union of lens
spaces, obtained from Figure 1 by deleting K_ and realizing the two resulting chains of unknots in separate
diagrams. Attaching a round symplectic 1-handle to this disjoint union corresponds to first attaching a
Weinstein 1-handle which produces the connected sum of these lens spaces, and then attaching a Weinstein
2-handle along K _. Similarly, splitting (L(p, ¢), &) with slope s = m + 1 along T" corresponds to deleting the
knot K. Each intermediate slope corresponds to deleting an unstabilized knot between K_ and K. In
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X EF >
l

Ficure 6. Every filling of the top lens space L(89,24) with the given contact structure is
obtained by attaching a round symplectic 1-handle to a filling of the disjoint union S* U
L(24,7) below; the round 1-handle is attached along the dashed knots. Fillings of L(24,7)
can be further decomposed as seen in Figure 7.

any case we see, as claimed above, that every filling of (L(p, ¢), ) can be obtained by attaching a Weinstein
2-handle to a symplectic filling of a connected sum of lens spaces which is obtained by erasing a single knot
from Figure 1. If the constituent lens spaces in this connected sum are virtually overtwisted, we may repeat
this process until we have a connected sum of universally tight lens spaces. This proves Theorem 1.4.

Theorem 1.4 and its proof provide a recipe for classifying the fillings of a virtually overtwisted lens space
(L(p, q), ). Given a depiction of the lens space as in Figure 1, we can produce a tree whose leaves are disjoint
unions of universally tight lens spaces, and every filling of (L(p, q), £) can be obtained by attaching a specified
sequence of round symplectic 1-handles to a filling of one of these disjoint unions. An example of such a
tree is given by taking Figures 6 and 7 together. The root of our tree is (L(p, ¢),§), and we move to a new
level of the tree by applying the decomposition described in this section. If the mixed torus leading to the
decomposition comes from a knot which has been stabilized both positively and negatively, we have a single
branch. If the mixed torus is associated to a pair K, K_ of adjacent knots with opposite signs, then we have
m + 2 branches, where m is the number of unstabilized knots between K, and K_.

We observe that this argument recovers Fossati’s classification of fillings for virtually overtwisted structures
on lens spaces which result from contact surgery on the Hopf link ([Fos19, Theorem 1]). Consider —£ =
[a1,az], for some a1,a2 < —2, and let &, be a virtually overtwisted contact structure on L(p,q). Our
decomposition tells us that every filling of (L(p, ¢),&vot) is obtained by a specified Weinstein 2-handle
attachment to a filling of either L(—as, 1) or L(—az, 1), with a particular (not necessarily virtually overtwisted)
contact structure. With the exception of a universally tight structure on L(4, 1), each lens space L(—a;, 1) has
a unique exact filling. Moreover, we see from our decomposition that attaching a Weinstein 2-handle to such

Ficure 7. Applying the JSJ decomposition to a filling of L(24, 7) with the contact structure
seen in Figure 6 yields a filling of one of the three disjoint unions seen here. We recover a
filling of L(24, 7) by attaching a round symplectic 1-handle along the dashed knots.
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a standard filling in the manner prescribed will always yield the standard filling of (L(p, ¢), &vot)- So we have
the following corollary.

Corollary 2.1 (c.f. [Fos19, Theorem 1]). Let (L(p, q), &vot) be a virtually overtwisted lens space, with — = a1, as],
for some ay,az < —2. Then (L(p, q), &vor) has
o a unique exact filling, up to diffeomorphism, if a1 # —4 and ay # —4, or if at least one of a1, as is —4 and the
corresponding knot has been stabilized both positively and negatively;
o precisely two exact fillings, up to diffeomorphism, if at least one of a1, as is —4, and the corresponding knot
has stabilizations of a single sign.

2.2. Surgeries on Legendrian negative cables. In this section we prove Theorem 1.5. As in the statement of
the theorem, we let L C (53, &41q) be a Legendrian knot with smooth knot type K, and let Q(S+S_ (L)) be a
Legendrian negative cable of S S_ (L) with smooth knot type I, 4, p < q(tb(L) — 2). We suppose that the
Thurston-Bennequin number of Q(S1.S_(L)) is maximal among such knots, and we let (M, £) be the contact
manifold obtained by Legendrian surgery along Q(S+S5_(L)).

We may use the stabilizations on S;.S_ (L) to identify a mixed torus in (M, £). In particular, let v(S_(L)) C
(93, &ta) be a standard neighborhood of S_(L). We let V; be the solid torus obtained from this neighborhood
via Legendrian surgery along Q(S+S_(L)), and let Vo = S\ v(S_(L)). Then M = V; U V5, and we claim
that the common boundary 0V; = dv(S_(L)) = 0Vz is a mixed torus. Indeed, consider the three convex
tori Ov(L), Ov(S_(L)), and Ov(S1S_(L)). The tori Ov(L) and dv(S_ (L)) cobound a negative basic slice in M.
The tori Ov(S_(L)) and 0v(S4+S— (L)) cobound a positive basic slice in v(S_ (L)), but this may not survive to
a basic slice in M, since Q(S+5_(L)) may not be disjoint from Jv(S;5_(L)). However, we can subdivide
this basic slice to find a boundary parallel convex torus cobounding a positive basic slice with Ov(S_(L)) (c.f.
[EHO1, Lemma 3.15]). So 0v(S_ (L)) sits between basic slices of opposite sign, and is therefore a mixed torus.

Now because of our assumptions that p < ¢(tb(L) — 2) and that the Thurston-Bennequin number of
Q(S+S-(L)) is maximal, [EV18, Theorem 5.16] tells us that tb(Q(S+S— (L)) = pq. So the Legendrian surgery
used to produce V; from v(S_(L)) is smoothly pg — 1-surgery. According to Lemmas 7.2 and 7.3 of [Gor83], V4
is then a solid torus D? x S! whose meridional curves have slope (pg — 1)/q? in the coordinates of dv(S_(L))
given by the meridian i and the preferred longitude A. We now apply

(1 _tlb(L) ?) € SL(2,7)

to the coordinates of Ov(S_(L)). In the original coordinates, the dividing curves of Jv(L) and dv(S_(L))
had slopes 1/tb(L) and 1/(tb(L) — 1), respectively. In our new coordinates we find that I'y, () has slope 1,
Tou(s_(ry) is vertical, and the meridional slope of py;, is represented by the vector (pg — 1 + ¢*(1 —tb(L)),q?)
in Z2.

Having made these preparations, we now suppose that (W, w) is an exact symplectic filling of (M, §).
Applying Theorem 1.2 to this filling yields (W', w’), an exact symplectic filling of its boundary (M, £’), which
we may write as

M' =My UM,y :=(ViuS)u(VaUs),
for some identifications 9.5 — 0V;, where S is a solid torus. The gluing maps 95 — 0V identify dividing
curves, but the meridian p15 of S could in principle take any number of values. Our first observation is that,
because I'y, is vertical, us = (1,m) € Z? for some m € Z. Next, the fact that (M’, ¢') is fillable means that each
of M and M, is tight. On M;, we see that as we move from the core of S to 9V} and then towards the core of V3,
the contact planes rotate from the slope of ng towards that of I'y; , and finally towards the slope of 11y, . Because
of our assumption that p < g(tb(L) —2), we find that —1 < uy, < 0. Tightness demands that the total rotation
of the contact planes is through an angle smaller than 7, meaning that m > 0. See Figure 8. On M, we see that
the contact planes rotate counterclockwise from 1, the slope of I'y,(1), to the slope of I'5,,(s_ (1)), and finally to
the slope m of pg. Because this rotation must be smaller than 7, we see that m < 0. So we conclude that m = 0.

Because the solid torus S is attached with slope m = 0, we find that M; = L(¢?, pg—1) and My = V,US =
S3. Moreover, we see from the definition of M, that M; results from surgery on (S? x S, &q) along ¢(Q),
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Ficure 8. If the slope of ;g were negative, then V; U S would be overtwisted; if the slope
were positive, then V2 U S would be overtwisted. So g is horizontal.

as described in Section 1. So M; = (L(¢?, pq — 1),£g); on S? we have the unique tight contact structure &q.
Now Theorem 1.2 tells us that we recover (W, w) from (W’,w') by attaching a round symplectic 1-handle
along the cores of the two copies of S — one in M; and the other in M>. In M; this core is given by the image
of {pt} x ST C (5% x S, &a) after performing surgery along ¢(Q) C 5% x S*. That is, the core of M is the
image of K after surgery, which we abusively call /. In M> the core is given by S_(L). We attach the round
symplectic 1-handle by first attaching a Weinstein 1-handle along a pair of points z € K and y € S_(L), and
then attaching a Weinstein 2-handle along the resulting knot K#S_(L). So we obtain (W, w) from (W', w’)
by attaching a Weinstein 2-handle to

(L(q2qu - 1)7 gQ)#(ng gstd) = (L(q2»pq - 1)7 gQ)
along K#S5_(L). Since this is precisely the knot L, identified in the statement of Theorem 1.5, our proof is
complete.

2.3. Seifert fibered spaces over S°. Before proceeding to the proofs of the results in Section 1.3, we first recall
in Section 2.3.1 what it means for a tight contact structure £ on a Seifert fibered space M = M (%’ e ;%)
to be thoroughly or lightly mixed, and we identify the universally tight contact structures on small Seifert

fibered spaces. Sections 2.3.2 and 2.3.3 then contain the proofs in the ¢y > 0 and ey < —3 cases, respectively.

2.3.1. Mixed contact structures on Seifert fibered spaces. As in Section 1, we take n > 3, ¢;, p; > 0 coprime, and
assume that ¢; < p; fori =1,...,n — 1. We also have continued fraction expansions as in (2), and we denote
by eo = [ {* ] the Euler number of M.

To accommodate for the fact that we may have ¢,, > p,, we introduce auxiliary coefficients bf, ..., b}
defined by
—zi = [af,af, s af ] = [~1,~2, 0y =2,55 — LB}, .., B},
n

where I}, = [,, — ey, meaning that the number of —2s preceding bj — 1 is eq — 1.

In Section 1.3, we defined thoroughly mixed tight contact structures via surgery diagrams; we now present
these structures as those which result from a particular construction. We let 3 be a planar surface with n
boundary components, and write

xS =T\ +To+---+T,
for the torus boundary components of 3 x S1. Now let £ be an S'-invariant, virtually overtwisted tight
contact structure on > x S! such that

(1) each T; is a minimal convex torus, with dividing curves of slope —1 for ¢ < n and slope —ey — 1 for
T =mn,
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Ficure 9. The first layer of basic slices attached to X x S*.

(2) adjacent to each T; is a positive basic slice L;, with 0L, = T; — T7;
(3) each T} is a minimal convex torus, with dividing curves of slope co.

Such a contact structure exists by [Hon00b, Section 5].

Foreachi=1,...,n — 1, we will attach —2 — a{, basic slices to (X x S, ), with slopes
1 1 1
27 3 y*r a(z) + 1 b

starting at 7. Similarly, we attach —2 — b basic slices, starting from 7’,, with slopes

_17_

1
—eo—1,—€g— =,...,— .
€0 , —€0 27 , —€0 + bg +1
Fori=1,...,n, we call the boundary of the outermost basic slice T;’. Finally, we let V; be a solid torus and

choose a tight contact structure on V; such that dV; is minimal, convex, and has dividing curves of slope
[aj ,a} _y,...,a%,a} +1]

for1 <i<n—1,and slope
[bﬁ,b'ﬁfl,..., 72L7b71L+1}

for i = n. Notice that there are | Hé: 1 (a% +1)| (respectively, | Hél"zl(b? + 1)|) such tight structures on V;, per
Honda’s classification [Hon00a]. We then attach each V; to ¥ x S! by identifying the dividing curves and
meridians of 9V; with those of T}'. The result is a tight contact structure on M, and we call any structure
resulting from this construction thoroughly mixed. It is not difficult to check that these are precisely the
structures identified in Section 1.3.

Note that this construction is not unique. For instance, we may shuffle the order in which we attach basic
slices within a given continued fraction block without changing our contact structure. But the important
feature is that by ensuring that the innermost basic slice around each boundary component is positive, we
may find n mixed tori.

Lemma 2.2. In a thoroughly mixed tight contact structure, each torus T}, 1 < i < n, is a mixed torus with vertical
dividing curves.
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Ficure 10. Each torus T is mixed.

Proof. We show that T7, is mixed; the other tori are similar. In ¥ x S!, consider a collection A, ..., A,_2 of
vertical annuli as in Figure 10, with A; connecting T; to T; ;. Each annulus will have parallel horizontal
dividing curves, and we consider the neighborhood

N:N(TlU--~UTn,1UA1U"'UAn72),

whose boundary is given by ON = T1 U --- UT,_1 UT". Here T” has dividing curves of slope 1, measured in
the coordinates of T,,. Because each of the basic slices L; is positive, the toric annulus

(Zx SH\ (NUL,)

is a negative basic slice with boundary slopes co and 1. So T}, is sandwiched between basic slices of opposite
sign whose slopes are —ey — 1, 00, and 1, meaning that 77, is a mixed torus. O

Recall that we also defined lightly mixed tight contact structures in Section 1.3; for convenience, we repeat
the definition here.

Definition. Let £ be a tight contact structure on M (1%, cee %). We will call £ lightly mixed if £ is not
thoroughly mixed, but admits a Stein filling as in Figure 2 for which at least n — 2 of K1,. .., K, have been
stabilized both positively and negatively. We say that § is lightly mixed about K; and K to indicate that £
admits a Stein filling for which each of K, ..., K, except K; and K; have been stabilized positively and
negatively.

Consider the tight contact structures on a small Seifert manifold M = M (g—i, 1%’ g—z), with p;, ¢; > 0 chosen
as above, so that eg > 0. According to [GLS06], each of these can be represented as in Figure 2. Let K} be
the nearest unknot adjacent to K3 which has been stabilized — meaning that K = K3 if eg = 0. If each of
K1, K, K’ has been stabilized positively at least once (or, according to the classification in [GLS06], if each
has been stabilized negatively at least once), then the tight contact structure is thoroughly mixed. On the
other hand, if one of K7, K5, K3 has been stabilized both positively and negatively while the other two have
stabilizations of a single sign (the signs on the two knots being opposite), then the tight structure is lightly
mixed. This leaves precisely 6\H§:1H§;1 (a + 1)| tight contact structures on M which are neither lightly nor
thoroughly mixed. In these structures, each of K1, K, K} has all of its stabilizations of a single sign, but the
three knots do not all use the same sign. If the stabilizations of adjacent knots in Figure 2 always match, then
the following lemma says that we have a universally tight contact structure; note that there are precisely six
such structures.
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Ficure 11. The surface ¥ x S? sits inside of a Seifert fibered space M (&, 2, 2) which
is neither lightly nor thoroughly mixed. This surface may be extended to > x S*, whose

boundary components have horizontal dividing curves.

Lemma 2.3. Let € be a tight contact structure on M(Z—i, g—z, Z—z)for some 0 < q;, p;, with q; < p; for i = 1,2, which
is neither lightly mixed nor thoroughly mixed. If each of the horizontal links in Figure 2 has stabilizations of only one
sign, then & is universally tight.

Proof. Notice that the Euler number of M satisfies ¢y > 0. Per the classification of tight contact structures
due to Wu [Wu04] and Ghiggini-Lisca-Stipsicz [GLS06] on such Seifert fibered spaces, we may write

@ 92 s

M=M( s
b1 P2 P3

) = (£ 58 Utorieaie) (1 UT2UVa)

where each V; is a soid torus, —9(X x S') = Ty + Ts + T3, and ¢;: OV; — T is an orientation-preserving

diffeomorphism. Moreover, we may take s;, the slope of the dividing curves of T; = dV; in the coordinates of
T;, to satisfy

i , 1 a3

: <sgi<——fori=1,2, and —eyg+ 5 <s3<——.

ay +1 Di 0 bi+1 s D3

Here o, and b} are as above. In particular, we have sq, 52 € (—1,0) and s3 € (—eg — 1, —eo).

Continuing to follow [ Wu04, Section 3.3], we may thicken each V; to a solid torus V; such that T := 9V} is
a minimal convex torus with vertical dividing curves when measured in the coordinates of T;. Now V/\V;is
a toric annulus bounded by 7T; and 7] which we may factor into basic slices. Because £ fails to be thoroughly
or lightly mixed, all of the basic slices between T; and T, must have the same sign, but the signs fori = 1,2, 3
are not all the same. For instance, Figure 11 depicts a case where the basic slices between T; and 7} are
positive for ¢ = 1,2, but negative for ¢ = 3. Now consider attaching basic slices of matching sign to each
T; until we obtain 3. x S', whose boundary components all have horizontal dividing curves. According to
[Hon00b, Lemma 5.1], ¥ x S is universally tight; because 3. x S' contains & x S', we see that ¥ x S* is also
universally tight. Each solid torus V; is universally tight because the stabilizations used to produce the tight
structure on V; are all of one sign. Moreover, the homomorphism

iw: (X x SY) = 7w (M)

induced by inclusion is a surjection. We conclude that M is universally tight. O
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Following this observation, Corollary 1.10 follows from Corollaries 1.7 and 1.9.

Finally, we consider the remaining contact structures on M (-, 12, 2%) — those which are neither thor-

oughly nor lightly mixed, and to which Lemma 2.3 does not apply. All such contact structures are virtually
overtwisted.

Lemma 2.4. Let { be a tight contact structure on M (-, 12, 4%) with surgery diagram as in Figure 2. If any of the

horizontal links have both positive and negative stabilizations, then & is virtually overtwisted.
The proof of Lemma 2.4 will make use of the following topological fact about small Seifert fibered spaces.

Lemma 2.5. Any small Seifert fibered space M admits a finite sheeted cover M such that the induced Seifert fibration
on M has no exceptional fibers.

Proof. In case the fundamental group m; (M) is infinite, this follows from [Bri07, Lemma 2.4.22], so we focus
on the case where 71 (M) is finite. The universal cover of a small Seifert fibered space with finite fundamental
group is 53, so we have a diagram

S8 2 M

B-".pB
where B is 5% with three cone points, 7: M — B is the Seifert fibration on M, p: S3 — M is the covering
map, and 7: S® — B is the induced Seifert fibration on S3. Because m; (M) is finite, we have B = S?(a, b, c)
for some (a,b,c) € {(2,2,n),(2,3,3),(2,3,4),(2,3,5)}. Thatis, M is a platonic Seifert fibered space. The map
p: B — Bis an orbifold covering map. We notice that since B has positive orbifold characteristic, the same is
true of B, and also that B has at most two cone points, since B is the base of a Seifert fibration of S3. So p

is a positive orbifold covering map of the form S%(a’,b') — S%(a, b, ¢); such maps are classified by [Boy18,
Proposition 5.5], from which we conclude that B = S?(d, d) for some d > 1.

At the same time, we use [GL18, Proposition 5.2] to write the Seifert fibration 7 as

M(0; (a1, B1), (a2, B2)),

for some natural numbers o; > «, and integers (1, (2 satisfying 0 < 1 < o and ;82 + B1e = 1. The base
of this Seifert fibration is S%(ay, as), so we cqnclude that «; = ap = d > 1. But this means that d@s + 81d = 1,
so we must have d = 1. We conclude that B = 5?(1, 1) has no cone points, and thus 7 has no exceptional
fibers. O

Proof of Lemma 2.4. Let us decompose M := M ({-, 12, 42) as in the proof of Lemma 2.3, writing

M = (E/ X Sl) U(%Uaszcpg) (Vll U V2/ U V:S/)v

where —9(Y' x S1) = T| + T} + T}, and the dividing curves on each T/ have slope oo. For i = 1,2, 3, we may
express the orientation-preserving diffeomorphism ¢, : 0V; — T; via

(P T
v <_Qi Uz‘>’

for some u;,v; satisfying p;v; — ¢;u; = 1. In the coordinates of 9V, the dividing curves thus have slope

represented by
1 (0 (v ow 0\  [u;
()= n) (0)=G)
So V/ is a solid torus whose boundary has dividing curves of slope p; /u;, for i = 1,2, 3. If V/ is virtually
overtwisted, then lifting £y via the p;-fold cover f/; — V/ produces an overtwisted contact structure on

f/;. (See, for example, [Etn04, Exercise 6.45].) Now Lemma 2.5 allows us to construct a finite sheeted cover

p: M — M such that V} lifts to several copies of \72, fori = 1,2, 3. Because (M, ) has a horizontal link with
both positive and negative stabilizations, at least one of V{, V, and Vj is virtually overtwisted, and thus a lift
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FiGure 12. In the handlebody diagram for (M,,_2, {,—2), both K, _; and K, pass over the
1-handle. To realize (M,,_2,(,—2) as a lens space, we slide K,, over K,,_; to produce K’,
which has framing ag_l + ag, and then cancel K,,_; with the 1-handle.

of this solid torus in M is overtwisted. We conclude that (M, p*¢) is overtwisted, and thus (M, £) is virtually
overtwisted. O

Lemma 2.4 applies to any contact structure which is neither thoroughly nor lightly mixed, and to which
Lemma 2.3 does not apply. Lemma 2.4 also applies to all lightly mixed contact structures and, if ¢y > 0,
all but two thoroughly mixed contact structures. If ¢ = 0 and M (Z—i, Z—z, %) does not have ¢; = p; — 1 for
i = 1,2, 3, then each horizontal link in Figure 2 has more than one stabilization, and the classification of tight
contact structures [ GLS06, Theorem 2.7] allows us to change the sign of one stabilization on each horizontal
link to ensure that Lemma 2.4 applies to at least one of these links. On the other hand, if ¢; = p; — 1 for

i = 1,2, 3, then each horizontal link has exactly one stabilization, so Lemma 2.4 does not apply. Altogether,

we see that if eg > 0 there are at most 8 universally tight contact structures on M (;171’ g—z, Z—i), while if eg = 0,
there are at most 7 universally tight contact structures. If ey = 0 and ¢; # p; — 1 for some ¢ = 1,2, 3, then
there are precisely 6 universally tight contact structures on M (L, 22, 12).

2.3.2. The case eg > 0. Theorem 1.8 is a straightforward consequence of Theorem 1.3 of [Men18] and the
definition of lightly mixed contact structures, so we prove this result first.

Suppose that M = M (%L, -, 1) is a Seifert fibered space, for some n > 3 and coprime positive integers
qi, pi- If € is a lightly mixed tight contact structure on M, then we may realize (M, £) as the boundary of a
Stein handlebody as in Figure 2, with n — 2 of the horizontal knots K3, .. ., K, having been stabilized both
positively and negatively. Without loss of generality, we may assume that each of K3, ..., K,,_, has been

stabilized both positively and negatively. Notice that (), §) is obtained from the contact manifold

(L(qu, —p1), &1)#(M; = M(%"" ,;—:mn

by Legendrian surgery along K. Here we are using the fact that if —p;/q; = [a§,a}, ..., a] ], then
4 i i
——— =[a},a,...,q;].
el G R

The contact structures &; and (; are the obvious ones, obtained from the Stein handlebody diagram in Figure
2 by erasing K. According to [Men18, Theorem 1.3], every exact symplectic filling of (MM, £) is obtained from
an exact filling of (L(q1, —p1), &1)# (M, (1) by attaching a Weinstein 2-handle along K. In the language of
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Figure 13. If M (;%’ g—i, g—z) is thoroughly mixed, then T7 is a mixed torus.

round handles, we have Legendrian knots L; C (L(g1,—p1),&1) and LT C (My,¢;) along which we may
attach a round symplectic 1-handle to a filling of (L(q1, —p1),&1) U (M1, C1)-

We have presented (M7, (1) as the boundary of the Stein handlebody depicted in Figure 2, with the chain of
knots with framings ag, aj, ... ,q;, deleted. By its construction, (Mj, (1) is lightly mixed, with K,..., K, 5
having been stabilized both positively and negatively. We may thus repeat the above procedure to decompose
a filling of (M, ¢) into a filling of

(L(q1, —p1), &) U (L(g2, —p2), &2) U (M2, C2).
We continue this procedure until we are left with

(L(Qh —p1)7€1) Le--u (L(Qn—27 _pn—2)7 fn—?) U (Mn—Qa Cn—?)v

where (M,,_2,(n—2) is as in Figure 12: there are two horizontal knots, neither of which has stabilizations of
both signs. This is a Seifert fibered space over S?, and thus a lens space. Indeed, after sliding K> over K7, we
may cancel the 2-handle attached along K; with the 1-handle. We are left with a chain of unknots whose
framings are given by

n—2 n—2 n—2 n n n
Ay -5 01 T80 T+ Ao, 07,50,

and thus M,,_o = L(p, ¢'), where
/

p n—2 n—2 n—2 n o .n n
_?_[17172""’a1 sag” " +ag,at,...,ap .

See Figure 12. This proves Theorem 1.8.

There are some thoroughly mixed contact structures for which n — 1 of the knots K3, ..., K, have been
stabilized both positively and negatively. For these, the proof of Theorem 1.6 proceeds as did the proof of
Theorem 1.8. But the condition of being thoroughly mixed is more relaxed than this, and we will in fact use
Theorem 1.2 directly in our proof, rather than Theorem 1.3.

Our argument proceeds by induction on the number n of singular fibers. Consider first the case where
n = 3. Then, as depicted in Figure 13, we have a mixed torus 7] with vertical dividing curves, sandwiched
between basic slices whose other tori have dividing curves of slope —1 and ey + 1, respectively. Theorem 1.2

would have us split M = M (g—i, g—‘;, Z—i) open along this torus and attach a solid torus to each of the resulting
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Ty
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Ficure 14. Because 0 < ¢1/p1 < 1, we must have m = 0.

pieces. Because the dividing curves of T} are vertical, the meridian ;(.S) of the solid torus S must have slope
m € Z. In fact, [Men18, Theorem 1.1] tells us that we must have 0 < m < ey, since the slopes adjacent to our
mixed torus are —1 and eg + 1.

Now one of the two closed contact manifoldsis L; = S Uy Vi, a gluing of two solid tori. The meridian of
V{ has slope ¢1 /p1, with 0 < ¢1 < p1. We may consider a family of tori 72 x [0, 1] in L; such that 7% x {0} C V{
has dividing curves with slope g1 /p1, T? x {1/2} = T{,and T? x {1} C S has dividing curves of slope m. As
the dividing curves rotate counterclockwise from ¢; /p1 to co to m, they must not rotate through an angle in
excess of 7, since L, is fillable and thus tight. This restriction is only satisfied when m = 0. So we conclude
that m = 0and L; = L(q1, —p1). See Figure 14.

The other closed contact manifold produced by our application of Theorem 1.2 is obtained from M by
deleting the neighborhood V| of a singular fiber and replacing it with the solid torus S, glued in with
horizontal meridians. The result is M (2, =, 12) = M(Iz, ). We may now apply Theorem 1.2 to this Seifert
fibered space (which is in fact a lens space) along the mixed torus T3. Arguing as before, we find that the solid
torus which is glued in at this stage must have horizontal dividing curves. The result of this decomposition

is a disjoint union of fillings of some contact structures on
0 ¢
L(g2, —p2) and M (17 3) = L(g3, —ps)-
b3

Altogether, we have decomposed a filling of M with a thoroughly mixed tight contact structure into a disjoint
union of fillings of L(g;, —p;), i = 1,2, 3, with some tight contact structures, and Theorem 1.2 provides the
Legendrian knots described in Theorem 1.6. This establishes the base case of our induction.

For the inductive step, the analysis above proceeds as before. Splitting a filling of M = M(L-,..., I*)
open along the mixed torus 77 produces symplectic fillings of
0 n
L(ql,—pl) and M(l,q2,7q>
b2 Pn

The latter is a thoroughly mixed Seifert fibered space with n — 1 singular fibers, for which we assume that
Theorem 1.6 holds, and thus the decomposition may continue until we have a disjoint union of filling of
L(g;, —p:), fori=1,...,n. This proves Theorem 1.6.

At last, we address fillings of those contact structures on small Seifert fibered spaces which have at least
one horizontal link with both positive and negative stabilizations — these are the structures considered in
Lemma 2.4. In this case, each of K1, K, and K3 has stabilizations of a single sign, but these signs do not
all agree. Here, as above, K73 is the nearest unknot adjacent to K3 which has been stabilized, meaning that
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Ky

Ficure 15. Decomposing a filling of a contact structure which is neither thoroughly nor
lightly mixed. The result is a filling of a disjoint union of a universally tight small Seifert
fibered space and some universally tight lens spaces.

Ki = Kszifeg =0. Fori=1,2,3, we let IA(Z denote the nearest knot adjacent to K; with a stabilization of a
different sign from those on K; (or K3). By our assumption, at least one K; exists. Let us write

3
(3) MM(‘h,qz’,%> (2 x SYHU UUL,] U(UV>

P1 pP2 P3 i1 j=1

where each V; is a solid torus, —9(X x S') = Ty + T + T3, and each L; = T? x I is a continued fraction block
corresponding to a knot in the surgery diagram for (M, §). Specifically, let L; j; be the continued fraction block
corresponding to K;, fori = 1,2,3. Then the boundary torus T, between L; ;, and L; ;,_1 is a mixed torus, and
each continued fraction block preceding L; ;, has basic slices of a single sign, matching the stabilizations of K.

Notice that simultaneously splitting (1, £) along the mixed tori Ty, Ty, and Ty yields a disjoint union of a
universally tight small Seifert fibered space and three lens spaces, independent of the slopes which are used
to perform this splitting. It follows that by applying the JS] decomposition to an exact symplectic filling of
(M, §), we may obtain this filling from a disjoint union of an exact filling of a universally tight small Seifert
fibered space with exact fillings of three lens spaces. By applying Theorem 1.4 to the three lens space fillings,
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we prove Theorem 1.11.

Observe that for contact structures which are thoroughly or lightly mixed, the conclusion of Theorem
1.11 follows from Theorems 1.4, 1.6, and 1.8. So, with the small number of exceptions pointed out at the
conclusion of Section 2.3.1, we have reduced the problem of classifying exact symplectic fillings for small
Seifert fibered spaces to the same problem for universally tight lens spaces and for universally tight small
Seifert fibered spaces. See Figure 15.

2.3.3. Thecaseeq < —3. Throughout this section, we will consider a Seifert fibered space M = M (- L., .-+, —I*)
with p; > 2,¢; > 1, and (p;,q;) = 1 fori = 1,...,n. Every tight contact structure £ on M that we consider
will be constructed by putting the knots of Figure 4 into Legendrian position and stabilizing appropriately.

In case ¢ is centrally mixed — meaning that the central knot of Figure 4 is stabilized both positively and
negatively — Proposition 1.13 tells us that the exact symplectic fillings of (M, §) are obtained by attaching
a sequence of round symplectic 1-handles to a disjoint union of fillings of lens spaces. If ¢ is not centrally
mixed, then the central knot has stabilizations which are either all positive or all negative; notice that, since
ep < —n < —3, the central knot must have at least one stabilization. The following proposition considers the
case in which the stabilizations of the central knot are all of a single sign.

Proposition 2.6. Let (M, &) be as above, with the central knot in Figure 4 having stabilizations which are all of a
single sign. Then every exact symplectic filling of (M, &) may be obtained by attaching round symplectic 1-handles to a
disjoint union of fillings of lens spaces and a Seifert fibered space (M, ¢"). Moreover, (M, ¢') admits a Legendrian
surgery diagram as in Figure 4, with each leg of the diagram having stabilizations of a single sign.

Proof. If the Legendrian surgery diagram for (M, ) is such that no leg has both positive and negative sta-
bilizations, then we have nothing to do — (M’,¢’) is simply (M, §). Otherwise, we lose no generality by
assuming that the first leg of Figure 4 has both positive and negative stabilizations. We will reduce to a case
where the first leg does not have both positive and negative stabilizations; by applying this argument to each
leg of the diagram, we obtain the desired result.

Note that if the first leg of our diagram contains a knot which is stabilized both positively and negatively,
then we may apply Theorem 1.3 to this knot, amputating from the diagram this knot and all those below it
in the leg. Thus we assume that each knot in the first leg of our diagram has stabilizations of a single sign.
We then have knots K ll and K }, 1 <i < j <4, which have stabilizations of opposite signs, and are such
that any knot K L, with i < k < j, has no stabilizations. Let us assume that i and j are minimal among such
indices. (Here we are using the notation established in Figure 4.) We will identify a mixed torus in (M, §)
associated to this mismatch of signs.

To this end, we decompose (M, ) as
M = (S x 8 Ugyuupn) ViU UV,
where

e Y is a planar surface such that —9(X x S*) =T1 + - - + T),;
e each T; is a minimal convex torus with dividing curves of slope | - |;

¢ — |2 pi
e each V; is a solid torus, and dV; has dividing curves of slope —%, where p; > pi > 0,
q; — pfi D;

¢ > ¢, >0,and pi¢, — q;p} = 1;
e the gluing maps ;: 0V; — T; are defined by

/
_ (Pi P
vi (Qi q§> ’

The solid torus (V4,£]v,) may be further decomposed by peeling off basic slices until we are left with a
solid torus whose boundary has dividing curves of slope —1. In this decomposition, we have a continued
fraction block of basic slices for each knot K1, ..., K} which has been stabilized. In particular, the knots K}
and K correspond to adjacent continued fraction blocks. By assumption, these continued fraction blocks
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Ficure 16. In this example, there are three contact manifolds which might result from the
JSJ decomposition for symplectic fillings. Notice that each consists of universally tight lens
spaces, and possibly a Seifert fibered space with canonical contact structure.

NN

")

are universally tight and of opposite sign, and thus their common boundary 7' is a mixed torus. We may
normalize the slope of the dividing curves on T to be 0o, and on the opposite boundary of the negative basic
slice to be —1. As in previous iterations of this argument, the slope s on the opposite boundary of the positive
basic slice will depend on the number of unstabilized knots which exist between K and K. In particular, s
will be two more than the number of these knots.

We now apply Theorem 1.2 to a filling of (M, &) along T'. There are s contact manifolds which might be
produced by this decomposition, and these correspond diagrammatically to deleting either K, K7, or one
of the intermediate knots from Figure 4. In any case, the contact manifold is a disjoint union of a lens space
(whose surgery diagram is given by the link below the deleted knot) and a Seifert fibered space (M’,¢’). The
stabilizations in the first leg of the Legendrian surgery diagram for (', {’) — of which there may be none —
all have the same sign as those of K. In particular, the first leg does not have both positive and negative
stabilizations. By applying this theorem to each leg with both positive and negative stabilizations, we reduce
to the case of lens spaces and Seifert fibered spaces each of whose legs has stabilizations of a single sign. O

Proposition 2.6 leads us to consider the case where (4, £) is not centrally mixed, and each of its legs has
stabilizations of a single sign — though these signs may not all agree.

Proposition 2.7. Let (M, &) be as above, with the central knot in Figure 4 having stabilizations which are all of a
single sign, and with each leg having stabilizations of a single sign. Then every exact symplectic filling of (M, £) may
be obtained by attaching round symplectic 1-handles to a disjoint union of fillings of lens spaces and a canonical Seifert
fibered space.

Proof. We lose no generality by assuming that the stabilizations of the central knot of (M, &) are all positive —
as noted above, the central knot must have at least one stabilization. If the ith leg of the Legendrian surgery
diagram for (M, £) has negative stabilizations, we will identify a mixed torus which allows us to amputate
this leg. Now consider decomposing (M, €) as

M 2 (2 x 8 Ugyuupn) ViU UV,

as in the proof of Proposition 2.6. Namely, —0(2 x S Y =Ty + .-+ T,, where each T} is a minimal convex
torus with dividing curves of slope LZ—J We claim that there is a positive basic slice adjacent to 7; in & x S.
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For ease of notation, let us assume that i = n. Then we have a collection A1, ..., 4, _s of vertical annuli
in ¥ x S!, with A; connecting T; to T;11 (c.f. the proof of Lemma 2.2). Each annulus will have parallel,
horizontal dividing curves, and we consider the neighborhood

N=NTU---UT, 1UA U ---UA,_2),

the boundary of which is ON =T} U- - -UT,,_; UT. The minimal convex torus T" has dividing curves of slope
—(n—2) -} [ £+, and thus the toric annulus (X x S 1)\ N is a continued fraction block with boundary

slopes —(n —2) — X0} LZ—J and Lg—:J. This continued fraction block consists of

2] (B |2 ) -0 B[22 e

i=1
basic slices, each of which is positive, since the stabilizations of the central knot are all positive. In particular,
we have a positive basic slice adjacent to 7, whose opposite slope is [ I* | — 1, measured in the coordinates of

T,,. We may normalize via the map
_ 9|
1 2 Lp7l J 2

to obtain a positive basic slice with slopes —1 and co. The same holds for any 1 < i < n.

Finally, because the ith leg of our Legendrian surgery diagram has a negative stabilization, we identify a
negative basic slice in the solid torus V; which is adjacent to 9V;. After gluing via ¢;, we see that T; = 0V} is a
mixed torus. The opposite slope s of the basic slice in V; will depend as usual on the number of unstabilized
knots (if any) which lie between the central knot and the first stabilized knot of the ith leg. In particular,
s will be two more than the number of such knots. There are then s possible results of applying the JSJ
decomposition along the mixed torus 7}, and these correspond to deleting either the central knot of our
surgery diagram, the first stabilized knot of the ith leg, or an intermediate, unstabilized knot. Deleting
the central knot leaves us with a connected sum of lens spaces, while deleting a knot contained in the ith
leg leaves us with a disjoint union of a lens space and a Seifert fibered space whose ith leg has no stabilizations.

Clearly the above argument may be applied to each leg with negative stabilizations (still assuming that the
central knot is stabilized positively), allowing us to reduce to the case where all stabilizations in our surgery

diagram have the same sign. O
Remark. In the classification of tight contact structures on small Seifert fibered spaces, the cases ¢y = —1 and
ep = —2 are exceptional, as these are the only cases in which our space could possibly have infinitely many

tight contact structures. The case eg = —2 has been studied by Ghiggini [Ghi08] and Tosun [Tos20], while
the eg = —1 case has been studied by Ghiggini-Lisca-Stipsicz [GLS07] and Matkovi¢ [Mat18]. The existence
of fillings of Sifert fibered spaces was studied in [LL11]. As in the case ¢y < —3, we may construct fillable
contact manifolds with ey = —2 by putting the link in Figure 4 into Legendrian position. We may then apply
Proposition 2.6 to such a diagram, to ensure that each leg has stabilizations of only one sign. However, the
lack of stabilizations on the central knot prevents us from applying Proposition 2.7. In case ey = —1, still
less can be said. In this case, Lisca-Stipsicz provide in [LS07] a surgery diagram which can produce all tight
contact structures with maximal twisting equal to zero, but, per Etnyre-Honda [EH02, Theorem 1.1 & Lemma
3.3], some such tight contact structures are not fillable. For further analysis of these structures, see [LL11]
and [Mat18].

From Propositions 2.6 and 2.7 we see that the problem of classifying exact symplectic fillings for Seifert
fibered spaces as in Figure 4 is reduced to the same problem for lens spaces, and for canonical Seifert fibered
spaces. Per above results, the lens spaces may be further reduced to universally tight lens spaces, and thus
Theorem 1.14 is established. The results of this section provide us with the usual diagrammatic calculus for
reducing the classification of fillings problem: see Figure 16 for an example.

2.4. Virtually overtwisted circle bundles over surfaces. Honda classified the tight contact structures on
circle bundles over closed Riemann surfaces in [Hon00b, Part 2]. We will borrow his notation here, letting
m: M — ¥ be an oriented circle bundle over a closed, oriented surface ¥ with genus g. Once we have fixed a
contact structure on M, Honda defines the twisting number t(S') to be the maximum non-positive twisting



SOME APPLICATIONS OF MENKE'S JS] DECOMPOSITION FOR SYMPLECTIC FILLINGS 27

SNV

R S
oo oAe

=

’ stabilizations ‘

Ficure 17. Stein handlebody diagrams for filling the tight contact structures on a circle
bundle m: M — ¥ with ¢(S') = —1. The diagram has 2g 1-handles, and the knot K has
2g — 2 — e stabilizations in the marked region.

number among all closed Legendrian curves in M isotopic to the S*-fiber, relative to the fibration framing.
The twisting number is taken to be zero if M admits a fiber-isotopic Legendrian curve with positive twisting
number. We denote by e the Euler number of the bundle 7: M — X.

If 2g — 2 > ¢, Honda shows that there are (2g — 1) — e tight contact structures on M with ¢(S!) = —1; of
these, exactly two are universally tight. There are no virtually overtwisted contact structures on M with
t(S1) < —1. There are some exceptional cases of virtually overtwisted contact structures on circle bundles

with ¢(S') = 0, but these are not subject to Proposition 1.15. Instead, these exceptional cases are treated by
Lisca-Stipsicz [LS04].

Proposition 1.15 follows immediately from Honda’s description of these virtually overtwisted contact
structures, as well as Theorem 1.3 of [Men18]. Namely, Honda constructs each of the (2g — 1) — e tight contact
structures on M by performing Legendrian surgery on a knot K in (#29(S' x 5?), &:a) which has been
stabilized (2g — 2) — e times. Here &4 is the unique-up-to-isotopy tight contact structure on #29(S* x 52).
The universally tight structures on M are precisely those for which all of these stabilizations have the same
sign, while each virtually overtwisted contact structure &,,; results from surgery along a knot which has been
stabilized both positively and negatively. According to [Men18, Theorem 1.3], every exact filling of (M, &,0t)
is therefore obtained from such a filling of (#29(S* x 5?), &a) by attaching a Weinstein 2-handle along K.
But (#29(S! x 5?), &sta) has a unique exact filling up to symplectomorphism, and thus the same is true of
(M, &yot). This proves Proposition 1.15.

Finally, we prove Corollary 1.16.

Proof of Corollary 1.16. Following the discussion in Section 1.4, we only need to verify the corollary in case
M — ¥ is acircle bundle over a torus. In this case, we may identify our circle bundle with a parabolic torus
bundle over S!, and Honda’s classification of tight contact structures on torus bundles [Hon00b] tells us that
a virtually overtwisted contact structure exists if and only if the Euler number e of our circle bundle satisfies
le] > 2. From [Chr21, Theorem 1.1(B)] we then know that our circle bundle admits a unique exact filling
if e < —2, and admits no exact symplectic filling if e > 2. So Corollary 1.16 will follow once we show that
t(S1) =0incase e > 2and ¢(S!) < Oin case e < —2.

If e > 2, we simply note that, up to isotopy, the fiber of our circle bundle is a Legendrian curve v with
t() = e. By the definition of ¢(S') we have ¢(S') = 0.
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Next, we consider the case e < —2 and suppose that v is a fiber-isotopic Legendrian with ¢(v) = 0. We will
use a trick of Kanda [Kan97] to show that such a Legendrian v cannot exist, adapting the proof of [Hon00b,
Lemma 3.3]. By identifying 72 as the quotient of a square P, we may pull back the circle bundle M — T2 to
a circle bundle on P, giving us the solid torus S* x P. We also pull back the tight contact structure on M to a
contact structure on S* x P. In fact, by taking P — T2 to be a many-to-one quotient map — i.e., by tiling
together many copies of P — we may ensure that  pulls back to a closed, fiber-isotopic Legendrian curve in
St x P. However, S' x P is, after edge-rounding, isomorphic to a standard neighborhood of a Legendrian
curve with twisting number e < —2. But S L % P contains a standard neighborhood of v, which is a solid
torus with slope co. According to the classification of tight contact structures on S' x D? [Hon00a], this is a
contradiction. We conclude that no such v exists, and thus #(S!) < 0. ]
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