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Physics-based simulations are essential for designing autonomous construction equipment, but preparing models
is time-consuming, requiring the integration of mechanical and geometric data. Current automatic modeling
methods for modular robots are inadequate for construction equipment. This paper explores automating the
modeling process by integrating mechanical data into 3D computer-aided design (CAD) models. A template li-
brary is developed with hierarchy and joint templates specific for equipment. During model generation,
appropriate templates are selected based on the equipment type. Unspecified joint template data is extracted
from technical specifications using a large language model (LLM). The 3D CAD model is then converted into a
Universal Scene Description (USD) model. Users can adjust the part names and hierarchy within the USD model
to align with the hierarchy template, and joint data is automatically integrated, resulting in a simulation-ready
model. This method reduces modeling time by over 87 % compared to manual methods, while maintaining

accuracy.

1. Introduction

Physics-based simulations are essential for the design and advance-
ment of autonomous construction equipment, such as automated wheel
loaders and trucks [1]. These simulations provide an accelerated and
safe means to train, validate, and test control algorithms and prototype
designs of autonomous construction equipment before real-world
implementation [1,2]. Additionaly, physics-based simulations can
swiftly generate extensive training data that are necessary for leveraging
deep learning (DL) based control algorithms for autonomous construc-
tion equipment [3]. This is particularly valuable in scenarios where real-
world data acquisition is challenging. Physics-based simulations are also
increasingly used to apply and refine reinforcement learning (RL) al-
gorithms, thereby enhancing the operational intelligence of autonomous
construction equipment [4,5].

Despite their advantages, a significant challenge in utilizing physics-
based simulations lies in the preparation and generation of construction
equipment simulation models that accurately represent the equipment's
kinematics. This process, known as physics-based modeling, involves
creating virtual models that faithfully replicate the physical properties
and behaviors of machinery [2]. In this article, we focus specifically on
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equipment modeling, excluding environment modeling and in-
teractions. Realistic simulations require integrating complex data—such
as equipment joints, drives, and collision meshes—into CAD models [2].
This data integration is crucial because it ensures that the simulated
equipment behaves in a manner consistent with its physical counterpart.
Without this detailed modeling, there is a risk of a simulation-to-reality
gap, where algorithms and designs validated in simulations may fail
when applied in real-world scenarios [6]. Although simulation platforms
such as Unity [7], Gazebo [8], and Isaac Sim [9] provide environments
for model creation, the physics-based modeling process remains time-
consuming and requires modeling expertise [1,10]. Although engi-
neers can make parameter adjustments on a similar mechanical model,
this method is still limited by the availability of similar models and the
need for external CAD software for modifications [11,12].

Some studies have proposed automated physics-based modeling
methods for modular robots. Modular robots, composed of standardized
modules, can be configured in various ways to adapt to different tasks or
environments [13]. Jace et al. [14] presented an automated approach to
model the kinematics of modular robots based on module data and their
arrangements. Maddalena et al. [10,14] proposed an algorithm that
processes Unified Robotics Description Format (URDF) files of
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individual modules and their desired arrangement to generate the final
URDF of the assembled robot. These methods still require manual
configuration of modeling data, such as joints and drives, for each
module. Although such methods [10,14] are feasible for modular robots
with a limited number of reusable modules, they become significantly
time-consuming when applied to construction equipment modeling.
This is due to the greater diversity of construction equipment compo-
nents and the limited reusability of these components, making the
process comparable to manual modeling [15-17].

This paper introduces an automated physics-based modeling method
through data fusion to streamline the creation of construction equip-
ment models for physics-based simulation. Inputs to this method include
the construction equipment type, its 3D CAD model and technical
specifications. Initially, during the template preparation stage, a tem-
plate library containing hierarchy templates and joint templates for each
type of construction equipment was prepared. During the simulation
model generation stage, the corresponding hierarchy and joint tem-
plates are selected from the template library based on the equipment
type being modeled by the user. Subsequently, a large language model
(LLM) extracts unspecified data in the joint template from the equip-
ment's technical specifications and populates the joint template with this
data. Following this, the construction equipment's 3D CAD model is
converted into a Universal Scene Description (USD) model to facilitate
data fusion. Finally, users need only to adjust the names and hierarchy of
parts in the USD model to align with the hierarchy template. The data
from the joint template can then be automatically integrated into the
USD model, resulting in a simulation-ready model.

To demonstrate the effectiveness of our method, we created a
simulation model of a wheel loader (Caterpillar 982 m) and an excavator
using both the proposed method and a manual modeling method.
Firstly, we validated the accuracy of our method by comparing the
specifications of the wheel loader model created by our method and the
manual modeling method. Both methods exhibited identical measured
specifications. Moreover, the specifications measured in the created
model closely matched those of the actual wheel loader. Additionally,
we compared the time required to build the wheel loader model and the
excavator for each method. The results indicate that our method reduces
modeling time by 87 % for the wheel loader and 91 % for the excavator
compared to the manual modeling method. These findings suggest that
our method can greatly enhance modeling efficiency without compro-
mising accuracy, thereby promoting the application of physics-based
simulations in the development of autonomous construction equipment.

2. Related works
2.1. Physics-based modeling and simulation platforms

The evolution of simulation platforms such as Unity, Unreal Engine,
Gazebo, Isaac Sim, and Webots has significantly impacted the field of
robotics. These platforms offer diverse functionalities and environments
for robot modeling, each with unique characteristics that distinguish
them from one another [18].

Unity, primarily known for its widespread use in game development,
has emerged as a versatile platform for robot simulation. Its user-
friendly interface and robust physics engine make it an attractive
choice for simulating complex robotic systems [19]. Unity's real-time 3D
development capabilities enable the creation of detailed and dynamic
environments, which are essential for testing the interaction of robots
with their surroundings. The platform supports a wide range of robot
models, from simple wheeled robots to complex humanoid robots,
allowing for extensive experimentation and research in robotics [18].

Unreal Engine stands out for its high-fidelity graphics and realistic
simulation environments [20]. This platform is particularly favored for
applications requiring photorealistic rendering, such as autonomous
vehicle testing [21]. Unreal Engine's advanced lighting and shading
capabilities enable the creation of highly immersive simulation
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scenarios. It is adept at simulating sophisticated robot models, including
drones and autonomous vehicles, providing a realistic platform for
testing sensors and navigation algorithms [22].

Gazebo, an open-source simulation platform, is renowned for its
strong community support and extensive library of robot models and
environments [23]. Its ability to simulate both indoor and outdoor en-
vironments with various physics engines makes it a versatile tool for
robotics research. Gazebo is particularly popular for simulating multi-
robot systems, such as swarm robots, and has been instrumental in
numerous robotics competitions and research projects [24].

Webots is a user-friendly, cross-platform simulation software widely
used in education and research. Its ease of use and comprehensive
documentation make it accessible to both beginners and experienced
users [25]. Webots supports a broad range of robot models, from simple
mobile robots to more advanced humanoid robots, making it a versatile
tool for various robotic applications.

Isaac Sim, developed by NVIDIA, is tailored for robotics applications
involving artificial intelligence (AI). Its integration with NVIDIA's GPU
technology enables high-performance simulations, crucial for training
and testing Al algorithms [26]. Isaac Sim is adept at simulating complex
robotic systems, such as robotic arms and mobile robots, and is partic-
ularly beneficial for scenarios involving DL and sensor processing.

2.2. Automatic physics-based modeling

Despite these available physics-based modeling and simulation
platforms, manually creating models in simulation platforms is still
time-consuming and requires modeling expertise [10]. Some studies
have proposed the use of automatic modeling methods to reduce manual
modeling effort, and have investigated the automatic modeling process
in the context of modular robots. Modular robots, composed of reuseable
modules, can be configured in various ways to adapt to different tasks or
environments [13]. The typical process of automatic modeling for
modular robots involves two steps. First, the kinematics of each indi-
vidual module are configured manually in advance. Second, the modules
are assembled automatically according to the desired arrangement,
resulting in the generation of a URDF file that represents the assembled
robot. For example, Nainer et al. [14] introduced an automated
approach for modeling robot kinematics, requiring only parameter data
of the individual modules such as joints, drives, etc. and their arrange-
ments. Maddalena et al. [10] proposed an algorithm that takes as input
the URDF files of the single modules with their desired arrangement and
provides the final URDF file of the assembled robot as the output.

However, these methods have shortcomings that limit their use for
modeling construction equipment. They require manual configuration
of joints and additional data within the modeling software for the in-
dividual modules, obligating users to acquire proficiency in the software
itself. Furthermore, for construction equipment lacking reusable mod-
ules, these methods offer no advantage over direct manual modeling,
thereby confining their applicability primarily to modular robotics.

2.3. Physics-based modeling of construction equipment

In the existing literature on physics-based modeling of construction
equipment, to the best of our knowledge, no automated physics-based
modeling method has been proposed to date. Research in this area has
predominantly focused on the application of simulation models, which
are primarily employed for training control algorithms [27] and
generating synthetic data [28,29].

Physics-based modeling has been widely used in autonomous con-
struction equipment control algorithms training and testing. To
demonstrate control of large robots to perform construction tasks, Lei
et al. [30] created a construction robot hand model in Isaac Sim, and
trained it via reinforcement and imitation learning to conduct opera-
tions with six types of construction tools, such as power drill, flat
screwdriver, and adjustable wrench. Similarly, Sungjin et al. [31]
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employed Gazebo for dynamic modeling of spraying robots, evaluating
their performance in construction tasks like indoor wall painting. Jaco
et al. [32] built a wheeled robot model using Gazebo and then trained a
map corner-based navigation model in a virtual world. Lofgren et al.
[28] advanced this field by simulating an underground loader in Unity,
training a deep reinforcement learning controller that autonomously
adapts to varying terrains and soil conditions. Azulay and Shapiro [27]
also used Gazebo for wheel loader modeling, achieving a controller
adept at complex earthmoving tasks, and showcasing the potential for
automation in construction.

Beyond control algorithms, physics-based simulation has also been
instrumental in generating synthetic data [29,33]. Wilfredo et al. [34]
used Unity to simulate excavator postures, creating a dataset that by-
passes the need for time-intensive manual annotation. Jia et al. [35]
established a drone model in Unity for capturing simulated dam images,
facilitating the training of dam defect detection model.

3. Methodology

In this paper, we present a procedure for automatic physics-based
modeling of construction equipment through data fusion, as illustrated
in Fig. 1. This method uses joint templates, hierarchy templates, and 3D
CAD model to represent the kinematics of the machinery. The 3D CAD
model provides the link information of every component (specific di-
mensions). The template files document the joint information (e.g.,
names of the joints, the connected parts, the limits of the motion, the
type of drive, and the motion dependency between components). The
method takes as input the equipment type, its 3D CAD model and
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technical specifications, and produces a simulation-ready model. The
procedure consists of five steps: data template preparation, data tem-
plate selection, extraction of undetermined data, model conversion, and
data fusion. First, we prepared a template library in advance, which
contains hierarchy templates and joint templates for each type of con-
struction equipment. Second, the corresponding hierarchy and joint
templates are selected from the template library based on the equipment
type input by the user. Third, during data extraction, any undetermined
data in the joint template is retrieved from the technical specifications
using a large language model (LLM) and incorporated into the template.
Fourth, the 3D CAD model is converted into a USD model to facilitate
data fusion. Finally, in the data fusion step, the data from the hierarchy
and joint templates are integrated into the USD, resulting in a
simulation-ready model.

3.1. Data template preparation and selection

When constructing a simulation model, certain data for each kind of
construction equipment can be pre-determined based on the equipment
part diagram and its working priciple, such as the parts comprising the
equipment and the relationships between the movements of these parts.
To record this data, reusable templates are prepared for each kind of
equipment prior to modeling. Specifically, two templates are created for
each kind of equipment: a hierarchy template and a joint template. For
existing construction equipment, these templates are pre-configured and
stored in a library for future use. In the case of newly designed con-
struction equipment, users can modify the templates of similar existing
equipment to accommodate the new designs. For example, if a novel

Model generation
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Model ready for simulation

Fig. 1. Overview of the automatic physics-based modeling procedure.
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excavator with a unique actuation mechanism is introduced, the user
would adjust the joint and hierarchy template to reflect the new actu-
ation ends and structural differences. This flexibility ensures that the
proposed methodology can support the development of innovative
equipment designs, not just parameterization of existing structures.
When generating a simulation model using the proposed method, the
corresponding hierarchy and joint template is selected based on the
equipment type being modeled by the user.

3.1.1. Hierarchy template preparation

The hierarchy template includes the parts name and their relation-
ships. The relationship among parts determines which parts can move
together as a group, essential for accurately modeling their interactions.
This relationship can be described as a parent-child relationship. When
the parent part moves, all of its child parts should move with it. To
represent the parent-child relationship between parts, we have prepared
a range of equipment hierarchy templates tailored to various construc-
tion equipment, such as wheel loaders, trucks, forklifts, and more. These
templates are formatted as tree diagrams.

These tree diagrams can aid users in understanding the hierarchical

wheel loader
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structure and dependencies within the equipment. For example, Fig. 2
shows a partial illustration of the hierarchical relationship of parts
within a wheel loader. The parent part, “wheel loader,” is subdivided
into several child parts, including the “rear body,” “rear wheels,” and
“front body”. Additionally, the “front body” is further decomposed into
child parts such as the “front frame” and “front wheels,” among others.

3.1.2. Joint template preparation

The joint template includes the parameters for every joint between
the parts of the equipment. In simulations, a joint refers to a functional
connection between rigid bodies that facilitates a specific range of
relative motion between them. This motion is typically enabled by a
drive mechanism. For instance, the rotational movement of car wheels
around an axle is attributed to revolute joints. If a wheel is designated as
powered, a corresponding drive will be added to actuate it. Otherwise,
no drive needs to be added. In our procedure, joints and drives are
implemented in the PhysX extensions library and five kinds of joints are
used to simulate connections between equipment parts [36].

e Fixed joint: locks the orientations and origins rigidly together.

— front frame

|— front wheels

,— boom

,— rocker

— bucket

N~ boom piston rod

N boom cylinder barrel
N~ bucket piston rod

N bucket cylinder barrel

\— bucket link

Fig. 2. Hierarchy of a wheel loader.
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e Distance joint: keeps the origins within a certain distance range.

e Spherical joint: keeps the origins together but allows the orientations
to vary freely.

Revolute joint: keeps the origins and X-axes of the frames together
and allows free rotation around this common axis.

Prismatic joint: keeps the orientations identical, but allows the origin
of each frame to slide freely along the common X-axis.

Two types of drives are used to actuate joints [36].

Linear drive: is used to control the translational movement of a joint
along a specific axis. It is typically used for prismatic joints, which
allow linear movement.

e Angular drive: is used to control the rotational movement of a joint
around a specific axis. It is typically used for revolute joints, which
allow rotational movement.

To represent joint parameters in construction equipment, our
method has prepared joint templates designed for various construction
equipment in advance. These templates are created based on the
equipment part diagram and its working principles, and are formatted in
JSON. These templates contain essential parameters for each joint,
including the joint's name, type (e.g., fixed joint, revolute joint, etc.), the
parts it connects, joint limits, and drive type. It is noteworthy that the
names of the parts are the same as the names of the parts in the hierarchy
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template. Given that certain data, such as joint limits, vary significantly
between different models of the same equipment (for instance, a Cat
982 M wheel loader and a Cat 950 M wheel loader), these data cannot be
determined prior to modeling. Consequently, these data are not speci-
fied in the template. Fig. A1l provides an example of a joint template for a
wheel loader. The joint mentioned in line 15, ‘steer-
ing_cylinder_barrel 12steering_piston_rod_l_joint,” is a “Prismatic” joint
connecting the “steering_cylinder barrel 1” and “steering_piston_rod_l”
components. The lower limit of this joint is set to “0,” but the upper limit
is unknown and requires referencing the “Steering Cylinder Stroke” from
the technical specifications. This joint is equipped with a “Linear Drive.”

In the simulation model generation stage, the corresponding hier-
archy and joint templates are selected from the template library based
on the equipment type being modeled by the user. For the joint template,
some data fields may be unspecified. The names of these unspecified
data fields are passed to the undetermined data extraction step to be
identified in the equipment's technical specifications.

3.2. Undetermined data extraction

To identify the data left unspecified in the joint template, a LLM is
utilized to extract the data from the equipment technical specifications
[37] as shown in Fig. 3. This can avoid the effort in manually retrieving
this data from lengthy technical specifications. In the data extraction

process, the first step is to obtain the equipment's technical
Step 1 Input and text preprocessing: Obtaining full texts of equipment
technical specifications, dividing into separate sentences
l v
Step 2 Text binary classification- one or multiple numbers: Answer “Yes” or “No” only.
Does the following text contain more than one value of [property]? [passage]
Yes No
v |_ __________ 2 . 2 I
Step 3' Data extraction: Use only data present in the text. If data Data extraction-value: Give the value only without :
I| is not present in the text, type “None”. Summarize the units, do not use a full sentence. If the value is not
I| value of the [property] in the following text in form of a table present type “None”. What is the value of the [property] I
|| consisting of: Property name, Value, Unit. [passage] in the following text? [passage] !
|
|
| None ] None |
I —’l Discard sentence |< 1
[ Jr 4 A 4 1
| | Double check of data-value: There is a possibility that Data extraction-unit: Give the unit only, do not use a |
| | the data you extracted is incorrect. Answer “Yes” or “No” full sentence. If the unit is not present type “None”. |
| only. Be very strict. Is [value] the value of [property] is What is the unit of the [property] in the following text? |
1 given in the following text? [passage] [passage] |
|
I
| No None |
[ Yes | |
|
I Double check of data-unit: There is a possibility that |
I the data you extracted is incorrect. Answer “Yes” or “No” | | |
| only. Be very strict. Is [unit] the unit of the [property] is No I
I | given in the following text? [passage] :
| e e e e e e o e e e e e e e e e e
v
Yes | Output: Write all the obtained data (Property
Step 4 name, Value, Unit) into a joint template. If no

data if obtained, popout “The value of
[property] cannot be obtained, try to get the
data in other ways.”

Fig. 3. Flowchart describing the method of extracting structured data using a LLM.
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specifications in PDF format and perform preprocessing to split the text
into separate sentences according to the general rules of sentence
termination. This is the basis for the following steps.

The second step splits the sentences into two categories: those with
single values and those with multiple values. The sentences containing a
singular value are inherently much simpler, given the straightforward
relationship among the property name, its value, and unit. In this case,
these data tend to be extracted with high precision by the LLM.
Conversely, the extraction of data from sentences with multiple values is
more intricate, necessitating further analysis to determine the in-
terrelationships among values, names, and units to accurately pair them.
Consequently, this step aims to ascertain the presence of singular or
multiple data points within a passage. The determination of the data
complexity guides the subsequent process along one of two divergent
pathways.

Based on the data complexity determined in the second step,
different strategies are used to extract data from the paragraphs in the
fifth step. For sentences containing a single value, inquiries regarding
the value and its unit are posed separately. An option to negate these
inquiries is presented to diminish the probability of LLM fabricating
responses. If a negative answer is given to any of these queries, the
respective sentence is subsequently discarded and exempted from data
extraction. Conversely, for sentences with multiple values, LLM is
requested to summarize the data in tabular format, which facilitates
orderly data management. Nonetheless, this approach bears the risk of
engendering inaccurate data, even with the provision for negative re-
sponses. Therefore, the procedure double-checks that the data in the
obtained table is indeed contained in the sentence. Again, we explicitly
allow negative answers in case the extracted tables may contain some
inaccuracies. Similarly, as before, if the answer to any prompt is nega-
tive, we discard that sentence. In the final step, all the extracted data are
integrated into the corresponding positions in the joint template to
obtain the updated joint template. If certain data cannot be found in the
technical specifications provided by the user, they will be advised to
seek this information through alternative methods. For example, if the
limit for “steering rod_1” in the joint template of wheel loader is un-
available in the technical specifications, users will be encouraged to
consult with engineers or search online for the necessary details.

3.3. Model conversion

To facilitate the fusion of data requisite for the simulation, the model
conversion step involves converting the 3D CAD model of the con-
struction equipment into a USD format. USD is an open-source 3D scene
description file format developed by Pixar [38]. It can be used for 3D
content creation and interchange among different tools such as Isaac Sim
[9] and Unity [39-41]. The CAD Convertor [42] is used to convert the
CAD model into the USD format. This convertor supports multiple CAD
file formats, such as DWG (for Autodesk), RVT (for Revit) and STL.

There are three reasons for converting the CAD model into the USD
format. Firstly, USD's dual support for both intricate machinery
modeling and complex environmental constructs [43] facilitates the
import of construction equipment models into its operating environ-
ment. This dual capability ensures that both the equipment and the
surrounding environment are accurately represented, thereby providing
a comprehensive simulation framework. Secondly, USD features a Py-
thon Application Programming Interface (API), which facilitates the
customization of USD models through Python scripting [44]. This
capability lays the foundation for the subsequent automatic integration
of data into the USD model. Furthermore, the compatibility of USD with
a wide array of simulation platforms, including Unity [45], Unreal [21],
and Isaac Sim [46], underscores its versatility and utility in diverse
simulation scenarios.
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3.4. Data fusion

In the data fusion process, the first step is to fuse data from the
selected hierarchy template, which involves setting up relationships
between parts in the USD model. In practice, users are required to
rename the equipment parts and adjust their parent-child relationships
within the converted USD model to align with the predefined hierarchy
template. Ensuring that the part names and their relationships accu-
rately match the templates can facilitate the following automated joint
data fusion process.

The second step is to fuse the data from the updated joint template.
To automatically create joints in the USD model, a Python script was
prepared. This script traverses each joint as specified in the updated
joint template. It reads the joint's name, the parts it connects, the joint
limits, and the drive type. Subsequently, the corresponding parts in the
USD model are identified based on the joint names specified in the joint
template. Once the corresponding parts are located within the USD
model, the joints of the specified type are created. Finally, the joint
limits and drive types are written into the USD model, ensuring a precise
representation of the equipment's mechanical structure. This automated
process ensures that each joint is accurately integrated into the USD
model, reflecting the specific mechanical interactions and constraints as
outlined in the technical specifications.

4. Implementation and results

To evaluate the proposed procedure, a wheel loader was modeled
using both the manual approach and the proposed procedure. We
compared the specifications of the real wheel loader with those of the
created models to assess the accuracy of the model generated by the
proposed procedure and the manual approach. Additionally, we
compared the modeling time required by our method with that of the
manual approach to evaluate the efficiency of our method.

4.1. Implementation

The experimental environment used in this study includes a server
with an AMD Ryzen 95,950x CPU running Ubuntu 20.04 system, NVI-
DIA GeForce RTX 3090Ti GPU with 24G memory of a single graphics
card. The modeling and simulation platform is Isaac Sim 4.0.0.

The construction equipment modeled for this experiment is a
Caterpillar 982 M wheel loader and a Caterpillar 390FL excavator. They
were chosen as test models because of their widespread use in the
construction industry and the availability of their 3D CAD model file
online. Its technical specifications are downloaded from the Internet.
Their 3D CAD model is downloaded from BlenderKit [47] and GrabCAD
[48], as shown in Fig. 4. This wheel loader model is engineered with four
hydraulic cylinders responsible for actuating the movement of its boom
and bucket. Additionally, it features two hydraulic cylinders that facil-
itate the turn and two actuated rear wheels that empower the wheel
loader to advance and retreat. The excavator model features four hy-
draulic cylinders that control the movement of its boom, arm, and
bucket. It also includes two drive sprockets, enabling the excavator to
move forward, backward, and turn. Table 1 presents the statistics for
joints and drives in two types of construction equipment: a wheel loader
and an excavator. The table indicates that the wheel loader is equipped
with 14 revolute joints, 4 prismatic joints, 1 angular drive, and 4 linear
drives. In contrast, the excavator has a significantly higher number of
revolute joints (138) and angular drives (3), while maintaining the same
number of prismatic joints (4) and linear drives (4) as the wheel loader.

In the hierarchy template preparation process, we obtained the
motion dependencies between the machinery parts by analyzing the
wheel loader and excavator parts diagram [15,16,49,50] and its oper-
ation video [51-53]. The hierarchy template was formatted in JSON.
This JSON file uses a nested dictionary structure to record the rela-
tionship between various parts. Each dictionary contains two keys,
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Fig. 4. 3D CAD model of Caterpillar 982 M wheel loader and Caterpillar 390FL excavator.

Table 1
Joints and drives statics.

Joint/drive type Wheel loader Excavator
Revolute joint 14 138
Prismatic joint 4 4
Angular drive 1 3

Linear drive 4 4

“rigid body” and “child”. Among them, “rigid body” refers to the rigid
body attribute of the part, and its value includes “Y” which is a rigid
body, and “N” which is not a rigid body. The term “child” refers to which
parts will move with the parent part, and its value enumerates the name
of the part that moves with it.

In the joint template preparation process, we analyzed the wheel
loader and excavator operation video [51-53] to determine the types of
motion between the parts at the wheel loader and excavator joints, the
parts connected by the joints, and the drive types at the joints. These
joint data were recorded in the joint template in JSON format. The JSON
file uses a dictionary structure to record each joint's parameters, con-
taining four keys: .“joint type”, “body”, “limit”, and “drive”. The “joint
type” is a string with values “revolute” or “prismatic,” representing
revolute joint and prismatic joint, respectively. The value of “body” is a
list, with each element representing the name of a part connected by
each joint. The value of “limit” is a list containing two elements, the
lower and upper limit of the joint movement constraints. Since these
constraints can vary between different models of the same equipment,
they are specified as constraint limit names in the template (e.g.,
“Steering Cylinder Stroke” to refer to the constraint controlling the
turning cylinder) to maintain applicability across various models. The
value of “drive” is a list, with an element representing the drive type,
which can be “linear drive”, “angular drive”, or an empty string indi-
cating no drive.

For model conversion, the CAD Convertor [42] was used to convert
the CAD model of wheel loader into an USD file. In the conversion
process, the CAD model was first imported through the ‘File - > Import’
option in Isaac Sim. Import options were set to their default settings.
Once import options configured, the converted USD file was imported
directly into Isaac Sim.

During the data extraction process, the GPT-4.0 API [54] was used to
extract undetermined data in the joint template from the technical
specifications, as shown in step 2 in Fig. 1. The extracted data was then
added to the joint template and the updated joint template was ob-
tained. A video demonstration of utilizing LLM to extract undetermined
data in the wheel loader joint template from the technical specifications
can be found at this link: https://youtu.be/Lb5men6Mjlg. Then the
hierarchy data from the hierarchy template was first fused into the USD
model. This was accomplished by users, who rename the equipment

parts and adjust their parent-child relationships within the converted
USD model to align with the predefined hierarchy template. After fusing
the hierarchy data, the joints data from the updated joint template was
automatically fused into the USD model by running the Python script in
the “Script Editor” in Isaac Sim. Finally, the model ready for simulation
was obtained.

4.2. Results and discussion

4.2.1. Modeling accuracy

Upon integrating the USD model of the wheel loader and excavator
with the necessary data for physics-based modeling, we successfully
generated a wheel loader and a excavator model ready for simulation.
To qualitatively evaluate the generated models, we tested a range of
motion functions pertinent to the wheel loader and excavator. The test
results can be found at these links (https://youtu.be/jq4DPszxnOE,
https://youtu.be/TFOzm_VohHY). The evaluation demonstrated that
our model accurately replicates all the essential motion functions of the
machinerys, confirming its functionality for simulation purposes.

To quantitatively evaluate the models created using both the manual
modeling approach and the proposed procedure, we compared several
specifications of the created models with those of a real wheel loader, as
shown in Fig. 5 and Fig. 6. The model created using the proposed pro-
cedure exhibited the same measured specifications as the model built
using manual method, demonstrating that our procedure achieves the
same accuracy as manual modeling. Additionally, the specifications
measured in the created model closely matched those of the actual wheel
loader and excavator. This consistency indicates that the model gener-
ated by the proposed method accurately reflects the kinematics of the
actual wheel loader and excavator, thereby confirming the effectiveness
and accuracy of our modeling approach.

4.2.2. Modeling time

To determine the efficiency of our procedure, we compared the
modeling time required by our procedure and the manual method. When
comparing the running time, we did not include the 3D CAD model
preparing time for both the proposed method and the manual modeling
method. Additionally, the time spent learning the software was also not
included. We then recorded the time it took the modeler to manually
model the wheel loader and excavator, which was 23 h and . Finally, the
time required by the modeler to model the wheel loader and excavator
using our proposed procedure was recorded.

Table 2 compares the time required to model a wheel loader and an
excavator using a manual method versus the proposed method. The
manual process, which includes checking the mechanical operation
principle, technical specifications, and the actual modeling, took 23 h
for the wheel loader and 55.5 h for the excavator. In contrast, the pro-
posed method drastically reduces the time required. Data extraction
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3
NO. Specification name Value from specifications Value from created model
1 Maximum steering angle 25 degrees 24.93 degrees
2 Rack back at maximum lift 57 degrees 57.12 degrees
3 Rack back at ground 39 degrees 39.07 degrees
4 Hinge pin height at maximum Llift 4741 mm 4741.44 mm

Fig. 5. Comparison of specification values and corresponding values from the created model for Caterpillar 982 M wheel loader.
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NO. Specification name Value from specifications Value from created model
1 Maximum digging depth 11800 mm 11813 mm
2 Maximum reach at ground line 17250 mm 17242 mm
3 Maximum loading height 10960 mm 10975 mm
4 Minimum loading height 3320 mm 3311 mm
5 Maximum depth cut for 2240 mm level bottom 11700 mm 11722 mm
6 Maximum vertical wall digging depth 8380 mm 8390 mm

Fig. 6. Comparison of specification values and corresponding values from the created model for Caterpillar 390FL excavator.
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Table 2
Modeling time comparison.
Modeling method Wheel Excavator
loader
Manual modeling Checking the mechanical 1.5h 35h
method operation principle
Checking the technical 25h 4.0h
specifications
Modeling 19h 48 h
Total 23 h 55.5h
Our method Data extraction 6s 13s
Data fusion 3h 5h
Total 3h6s 5h13s

took only 6 s for the wheel loader and 13 s for the excavator, while data
fusion took 3 h and 5 h, respectively. For both the wheel loader and the
excavator, nearly all of the data fusion time was spent adjusting the USD
model to align with the hierarchy template, with the automated
modeling program itself running in under 7 s for the wheel loader and
under 10 s for the excavator. Overall, the total time using the automated
method is significantly less, at 3 h 6 s for the wheel loader and 5h 13 s
for the excavator, clearly demonstrating the efficiency of the proposed
method compared to the manual approach.

The results of our study demonstrate significant advancements in the
efficiency of physics-based modeling for construction equipment. By
automating the model creation process, we achieved an 87 % reduction
in time for the wheel loader and a 91 % reduction for the excavator
compared to manual methods, all without compromising accuracy. This
efficiency enables more rapid prototyping and testing of new equipment
designs and control algorithms, thereby accelerating the development
process. Moreover, the high fidelity of the models generated by our
method ensures that simulations closely mimic real-world scenarios,
making them a reliable tool for operator training and safety assessments.
In practical terms, this means that construction companies can use these
simulations not only to enhance the design and functionality of new
equipment but also to improve operator skills in a controlled, risk-free
environment.

5. Conclusion and future work

Physics-based simulation is crucial in the design and development of
autonomous construction equipment. However, preparing construction
equipment models that accurately represent the equipment's kinematics
is a time-consuming task in simulation. Compared with manual
modeling, automatic modeling can significantly reduce modeling time
while maintaining accuracy. This paper proposed a method for auto-
mated physics-based modeling of construction equipment based on data

Appendix A. Appendix
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fusion. A wheel loader and an excavator model were created using both
the proposed method and the manual modeling method. The accuracy of
the created model and the time required for modeling were evaluated.
The results indicate that the proposed method achieves the same accu-
racy as the manual modeling method while significantly accelerating the
process. Specifically, the proposed method requires only 13 % of the
time for the wheel loader and 9 % of the time for the excavator
compared to the manual modeling process.

However, there are still some limitations in the proposed method
that need to be addressed in future work. First, the equipment templates
were manually created, making it time-consuming to prepare templates
for each type of construction equipment. Future work will focus on
developing a method for automatically generating templates based on
minimal input information by users. Second, during the data fusion step,
the names and hierarchy of the parts in the USD model are manually
adjusted to align with the hierarchy template. This is currently the most
time-consuming aspect of model generation. We plan to explore auto-
mated methods using 3D part recognition algorithms to streamline the
adjustment of the USD model hierarchy.
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{} joints_template_cat982m.json > ...
1 {
"rear_wheel_joint": {
"joint_type": "Revolute",
"Body": ["rear_frame","rear_wheels"],
"Drive": ["Angular Drive"]},
"rear2front_joint": {
"joint_type": "Revolute",
"Body": ["front_frame","rear_front_pin
"front_frame2steering_piston_rod_1_joint": {
"joint_type": "Revolute",
"Body": ["steering_piston_rod_1","steering_piston_rod_1_pin"1},
"front_frame2steering_piston_rod_r_joint": {
"joint_type": "Revolute",
"Body": ["steering_piston_rod_r","steering_piston_rod_r_pin"]l},
"steering_cylinder_barrel_12steering_piston_rod_1_joint": {
"joint_type": "Prismatic",
"Body": ['steering_cylinder_barrel_1","steering_piston_rod_1"],
"Limit": ["@", "Steering Cylinder Stroke"],
"Drive": ["Linear Drive"l},
"steering_cylinder_barrel_r2steering_piston_rod_r_joint": {
"joint_type": "Prismatic",
"Body": ['"steering_cylinder_barrel_r","steering_piston_rod_r"],
“"Limit": ["@", "Steering Cylinder Stroke"],
"Drive": ["Linear Drive"l},
"front_wheel_joint": {
"joint_type": "Revolute",
"Body": ["front_frame","front_wheels"]},
"front_frame2boom_joint": {
"joint_type": "Revolute",
"Body": ["boom","boom_pin"]l},
"front_frame2boom_cylinder_barrel_joint": {
"joint_type": "Revolute",
"Body": ["boom_cylinder_barrel","boom_cylinder_barrel_pin"l},

Fig. Al. Example of a joint template for a wheel loader.
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"boom2boom_piston_rod_
"joint_type": "Revolute",
"Body" :

Automation in Construction 168 (2024) 105880

"boom","boom_piston_rod"]},

om_cylinder_barrel2boom_piston_rod_joint": {

"joint_type"
"Body":
L slmsliEt s
"Drive":

ng

"Prismatic",
"boom_piston_rod

"boom_cylinder_barrel"],
, "Lift Cylinder Stroke"]!,
"Linear Drive"l},

"front_frame2bucket_cylinder_barrel_joint": {

"joint_type": "Revolute",
"Body":

"bucket_cylinder_barrel","bucket_cylinder_barrel_pin"l},

"bucket_piston_rod2bucket_cylinder_barrel_joint": {
"joint_type": "Prismatic",

"Body" :
"Limit":
"Drive":

"bucket_piston_rod","bucket_cylinder_barrel"],
"@", "Tilt Cylinder Stroke"]l,
"Linear Drive"l},

"bucket_piston_rod2rocker_joint": {
"joint_type": "Revolute",
"Body":

oom2rocker_joint": {
"joint_type": "Revolute",

"Body": "ho 1

"rocker2bucket_link_joint": {

"joint_type": "Revolute",
"Body":

"bucket_link2bucket_joint": {

"joint_type": "Revolute",
"Body":
om2bucket_joint": {

"joint_type": "Revolute",
"Body": ["boo

"rocker","bucket_piston_rod_pin"1},

,"rocker_pin"1},

"rocker","bucket_link_pin"1},

"bucket","bucket_1link"]1},

"bucket_pin"]}

Fig. Al. (continued).
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