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A B S T R A C T

Physics-based simulations are essential for designing autonomous construction equipment, but preparing models 
is time-consuming, requiring the integration of mechanical and geometric data. Current automatic modeling 
methods for modular robots are inadequate for construction equipment. This paper explores automating the 
modeling process by integrating mechanical data into 3D computer-aided design (CAD) models. A template li
brary is developed with hierarchy and joint templates specific for equipment. During model generation, 
appropriate templates are selected based on the equipment type. Unspecified joint template data is extracted 
from technical specifications using a large language model (LLM). The 3D CAD model is then converted into a 
Universal Scene Description (USD) model. Users can adjust the part names and hierarchy within the USD model 
to align with the hierarchy template, and joint data is automatically integrated, resulting in a simulation-ready 
model. This method reduces modeling time by over 87 % compared to manual methods, while maintaining 
accuracy.

1. Introduction

Physics-based simulations are essential for the design and advance
ment of autonomous construction equipment, such as automated wheel 
loaders and trucks [1]. These simulations provide an accelerated and 
safe means to train, validate, and test control algorithms and prototype 
designs of autonomous construction equipment before real-world 
implementation [1,2]. Additionaly, physics-based simulations can 
swiftly generate extensive training data that are necessary for leveraging 
deep learning (DL) based control algorithms for autonomous construc
tion equipment [3]. This is particularly valuable in scenarios where real- 
world data acquisition is challenging. Physics-based simulations are also 
increasingly used to apply and refine reinforcement learning (RL) al
gorithms, thereby enhancing the operational intelligence of autonomous 
construction equipment [4,5].

Despite their advantages, a significant challenge in utilizing physics- 
based simulations lies in the preparation and generation of construction 
equipment simulation models that accurately represent the equipment's 
kinematics. This process, known as physics-based modeling, involves 
creating virtual models that faithfully replicate the physical properties 
and behaviors of machinery [2]. In this article, we focus specifically on 

equipment modeling, excluding environment modeling and in
teractions. Realistic simulations require integrating complex data—such 
as equipment joints, drives, and collision meshes—into CAD models [2]. 
This data integration is crucial because it ensures that the simulated 
equipment behaves in a manner consistent with its physical counterpart. 
Without this detailed modeling, there is a risk of a simulation-to-reality 
gap, where algorithms and designs validated in simulations may fail 
when applied in real-world scenarios [6]. Although simulation platforms 
such as Unity [7], Gazebo [8], and Isaac Sim [9] provide environments 
for model creation, the physics-based modeling process remains time- 
consuming and requires modeling expertise [1,10]. Although engi
neers can make parameter adjustments on a similar mechanical model, 
this method is still limited by the availability of similar models and the 
need for external CAD software for modifications [11,12].

Some studies have proposed automated physics-based modeling 
methods for modular robots. Modular robots, composed of standardized 
modules, can be configured in various ways to adapt to different tasks or 
environments [13]. Jace et al. [14] presented an automated approach to 
model the kinematics of modular robots based on module data and their 
arrangements. Maddalena et al. [10,14] proposed an algorithm that 
processes Unified Robotics Description Format (URDF) files of 
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individual modules and their desired arrangement to generate the final 
URDF of the assembled robot. These methods still require manual 
configuration of modeling data, such as joints and drives, for each 
module. Although such methods [10,14] are feasible for modular robots 
with a limited number of reusable modules, they become significantly 
time-consuming when applied to construction equipment modeling. 
This is due to the greater diversity of construction equipment compo
nents and the limited reusability of these components, making the 
process comparable to manual modeling [15–17].

This paper introduces an automated physics-based modeling method 
through data fusion to streamline the creation of construction equip
ment models for physics-based simulation. Inputs to this method include 
the construction equipment type, its 3D CAD model and technical 
specifications. Initially, during the template preparation stage, a tem
plate library containing hierarchy templates and joint templates for each 
type of construction equipment was prepared. During the simulation 
model generation stage, the corresponding hierarchy and joint tem
plates are selected from the template library based on the equipment 
type being modeled by the user. Subsequently, a large language model 
(LLM) extracts unspecified data in the joint template from the equip
ment's technical specifications and populates the joint template with this 
data. Following this, the construction equipment's 3D CAD model is 
converted into a Universal Scene Description (USD) model to facilitate 
data fusion. Finally, users need only to adjust the names and hierarchy of 
parts in the USD model to align with the hierarchy template. The data 
from the joint template can then be automatically integrated into the 
USD model, resulting in a simulation-ready model.

To demonstrate the effectiveness of our method, we created a 
simulation model of a wheel loader (Caterpillar 982 m) and an excavator 
using both the proposed method and a manual modeling method. 
Firstly, we validated the accuracy of our method by comparing the 
specifications of the wheel loader model created by our method and the 
manual modeling method. Both methods exhibited identical measured 
specifications. Moreover, the specifications measured in the created 
model closely matched those of the actual wheel loader. Additionally, 
we compared the time required to build the wheel loader model and the 
excavator for each method. The results indicate that our method reduces 
modeling time by 87 % for the wheel loader and 91 % for the excavator 
compared to the manual modeling method. These findings suggest that 
our method can greatly enhance modeling efficiency without compro
mising accuracy, thereby promoting the application of physics-based 
simulations in the development of autonomous construction equipment.

2. Related works

2.1. Physics-based modeling and simulation platforms

The evolution of simulation platforms such as Unity, Unreal Engine, 
Gazebo, Isaac Sim, and Webots has significantly impacted the field of 
robotics. These platforms offer diverse functionalities and environments 
for robot modeling, each with unique characteristics that distinguish 
them from one another [18].

Unity, primarily known for its widespread use in game development, 
has emerged as a versatile platform for robot simulation. Its user- 
friendly interface and robust physics engine make it an attractive 
choice for simulating complex robotic systems [19]. Unity's real-time 3D 
development capabilities enable the creation of detailed and dynamic 
environments, which are essential for testing the interaction of robots 
with their surroundings. The platform supports a wide range of robot 
models, from simple wheeled robots to complex humanoid robots, 
allowing for extensive experimentation and research in robotics [18].

Unreal Engine stands out for its high-fidelity graphics and realistic 
simulation environments [20]. This platform is particularly favored for 
applications requiring photorealistic rendering, such as autonomous 
vehicle testing [21]. Unreal Engine's advanced lighting and shading 
capabilities enable the creation of highly immersive simulation 

scenarios. It is adept at simulating sophisticated robot models, including 
drones and autonomous vehicles, providing a realistic platform for 
testing sensors and navigation algorithms [22].

Gazebo, an open-source simulation platform, is renowned for its 
strong community support and extensive library of robot models and 
environments [23]. Its ability to simulate both indoor and outdoor en
vironments with various physics engines makes it a versatile tool for 
robotics research. Gazebo is particularly popular for simulating multi- 
robot systems, such as swarm robots, and has been instrumental in 
numerous robotics competitions and research projects [24].

Webots is a user-friendly, cross-platform simulation software widely 
used in education and research. Its ease of use and comprehensive 
documentation make it accessible to both beginners and experienced 
users [25]. Webots supports a broad range of robot models, from simple 
mobile robots to more advanced humanoid robots, making it a versatile 
tool for various robotic applications.

Isaac Sim, developed by NVIDIA, is tailored for robotics applications 
involving artificial intelligence (AI). Its integration with NVIDIA's GPU 
technology enables high-performance simulations, crucial for training 
and testing AI algorithms [26]. Isaac Sim is adept at simulating complex 
robotic systems, such as robotic arms and mobile robots, and is partic
ularly beneficial for scenarios involving DL and sensor processing.

2.2. Automatic physics-based modeling

Despite these available physics-based modeling and simulation 
platforms, manually creating models in simulation platforms is still 
time-consuming and requires modeling expertise [10]. Some studies 
have proposed the use of automatic modeling methods to reduce manual 
modeling effort, and have investigated the automatic modeling process 
in the context of modular robots. Modular robots, composed of reuseable 
modules, can be configured in various ways to adapt to different tasks or 
environments [13]. The typical process of automatic modeling for 
modular robots involves two steps. First, the kinematics of each indi
vidual module are configured manually in advance. Second, the modules 
are assembled automatically according to the desired arrangement, 
resulting in the generation of a URDF file that represents the assembled 
robot. For example, Nainer et al. [14] introduced an automated 
approach for modeling robot kinematics, requiring only parameter data 
of the individual modules such as joints, drives, etc. and their arrange
ments. Maddalena et al. [10] proposed an algorithm that takes as input 
the URDF files of the single modules with their desired arrangement and 
provides the final URDF file of the assembled robot as the output.

However, these methods have shortcomings that limit their use for 
modeling construction equipment. They require manual configuration 
of joints and additional data within the modeling software for the in
dividual modules, obligating users to acquire proficiency in the software 
itself. Furthermore, for construction equipment lacking reusable mod
ules, these methods offer no advantage over direct manual modeling, 
thereby confining their applicability primarily to modular robotics.

2.3. Physics-based modeling of construction equipment

In the existing literature on physics-based modeling of construction 
equipment, to the best of our knowledge, no automated physics-based 
modeling method has been proposed to date. Research in this area has 
predominantly focused on the application of simulation models, which 
are primarily employed for training control algorithms [27] and 
generating synthetic data [28,29].

Physics-based modeling has been widely used in autonomous con
struction equipment control algorithms training and testing. To 
demonstrate control of large robots to perform construction tasks, Lei 
et al. [30] created a construction robot hand model in Isaac Sim, and 
trained it via reinforcement and imitation learning to conduct opera
tions with six types of construction tools, such as power drill, flat 
screwdriver, and adjustable wrench. Similarly, Sungjin et al. [31] 
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employed Gazebo for dynamic modeling of spraying robots, evaluating 
their performance in construction tasks like indoor wall painting. Jaco 
et al. [32] built a wheeled robot model using Gazebo and then trained a 
map corner-based navigation model in a virtual world. Lofgren et al. 
[28] advanced this field by simulating an underground loader in Unity, 
training a deep reinforcement learning controller that autonomously 
adapts to varying terrains and soil conditions. Azulay and Shapiro [27] 
also used Gazebo for wheel loader modeling, achieving a controller 
adept at complex earthmoving tasks, and showcasing the potential for 
automation in construction.

Beyond control algorithms, physics-based simulation has also been 
instrumental in generating synthetic data [29,33]. Wilfredo et al. [34] 
used Unity to simulate excavator postures, creating a dataset that by
passes the need for time-intensive manual annotation. Jia et al. [35] 
established a drone model in Unity for capturing simulated dam images, 
facilitating the training of dam defect detection model.

3. Methodology

In this paper, we present a procedure for automatic physics-based 
modeling of construction equipment through data fusion, as illustrated 
in Fig. 1. This method uses joint templates, hierarchy templates, and 3D 
CAD model to represent the kinematics of the machinery. The 3D CAD 
model provides the link information of every component (specific di
mensions). The template files document the joint information (e.g., 
names of the joints, the connected parts, the limits of the motion, the 
type of drive, and the motion dependency between components). The 
method takes as input the equipment type, its 3D CAD model and 

technical specifications, and produces a simulation-ready model. The 
procedure consists of five steps: data template preparation, data tem
plate selection, extraction of undetermined data, model conversion, and 
data fusion. First, we prepared a template library in advance, which 
contains hierarchy templates and joint templates for each type of con
struction equipment. Second, the corresponding hierarchy and joint 
templates are selected from the template library based on the equipment 
type input by the user. Third, during data extraction, any undetermined 
data in the joint template is retrieved from the technical specifications 
using a large language model (LLM) and incorporated into the template. 
Fourth, the 3D CAD model is converted into a USD model to facilitate 
data fusion. Finally, in the data fusion step, the data from the hierarchy 
and joint templates are integrated into the USD, resulting in a 
simulation-ready model.

3.1. Data template preparation and selection

When constructing a simulation model, certain data for each kind of 
construction equipment can be pre-determined based on the equipment 
part diagram and its working priciple, such as the parts comprising the 
equipment and the relationships between the movements of these parts. 
To record this data, reusable templates are prepared for each kind of 
equipment prior to modeling. Specifically, two templates are created for 
each kind of equipment: a hierarchy template and a joint template. For 
existing construction equipment, these templates are pre-configured and 
stored in a library for future use. In the case of newly designed con
struction equipment, users can modify the templates of similar existing 
equipment to accommodate the new designs. For example, if a novel 

Fig. 1. Overview of the automatic physics-based modeling procedure.
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excavator with a unique actuation mechanism is introduced, the user 
would adjust the joint and hierarchy template to reflect the new actu
ation ends and structural differences. This flexibility ensures that the 
proposed methodology can support the development of innovative 
equipment designs, not just parameterization of existing structures. 
When generating a simulation model using the proposed method, the 
corresponding hierarchy and joint template is selected based on the 
equipment type being modeled by the user.

3.1.1. Hierarchy template preparation
The hierarchy template includes the parts name and their relation

ships. The relationship among parts determines which parts can move 
together as a group, essential for accurately modeling their interactions. 
This relationship can be described as a parent-child relationship. When 
the parent part moves, all of its child parts should move with it. To 
represent the parent-child relationship between parts, we have prepared 
a range of equipment hierarchy templates tailored to various construc
tion equipment, such as wheel loaders, trucks, forklifts, and more. These 
templates are formatted as tree diagrams.

These tree diagrams can aid users in understanding the hierarchical 

structure and dependencies within the equipment. For example, Fig. 2
shows a partial illustration of the hierarchical relationship of parts 
within a wheel loader. The parent part, “wheel loader,” is subdivided 
into several child parts, including the “rear body,” “rear wheels,” and 
“front body”. Additionally, the “front body” is further decomposed into 
child parts such as the “front frame” and “front wheels,” among others.

3.1.2. Joint template preparation
The joint template includes the parameters for every joint between 

the parts of the equipment. In simulations, a joint refers to a functional 
connection between rigid bodies that facilitates a specific range of 
relative motion between them. This motion is typically enabled by a 
drive mechanism. For instance, the rotational movement of car wheels 
around an axle is attributed to revolute joints. If a wheel is designated as 
powered, a corresponding drive will be added to actuate it. Otherwise, 
no drive needs to be added. In our procedure, joints and drives are 
implemented in the PhysX extensions library and five kinds of joints are 
used to simulate connections between equipment parts [36]. 

• Fixed joint: locks the orientations and origins rigidly together.

Fig. 2. Hierarchy of a wheel loader.
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• Distance joint: keeps the origins within a certain distance range.
• Spherical joint: keeps the origins together but allows the orientations 

to vary freely.
• Revolute joint: keeps the origins and X-axes of the frames together 

and allows free rotation around this common axis.
• Prismatic joint: keeps the orientations identical, but allows the origin 

of each frame to slide freely along the common X-axis.

Two types of drives are used to actuate joints [36]. 

• Linear drive: is used to control the translational movement of a joint 
along a specific axis. It is typically used for prismatic joints, which 
allow linear movement.

• Angular drive: is used to control the rotational movement of a joint 
around a specific axis. It is typically used for revolute joints, which 
allow rotational movement.

To represent joint parameters in construction equipment, our 
method has prepared joint templates designed for various construction 
equipment in advance. These templates are created based on the 
equipment part diagram and its working principles, and are formatted in 
JSON. These templates contain essential parameters for each joint, 
including the joint's name, type (e.g., fixed joint, revolute joint, etc.), the 
parts it connects, joint limits, and drive type. It is noteworthy that the 
names of the parts are the same as the names of the parts in the hierarchy 

template. Given that certain data, such as joint limits, vary significantly 
between different models of the same equipment (for instance, a Cat 
982 M wheel loader and a Cat 950 M wheel loader), these data cannot be 
determined prior to modeling. Consequently, these data are not speci
fied in the template. Fig. A1 provides an example of a joint template for a 
wheel loader. The joint mentioned in line 15, “steer
ing_cylinder_barrel_l2steering_piston_rod_l_joint,” is a “Prismatic” joint 
connecting the “steering_cylinder_barrel_l” and “steering_piston_rod_l” 
components. The lower limit of this joint is set to “0,” but the upper limit 
is unknown and requires referencing the “Steering Cylinder Stroke” from 
the technical specifications. This joint is equipped with a “Linear Drive.”

In the simulation model generation stage, the corresponding hier
archy and joint templates are selected from the template library based 
on the equipment type being modeled by the user. For the joint template, 
some data fields may be unspecified. The names of these unspecified 
data fields are passed to the undetermined data extraction step to be 
identified in the equipment's technical specifications.

3.2. Undetermined data extraction

To identify the data left unspecified in the joint template, a LLM is 
utilized to extract the data from the equipment technical specifications 
[37] as shown in Fig. 3. This can avoid the effort in manually retrieving 
this data from lengthy technical specifications. In the data extraction 
process, the first step is to obtain the equipment's technical 

Fig. 3. Flowchart describing the method of extracting structured data using a LLM.
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specifications in PDF format and perform preprocessing to split the text 
into separate sentences according to the general rules of sentence 
termination. This is the basis for the following steps.

The second step splits the sentences into two categories: those with 
single values and those with multiple values. The sentences containing a 
singular value are inherently much simpler, given the straightforward 
relationship among the property name, its value, and unit. In this case, 
these data tend to be extracted with high precision by the LLM. 
Conversely, the extraction of data from sentences with multiple values is 
more intricate, necessitating further analysis to determine the in
terrelationships among values, names, and units to accurately pair them. 
Consequently, this step aims to ascertain the presence of singular or 
multiple data points within a passage. The determination of the data 
complexity guides the subsequent process along one of two divergent 
pathways.

Based on the data complexity determined in the second step, 
different strategies are used to extract data from the paragraphs in the 
fifth step. For sentences containing a single value, inquiries regarding 
the value and its unit are posed separately. An option to negate these 
inquiries is presented to diminish the probability of LLM fabricating 
responses. If a negative answer is given to any of these queries, the 
respective sentence is subsequently discarded and exempted from data 
extraction. Conversely, for sentences with multiple values, LLM is 
requested to summarize the data in tabular format, which facilitates 
orderly data management. Nonetheless, this approach bears the risk of 
engendering inaccurate data, even with the provision for negative re
sponses. Therefore, the procedure double-checks that the data in the 
obtained table is indeed contained in the sentence. Again, we explicitly 
allow negative answers in case the extracted tables may contain some 
inaccuracies. Similarly, as before, if the answer to any prompt is nega
tive, we discard that sentence. In the final step, all the extracted data are 
integrated into the corresponding positions in the joint template to 
obtain the updated joint template. If certain data cannot be found in the 
technical specifications provided by the user, they will be advised to 
seek this information through alternative methods. For example, if the 
limit for “steering_rod_l” in the joint template of wheel loader is un
available in the technical specifications, users will be encouraged to 
consult with engineers or search online for the necessary details.

3.3. Model conversion

To facilitate the fusion of data requisite for the simulation, the model 
conversion step involves converting the 3D CAD model of the con
struction equipment into a USD format. USD is an open-source 3D scene 
description file format developed by Pixar [38]. It can be used for 3D 
content creation and interchange among different tools such as Isaac Sim 
[9] and Unity [39–41]. The CAD Convertor [42] is used to convert the 
CAD model into the USD format. This convertor supports multiple CAD 
file formats, such as DWG (for Autodesk), RVT (for Revit) and STL.

There are three reasons for converting the CAD model into the USD 
format. Firstly, USD's dual support for both intricate machinery 
modeling and complex environmental constructs [43] facilitates the 
import of construction equipment models into its operating environ
ment. This dual capability ensures that both the equipment and the 
surrounding environment are accurately represented, thereby providing 
a comprehensive simulation framework. Secondly, USD features a Py
thon Application Programming Interface (API), which facilitates the 
customization of USD models through Python scripting [44]. This 
capability lays the foundation for the subsequent automatic integration 
of data into the USD model. Furthermore, the compatibility of USD with 
a wide array of simulation platforms, including Unity [45], Unreal [21], 
and Isaac Sim [46], underscores its versatility and utility in diverse 
simulation scenarios.

3.4. Data fusion

In the data fusion process, the first step is to fuse data from the 
selected hierarchy template, which involves setting up relationships 
between parts in the USD model. In practice, users are required to 
rename the equipment parts and adjust their parent-child relationships 
within the converted USD model to align with the predefined hierarchy 
template. Ensuring that the part names and their relationships accu
rately match the templates can facilitate the following automated joint 
data fusion process.

The second step is to fuse the data from the updated joint template. 
To automatically create joints in the USD model, a Python script was 
prepared. This script traverses each joint as specified in the updated 
joint template. It reads the joint's name, the parts it connects, the joint 
limits, and the drive type. Subsequently, the corresponding parts in the 
USD model are identified based on the joint names specified in the joint 
template. Once the corresponding parts are located within the USD 
model, the joints of the specified type are created. Finally, the joint 
limits and drive types are written into the USD model, ensuring a precise 
representation of the equipment's mechanical structure. This automated 
process ensures that each joint is accurately integrated into the USD 
model, reflecting the specific mechanical interactions and constraints as 
outlined in the technical specifications.

4. Implementation and results

To evaluate the proposed procedure, a wheel loader was modeled 
using both the manual approach and the proposed procedure. We 
compared the specifications of the real wheel loader with those of the 
created models to assess the accuracy of the model generated by the 
proposed procedure and the manual approach. Additionally, we 
compared the modeling time required by our method with that of the 
manual approach to evaluate the efficiency of our method.

4.1. Implementation

The experimental environment used in this study includes a server 
with an AMD Ryzen 95,950× CPU running Ubuntu 20.04 system, NVI
DIA GeForce RTX 3090Ti GPU with 24G memory of a single graphics 
card. The modeling and simulation platform is Isaac Sim 4.0.0.

The construction equipment modeled for this experiment is a 
Caterpillar 982 M wheel loader and a Caterpillar 390FL excavator. They 
were chosen as test models because of their widespread use in the 
construction industry and the availability of their 3D CAD model file 
online. Its technical specifications are downloaded from the Internet. 
Their 3D CAD model is downloaded from BlenderKit [47] and GrabCAD 
[48], as shown in Fig. 4. This wheel loader model is engineered with four 
hydraulic cylinders responsible for actuating the movement of its boom 
and bucket. Additionally, it features two hydraulic cylinders that facil
itate the turn and two actuated rear wheels that empower the wheel 
loader to advance and retreat. The excavator model features four hy
draulic cylinders that control the movement of its boom, arm, and 
bucket. It also includes two drive sprockets, enabling the excavator to 
move forward, backward, and turn. Table 1 presents the statistics for 
joints and drives in two types of construction equipment: a wheel loader 
and an excavator. The table indicates that the wheel loader is equipped 
with 14 revolute joints, 4 prismatic joints, 1 angular drive, and 4 linear 
drives. In contrast, the excavator has a significantly higher number of 
revolute joints (138) and angular drives (3), while maintaining the same 
number of prismatic joints (4) and linear drives (4) as the wheel loader.

In the hierarchy template preparation process, we obtained the 
motion dependencies between the machinery parts by analyzing the 
wheel loader and excavator parts diagram [15,16,49,50] and its oper
ation video [51–53]. The hierarchy template was formatted in JSON. 
This JSON file uses a nested dictionary structure to record the rela
tionship between various parts. Each dictionary contains two keys, 
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“rigid body” and “child”. Among them, “rigid body” refers to the rigid 
body attribute of the part, and its value includes “Y” which is a rigid 
body, and “N” which is not a rigid body. The term “child” refers to which 
parts will move with the parent part, and its value enumerates the name 
of the part that moves with it.

In the joint template preparation process, we analyzed the wheel 
loader and excavator operation video [51–53] to determine the types of 
motion between the parts at the wheel loader and excavator joints, the 
parts connected by the joints, and the drive types at the joints. These 
joint data were recorded in the joint template in JSON format. The JSON 
file uses a dictionary structure to record each joint's parameters, con
taining four keys: .“joint type”, “body”, “limit”, and “drive”. The “joint 
type” is a string with values “revolute” or “prismatic,” representing 
revolute joint and prismatic joint, respectively. The value of “body” is a 
list, with each element representing the name of a part connected by 
each joint. The value of “limit” is a list containing two elements, the 
lower and upper limit of the joint movement constraints. Since these 
constraints can vary between different models of the same equipment, 
they are specified as constraint limit names in the template (e.g., 
“Steering Cylinder Stroke” to refer to the constraint controlling the 
turning cylinder) to maintain applicability across various models. The 
value of “drive” is a list, with an element representing the drive type, 
which can be “linear drive”, “angular drive”, or an empty string indi
cating no drive.

For model conversion, the CAD Convertor [42] was used to convert 
the CAD model of wheel loader into an USD file. In the conversion 
process, the CAD model was first imported through the ‘File - > Import’ 
option in Isaac Sim. Import options were set to their default settings. 
Once import options configured, the converted USD file was imported 
directly into Isaac Sim.

During the data extraction process, the GPT-4.0 API [54] was used to 
extract undetermined data in the joint template from the technical 
specifications, as shown in step 2 in Fig. 1. The extracted data was then 
added to the joint template and the updated joint template was ob
tained. A video demonstration of utilizing LLM to extract undetermined 
data in the wheel loader joint template from the technical specifications 
can be found at this link: https://youtu.be/Lb5men6Mj1g. Then the 
hierarchy data from the hierarchy template was first fused into the USD 
model. This was accomplished by users, who rename the equipment 

parts and adjust their parent-child relationships within the converted 
USD model to align with the predefined hierarchy template. After fusing 
the hierarchy data, the joints data from the updated joint template was 
automatically fused into the USD model by running the Python script in 
the “Script Editor” in Isaac Sim. Finally, the model ready for simulation 
was obtained.

4.2. Results and discussion

4.2.1. Modeling accuracy
Upon integrating the USD model of the wheel loader and excavator 

with the necessary data for physics-based modeling, we successfully 
generated a wheel loader and a excavator model ready for simulation. 
To qualitatively evaluate the generated models, we tested a range of 
motion functions pertinent to the wheel loader and excavator. The test 
results can be found at these links (https://youtu.be/jq4DPszxn0E, 
https://youtu.be/TFOzm_VohHY). The evaluation demonstrated that 
our model accurately replicates all the essential motion functions of the 
machinerys, confirming its functionality for simulation purposes.

To quantitatively evaluate the models created using both the manual 
modeling approach and the proposed procedure, we compared several 
specifications of the created models with those of a real wheel loader, as 
shown in Fig. 5 and Fig. 6. The model created using the proposed pro
cedure exhibited the same measured specifications as the model built 
using manual method, demonstrating that our procedure achieves the 
same accuracy as manual modeling. Additionally, the specifications 
measured in the created model closely matched those of the actual wheel 
loader and excavator. This consistency indicates that the model gener
ated by the proposed method accurately reflects the kinematics of the 
actual wheel loader and excavator, thereby confirming the effectiveness 
and accuracy of our modeling approach.

4.2.2. Modeling time
To determine the efficiency of our procedure, we compared the 

modeling time required by our procedure and the manual method. When 
comparing the running time, we did not include the 3D CAD model 
preparing time for both the proposed method and the manual modeling 
method. Additionally, the time spent learning the software was also not 
included. We then recorded the time it took the modeler to manually 
model the wheel loader and excavator, which was 23 h and . Finally, the 
time required by the modeler to model the wheel loader and excavator 
using our proposed procedure was recorded.

Table 2 compares the time required to model a wheel loader and an 
excavator using a manual method versus the proposed method. The 
manual process, which includes checking the mechanical operation 
principle, technical specifications, and the actual modeling, took 23 h 
for the wheel loader and 55.5 h for the excavator. In contrast, the pro
posed method drastically reduces the time required. Data extraction 

Fig. 4. 3D CAD model of Caterpillar 982 M wheel loader and Caterpillar 390FL excavator.

Table 1 
Joints and drives statics.

Joint/drive type Wheel loader Excavator

Revolute joint 14 138
Prismatic joint 4 4
Angular drive 1 3
Linear drive 4 4
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Fig. 5. Comparison of specification values and corresponding values from the created model for Caterpillar 982 M wheel loader.

Fig. 6. Comparison of specification values and corresponding values from the created model for Caterpillar 390FL excavator.
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took only 6 s for the wheel loader and 13 s for the excavator, while data 
fusion took 3 h and 5 h, respectively. For both the wheel loader and the 
excavator, nearly all of the data fusion time was spent adjusting the USD 
model to align with the hierarchy template, with the automated 
modeling program itself running in under 7 s for the wheel loader and 
under 10 s for the excavator. Overall, the total time using the automated 
method is significantly less, at 3 h 6 s for the wheel loader and 5 h 13 s 
for the excavator, clearly demonstrating the efficiency of the proposed 
method compared to the manual approach.

The results of our study demonstrate significant advancements in the 
efficiency of physics-based modeling for construction equipment. By 
automating the model creation process, we achieved an 87 % reduction 
in time for the wheel loader and a 91 % reduction for the excavator 
compared to manual methods, all without compromising accuracy. This 
efficiency enables more rapid prototyping and testing of new equipment 
designs and control algorithms, thereby accelerating the development 
process. Moreover, the high fidelity of the models generated by our 
method ensures that simulations closely mimic real-world scenarios, 
making them a reliable tool for operator training and safety assessments. 
In practical terms, this means that construction companies can use these 
simulations not only to enhance the design and functionality of new 
equipment but also to improve operator skills in a controlled, risk-free 
environment.

5. Conclusion and future work

Physics-based simulation is crucial in the design and development of 
autonomous construction equipment. However, preparing construction 
equipment models that accurately represent the equipment's kinematics 
is a time-consuming task in simulation. Compared with manual 
modeling, automatic modeling can significantly reduce modeling time 
while maintaining accuracy. This paper proposed a method for auto
mated physics-based modeling of construction equipment based on data 

fusion. A wheel loader and an excavator model were created using both 
the proposed method and the manual modeling method. The accuracy of 
the created model and the time required for modeling were evaluated. 
The results indicate that the proposed method achieves the same accu
racy as the manual modeling method while significantly accelerating the 
process. Specifically, the proposed method requires only 13 % of the 
time for the wheel loader and 9 % of the time for the excavator 
compared to the manual modeling process.

However, there are still some limitations in the proposed method 
that need to be addressed in future work. First, the equipment templates 
were manually created, making it time-consuming to prepare templates 
for each type of construction equipment. Future work will focus on 
developing a method for automatically generating templates based on 
minimal input information by users. Second, during the data fusion step, 
the names and hierarchy of the parts in the USD model are manually 
adjusted to align with the hierarchy template. This is currently the most 
time-consuming aspect of model generation. We plan to explore auto
mated methods using 3D part recognition algorithms to streamline the 
adjustment of the USD model hierarchy.
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Appendix A. Appendix

Table 2 
Modeling time comparison.

Modeling method Wheel 
loader

Excavator

Manual modeling 
method

Checking the mechanical 
operation principle

1.5 h 3.5 h

Checking the technical 
specifications

2.5 h 4.0 h

Modeling 19 h 48 h
Total 23 h 55.5 h

Our method Data extraction 6 s 13 s
Data fusion 3 h 5 h

Total 3 h 6 s 5 h 13 s
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Fig. A1. Example of a joint template for a wheel loader.

L. Xu et al.                                                                                                                                                                                                                                       Automation in Construction 168 (2024) 105880 

10 



Fig. A1. (continued).
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