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ABSTRACT

Carbon dioxide removal technologies such as bioenergy with carbon capture and storage (BECCS) are required if the effects of
climate change are to be reversed over the next century. However, BECCS demands extensive land use change that may create
positive or negative radiative forcing impacts upstream of the BECCS facility through changes to in situ greenhouse gas fluxes
and land surface albedo. When quantifying these upstream climate impacts, even at a single site, different methods can give
different estimates. Here we show how three common methods for estimating the net ecosystem carbon balance of bioenergy
crops established on former grassland or former cropland can differ in their central estimates and uncertainty. We place these net
ecosystem carbon balance forcings in the context of associated radiative forcings from changes to soil N,O and CH, fluxes, land
surface albedo, embedded fossil fuel use, and geologically stored carbon. Results from long term eddy covariance measurements,
a soil and plant carbon inventory, and the MEMS 2 process-based ecosystem model all agree that establishing perennials such as
switchgrass or mixed prairie on former cropland resulted in net negative radiative forcing (i.e., global cooling) of —26.5 to —39.6fW
m~2 over 100years. Establishing these perennials on former grassland sites had similar climate mitigation impacts of —19.3 to
—42.5fW m~2. However, the largest climate mitigation came from establishing corn for BECCS on former cropland or grassland,
with radiative forcings from —38.4 to —50.5fW m~2, due to its higher plant productivity and therefore more geologically stored car-
bon. Our results highlight the strengths and limitations of each method for quantifying the field scale climate impacts of BECCS
and show that utilizing multiple methods can increase confidence in the final radiative forcing estimates.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.
© 2025 The Author(s). GCB Bioenergy published by John Wiley & Sons Ltd.
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1 | Introduction

Bioenergy with carbon capture and storage (BECCS) is projected
to be necessary, in combination with reductions in fossil fuel
use and other greenhouse gas mitigation measures, for keeping
the anthropogenic rise in global atmospheric temperature to
below 2°C by 2100 (Hanssen et al. 2020). In particular, carbon
dioxide (CO,) removal will be necessary to reverse the effects of
climate change that extend well beyond 2100, such as sea level
rise, with BECCS being a potentially key method for doing so at
scale (Clark et al. 2016; Pett-Ridge et al. 2023). BECCS extracts
energy from plant biomass through combustion, with the result-
ing CO, captured and stored in subsurface geologic formations.
Proposals that use BECCS as a climate mitigation strategy have
extensive land use requirements to produce enough plant bio-
mass for meaningful carbon sequestration (Azar, Johansson, and
Mattsson 2013). Some scenarios project land use requirements
of up to 10x10°km? by the year 2100 (Roe et al. 2019), which
would make plant biomass production for BECCS the third larg-
est land use globally, followed by agriculture (48 x 10°km?) and
forestry (19 x10°km?; FAO 2020, 2024). These extensive land
use requirements motivate the study of the associated impacts
on terrestrial ecosystems.

The environmental impacts associated with BECCS bio-
mass production sites could be similar to those caused by
moderately/intensively managed agricultural lands (Heck
etal. 2018). These could include the near total loss of local flora
and fauna populations within the field boundaries (Hanssen
et al. 2022), the acceleration of soil erosion to unsustainable
rates (Vogel, Deumlich, and Kaupenjohann 2016), and the
pollution of streams and aquatic ecosystems with sediment,
excess nitrogen and phosphorus, and pesticides (Diaz-Chavez
etal. 2011). Furthermore, the fragmentation of native wildlife,
insect, and plant habitat can have negative consequences for
the biodiversity of nearby unmanaged landscapes (Immerzeel
et al. 2014). However, substituting intensive annual crops for
perennial native grasses or mixed native prairie species has
been shown to ameliorate each of these environmental im-
pacts to some degree (Gelfand et al. 2013; Werling et al. 2014).
BECCS biomass production sites could also have social conse-
quences, such as the competition for agricultural and forestry
lands, farm labor, land tenure, and the increased need for
machinery, fuel, and other necessary agricultural resources
(Fajardy et al. 2021). Here we narrow the focus of this study to
the global warming/cooling impacts that come from the sites
were biomass is produced for BECCS.

While the primary mechanism that BECCS uses to reduce
global radiative forcing is the storage of new plant biomass
carbon in geologic formations, there are further contributions
to radiative forcing that derive from biomass production sites.
These include changes to (1) standing plant and soil carbon
stocks, (2) soil nitrous oxide (N,O) fluxes, (3) soil methane
(CH,) fluxes and (4) land surface albedo. However, the direc-
tion and magnitude of these radiative forcing contributions
are uncertain due to the lack of long-term land use change
experiments measuring these phenomena in a bioenergy con-
text. Closing this knowledge gap is critical for constraining
uncertainty in projections of how to achieve reduced radiative
forcing with BECCS.

A common method for estimating the net ecosystem carbon bal-
ance (NECB) of the land converted to BECCS production is using
a process-based ecosystem model that simulates a particular land
use change scenario, relative to a baseline scenario (e.g., Lark
et al. 2022). This is an attractive method as long term site-level
simulations can be run in seconds on a typical modern computer.
However, process-based ecosystem models have several draw-
backs that can impact the final NECB of BECCS sites (Butnar
et al. 2020). These include the parameterization of bioenergy
crops like switchgrass or miscanthus in the plant submodules,
which have relatively greater uncertainty in their parameter val-
ues due to their novelty in the modeling community. Much work
on parameterizing the plant-related parameters of process-based
ecosystem models has focused on broad plant functional types
or the most commonly planted agricultural crops and less so on
dedicated bioenergy crops (Shepherd, Martin, and Hastings 2021).
Furthermore, estimating the initial plant and soil carbon stocks as
affected by the previous land use at the site and correctly modeling
the fate of that carbon further challenges model veracity. Finally,
as is true with all model simulations, validation at a representative
site with repeated in situ measurements of NECB is rare, adding
further to the uncertainty of modeled results (Augusiak, Van Den
Brink, and Grimm 2014; Le Nog et al. 2023).

Eddy covariance flux measurements are a second commonly
used technology for estimating the NECB of BECCS production
(Harris et al. 2017). By continuously measuring the net ecosystem
exchange of CO, (NEE) and adjusting for other carbon pools that
enter and leave a site (e.g., biomass via harvest and dissolved or-
ganic carbon via leaching), eddy covariance measurements can
provide a spatially and temporally integrated in situ estimate of
a site's NECB. While the eddy covariance method is an attrac-
tive option for this application, it too has several drawbacks that
color the interpretation and use of its data. For instance, it is
common for 30%-50% of flux measurements to be missing data
due to low turbulence conditions or sensor malfunctions (Moffat
et al. 2007). The seven towers used in this study had an average
gap percentage of 37% during the study period. The gap filling
methods required to calculate the NECB can also introduce bias
and uncertainties in the flux estimates (Mahabbati et al. 2021).
Arriving at a site’s long term NECB requires the cumulative addi-
tion of all net ecosystem exchange measurements, meaning that
any deviation in the systematic bias from zero, even if small, can
add up over time to bias final (cumulative) NECB estimates.

Plant and soil carbon inventories are a third common method
for estimating a site’s NECB that requires measuring standing
carbon stocks before and after a BECCS land use change event.
This method is attractive because it can provide robust, well-
defined, and trustworthy measurements of carbon stocks at
the sample level. However, this method has several drawbacks
mainly stem from the sampling effort required to achieve site-
level estimates with acceptable uncertainties (Kravchenko and
Robertson 2011). The size of each plot or soil sample is usually
small compared to the size of the field. The natural heterogeneity
of the field's carbon stocks necessitates taking numerous labor-
intensive samples. While the carbon content of any individual
sample can be derived with high accuracy and low uncertainty,
the heterogeneity among samples and the lack of sufficient num-
bers of samples often results in relatively high uncertainty in the
final NECB of plant and soil carbon inventories.
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Most site-based studies of the NECB of BECCS production use
only one or two of these three methods (e.g., Abraha et al. 2019;
Gelfand et al. 2020; McCalmont et al. 2017; Melnikova
et al. 2023). We are not aware of any study that compares all
three approaches in the same experimental setting. Usually the
circumstances of the site, experimental design, study duration,
available measurements, and investigator expertise dictate the
methods used in any one study. We suspect that the conclusions
of these studies may change if a different method was used, es-
pecially if the study had a short duration.

Here we use a long term BECCS land use change experiment
to compare three methods for quantifying each site's NECB
over 13years, namely (1) the MEMS 2 process-based ecosystem
model, (2) the eddy covariance method, and (3) in situ invento-
ries of plant and soil carbon stock changes. Our objectives are to
(1) estimate the NECB of three proposed bioenergy production
systems with contrasting land use history, (2) quantify the un-
certainty of each of the three estimation methods and (3) place
these NECB estimates in context of other sources of radiative
forcing measured at the site, in particular, soil-atmosphere
fluxes of N,O and CH,, embedded fossil fuel emissions, geo-
logically stored carbon, as well as land surface albedo. We hy-
pothesize that the NECB will be highest at sites with low initial
ecosystem carbon stocks that transition to high belowground
productivity plant types. Furthermore, we postulate that the
eddy covariance method will have the lowest uncertainty in
detecting these changes due to its comparatively large volume
of data collection. Finally, apart from the geologically stored
carbon, we expect the NECB to largely determine the overall
radiative forcing budget of each site.

2 | Methods
2.1 | Site Description

The study site is located in southwestern Michigan, USA and
was established by Michigan State University as part of the
Great Lakes Bioenergy Research Center (42.4°N, 85.4°W, eleva-
tion 281 m). The mean annual temperature of the site is 9.3°C,
the mean annual precipitation is 1067 mm, and there are on av-
erage 90 days with at least partial snow cover per year (Thornton
et al. 2022). Soils at the site are well drained fine-loamy, mixed,
active, mesic Typic Hapludalfs and consist of loamy glacial out-
wash overlying sand (Luehmann et al. 2016). Specifically, the
mean soil texture across the study sites over the 0-50cm depth
profile was 66% sand, 26% silt, and 8% clay, while the 50-100cm
depth profile's soil texture was 81% sand, 12% silt, and 8% clay.
Prior to industrial settlement of the area circa 1850, the site ex-
isted in a matrix of mid to late succession temperate deciduous
broadleaf forests (Paciorek et al. 2021). Following more than a
century of row crop agriculture, in 1987 one set of sites was con-
verted to a perennial grassland (Bromus inermis) through en-
rollment in the USDA's Conservation Reserve Program (CRP),
while the other set of sites continued to be used for row crop
agriculture.

In 2009 the BECCS experiment was established by terminating
all vegetation with herbicides at each site, except for one of the
grassland sites that was maintained as a reference. In the initial

year, herbicide resistant soybeans (Glycine max) were planted
to allow further termination of preexisting vegetation. In 2010,
either corn (Zea mays; planted annually), switchgrass (Panicum
virgatum) or restored prairie (hereafter “prairie”, a mixture of
19 species; see Abraha et al. 2019) were established on both
the former grassland and former cropland sites. The field sizes
range from 9 to 14 ha and were managed throughout the study
period without tillage. The corn was planted each spring using
a seed drill when the soil temperature was at a sufficiently
warm level, field conditions were conducive to heavy machin-
ery traffic, and the risk of frost was sufficiently low. The corn
was fertilized with nitrogen at a rate of 180kgNha! year™,
switchgrass at 56kgNha~! year~!, and prairie at 0kgNha!
year—!. From 2010 to 2014, only grain was harvested from the
corn sites and the residue was left onsite, while from 2015 to
2021 both grain and residue were harvested. For the switch-
grass and prairie sites, biomass was harvested annually in the
Fall or Winter from 2011 to 2021. Harvests occurred after each
crop had fully senesced and when field conditions were condu-
cive to heavy machinery traffic, which different by crop type
and by year-to-year weather conditions.

2.2 | Eddy Covariance Measurements

Each of the seven sites has had an eddy covariance tower in con-
tinuous operation since 2009 (Abraha et al. 2015; 2019). Each
tower had an LI-7500 open-path infrared gas analyzer (LI-COR
Biosciences, Lincoln, NE) that measures CO2 and HZO concen-
trations and a CSAT3 sonic anemometer (Campbell Scientific
Inc., Logan, UT) that measures wind speed and direction. The
infrared gas analyzers were calibrated (i.e., zero and spanned)
every four to 6 months, rotated between the seven sites periodi-
cally. The sonic anemometer was kept at 1.5-2m above the can-
opy by raising and lowering the tower each spring and fall as the
vegetation height changed.

Details on other sensors installed at the sites and the process-
ing of the high frequency data are provided in the Supporting
Information. For the half-hourly flux data friction velocity
thresholding, gap filling, and uncertainty estimation were con-
ducted with the Reddyproc package in R (Wutzler et al. 2018).
For each 3-month period of each year, 100 bootstrapped samples
of data were used to estimate the distribution of probable friction
velocity thresholds. The median, 2.5%, and 97.5% friction veloc-
ity thresholds were used for estimating the central, lower, and
upper NEE estimates, respectively.

For each of the three friction velocity thresholds, the mar-
ginal distribution sampling algorithm following Reichstein
et al. (2005) was used for gap filling the NEE and latent heat
flux data. Artificial gaps at each observation were created to
facilitate uncertainty estimation. The standard deviation of the
look up table values for real gaps were used as the uncertainty
estimate for the gap filling procedure. The standard deviation
of the look up table values for artificial gaps were used as the
uncertainty estimate for the measurement procedure. The final
uncertainty in the cumulative NEE was calculated by numerical
simulation. For 1000 simulations, a new NEE value was sampled
at each half-hour interval from a normal distribution with the
mean and standard deviation derived from the real and artificial
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gap filling procedure described above. The median, 2.5% and
97.5% quantiles of the cumulative NEE from the 1000 simula-
tions were used as the central, lower, and upper estimates for
the eddy covariance method, respectively. The NECB was then
calculated following Equation (1).

NECB = NEE — Cyy, e — DOC M

where NEE is the net ecosystem exchange of CO,, Cy. . oq IS
the carbon removed from the site (described below), and DOC
is the dissolved organic carbon leached below the 100cm soil
depth. DOC losses are not measured by eddy covariance towers.
We utilized the DOC output from the process-based ecosystem

model as described below.

2.3 | Plant Biomass Measurements

All plant biomass that was removed from the site by machine
for bioenergy production was measured directly by weighing
harvested biomass on trucks and adjusting for their moisture
content, which was measured by drying a subsample in an oven
at 60°C. These values are provided in Table S1. Plant biomass
weights were converted to plant carbon and nitrogen weights by
measuring their carbon and nitrogen concentrations through
dry combustion with an elemental analyzer (Costech ECS 4010
CHNSO Analyzer, CA, USA).

To quantify annual net primary productivity, plant biomass mea-
surements were made annually from 2009 to 2016 at 10 geolocated
sampling stations within each field by clipping, drying, and weigh-
ing 1 m? of live aboveground biomass. These values are provided
in Table S1, as is their comparison to the mechanically harvest
biomass mentioned above (i.e., their harvest efficiency). The shape
of the quadrat used for the corn fields was 1.52 by 0.66m and was
placed across the rows to ensure representative sampling. The
shape of the quadrat used for the switchgrass and prairie fields was
2.0 by 0.5m. Surface litter was also collected from these stations si-
multaneously and weighed separately. Peak biomass sampling was
timed to occur after most aboveground net primary production
had occurred but before most senescence and biomass decomposi-
tion had taken place, usually in late August. Plant biomass weights
were converted to plant carbon and nitrogen weights by measur-
ing their carbon and nitrogen concentrations as above.

Belowground net primary production measurements were made
annually from 2009 to 2017 through the use of the in-growth
core technique (Lei et al. 2021). Briefly, a 30cm deep soil core
measuring 7cm in diameter was excavated and roots were re-
moved in the field. A cylinder of 5mm mesh was placed in the
excavated hole and the soil was replaced. Core installation oc-
curred annually before the growing season began and remained
in place for 12months. Roots that had grown into the mesh cyl-
inder were considered to represent the annual belowground net
primary productivity.

Separately, standing belowground biomass carbon stocks were
measured directly in Winter 2022 by taking a 7cm diameter soil
core to a depth of 25cm to capture > 75% of root biomass. Cores
were taken at each of the 10 georeferenced sampling stations
in each of the seven fields. Roots were carefully washed with

water from the soil on top of a 0.25mm sieve, dried at 60°C and
weighed. Root biomass weights were converted to root carbon
and nitrogen weights by measuring their carbon and nitrogen
concentrations as above.

2.4 | Soil Measurements

Soil sampling at each field's 10 georeferenced sampling stations
occurred in 2009 before land use conversion and in 2014 and
2021 after the growing season ended for a total of 210 cores.
Intact cores were taken from the 0 to 100cm depth with a 6 or
7.6cm diameter hydraulic probe and split into four sections by
depth: 0-10cm, 10-25cm, 25-50cm, and 50-100 cm. Surface lit-
ter was removed prior to inserting the probe. Soils were sieved
to 4mm by hand and roots were discarded. The coarse fragment
>4mm was weighed as was the <4mm soil fraction after dry-
ing in a 60°C oven to constant weight. These weights were used
to calculate the total and gravel-free bulk densities using the vol-
ume of the section. Subsamples of the soil were pulverized to a
fine powder and stored in a desiccator for dry combustion anal-
ysis of their carbon and nitrogen concentrations. Each sample's
carbon and nitrogen concentrations were measured with three
technical replicates in an elemental analyzer.

Subsamples of the pulverized soil were also measured for mid-
infrared (1.3-25wm) spectroscopy (Ramirez et al. 2022). Samples
were measured with four technical replicates with a Digilab FTS
7000 spectrometer (Varian Inc., CA, USA). Absorbance was ob-
tained using a KBr background and deuterated triglycine sul-
fate detector. Each spectrum was made of 64 co-added scans at
2cm™ resolution.

2.5 | Soil Physical Fraction Measurements

We separated the mineral-associated from the particulate or-
ganic matter carbon and nitrogen concentrations, referred to as
MAOM and POM, respectively, by size separation after mechan-
ical aggregate dispersion (Cotrufo et al. 2019). A 10g subsample
of bulk soil was suspended in 0.5% sodium hexametaphosphate
and 5mm glass beads, shaken for 18 h, and then separated over a
53 um sieve into POM (> 53 um) and MAOM (< 53 um), and dried
in a 60°C oven to constant weight. Each fraction was weighed
and pulverized for carbon and nitrogen concentration analyses
as described above. Because this is a labor-intensive procedure,
only a subset of 403 soil samples were processed directly. The
remaining 437 MAOM and POM carbon and nitrogen fractions
(e.g., g POM carbon g bulk soil™) were predicted from the MIR
spectra (Ramirez et al. 2022). A partial least squares regression
statistical model was constructed with the MIR spectra as pre-
dictors and the MAOM and POM carbon and nitrogen fractions
as response variables. A minimized number of principal compo-
nents and cross validation was used to limit out of sample errors
associated with over fitting these types of models.

2.6 | Soil Gas Flux Measurements

Soil N,0 and CH, exchange was measured bi-weekly to
monthly at four spatial locations within each site during
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the growing season from 2009 to 2016 with the static cham-
ber technique for a total of 3010 fluxes (Abraha et al. 2018).
Briefly, 28cm diameter metal cylinders were inserted 5cm
into the soil and covered with a lid for 1.5h, over which four
headspace gas samples were extracted and analyzed for N,O
and CH, concentrations in the lab with a gas chromatograph
(7890A Agilent Technologies Inc., CA, USA) equipped with a
63Ni electron capture detector (350°C), a Poropak Q column
(1.8 m, 80/100 mesh) at 80°C, and a carrier gas of argon/meth-
ane (90/10). Changes in headspace gas concentrations were
scaled to areal fluxes with the ideal gas law and assumed to
represent the daily flux. Specifically, the four-point linear re-
gression of concentration vs. time was visually inspected for
outlier points (e.g., from a leaky vial), which were then dis-
carded. We recognize the diurnal variability that exists for
N,O and CH, fluxes and believe that our decision to expend
our limited time and resources on sampling the larger spatial
and seasonal variability benefited this study most.

Separately, heterotrophic respiration was measured with 10cm
diameter metal cylinders that were installed 5cm deep in the
soil from 2011 to 2014 and kept free from live plant biomass
through trenching and herbicide applications. Measurements
were made during the growing season throughout the day in
a ~bi-weekly fashion. A recirculating pump passed headspace
air through an LICOR LI-7815 infrared gas analyzer (LICOR,
NE, USA) and the change in CO, concentrations were similarly
scaled to areal fluxes with the ideal gas law and assumed to rep-
resent the daily flux.

2.7 | Land Surface Albedo

Land surface albedo was measured for each experimental unit
from 2009 to 2023 with the Landsat 5, 7, 8, and 9 satellites as well
as the Sentinel 2A and 2B satellites following Wang et al. (2017)
as the downward facing shortwave radiometers at these seven
sites were not always extended out into the field they are meant
to represent, that is, the tower they were mounted on was situ-
ated in a grassed buffer in the center of each field. The satellite
data were acquired from Google Earth Engine. Shortwave broad-
band albedo was calculated using the albedo: reflectance ratio
technique (Shuai et al. 2011, 2014; Wang et al. 2017). Landsat
and Sentinel surface reflectance data are provided without sur-
face anisotropy corrections, which are necessary to estimate
land surface albedo. The bidirectional reflectance distribution
function was used for this correction, with the parameters taken
from the MCD43A1 V6.1 Bidirectional Reflectance Distribution
Function and Albedo Model Parameters data product. See the
Supporting Information for details on the data processing.
Between 554 and 721 albedo observations that passed all quality
screening criteria were available for each land use, resulting in
a total of 4520 albedo observations measured from 2009 to 2023.

2.8 | Process-Based Ecosystem Modeling

The Microbial Efficiency and Matrix Stabilization model version
2.14 (MEMS 2) was used to solve daily carbon, nitrogen, water,
and temperature fluxes at the field scale (Zhang et al. 2021). This
1-dimensional process-based ecosystem model requires initial

condition and forcing data including, soil texture, soil bulk den-
sity, field management events, plant specific attributes (e.g., spe-
cific leaf area), air temperature, incoming shortwave radiation,
precipitation, windspeed and relative humidity.

Initial conditions and forcing data were taken from the above-
described soil, plant, and meteorological data. Additionally, a
model spin-up period of 100years was used before the start of the
study period, which was January 1, 2009 to December 31, 2021.
Soil carbon and nitrogen stocks in the POM and MAOM fractions
at the beginning of the spin up period were set equally across all
sites to allow the model to manifest the different land use histories
(i.e., grassland or cropland from 1987 to 2008), and reach steady
state by the start of the study period (January 1, 2009). Custom
software was written in the R programing language to facilitate
automated calibration and uncertainty estimation. The R pack-
age ‘BayesianTools’ was used to perform Markov-Chain Monte
Carlo (MCMC) simulations of different parameter combinations
(Lu et al. 2017). Parameters in the plant submodule were identi-
fied as the major sources of uncertainty in the final NECB. The
chosen parameters are listed in Table S5. Uniform prior distribu-
tions for selected parameters were constructed from the plausible
parameter value ranges listed in Table S5.

A likelihood-based cost function was used to calculate the dif-
ference between each observation and their associated model
prediction (function dnorm in R). The following observations
were used in the calibration scheme: eddy covariance NEE and
latent heat flux, soil heterotrophic respiration, harvested plant
biomass, peak plant biomass, root productivity, satellite vegeta-
tion index, soil total, and POM and MAOM carbon and nitrogen
stocks. Likelihoods for each observation variable were summed
to represent a global likelihood for each parameter set (Cameron
et al. 2022). 10,000 MCMC simulations were conducted in par-
allel for each site as diagnostic plots showed acceptable con-
vergence at this point. Following this calibration procedure,
uncertainty in the final NECB was estimated by drawing a ran-
dom set of parameters from the latter half of the MCMC simula-
tions. After drawing 100 such sets, the median, 2.5%, and 97.5%
quantiles of the final NECB were utilized as the central, lower,
and upper estimates, respectfully.

2.9 | Radiative Forcing Calculations

Radiative forcing of CO,, N,O, CH,, and land surface albedo were
calculated over a 100-year timeline assuming that the changes
during the 13-year study period represent the new steady state
fluxes. The radiative forcing of each gas was modeled with their
net exchange rates, atmospheric lifetimes, and radiative efficien-
cies following Neubauer and Megonigal (2015) and their associ-
ated correction (Neubauer and Megonigal 2019). This facilitated
use of common units of fW m~2 and thus the direct use of top of
atmosphere shortwave radiation fluxes. The atmospheric lifetime
of N,O and CH, was modeled according to Equation (2)

Cina =Fi+cixe(_%) @

where C, is thse atmospheric concentration in the ith year, F; is
the annual flux in the ith year, and L is the atmospheric lifetime

50f 14

AsU2OI'T suowto)) dANear) a[qearjdde ayy Aq pauraA03 aIe saONIL V() oSN JO Sa[NI Jof ATRIqIT uI[uQ) AJ[TAY UO (SUONIPUOD-PUE-SULIA}/ WO KA[IM’ ATRIQI[UT[UO//:sdNY) SUONIPUO) Puk SWIA], A 23S *[S70T/20/01] U0 Areiqr autjuQ K[ipy “Kisioatun) ael§ ueStyory £q £2004°9993/1 111°01/10p/wiod Ka[im’Kreiqraur[uo//:sdiy woiy papeojumod ‘¢ ‘Sz0z ‘LOLILSLT



of the gas. The atmospheric lifetime of CO, was modeled accord-
ing to Equation (3).

“ (-2)
Cin= 2, (f#F) +Cppxe\ ™ ©)

p=1

where C, is the atmospheric concentration in theith year, fp is the
fraction of emissions associated with each pool, F, is the annual
flux in theith year, C; , is the atmospheric concentration of the
pth pool in the ith year and L, is the atmospheric lifetime of CO,
in the pth pool. Radiative forcings for each gas were calculated
as the product of the atmospheric concentration and the radi-
ative efficiency. Constants for atmospheric lifetimes and pool
fractions for Equations (2 and 3) can be found in Neubauer and
Megonigal (2015, 2019), as can the constants for the radiative ef-
ficiencies of each gas.

Dissolved organic carbon (DOC) can be an important compo-
nent of the NECB but it is not measured by eddy covariance
towers. Furthermore, for the purpose of radiative forcing cal-
culations, the fate of this DOC can alter the climate impacts
of terrestrial land use changes. While DOC leaching was not
measured directly in this study, the MEMS 2 model provides an
estimate used here. We assumed in the radiative forcing calcu-
lations that 74% of DOC is eventually decomposed to CO, with a
half-life of 2.5years (Catalan et al. 2016; Ward et al. 2017).

Geologic storage of CO, captured during bioenergy production
was modeled here according to Equation (4).

CO];ECCS = Charvest X Eprccs 4

where C is the carbon stored in geologic formations, Cy,, vest
is the carbon harvested for bioenergy from each site, which was
measured directly as described above, and Egpcg is the total effi-
ciency of the BECCS process in terms of CO, emitted during the
processing stages. We utilize a value of 80% for Egpccg following
the integrated assessment model used in Klein et al. (2014).

BECCS
02

The CO, emissions originating from fossil fuels used in synthetic
nitrogen fertilizer production and field management operations
were included here following Brentrup et al. (2018) and Gelfand
et al. (2020), respectively. Synthetic nitrogen fertilizer applica-
tion rates and field management activity information (expressed
in terms of liters of fuel used) were used to calculate the amount
of CO, emitted each year.

Top of atmosphere shortwave radiation fluxes were calculated
with the measured land surface albedo and downwelling short-
wave radiation measurements described above using Equation (5).

SW© = SW, x a x Ty (5)

out

where SW'* is the outgoing shortwave radiation at the top of the
atmosphere, a is the land surface albedo, and Ty, is the all-sky
transmittance of shortwave radiation through the atmosphere,
calculated here as the ratio of top of atmosphere to bottom of
atmosphere incoming shortwave radiation. Top of atmosphere
incoming radiation was provided by the ERAS reanalysis prod-
uct (Hersbach et al. 2023). The radiative forcing from changes in
albedo was estimated as the difference in annual average SWpq,

relative to a reference field. For the former grassland sites the

reference field is the grassland site maintained as a reference.
For the former cropland sites, the reference field is the former
cropland site converted to corn.

2.10 | Statistical Analysis

Each eddy covariance tower measures each field as a whole.
Therefore, as is common with eddy covariance studies, this exper-
iment does not have replicated fields. Statistical differences within
a treatment over time were assumed to be present when the 95%
confidence intervals did not overlap with zero. Similarly, statis-
tical differences between methods and sites were assumed to be
present when their 95% confidence intervals did not overlap.

For the chamber based soil N,O and CH, fluxes a generalized ad-
ditive model was fit to account for the time periods between flux
measurements. Fluxes at each site were predicted by a cyclic cubic
regression spline of month as a continuous variable (i.e., December
wraps around to January; Wood 2017). The mean annual fluxes
of each site and their uncertainty were then extracted from this
seasonal fit and used in the subsequent radiative forcing analysis.

For the carbon inventory methods NECB calculation, the longi-
tudinal changes in plant and soil carbon stocks were used. The
changes in soil organic carbon stocks were estimated by fitting a
linear mixed effect model following Equation (6).

SOC = site x depth X year + r(site: station) (6)

where, SOC is the bulk soil organic carbon stock in Mg C ha™,
site is a categorical variable representing each study site, depth is
a categorical variable representing the four depth intervals, year
is a continuous variable representing the year of each soil sample,
and r(site: station) is the random intercept for each station at each
site. The changes in the other three components of the carbon (C)
inventory method's NECB, namely roots and surface litter, were
estimated directly using the winter 2022 sampling data. We as-
sumed that all former grassland sites had the same root and sur-
face litter biomass in 2009 as measured in the reference grassland
site in 2022. Similarly, we assumed that all former cropland sites
had the same root and surface litter biomass in 2009 as measured
in the cropland site converted to corn in 2022. The 95% confidence
interval of the final NECB for the C inventory method was calcu-
lated by arithmetic error propagation according to Equation (7).

NECB; =4/ ) ci’ ™)

where, NECB, is the 95% confidence interval of the NECB, cii2 is
the squared 95% confidence interval of each i component, (i.e.,
soil, root, and surface litter).

3 | Results
3.1 | Net Ecosystem Carbon Balance Estimates
Here we report the range of the central estimates of the three

methods, followed by the range of their 95% confidence in-
tervals. Fully disaggregated results for each method and site
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FIGURE1 | The netecosystem carbon balance (NECB) of each site and each method. Columns and error bars represent the central estimate and
95% confidence intervals, respectively. Positive values indicate carbon gained by the ecosystem and negative values indicate carbon lost from the

ecosystem.

are reported in Figure 1 and Table S2. Over 13years, switch-
grass planted on former cropland sequestered between 9.0 and
13.7Mg C ha™! (95% CI 2.3-25.1) in all plant and soil compo-
nents to a depth of 100cm. Similarly, prairie established on for-
mer cropland sequestered between 4.1 and 15.8 Mg C ha=! (95%
CI 1.7-28.4) during the study period. The conversion of grass-
land to these same perennials had more carbon neutral results.
Switchgrass planted on former grassland had a NECB between
4.6 and 10.5Mg C ha™! (95% CI —0.7 to 21.7). Similarly, for prairie
established on former grassland, the NECB was between —0.9
and 5.0Mg C ha! (95% CI —6.8 to 16.8). Corn had more variable
NECB results with the former cropland site having a NECB of
—13.0 to 0.6 Mg C ha™! (95% CI —24.2 to 2.6) and the corn at the
former grassland site having a NECB of —31.2 to 3.3Mg C ha™!
(95% CI —38.8 to 13.9). The reference grassland site that was un-
managed and not harvested had a NECB of —3.6 to 4.1 Mg C ha™!
(95% CI —14.4 to 7.2).

3.2 | Plant and Soil Carbon Dynamics

While the eddy covariance method does not allow for the disag-
gregation of the NECB into its plant and soil components, our C
inventory and the MEMS 2 model results show that surface lit-
ter, roots, POM, and MAOM carbon stock changes contributed
to NECB changes of up to 3.4, 5.2, 14.7, and 12.7Mg C ha7l, re-
spectively (Figure 2; Table S3). For surface litter, we found that
changes in standing carbon stocks from the beginning to the

end of the study period estimated using the C inventory method
ranged from —1.6Mg C ha~! in the prairie established on for-
mer grassland to 0.0 Mg C ha~! in the prairie on former cropland
(Table S3). The MEMS 2 model estimated greater surface litter
carbon loss, with a range of —3.4Mg C ha=! in the corn on for-
mer grassland to —0.2Mg C ha~! in the grassland reference site
(Table S3).

For roots, changes in standing carbon stocks from the begin-
ning to the end of the study period estimated using the C inven-
tory method ranged from —2.0 Mg C ha~! in the corn established
on former grassland to 5.2Mg C ha~! in the prairie on former
cropland (Table S3). The MEMS 2 model estimated lower root
carbon gains with a range of —0.5Mg C ha=! in the corn on for-
mer grassland to 2.3Mg C ha~! in switchgrass on former crop-
land (Table S3).

For POM, changes in standing carbon stocks over the 0-100cm
depth profile from the beginning to the end of the study period
estimated using the C inventory method ranged from —3.6 Mg
C ha™! in the corn established on former cropland to 14.7 Mg
C ha7! in the switchgrass on former grassland (Table S3). The
MEMS 2 model estimated lower POM carbon gains with a range
of —1.3Mg C ha7! in the corn on former grassland to 5.7Mg C
ha~! in switchgrass on former grassland (Table S3).

For MAOM, changesin standing carbon stocks over the 0-100cm
depth profile from the beginning to the end of the study period
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FIGURE 2 | The net ecosystem carbon balance (NECB) components of each site and each method. Columns represent each component. The
points and error bars represent the net NECB central estimate and 95% confidence intervals, respectively. Positive values indicate carbon gained by

the ecosystem and negative values indicate carbon lost from the ecosystem.

estimated using the C inventory method ranged from —12.7Mg
C ha™! in the grassland reference site to 4.4Mg C ha™! in the
switchgrass on former cropland (Table S3). The MEMS 2 model
estimated greater MAOM carbon gains with a range of 1.2Mg C
ha~!in the prairie on former grassland to 3.5Mg C ha~! in corn
on former grassland (Table S3).

3.3 | SoilN,0and CH,

Soil gas fluxes derived from in situ measurements were affected
by both the current and previous land use. Soil nitrous oxide
emissions were highest in the sites fertilized with synthetic N.
The corn site on former grassland had the highest emissions
(0.67g N,O m~2 year™, s.e. 0.06, Figure S1), while the corn site
on former cropland had lower emissions (0.44g N,O m~ year™,
s.e. 0.05). For the switchgrass grown on former grassland, N,O
emissions were lower at (0.17g N,O m™ year™, s.e. 0.04), while
the switchgrass grown on former cropland emitted N,O at a
similar rate (0.28g N,0 m™ year™!, s.e. 0.05). Prairie on former
grassland shared the lowest N,O emissions (0.12g N,0 m™
year}, s.e. 0.04), along with prairie on former cropland (0.14g
N,0 m~2year™, s.e. 0.04) and the grassland reference site (0.12g
N,0 m~2 year™!, s.e. 0.04). Soil methane oxidation rates were
highest at the prairie and switchgrass on former grassland sites
(=0.14 and —0.11g CH, m~2 year™!, respectively, s.e. <0.03). The
other sites all had similarly low methane oxidation rates ranging
from —0.03 to —0.08g CH, m~? year™* (s.e. <0.03).

3.4 | Albedo

Land use change and land use history altered the albedo of the
land surface changing the outgoing shortwave radiation at the
top of the atmosphere (SW'%). The conversion of grassland to
bioenergy crops increased the land surface albedo while the con-
version of cropland to bioenergy crops reduced it. SW' in the
corn, switchgrass, and prairie grown on the former grassland
changed by 2.3, 3.0, and 2.2Wm~™ (s.e. <0.2), respectively, rel-
ative to the grassland reference site (Figure S2). On the other
hand, SW' in the switchgrass and prairie grown on the former

cropland changed by —1.9 and — 1.3 (s.e. <0.2), respectively, rel-
ative to the corn on former cropland.

3.5 | Radiative Forcing

Each component of the overall radiative forcing budget of each
land use had a substantial effect on the net outcome, apart from
soil methane oxidation, which was relatively minor. The larg-
est component of the radiative forcing budget was the geolog-
ically stored carbon harvested from each site for BECCS. This
component followed patterns of aboveground plant productivity
with the corn on former grassland and cropland having the larg-
est forcing of —56.3 and —45.8fW m™2, respectively (Figure 3;
Tables S1 and S4). Switchgrass grown on former grassland and
cropland had the next largest forcing with —36.0 and —28.1fW
m~2, respectively. The lowest forcing from geologic storage of
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FIGURE 3 | Average instantaneous radiative forcing for each component and method during the 100-year period following the land use change

event. The points and error bars represent the net radiative forcing central estimate and 95% confidence intervals, respectively. Positive values indi-

cate a warming impact and negative values indicate a cooling impact, relative to their baseline scenario, which is set to zero by definition. Note that

only the NECB differs by method.

harvested carbon came from the prairie on former grassland
and cropland (-16.7 and —19.0 fW m~2, respectively).

The radiative forcing from NECB CO,, soil CH,, soil N,0, and al-
bedo each follow the results reported above in their original flux
units. However, the magnitude of each component's contribution
to the overall radiative forcing budget follows a different scalar
(Figure 3; Table S4). We summarize the net radiative forcing es-
timates here for each method and site, noting that the soil CH,,
soil N,0, albedo, farming, and geologic CO, radiative forcings of
each site are shared across each of the three methods (i.e., only the
NECB radiative forcings of each site differ by method).

The corn on former grassland had the largest net negative radia-
tive forcing with the C inventory, eddy covariance method, and
MEMS 2 model methods yielding —50.5, —38.4, and —46.6fW
m~2, respectively (Figure 3; Table S4). The corn on former crop-
land had the next largest net negative radiative forcing with
each method yielding —45.8fW m™2. The switchgrass on for-
mer grassland had the next largest net negative radiative forc-
ing with the C inventory, eddy covariance method, and MEMS
2 model methods yielding —42.5, —39.0, and —38.6fW m~2,
respectively. The switchgrass on former cropland followed,
with the C inventory, eddy covariance method, and MEMS 2
model methods yielding —39.6, —35.3, and —33.5fW m™2, re-
spectively. The prairie on former cropland had the next lowest

net negative radiative forcing with the C inventory, eddy co-
variance method, and MEMS 2 model methods yielding —34.3,
—-30.7, and —26.5fW m~2, respectively. Finally, the prairie on
former grassland had the lowest net negative radiative forcing
with the C inventory, eddy covariance method, and MEMS 2
model methods yielding —23.5, —21.4, and —19.3 fW m~2, re-
spectively. The reference grassland site, being a baseline refer-
ence, had a neutral radiative forcing by definition.

4 | Discussion
4.1 | Net Ecosystem Carbon Balance

Producing biomass for BECCS from corn, switchgrass, and
prairie grown on former grassland and former cropland re-
sulted in net climate change mitigation. However, the method
for estimating NECB impacted the portion of climate mitiga-
tion attributed to in situ CO,. Our NECB results show that the
C inventory method had on average the highest uncertainty
(22.7Mg C ha™! 95% CI), followed by the eddy covariance
method (7.9 Mg C ha™!) and then the MEMS 2 model (4.6 Mg C
ha~!; Table S2). The magnitude of NECB estimates tended to be
largest with the C inventory in comparison to the eddy cova-
riance method and the MEMS 2 model, which had somewhat
more carbon neutral results.
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However, one exception is the NECB for the corn grown on the
former grassland site (US-KM1) where the eddy covariance
tower suggested a change of —31.2Mg C ha~! (95% CI —35.5 to
—26.9Mg C ha~!; Table S2) over the 13-year study period. This
change corresponds to a 52% reduction of the site’s total ecosys-
tem carbon stocks (60.5Mg C ha=!), which is excessive and al-
most certainly in error. Moreover, the tower-based NECB does
not agree with the C inventory or MEMS 2 model at the site,
which suggest a small sink or a small source (3.3 and —1.7Mg C
ha~l, respectively). After careful consideration and much scru-
tiny by our team and the outside experts we solicited, we have
yet to find a satisfactory explanation for this disparity. We are in-
clined to believe that the direction of the suggested change (i.e.,
net loss) is consistent with a change from grassland to cropland.
However, the robust results obtained by our repeated soil and
plant carbon stock measurements, as well as the MEMS 2 model,
give us the confidence to be able to conclude that this tower's
estimate of such a large and rapid carbon loss is significantly
biased. That is, the 95% confidence intervals of the NECB at this
site from the other two methods are not close to overlapping
with the EC tower's.

Changes in POM, MAOM, roots, and surface litter each contrib-
uted to the overall NECB. While they differed in magnitude,
both the C inventory and the MEMS 2 model agree that, on
average, NECB changes were attributed most to POM (7.9 and
3.0Mg C ha™1, respectively), then MAOM (5.2 and 2.3Mg C ha™!,
respectively), followed by roots (2.1 and 1.1Mg C ha™!, respec-
tively), and finally surface litter (0.4 and 1.9Mg C ha™!, respec-
tively), though that order differed by site (Table S3). Roots were
more of a contributor to carbon sequestration in the perennials
as compared to the corn and reference grassland where soil C
differences dominated.

If well designed and calibrated, process-based ecosystem mod-
els are an attractive option for estimating the NECB of BECCS
landscapes as they are straightforward and inexpensive to
set up and run quickly (although their development, calibra-
tion, and validation can be quite involved; Cheng et al. 2024,
Muri 2018). On the other hand, in situ plant and soil sampling
are labor intensive, expensive to carry out, and can require
waiting years for ecological changes to take place (Chatterjee
et al. 2009). Eddy covariance towers similarly require waiting
for ecological changes to take place and are also expensive
but, they can be relatively less labor intensive than plant and
soil sampling (Baldocchi 2014). The ideal measurement tech-
nique will vary given the set of research sites, questions, and
resources (Smith et al. 2020).

4.2 | SoilN,O

Changes in soil N,O emissions tracked differences in the syn-
thetic nitrogen fertilization management regime. Converting
highly fertilized cropland to lower or zero nitrogen fertilization
rates in switchgrass and prairie, resulted in negative radiative
forcing impacts of —3.5 and —4.0fW m™2, respectively. On the
other hand, converting unfertilized grasslands to corn, switch-
grass, and prairie (high, low, and zero nitrogen fertilization
rates) corresponded to N, O related radiative forcings of 7.3, 2.1,
and 0.0fW m™2, respectively. Other studies of N,O emissions

following changes in land use have shown that nitrogen fertil-
ization is a key determinant of emission strength and timing
(McDaniel et al. 2019).

4.3 | Albedo

Changes to land surface albedo followed changes in both inher-
ent canopy reflectance properties as well as the height of standing
biomass during periods of snow cover. During periods without
snow cover, switchgrass and prairie were relatively brighter
than the reference grassland site but were relatively darker than
the continuous corn on the former cropland. Planting corn on
former grassland also yielded a more reflective land surface
during periods without snow cover. When snow was present,
the lower stature vegetation of harvested fields allowed for more
unobstructed reflectance of shortwave radiation from the snow
surface. These phenomena led us to conclude that establish-
ing perennial bioenergy crops on former cropland resulted in
positive radiative forcing due to albedo change (i.e., warming;
2.3-3.6fW m~2; Table S4) while establishing bioenergy crops on
former grassland resulted in negative radiative forcing due to al-
bedo change (i.e., cooling; —4.2 to —5.8 fW m~2; Table S4). Other
studies of land use change and land surface albedo have found
that both the inherent reflectivity of the vegetation as well as the
covering of snow in the high latitudes are important drivers of
land surface albedo changes (Abraha et al. 2021; Cai et al. 2016;
Lei, Chen, and Robertson 2023).

4.4 | Bioenergy With Carbon Capture and Storage

More productive lands can support greater storage of atmo-
spheric carbon in geologic formations, the main climate ben-
efit of BECCS (Garcia-Freites, Gough, and Roder 2021; Rosa,
Sanchez, and Mazzotti 2021). The corn provided more biomass
for BECCS than switchgrass or prairie, resulting in more neg-
ative radiative forcing (i.e., cooling). Furthermore, the former
grassland sites had higher productivity than the former crop-
land sites, except when planted to mixed prairie, where both
sites were equally productive (Table S1). From the perspective
of climate mitigation, the reference grassland is penalized be-
cause it is not harvested for BECCS. The potential onsite carbon
sequestration of establishing an unmanaged grassland can be
inferred here from the differences in initial ecosystem carbon
stocks with the grassland and cropland sites. While this differ-
ence is substantial, the carbon storage potential is limited and
saturates over time, creating an opportunity cost, that can grow
indefinitely, of not cultivating crops and storing the carbon in
geologic formations with BECCS. This suggests that, from a
climate perspective, enrolling former cropland in conservation
grassland programs could provide mitigation, but utilizing for-
mer cropland for BECCS can provide even more climate mitiga-
tion (Robertson et al. 2017; Stoy et al. 2018).

4.5 | Radiative Forcing
BECCS commands its popularity as an idea from the substantial

carbon removal potential it can deliver and our study is no excep-
tion in showing these potentials (Fajardy and Mac Dowell 2017;
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Fridahl and Lehtveer 2018). Each of the bioenergy crops we
examined provided substantial climate mitigation whether
they were grown on former cropland or former grassland.
Switchgrass and prairie established on former cropland resulted
in net negative radiative forcing —26.5 to —39.6fW m=2, while
establishing the same perennials on former grassland resulted
in a similar —19.3 to —42.5fW m~2. The two corn sites had the
greatest climate mitigation potential of —45.8 to —50.5fW m™2.

Geologic storage of harvested biomass carbon was, on average,
the largest component of the radiative forcing budget (33.6fW
m~2), followed by on site NECB (1.1-4.4fW m™2), albedo (3.4fW
m~2), N,O (2.8fW m™2), farming-related fossil fuels (2.6fW m~2)
and CH, (0.1fW m™% Table S4). Previous work has shown the
differences in energy return and climate impact for annual vs.
perennial bioenergy crops can stem from the amount of re-
sources required for maintaining the fields (e.g., diesel fuel for
machinery; Bennett et al. 2021; Felten et al, 2013). We also found
this to be a substantial contributor to the net climate impact of
each scenario as the fossil fuels embedded in nitrogen fertilizer
and farming activities considered here had climate impacts on
roughly the same order as the NECB, N,O emissions, and al-
bedo. However, the main climate impact of BECCS (i.e., storing
atmospheric carbon in geological formations) outweighed these
differences as the crops with the largest change in fossil fuel
use (e.g., corn planted on former grassland) were also the most
productive, and the extra stored carbon compensated for this in
terms of climate mitigation.

For former cropland, newly sequestered carbon by the perenni-
als and reductions in soil N,O emissions contributed to climate
mitigation potentials. However, a less reflective land surface off-
set some of this mitigation (Figure 3). Due to the difference in
previous land use, the albedo changes on the former grassland
had the opposite effect (i.e., net negative radiative forcing). This
finding suggests that the location of new BECCS sites and its
current albedo are important considerations for climate mitiga-
tion (Baik et al. 2018).

4.6 | Broader Impacts

The gap between the amount of land needed to achieve mean-
ingful climate mitigation with BECCS and the amount of land
currently dedicated to it is nearly as large as it was when the idea
was first proposed (Guo, Song, and Buhain 2015; Ma et al. 2022).
The current amount of plant biomass carbon being stored in
dedicated geologic formations is 0.32Tg C year! or 0.008% of
the proposed 4000 Tg C year~! needed by some scenarios in 2100
(Daniels 2023; Roe et al. 2019). Resistance to adoption can be
attributed to an array of complex social and ecological factors
(Donnison et al. 2020).

A key aim of BECCS is to provide climate mitigation while mini-
mizing impacts to nature and society (Quader and Ahmed 2017).
Concerns about BECCS conflicting with food production have
led to the focus on so-called ‘marginal lands’ (Smith et al. 2019).
Our study found that intensively managing corn on productive
lands provided the greatest climate mitigation potential due to
its high productivity, demonstrating a tradeoff in maximizing
climate mitigation and food production. That said, we found

that less productive, former cropland planted to less productive
perennials also provided substantial climate benefits and re-
quired less intensive management. Furthermore, utilizing less
productive former cropland avoids the conversion of already
established natural areas and preserves the biodiversity and
ecosystem services that those lands currently provide (Grass
et al. 2019). However, considerable stretches of grassland are
planted to monocultures of introduced species, suggesting that
replacing those monocultures with switchgrass or prairie and
harvesting the biomass for BECCS could provide similar or
greater biodiversity and ecosystem services while simultane-
ously increasing the climate mitigation that those lands can pro-
vide (Bardgett et al. 2021; Dixon et al. 2014; Gerstner et al. 2014).
Although, this would come at a cost to food production, among
other concerns. While the debate over how to best use land is
ongoing, our study enriches the discussion by providing infor-
mation to land managers and decision makers about how the
climate impacts of BECCS can factor into the tradeoffs involved
in balancing other social and environmental goals.
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