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1   |   Introduction

Bioenergy with carbon capture and storage (BECCS) is projected 
to be necessary, in combination with reductions in fossil fuel 
use and other greenhouse gas mitigation measures, for keeping 
the anthropogenic rise in global atmospheric temperature to 
below 2°C by 2100 (Hanssen et al. 2020). In particular, carbon 
dioxide (CO2) removal will be necessary to reverse the effects of 
climate change that extend well beyond 2100, such as sea level 
rise, with BECCS being a potentially key method for doing so at 
scale (Clark et al. 2016; Pett- Ridge et al. 2023). BECCS extracts 
energy from plant biomass through combustion, with the result-
ing CO2 captured and stored in subsurface geologic formations. 
Proposals that use BECCS as a climate mitigation strategy have 
extensive land use requirements to produce enough plant bio-
mass for meaningful carbon sequestration (Azar, Johansson, and 
Mattsson 2013). Some scenarios project land use requirements 
of up to 10 × 106 km2 by the year 2100 (Roe et al. 2019), which 
would make plant biomass production for BECCS the third larg-
est land use globally, followed by agriculture (48 × 106 km2) and 
forestry (19 × 106 km2; FAO  2020, 2024). These extensive land 
use requirements motivate the study of the associated impacts 
on terrestrial ecosystems.

The environmental impacts associated with BECCS bio-
mass production sites could be similar to those caused by 
moderately/intensively managed agricultural lands (Heck 
et al. 2018). These could include the near total loss of local flora 
and fauna populations within the field boundaries (Hanssen 
et al. 2022), the acceleration of soil erosion to unsustainable 
rates (Vogel, Deumlich, and Kaupenjohann  2016), and the 
pollution of streams and aquatic ecosystems with sediment, 
excess nitrogen and phosphorus, and pesticides (Diaz- Chavez 
et al. 2011). Furthermore, the fragmentation of native wildlife, 
insect, and plant habitat can have negative consequences for 
the biodiversity of nearby unmanaged landscapes (Immerzeel 
et al. 2014). However, substituting intensive annual crops for 
perennial native grasses or mixed native prairie species has 
been shown to ameliorate each of these environmental im-
pacts to some degree (Gelfand et al. 2013; Werling et al. 2014). 
BECCS biomass production sites could also have social conse-
quences, such as the competition for agricultural and forestry 
lands, farm labor, land tenure, and the increased need for 
machinery, fuel, and other necessary agricultural resources 
(Fajardy et al. 2021). Here we narrow the focus of this study to 
the global warming/cooling impacts that come from the sites 
were biomass is produced for BECCS.

While the primary mechanism that BECCS uses to reduce 
global radiative forcing is the storage of new plant biomass 
carbon in geologic formations, there are further contributions 
to radiative forcing that derive from biomass production sites. 
These include changes to (1) standing plant and soil carbon 
stocks, (2) soil nitrous oxide (N2O) fluxes, (3) soil methane 
(CH4) fluxes and (4) land surface albedo. However, the direc-
tion and magnitude of these radiative forcing contributions 
are uncertain due to the lack of long- term land use change 
experiments measuring these phenomena in a bioenergy con-
text. Closing this knowledge gap is critical for constraining 
uncertainty in projections of how to achieve reduced radiative 
forcing with BECCS.

A common method for estimating the net ecosystem carbon bal-
ance (NECB) of the land converted to BECCS production is using 
a process- based ecosystem model that simulates a particular land 
use change scenario, relative to a baseline scenario (e.g., Lark 
et al. 2022). This is an attractive method as long term site- level 
simulations can be run in seconds on a typical modern computer. 
However, process- based ecosystem models have several draw-
backs that can impact the final NECB of BECCS sites (Butnar 
et  al.  2020). These include the parameterization of bioenergy 
crops like switchgrass or miscanthus in the plant submodules, 
which have relatively greater uncertainty in their parameter val-
ues due to their novelty in the modeling community. Much work 
on parameterizing the plant- related parameters of process- based 
ecosystem models has focused on broad plant functional types 
or the most commonly planted agricultural crops and less so on 
dedicated bioenergy crops (Shepherd, Martin, and Hastings 2021). 
Furthermore, estimating the initial plant and soil carbon stocks as 
affected by the previous land use at the site and correctly modeling 
the fate of that carbon further challenges model veracity. Finally, 
as is true with all model simulations, validation at a representative 
site with repeated in situ measurements of NECB is rare, adding 
further to the uncertainty of modeled results (Augusiak, Van Den 
Brink, and Grimm 2014; Le Noë et al. 2023).

Eddy covariance flux measurements are a second commonly 
used technology for estimating the NECB of BECCS production 
(Harris et al. 2017). By continuously measuring the net ecosystem 
exchange of CO2 (NEE) and adjusting for other carbon pools that 
enter and leave a site (e.g., biomass via harvest and dissolved or-
ganic carbon via leaching), eddy covariance measurements can 
provide a spatially and temporally integrated in situ estimate of 
a site's NECB. While the eddy covariance method is an attrac-
tive option for this application, it too has several drawbacks that 
color the interpretation and use of its data. For instance, it is 
common for 30%–50% of flux measurements to be missing data 
due to low turbulence conditions or sensor malfunctions (Moffat 
et al. 2007). The seven towers used in this study had an average 
gap percentage of 37% during the study period. The gap filling 
methods required to calculate the NECB can also introduce bias 
and uncertainties in the flux estimates (Mahabbati et al. 2021). 
Arriving at a site's long term NECB requires the cumulative addi-
tion of all net ecosystem exchange measurements, meaning that 
any deviation in the systematic bias from zero, even if small, can 
add up over time to bias final (cumulative) NECB estimates.

Plant and soil carbon inventories are a third common method 
for estimating a site's NECB that requires measuring standing 
carbon stocks before and after a BECCS land use change event. 
This method is attractive because it can provide robust, well- 
defined, and trustworthy measurements of carbon stocks at 
the sample level. However, this method has several drawbacks 
mainly stem from the sampling effort required to achieve site- 
level estimates with acceptable uncertainties (Kravchenko and 
Robertson 2011). The size of each plot or soil sample is usually 
small compared to the size of the field. The natural heterogeneity 
of the field's carbon stocks necessitates taking numerous labor- 
intensive samples. While the carbon content of any individual 
sample can be derived with high accuracy and low uncertainty, 
the heterogeneity among samples and the lack of sufficient num-
bers of samples often results in relatively high uncertainty in the 
final NECB of plant and soil carbon inventories.
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Most site- based studies of the NECB of BECCS production use 
only one or two of these three methods (e.g., Abraha et al. 2019; 
Gelfand et  al.  2020; McCalmont et  al.  2017; Melnikova 
et  al.  2023). We are not aware of any study that compares all 
three approaches in the same experimental setting. Usually the 
circumstances of the site, experimental design, study duration, 
available measurements, and investigator expertise dictate the 
methods used in any one study. We suspect that the conclusions 
of these studies may change if a different method was used, es-
pecially if the study had a short duration.

Here we use a long term BECCS land use change experiment 
to compare three methods for quantifying each site's NECB 
over 13 years, namely (1) the MEMS 2 process- based ecosystem 
model, (2) the eddy covariance method, and (3) in situ invento-
ries of plant and soil carbon stock changes. Our objectives are to 
(1) estimate the NECB of three proposed bioenergy production 
systems with contrasting land use history, (2) quantify the un-
certainty of each of the three estimation methods and (3) place 
these NECB estimates in context of other sources of radiative 
forcing measured at the site, in particular, soil- atmosphere 
fluxes of N2O and CH4, embedded fossil fuel emissions, geo-
logically stored carbon, as well as land surface albedo. We hy-
pothesize that the NECB will be highest at sites with low initial 
ecosystem carbon stocks that transition to high belowground 
productivity plant types. Furthermore, we postulate that the 
eddy covariance method will have the lowest uncertainty in 
detecting these changes due to its comparatively large volume 
of data collection. Finally, apart from the geologically stored 
carbon, we expect the NECB to largely determine the overall 
radiative forcing budget of each site.

2   |   Methods

2.1   |   Site Description

The study site is located in southwestern Michigan, USA and 
was established by Michigan State University as part of the 
Great Lakes Bioenergy Research Center (42.4°N, 85.4°W, eleva-
tion 281 m). The mean annual temperature of the site is 9.3°C, 
the mean annual precipitation is 1067 mm, and there are on av-
erage 90 days with at least partial snow cover per year (Thornton 
et al. 2022). Soils at the site are well drained fine- loamy, mixed, 
active, mesic Typic Hapludalfs and consist of loamy glacial out-
wash overlying sand (Luehmann et al. 2016). Specifically, the 
mean soil texture across the study sites over the 0–50 cm depth 
profile was 66% sand, 26% silt, and 8% clay, while the 50–100 cm 
depth profile's soil texture was 81% sand, 12% silt, and 8% clay. 
Prior to industrial settlement of the area circa 1850, the site ex-
isted in a matrix of mid to late succession temperate deciduous 
broadleaf forests (Paciorek et al. 2021). Following more than a 
century of row crop agriculture, in 1987 one set of sites was con-
verted to a perennial grassland (Bromus inermis) through en-
rollment in the USDA's Conservation Reserve Program (CRP), 
while the other set of sites continued to be used for row crop 
agriculture.

In 2009 the BECCS experiment was established by terminating 
all vegetation with herbicides at each site, except for one of the 
grassland sites that was maintained as a reference. In the initial 

year, herbicide resistant soybeans (Glycine max) were planted 
to allow further termination of preexisting vegetation. In 2010, 
either corn (Zea mays; planted annually), switchgrass (Panicum 

virgatum) or restored prairie (hereafter “prairie”, a mixture of 
19 species; see Abraha et  al.  2019) were established on both 
the former grassland and former cropland sites. The field sizes 
range from 9 to 14 ha and were managed throughout the study 
period without tillage. The corn was planted each spring using 
a seed drill when the soil temperature was at a sufficiently 
warm level, field conditions were conducive to heavy machin-
ery traffic, and the risk of frost was sufficiently low. The corn 
was fertilized with nitrogen at a rate of 180 kg N ha−1 year−1, 
switchgrass at 56 kg N ha−1 year−1, and prairie at 0 kg N ha−1 
year−1. From 2010 to 2014, only grain was harvested from the 
corn sites and the residue was left onsite, while from 2015 to 
2021 both grain and residue were harvested. For the switch-
grass and prairie sites, biomass was harvested annually in the 
Fall or Winter from 2011 to 2021. Harvests occurred after each 
crop had fully senesced and when field conditions were condu-
cive to heavy machinery traffic, which different by crop type 
and by year- to- year weather conditions.

2.2   |   Eddy Covariance Measurements

Each of the seven sites has had an eddy covariance tower in con-
tinuous operation since 2009 (Abraha et  al.  2015; 2019). Each 
tower had an LI- 7500 open- path infrared gas analyzer (LI- COR 
Biosciences, Lincoln, NE) that measures CO2 and H2O concen-
trations and a CSAT3 sonic anemometer (Campbell Scientific 
Inc., Logan, UT) that measures wind speed and direction. The 
infrared gas analyzers were calibrated (i.e., zero and spanned) 
every four to 6 months, rotated between the seven sites periodi-
cally. The sonic anemometer was kept at 1.5–2 m above the can-
opy by raising and lowering the tower each spring and fall as the 
vegetation height changed.

Details on other sensors installed at the sites and the process-
ing of the high frequency data are provided in the Supporting 
Information. For the half- hourly flux data friction velocity 
thresholding, gap filling, and uncertainty estimation were con-
ducted with the Reddyproc package in R (Wutzler et al. 2018). 
For each 3- month period of each year, 100 bootstrapped samples 
of data were used to estimate the distribution of probable friction 
velocity thresholds. The median, 2.5%, and 97.5% friction veloc-
ity thresholds were used for estimating the central, lower, and 
upper NEE estimates, respectively.

For each of the three friction velocity thresholds, the mar-
ginal distribution sampling algorithm following Reichstein 
et  al.  (2005) was used for gap filling the NEE and latent heat 
flux data. Artificial gaps at each observation were created to 
facilitate uncertainty estimation. The standard deviation of the 
look up table values for real gaps were used as the uncertainty 
estimate for the gap filling procedure. The standard deviation 
of the look up table values for artificial gaps were used as the 
uncertainty estimate for the measurement procedure. The final 
uncertainty in the cumulative NEE was calculated by numerical 
simulation. For 1000 simulations, a new NEE value was sampled 
at each half- hour interval from a normal distribution with the 
mean and standard deviation derived from the real and artificial 
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gap filling procedure described above. The median, 2.5% and 
97.5% quantiles of the cumulative NEE from the 1000 simula-
tions were used as the central, lower, and upper estimates for 
the eddy covariance method, respectively. The NECB was then 
calculated following Equation (1).

where NEE is the net ecosystem exchange of CO2, CHarvest is 
the carbon removed from the site (described below), and DOC 
is the dissolved organic carbon leached below the 100 cm soil 
depth. DOC losses are not measured by eddy covariance towers. 
We utilized the DOC output from the process- based ecosystem 
model as described below.

2.3   |   Plant Biomass Measurements

All plant biomass that was removed from the site by machine 
for bioenergy production was measured directly by weighing 
harvested biomass on trucks and adjusting for their moisture 
content, which was measured by drying a subsample in an oven 
at 60°C. These values are provided in Table S1. Plant biomass 
weights were converted to plant carbon and nitrogen weights by 
measuring their carbon and nitrogen concentrations through 
dry combustion with an elemental analyzer (Costech ECS 4010 
CHNSO Analyzer, CA, USA).

To quantify annual net primary productivity, plant biomass mea-
surements were made annually from 2009 to 2016 at 10 geolocated 
sampling stations within each field by clipping, drying, and weigh-
ing 1 m2 of live aboveground biomass. These values are provided 
in Table  S1, as is their comparison to the mechanically harvest 
biomass mentioned above (i.e., their harvest efficiency). The shape 
of the quadrat used for the corn fields was 1.52 by 0.66 m and was 
placed across the rows to ensure representative sampling. The 
shape of the quadrat used for the switchgrass and prairie fields was 
2.0 by 0.5 m. Surface litter was also collected from these stations si-
multaneously and weighed separately. Peak biomass sampling was 
timed to occur after most aboveground net primary production 
had occurred but before most senescence and biomass decomposi-
tion had taken place, usually in late August. Plant biomass weights 
were converted to plant carbon and nitrogen weights by measur-
ing their carbon and nitrogen concentrations as above.

Belowground net primary production measurements were made 
annually from 2009 to 2017 through the use of the in- growth 
core technique (Lei et al. 2021). Briefly, a 30 cm deep soil core 
measuring 7 cm in diameter was excavated and roots were re-
moved in the field. A cylinder of 5 mm mesh was placed in the 
excavated hole and the soil was replaced. Core installation oc-
curred annually before the growing season began and remained 
in place for 12 months. Roots that had grown into the mesh cyl-
inder were considered to represent the annual belowground net 
primary productivity.

Separately, standing belowground biomass carbon stocks were 
measured directly in Winter 2022 by taking a 7 cm diameter soil 
core to a depth of 25 cm to capture > 75% of root biomass. Cores 
were taken at each of the 10 georeferenced sampling stations 
in each of the seven fields. Roots were carefully washed with 

water from the soil on top of a 0.25 mm sieve, dried at 60°C and 
weighed. Root biomass weights were converted to root carbon 
and nitrogen weights by measuring their carbon and nitrogen 
concentrations as above.

2.4   |   Soil Measurements

Soil sampling at each field's 10 georeferenced sampling stations 
occurred in 2009 before land use conversion and in 2014 and 
2021 after the growing season ended for a total of 210 cores. 
Intact cores were taken from the 0 to 100 cm depth with a 6 or 
7.6 cm diameter hydraulic probe and split into four sections by 
depth: 0–10 cm, 10–25 cm, 25–50 cm, and 50–100 cm. Surface lit-
ter was removed prior to inserting the probe. Soils were sieved 
to 4 mm by hand and roots were discarded. The coarse fragment 
> 4 mm was weighed as was the < 4 mm soil fraction after dry-
ing in a 60°C oven to constant weight. These weights were used 
to calculate the total and gravel- free bulk densities using the vol-
ume of the section. Subsamples of the soil were pulverized to a 
fine powder and stored in a desiccator for dry combustion anal-
ysis of their carbon and nitrogen concentrations. Each sample's 
carbon and nitrogen concentrations were measured with three 
technical replicates in an elemental analyzer.

Subsamples of the pulverized soil were also measured for mid- 
infrared (1.3–25 μm) spectroscopy (Ramírez et al. 2022). Samples 
were measured with four technical replicates with a Digilab FTS 
7000 spectrometer (Varian Inc., CA, USA). Absorbance was ob-
tained using a KBr background and deuterated triglycine sul-
fate detector. Each spectrum was made of 64 co- added scans at 
2 cm−1 resolution.

2.5   |   Soil Physical Fraction Measurements

We separated the mineral- associated from the particulate or-
ganic matter carbon and nitrogen concentrations, referred to as 
MAOM and POM, respectively, by size separation after mechan-
ical aggregate dispersion (Cotrufo et al. 2019). A 10 g subsample 
of bulk soil was suspended in 0.5% sodium hexametaphosphate 
and 5 mm glass beads, shaken for 18 h, and then separated over a 
53 μm sieve into POM (> 53 μm) and MAOM (< 53 μm), and dried 
in a 60°C oven to constant weight. Each fraction was weighed 
and pulverized for carbon and nitrogen concentration analyses 
as described above. Because this is a labor- intensive procedure, 
only a subset of 403 soil samples were processed directly. The 
remaining 437 MAOM and POM carbon and nitrogen fractions 
(e.g., g POM carbon g bulk soil−1) were predicted from the MIR 
spectra (Ramírez et al. 2022). A partial least squares regression 
statistical model was constructed with the MIR spectra as pre-
dictors and the MAOM and POM carbon and nitrogen fractions 
as response variables. A minimized number of principal compo-
nents and cross validation was used to limit out of sample errors 
associated with over fitting these types of models.

2.6   |   Soil Gas Flux Measurements

Soil N2O and CH4 exchange was measured bi- weekly to 
monthly at four spatial locations within each site during 

(1)NECB = NEE − CHarvest − DOC
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the growing season from 2009 to 2016 with the static cham-
ber technique for a total of 3010 fluxes (Abraha et al. 2018). 
Briefly, 28 cm diameter metal cylinders were inserted 5 cm 
into the soil and covered with a lid for 1.5 h, over which four 
headspace gas samples were extracted and analyzed for N2O 
and CH4 concentrations in the lab with a gas chromatograph 
(7890A Agilent Technologies Inc., CA, USA) equipped with a 
63Ni electron capture detector (350°C), a Poropak Q column 
(1.8 m, 80/100 mesh) at 80°C, and a carrier gas of argon/meth-
ane (90/10). Changes in headspace gas concentrations were 
scaled to areal fluxes with the ideal gas law and assumed to 
represent the daily flux. Specifically, the four- point linear re-
gression of concentration vs. time was visually inspected for 
outlier points (e.g., from a leaky vial), which were then dis-
carded. We recognize the diurnal variability that exists for 
N2O and CH4 fluxes and believe that our decision to expend 
our limited time and resources on sampling the larger spatial 
and seasonal variability benefited this study most.

Separately, heterotrophic respiration was measured with 10 cm 
diameter metal cylinders that were installed 5 cm deep in the 
soil from 2011 to 2014 and kept free from live plant biomass 
through trenching and herbicide applications. Measurements 
were made during the growing season throughout the day in 
a ~bi- weekly fashion. A recirculating pump passed headspace 
air through an LICOR LI- 7815 infrared gas analyzer (LICOR, 
NE, USA) and the change in CO2 concentrations were similarly 
scaled to areal fluxes with the ideal gas law and assumed to rep-
resent the daily flux.

2.7   |   Land Surface Albedo

Land surface albedo was measured for each experimental unit 
from 2009 to 2023 with the Landsat 5, 7, 8, and 9 satellites as well 
as the Sentinel 2A and 2B satellites following Wang et al. (2017) 
as the downward facing shortwave radiometers at these seven 
sites were not always extended out into the field they are meant 
to represent, that is, the tower they were mounted on was situ-
ated in a grassed buffer in the center of each field. The satellite 
data were acquired from Google Earth Engine. Shortwave broad-
band albedo was calculated using the albedo: reflectance ratio 
technique (Shuai et  al.  2011, 2014; Wang et  al.  2017). Landsat 
and Sentinel surface reflectance data are provided without sur-
face anisotropy corrections, which are necessary to estimate 
land surface albedo. The bidirectional reflectance distribution 
function was used for this correction, with the parameters taken 
from the MCD43A1 V6.1 Bidirectional Reflectance Distribution 
Function and Albedo Model Parameters data product. See the 
Supporting Information for details on the data processing. 
Between 554 and 721 albedo observations that passed all quality 
screening criteria were available for each land use, resulting in 
a total of 4520 albedo observations measured from 2009 to 2023.

2.8   |   Process- Based Ecosystem Modeling

The Microbial Efficiency and Matrix Stabilization model version 
2.14 (MEMS 2) was used to solve daily carbon, nitrogen, water, 
and temperature fluxes at the field scale (Zhang et al. 2021). This 
1- dimensional process- based ecosystem model requires initial 

condition and forcing data including, soil texture, soil bulk den-
sity, field management events, plant specific attributes (e.g., spe-
cific leaf area), air temperature, incoming shortwave radiation, 
precipitation, windspeed and relative humidity.

Initial conditions and forcing data were taken from the above- 
described soil, plant, and meteorological data. Additionally, a 
model spin- up period of 100 years was used before the start of the 
study period, which was January 1, 2009 to December 31, 2021. 
Soil carbon and nitrogen stocks in the POM and MAOM fractions 
at the beginning of the spin up period were set equally across all 
sites to allow the model to manifest the different land use histories 
(i.e., grassland or cropland from 1987 to 2008), and reach steady 
state by the start of the study period (January 1, 2009). Custom 
software was written in the R programing language to facilitate 
automated calibration and uncertainty estimation. The R pack-
age ‘BayesianTools’ was used to perform Markov- Chain Monte 
Carlo (MCMC) simulations of different parameter combinations 
(Lu et al. 2017). Parameters in the plant submodule were identi-
fied as the major sources of uncertainty in the final NECB. The 
chosen parameters are listed in Table S5. Uniform prior distribu-
tions for selected parameters were constructed from the plausible 
parameter value ranges listed in Table S5.

A likelihood- based cost function was used to calculate the dif-
ference between each observation and their associated model 
prediction (function dnorm in R). The following observations 
were used in the calibration scheme: eddy covariance NEE and 
latent heat flux, soil heterotrophic respiration, harvested plant 
biomass, peak plant biomass, root productivity, satellite vegeta-
tion index, soil total, and POM and MAOM carbon and nitrogen 
stocks. Likelihoods for each observation variable were summed 
to represent a global likelihood for each parameter set (Cameron 
et al. 2022). 10,000 MCMC simulations were conducted in par-
allel for each site as diagnostic plots showed acceptable con-
vergence at this point. Following this calibration procedure, 
uncertainty in the final NECB was estimated by drawing a ran-
dom set of parameters from the latter half of the MCMC simula-
tions. After drawing 100 such sets, the median, 2.5%, and 97.5% 
quantiles of the final NECB were utilized as the central, lower, 
and upper estimates, respectfully.

2.9   |   Radiative Forcing Calculations

Radiative forcing of CO2, N2O, CH4, and land surface albedo were 
calculated over a 100- year timeline assuming that the changes 
during the 13- year study period represent the new steady state 
fluxes. The radiative forcing of each gas was modeled with their 
net exchange rates, atmospheric lifetimes, and radiative efficien-
cies following Neubauer and Megonigal (2015) and their associ-
ated correction (Neubauer and Megonigal 2019). This facilitated 
use of common units of fW m−2 and thus the direct use of top of 
atmosphere shortwave radiation fluxes. The atmospheric lifetime 
of N2O and CH4 was modeled according to Equation (2)

where Ci is thse atmospheric concentration in the ith year, Fi is 
the annual flux in the ith year, and L is the atmospheric lifetime 

(2)Ci+1 = Fi + Ci × e

(

−
1

L

)
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of the gas. The atmospheric lifetime of CO2 was modeled accord-
ing to Equation (3).

where Ci is the atmospheric concentration in theith year, fp is the 
fraction of emissions associated with each pool, Fi is the annual 
flux in theith year, Ci,p is the atmospheric concentration of the 
pth pool in the ith year and Lp is the atmospheric lifetime of CO2 
in the pth pool. Radiative forcings for each gas were calculated 
as the product of the atmospheric concentration and the radi-
ative efficiency. Constants for atmospheric lifetimes and pool 
fractions for Equations (2 and 3) can be found in Neubauer and 
Megonigal (2015, 2019), as can the constants for the radiative ef-
ficiencies of each gas.

Dissolved organic carbon (DOC) can be an important compo-
nent of the NECB but it is not measured by eddy covariance 
towers. Furthermore, for the purpose of radiative forcing cal-
culations, the fate of this DOC can alter the climate impacts 
of terrestrial land use changes. While DOC leaching was not 
measured directly in this study, the MEMS 2 model provides an 
estimate used here. We assumed in the radiative forcing calcu-
lations that 74% of DOC is eventually decomposed to CO2 with a 
half- life of 2.5 years (Catalán et al. 2016; Ward et al. 2017).

Geologic storage of CO2 captured during bioenergy production 
was modeled here according to Equation (4).

where COBECCS
2

 is the carbon stored in geologic formations, Charvest 
is the carbon harvested for bioenergy from each site, which was 
measured directly as described above, and EBECCS is the total effi-
ciency of the BECCS process in terms of CO2 emitted during the 
processing stages. We utilize a value of 80% for EBECCS following 
the integrated assessment model used in Klein et al. (2014).

The CO2 emissions originating from fossil fuels used in synthetic 
nitrogen fertilizer production and field management operations 
were included here following Brentrup et al. (2018) and Gelfand 
et al.  (2020), respectively. Synthetic nitrogen fertilizer applica-
tion rates and field management activity information (expressed 
in terms of liters of fuel used) were used to calculate the amount 
of CO2 emitted each year.

Top of atmosphere shortwave radiation fluxes were calculated 
with the measured land surface albedo and downwelling short-
wave radiation measurements described above using Equation (5).

where SWtoa
out

 is the outgoing shortwave radiation at the top of the 
atmosphere, a is the land surface albedo, and TSW is the all- sky 
transmittance of shortwave radiation through the atmosphere, 
calculated here as the ratio of top of atmosphere to bottom of 
atmosphere incoming shortwave radiation. Top of atmosphere 
incoming radiation was provided by the ERA5 reanalysis prod-
uct (Hersbach et al. 2023). The radiative forcing from changes in 
albedo was estimated as the difference in annual average SWTOA 
relative to a reference field. For the former grassland sites the 

reference field is the grassland site maintained as a reference. 
For the former cropland sites, the reference field is the former 
cropland site converted to corn.

2.10   |   Statistical Analysis

Each eddy covariance tower measures each field as a whole. 
Therefore, as is common with eddy covariance studies, this exper-
iment does not have replicated fields. Statistical differences within 
a treatment over time were assumed to be present when the 95% 
confidence intervals did not overlap with zero. Similarly, statis-
tical differences between methods and sites were assumed to be 
present when their 95% confidence intervals did not overlap.

For the chamber based soil N2O and CH4 fluxes a generalized ad-
ditive model was fit to account for the time periods between flux 
measurements. Fluxes at each site were predicted by a cyclic cubic 
regression spline of month as a continuous variable (i.e., December 
wraps around to January; Wood 2017). The mean annual fluxes 
of each site and their uncertainty were then extracted from this 
seasonal fit and used in the subsequent radiative forcing analysis.

For the carbon inventory methods NECB calculation, the longi-
tudinal changes in plant and soil carbon stocks were used. The 
changes in soil organic carbon stocks were estimated by fitting a 
linear mixed effect model following Equation (6).

where, SOC is the bulk soil organic carbon stock in Mg C ha−1, 
site is a categorical variable representing each study site, depth is 
a categorical variable representing the four depth intervals, year 
is a continuous variable representing the year of each soil sample, 
and r(site: station) is the random intercept for each station at each 
site. The changes in the other three components of the carbon (C) 
inventory method's NECB, namely roots and surface litter, were 
estimated directly using the winter 2022 sampling data. We as-
sumed that all former grassland sites had the same root and sur-
face litter biomass in 2009 as measured in the reference grassland 
site in 2022. Similarly, we assumed that all former cropland sites 
had the same root and surface litter biomass in 2009 as measured 
in the cropland site converted to corn in 2022. The 95% confidence 
interval of the final NECB for the C inventory method was calcu-
lated by arithmetic error propagation according to Equation (7).

where, NECBci is the 95% confidence interval of the NECB, ci2
i
 is 

the squared 95% confidence interval of each i component, (i.e., 
soil, root, and surface litter).

3   |   Results

3.1   |   Net Ecosystem Carbon Balance Estimates

Here we report the range of the central estimates of the three 
methods, followed by the range of their 95% confidence in-
tervals. Fully disaggregated results for each method and site 

(3)Ci+1 =

4
∑

p=1

(

fp ∗Fi
)

+ Ci,p × e

(

−
1

Lp

)

(4)COBECCS
2

= Charvest × EBECCS

(5)SWtoa
out

= SWin × a × TSW

(6)SOC = site × depth × year + r(site: station)

(7)NECBci =

√

∑

ci2
i
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are reported in Figure  1 and Table  S2. Over 13 years, switch-
grass planted on former cropland sequestered between 9.0 and 
13.7 Mg C ha−1 (95% CI 2.3–25.1) in all plant and soil compo-
nents to a depth of 100 cm. Similarly, prairie established on for-
mer cropland sequestered between 4.1 and 15.8 Mg C ha−1 (95% 
CI 1.7–28.4) during the study period. The conversion of grass-
land to these same perennials had more carbon neutral results. 
Switchgrass planted on former grassland had a NECB between 
4.6 and 10.5 Mg C ha−1 (95% CI −0.7 to 21.7). Similarly, for prairie 
established on former grassland, the NECB was between −0.9 
and 5.0 Mg C ha−1 (95% CI −6.8 to 16.8). Corn had more variable 
NECB results with the former cropland site having a NECB of 
−13.0 to 0.6 Mg C ha−1 (95% CI −24.2 to 2.6) and the corn at the 
former grassland site having a NECB of −31.2 to 3.3 Mg C ha−1 
(95% CI −38.8 to 13.9). The reference grassland site that was un-
managed and not harvested had a NECB of −3.6 to 4.1 Mg C ha−1 
(95% CI −14.4 to 7.2).

3.2   |   Plant and Soil Carbon Dynamics

While the eddy covariance method does not allow for the disag-
gregation of the NECB into its plant and soil components, our C 
inventory and the MEMS 2 model results show that surface lit-
ter, roots, POM, and MAOM carbon stock changes contributed 
to NECB changes of up to 3.4, 5.2, 14.7, and 12.7 Mg C ha−1, re-
spectively (Figure 2; Table S3). For surface litter, we found that 
changes in standing carbon stocks from the beginning to the 

end of the study period estimated using the C inventory method 
ranged from −1.6 Mg C ha−1 in the prairie established on for-
mer grassland to 0.0 Mg C ha−1 in the prairie on former cropland 
(Table S3). The MEMS 2 model estimated greater surface litter 
carbon loss, with a range of −3.4 Mg C ha−1 in the corn on for-
mer grassland to −0.2 Mg C ha−1 in the grassland reference site 
(Table S3).

For roots, changes in standing carbon stocks from the begin-
ning to the end of the study period estimated using the C inven-
tory method ranged from −2.0 Mg C ha−1 in the corn established 
on former grassland to 5.2 Mg C ha−1 in the prairie on former 
cropland (Table S3). The MEMS 2 model estimated lower root 
carbon gains with a range of −0.5 Mg C ha−1 in the corn on for-
mer grassland to 2.3 Mg C ha−1 in switchgrass on former crop-
land (Table S3).

For POM, changes in standing carbon stocks over the 0–100 cm 
depth profile from the beginning to the end of the study period 
estimated using the C inventory method ranged from −3.6 Mg 
C ha−1 in the corn established on former cropland to 14.7 Mg 
C ha−1 in the switchgrass on former grassland (Table S3). The 
MEMS 2 model estimated lower POM carbon gains with a range 
of −1.3 Mg C ha−1 in the corn on former grassland to 5.7 Mg C 
ha−1 in switchgrass on former grassland (Table S3).

For MAOM, changes in standing carbon stocks over the 0–100 cm 
depth profile from the beginning to the end of the study period 

FIGURE 1    |    The net ecosystem carbon balance (NECB) of each site and each method. Columns and error bars represent the central estimate and 

95% confidence intervals, respectively. Positive values indicate carbon gained by the ecosystem and negative values indicate carbon lost from the 

ecosystem.
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estimated using the C inventory method ranged from −12.7 Mg 
C ha−1 in the grassland reference site to 4.4 Mg C ha−1 in the 
switchgrass on former cropland (Table S3). The MEMS 2 model 
estimated greater MAOM carbon gains with a range of 1.2 Mg C 
ha−1 in the prairie on former grassland to 3.5 Mg C ha−1 in corn 
on former grassland (Table S3).

3.3   |   Soil N2O and CH4

Soil gas fluxes derived from in situ measurements were affected 
by both the current and previous land use. Soil nitrous oxide 
emissions were highest in the sites fertilized with synthetic N. 
The corn site on former grassland had the highest emissions 
(0.67 g N2O m−2 year−1, s.e. 0.06, Figure S1), while the corn site 
on former cropland had lower emissions (0.44 g N2O m−2 year−1, 
s.e. 0.05). For the switchgrass grown on former grassland, N2O 
emissions were lower at (0.17 g N2O m−2 year−1, s.e. 0.04), while 
the switchgrass grown on former cropland emitted N2O at a 
similar rate (0.28 g N2O m−2 year−1, s.e. 0.05). Prairie on former 
grassland shared the lowest N2O emissions (0.12 g N2O m−2 
year−1, s.e. 0.04), along with prairie on former cropland (0.14 g 
N2O m−2 year−1, s.e. 0.04) and the grassland reference site (0.12 g 
N2O m−2 year−1, s.e. 0.04). Soil methane oxidation rates were 
highest at the prairie and switchgrass on former grassland sites 
(−0.14 and − 0.11 g CH4 m−2 year−1, respectively, s.e. < 0.03). The 
other sites all had similarly low methane oxidation rates ranging 
from −0.03 to −0.08 g CH4 m−2 year−1 (s.e. < 0.03).

3.4   |   Albedo

Land use change and land use history altered the albedo of the 
land surface changing the outgoing shortwave radiation at the 
top of the atmosphere (SWtoa

out
). The conversion of grassland to 

bioenergy crops increased the land surface albedo while the con-
version of cropland to bioenergy crops reduced it. SWtoa

out
 in the 

corn, switchgrass, and prairie grown on the former grassland 
changed by 2.3, 3.0, and 2.2 W m−2 (s.e. < 0.2), respectively, rel-
ative to the grassland reference site (Figure  S2). On the other 
hand, SWtoa

out
 in the switchgrass and prairie grown on the former 

cropland changed by −1.9 and − 1.3 (s.e. < 0.2), respectively, rel-
ative to the corn on former cropland.

3.5   |   Radiative Forcing

Each component of the overall radiative forcing budget of each 
land use had a substantial effect on the net outcome, apart from 
soil methane oxidation, which was relatively minor. The larg-
est component of the radiative forcing budget was the geolog-
ically stored carbon harvested from each site for BECCS. This 
component followed patterns of aboveground plant productivity 
with the corn on former grassland and cropland having the larg-
est forcing of −56.3 and −45.8 fW m−2, respectively (Figure 3; 
Tables S1 and S4). Switchgrass grown on former grassland and 
cropland had the next largest forcing with −36.0 and −28.1 fW 
m−2, respectively. The lowest forcing from geologic storage of 

FIGURE 2    |    The net ecosystem carbon balance (NECB) components of each site and each method. Columns represent each component. The 

points and error bars represent the net NECB central estimate and 95% confidence intervals, respectively. Positive values indicate carbon gained by 

the ecosystem and negative values indicate carbon lost from the ecosystem.
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harvested carbon came from the prairie on former grassland 
and cropland (−16.7 and −19.0 fW m−2, respectively).

The radiative forcing from NECB CO2, soil CH4, soil N2O, and al-
bedo each follow the results reported above in their original flux 
units. However, the magnitude of each component's contribution 
to the overall radiative forcing budget follows a different scalar 
(Figure 3; Table S4). We summarize the net radiative forcing es-
timates here for each method and site, noting that the soil CH4, 
soil N2O, albedo, farming, and geologic CO2 radiative forcings of 
each site are shared across each of the three methods (i.e., only the 
NECB radiative forcings of each site differ by method).

The corn on former grassland had the largest net negative radia-
tive forcing with the C inventory, eddy covariance method, and 
MEMS 2 model methods yielding −50.5, −38.4, and −46.6 fW 
m−2, respectively (Figure 3; Table S4). The corn on former crop-
land had the next largest net negative radiative forcing with 
each method yielding −45.8 fW m−2. The switchgrass on for-
mer grassland had the next largest net negative radiative forc-
ing with the C inventory, eddy covariance method, and MEMS 
2 model methods yielding −42.5, −39.0, and −38.6 fW m−2, 
respectively. The switchgrass on former cropland followed, 
with the C inventory, eddy covariance method, and MEMS 2 
model methods yielding −39.6, −35.3, and −33.5 fW m−2, re-
spectively. The prairie on former cropland had the next lowest 

net negative radiative forcing with the C inventory, eddy co-
variance method, and MEMS 2 model methods yielding −34.3, 
−30.7, and −26.5 fW m−2, respectively. Finally, the prairie on 
former grassland had the lowest net negative radiative forcing 
with the C inventory, eddy covariance method, and MEMS 2 
model methods yielding −23.5, −21.4, and −19.3 fW m−2, re-
spectively. The reference grassland site, being a baseline refer-
ence, had a neutral radiative forcing by definition.

4   |   Discussion

4.1   |   Net Ecosystem Carbon Balance

Producing biomass for BECCS from corn, switchgrass, and 
prairie grown on former grassland and former cropland re-
sulted in net climate change mitigation. However, the method 
for estimating NECB impacted the portion of climate mitiga-
tion attributed to in situ CO2. Our NECB results show that the 
C inventory method had on average the highest uncertainty 
(22.7 Mg C ha−1 95% CI), followed by the eddy covariance 
method (7.9 Mg C ha−1) and then the MEMS 2 model (4.6 Mg C 
ha−1; Table S2). The magnitude of NECB estimates tended to be 
largest with the C inventory in comparison to the eddy cova-
riance method and the MEMS 2 model, which had somewhat 
more carbon neutral results.

FIGURE 3    |    Average instantaneous radiative forcing for each component and method during the 100- year period following the land use change 

event. The points and error bars represent the net radiative forcing central estimate and 95% confidence intervals, respectively. Positive values indi-

cate a warming impact and negative values indicate a cooling impact, relative to their baseline scenario, which is set to zero by definition. Note that 

only the NECB differs by method.
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However, one exception is the NECB for the corn grown on the 
former grassland site (US- KM1) where the eddy covariance 
tower suggested a change of −31.2 Mg C ha−1 (95% CI −35.5 to 
−26.9 Mg C ha−1; Table S2) over the 13- year study period. This 
change corresponds to a 52% reduction of the site's total ecosys-
tem carbon stocks (60.5 Mg C ha−1), which is excessive and al-
most certainly in error. Moreover, the tower- based NECB does 
not agree with the C inventory or MEMS 2 model at the site, 
which suggest a small sink or a small source (3.3 and −1.7 Mg C 
ha−1, respectively). After careful consideration and much scru-
tiny by our team and the outside experts we solicited, we have 
yet to find a satisfactory explanation for this disparity. We are in-
clined to believe that the direction of the suggested change (i.e., 
net loss) is consistent with a change from grassland to cropland. 
However, the robust results obtained by our repeated soil and 
plant carbon stock measurements, as well as the MEMS 2 model, 
give us the confidence to be able to conclude that this tower's 
estimate of such a large and rapid carbon loss is significantly 
biased. That is, the 95% confidence intervals of the NECB at this 
site from the other two methods are not close to overlapping 
with the EC tower's.

Changes in POM, MAOM, roots, and surface litter each contrib-
uted to the overall NECB. While they differed in magnitude, 
both the C inventory and the MEMS 2 model agree that, on 
average, NECB changes were attributed most to POM (7.9 and 
3.0 Mg C ha−1, respectively), then MAOM (5.2 and 2.3 Mg C ha−1, 
respectively), followed by roots (2.1 and 1.1 Mg C ha−1, respec-
tively), and finally surface litter (0.4 and 1.9 Mg C ha−1, respec-
tively), though that order differed by site (Table S3). Roots were 
more of a contributor to carbon sequestration in the perennials 
as compared to the corn and reference grassland where soil C 
differences dominated.

If well designed and calibrated, process- based ecosystem mod-
els are an attractive option for estimating the NECB of BECCS 
landscapes as they are straightforward and inexpensive to 
set up and run quickly (although their development, calibra-
tion, and validation can be quite involved; Cheng et al. 2024, 
Muri 2018). On the other hand, in situ plant and soil sampling 
are labor intensive, expensive to carry out, and can require 
waiting years for ecological changes to take place (Chatterjee 
et al. 2009). Eddy covariance towers similarly require waiting 
for ecological changes to take place and are also expensive 
but, they can be relatively less labor intensive than plant and 
soil sampling (Baldocchi 2014). The ideal measurement tech-
nique will vary given the set of research sites, questions, and 
resources (Smith et al. 2020).

4.2   |   Soil N2O

Changes in soil N2O emissions tracked differences in the syn-
thetic nitrogen fertilization management regime. Converting 
highly fertilized cropland to lower or zero nitrogen fertilization 
rates in switchgrass and prairie, resulted in negative radiative 
forcing impacts of −3.5 and −4.0 fW m−2, respectively. On the 
other hand, converting unfertilized grasslands to corn, switch-
grass, and prairie (high, low, and zero nitrogen fertilization 
rates) corresponded to N2O related radiative forcings of 7.3, 2.1, 
and 0.0 fW m−2, respectively. Other studies of N2O emissions 

following changes in land use have shown that nitrogen fertil-
ization is a key determinant of emission strength and timing 
(McDaniel et al. 2019).

4.3   |   Albedo

Changes to land surface albedo followed changes in both inher-
ent canopy reflectance properties as well as the height of standing 
biomass during periods of snow cover. During periods without 
snow cover, switchgrass and prairie were relatively brighter 
than the reference grassland site but were relatively darker than 
the continuous corn on the former cropland. Planting corn on 
former grassland also yielded a more reflective land surface 
during periods without snow cover. When snow was present, 
the lower stature vegetation of harvested fields allowed for more 
unobstructed reflectance of shortwave radiation from the snow 
surface. These phenomena led us to conclude that establish-
ing perennial bioenergy crops on former cropland resulted in 
positive radiative forcing due to albedo change (i.e., warming; 
2.3–3.6 fW m−2; Table S4) while establishing bioenergy crops on 
former grassland resulted in negative radiative forcing due to al-
bedo change (i.e., cooling; −4.2 to −5.8 fW m−2; Table S4). Other 
studies of land use change and land surface albedo have found 
that both the inherent reflectivity of the vegetation as well as the 
covering of snow in the high latitudes are important drivers of 
land surface albedo changes (Abraha et al. 2021; Cai et al. 2016; 
Lei, Chen, and Robertson 2023).

4.4   |   Bioenergy With Carbon Capture and Storage

More productive lands can support greater storage of atmo-
spheric carbon in geologic formations, the main climate ben-
efit of BECCS (García- Freites, Gough, and Röder  2021; Rosa, 
Sanchez, and Mazzotti 2021). The corn provided more biomass 
for BECCS than switchgrass or prairie, resulting in more neg-
ative radiative forcing (i.e., cooling). Furthermore, the former 
grassland sites had higher productivity than the former crop-
land sites, except when planted to mixed prairie, where both 
sites were equally productive (Table S1). From the perspective 
of climate mitigation, the reference grassland is penalized be-
cause it is not harvested for BECCS. The potential onsite carbon 
sequestration of establishing an unmanaged grassland can be 
inferred here from the differences in initial ecosystem carbon 
stocks with the grassland and cropland sites. While this differ-
ence is substantial, the carbon storage potential is limited and 
saturates over time, creating an opportunity cost, that can grow 
indefinitely, of not cultivating crops and storing the carbon in 
geologic formations with BECCS. This suggests that, from a 
climate perspective, enrolling former cropland in conservation 
grassland programs could provide mitigation, but utilizing for-
mer cropland for BECCS can provide even more climate mitiga-
tion (Robertson et al. 2017; Stoy et al. 2018).

4.5   |   Radiative Forcing

BECCS commands its popularity as an idea from the substantial 
carbon removal potential it can deliver and our study is no excep-
tion in showing these potentials (Fajardy and Mac Dowell 2017; 
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Fridahl and Lehtveer  2018). Each of the bioenergy crops we 
examined provided substantial climate mitigation whether 
they were grown on former cropland or former grassland. 
Switchgrass and prairie established on former cropland resulted 
in net negative radiative forcing −26.5 to −39.6 fW m−2, while 
establishing the same perennials on former grassland resulted 
in a similar −19.3 to −42.5 fW m−2. The two corn sites had the 
greatest climate mitigation potential of −45.8 to −50.5 fW m−2.

Geologic storage of harvested biomass carbon was, on average, 
the largest component of the radiative forcing budget (33.6 fW 
m−2), followed by on site NECB (1.1–4.4 fW m−2), albedo (3.4 fW 
m−2), N2O (2.8 fW m−2), farming- related fossil fuels (2.6 fW m−2) 
and CH4 (0.1 fW m−2; Table S4). Previous work has shown the 
differences in energy return and climate impact for annual vs. 
perennial bioenergy crops can stem from the amount of re-
sources required for maintaining the fields (e.g., diesel fuel for 
machinery; Bennett et al. 2021; Felten et al, 2013). We also found 
this to be a substantial contributor to the net climate impact of 
each scenario as the fossil fuels embedded in nitrogen fertilizer 
and farming activities considered here had climate impacts on 
roughly the same order as the NECB, N2O emissions, and al-
bedo. However, the main climate impact of BECCS (i.e., storing 
atmospheric carbon in geological formations) outweighed these 
differences as the crops with the largest change in fossil fuel 
use (e.g., corn planted on former grassland) were also the most 
productive, and the extra stored carbon compensated for this in 
terms of climate mitigation.

For former cropland, newly sequestered carbon by the perenni-
als and reductions in soil N2O emissions contributed to climate 
mitigation potentials. However, a less reflective land surface off-
set some of this mitigation (Figure 3). Due to the difference in 
previous land use, the albedo changes on the former grassland 
had the opposite effect (i.e., net negative radiative forcing). This 
finding suggests that the location of new BECCS sites and its 
current albedo are important considerations for climate mitiga-
tion (Baik et al. 2018).

4.6   |   Broader Impacts

The gap between the amount of land needed to achieve mean-
ingful climate mitigation with BECCS and the amount of land 
currently dedicated to it is nearly as large as it was when the idea 
was first proposed (Guo, Song, and Buhain 2015; Ma et al. 2022). 
The current amount of plant biomass carbon being stored in 
dedicated geologic formations is 0.32 Tg C year−1 or 0.008% of 
the proposed 4000 Tg C year−1 needed by some scenarios in 2100 
(Daniels 2023; Roe et al.  2019). Resistance to adoption can be 
attributed to an array of complex social and ecological factors 
(Donnison et al. 2020).

A key aim of BECCS is to provide climate mitigation while mini-
mizing impacts to nature and society (Quader and Ahmed 2017). 
Concerns about BECCS conflicting with food production have 
led to the focus on so- called ‘marginal lands’ (Smith et al. 2019). 
Our study found that intensively managing corn on productive 
lands provided the greatest climate mitigation potential due to 
its high productivity, demonstrating a tradeoff in maximizing 
climate mitigation and food production. That said, we found 

that less productive, former cropland planted to less productive 
perennials also provided substantial climate benefits and re-
quired less intensive management. Furthermore, utilizing less 
productive former cropland avoids the conversion of already 
established natural areas and preserves the biodiversity and 
ecosystem services that those lands currently provide (Grass 
et  al.  2019). However, considerable stretches of grassland are 
planted to monocultures of introduced species, suggesting that 
replacing those monocultures with switchgrass or prairie and 
harvesting the biomass for BECCS could provide similar or 
greater biodiversity and ecosystem services while simultane-
ously increasing the climate mitigation that those lands can pro-
vide (Bardgett et al. 2021; Dixon et al. 2014; Gerstner et al. 2014). 
Although, this would come at a cost to food production, among 
other concerns. While the debate over how to best use land is 
ongoing, our study enriches the discussion by providing infor-
mation to land managers and decision makers about how the 
climate impacts of BECCS can factor into the tradeoffs involved 
in balancing other social and environmental goals.
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