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A B S T R A C T   

The integration of deep learning (DL) into construction applications holds substantial potential for enhancing 
construction automation and intelligence. However, successful implementation of DL necessitates the acquisition 
of substantial data for training. The acquisition process can be error-prone, time-consuming, and impractical. For 
this reason, synthetic simulated data (SSD) has emerged as a promising alternative. While various strategies have 
been developed to generate such data, a systematic review and evaluation are lacking to aid researchers and 
professionals in selecting appropriate strategies for their applications. To fill this gap, this paper conducts a 
comprehensive literature review related to SSD generation and applications, and develops a guideline for 
strategy selection. Two hundred and eight articles are identified from the academic database Web of Science by 
using PRISMA. After thoroughly analyzing the literature, seven SSD generation strategies are identified and 
evaluated across six metrics. Based on the performance of each strategy, a guideline is synthesized as a decision 
tree. Users only need to follow the steps and answer the questions in the decision tree, and then they will get the 
recommended SSD generation strategy. We demonstrate the guideline’s effectiveness by comparing its recom
mendations with the strategies chosen by researchers in existing DL construction applications and achieve a 
matching rate of 82%.   

1. Introduction 

The construction industry faces complex challenges, such as cost and 
time overruns, health and safety concerns, reduced productivity, and 
labor shortages [1,2]. The construction industry is among the least 
digitized industries in the world [3,4]. Integrating deep learning (DL) in 
construction automation is a promising development. It can revolu
tionize the construction industry and improve construction safety, 
quality, and productivity [5,6]. Potential applications of DL in con
struction include, but are not limited to, surveillance [7], progress 
monitoring [8], safety management [9], quality inspections [10], 
resource utilization management [11], and construction robotics [12]. 
For example, DL models detect the features of workers (e.g., hat shape, 
clothing color, etc.) in construction scene videos to determine whether 

they are wearing personal protective equipments (PPEs) [13]. If it is 
detected that workers not meeting PPE regulations, they will be marked 
so that subsequent reminders can be sent to them. 

However, DL models require a substantial amount of high-quality 
labeled data for the training of the models to produce desirable results 
[14,15], and these data are difficult to obtain [16,17]. Traditionally, 
training data are collected from real-world sources and labeled manu
ally. This approach is costly [18,19], labor-intensive [19], and time- 
consuming [20]. When collecting data from the real world and label 
them manually, the labeling results are also prone to errors and often 
inconsistent [21] due to the lack of labelers who have expertise in both 
construction and DL domains. Data collection may also pose a risk of 
confidentiality breaches [22,23], particularly when sensitive informa
tion is involved. Additionally, data availability is often restricted in the 
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real world [24], making it difficult to collect sufficient training examples 
of rare events. This predicament is particularly pronounced within the 
construction industry, where a lack of established standard schema and 
practices for data sharing severely constrains access to real-world con
struction data [25]. 

The use of synthetic simulated data (SSD) has emerged as a prom
ising solution to the aforementioned challenges [26]. A simulation is an 
imitative representation of a system that could exist in the real-world 
[27]. Synthetic data generated using simulation methods offers 
inherent flexibility in replicating complex real-world scenarios, facili
tating controlled experiments and algorithm validation [28]. Further
more, SSD is relatively easy to generate, limitless, pre-annotated, and 
less expensive [29–32]. It enables the generation of data that may be 
infeasible or impractical to attain in reality [19,23,33,34]. Therefore, it 
has the potential to circumvent ethical concerns and practical issues, 
such as privacy and security [35]. 

Despite the advantages of SSD, the existing research lacks a sys
tematic evaluation of SSD generation strategies. This gap leaves poten
tial users unclear about the performance of various strategies, making it 
difficult to select the most suitable strategies for specific applications 
[36]. To address this gap, this study aims to identify and evaluate SSD 
generation strategies through an exhaustive survey. Further, based on 
the survey results, this study aims to establish a guideline for selecting 
appropriate SSD generation strategies. To achieve these objectives, we 
reviewed a total of 208 articles about SSD generation and applications 
retrieved from the Web of Science. Seven SSD generation strategies were 
identified within these articles. Additionally, six metrics were utilized to 
evaluate these strategies, and their performance was compiled into a 
table. A guideline for selecting the most suitable SSD generation strategy 
was developed based on the performance of the SSD generation strate
gies. To demonstrate the effectiveness of our proposed guideline, a 
comparative analysis was conducted by comparing the SSD generation 
strategies employed in the existing literature with those recommended 
by our guideline. We randomly selected eleven SSD application cases 
from the literature. In each application case, its requirements and assets 
availability were identified, based on which we can obtain the recom
mended SSD generation strategy using the decision tree proposed in our 
guideline. Then, we analyzed the SSD generation method in the appli
cation case and figured out its strategy adopted by the authors. If that 
strategy is the same as our recommended one, a match was noted. 
Otherwise, it was identified as a not match. In total, we got 9 out of 11 
matches which is approximately 82%. Finally, for the literature that 
adopts inconsistent SSD generation strategies, we discuss the perfor
mance of the strategies used in the literature and the strategies recom
mended by the guidelines under the evaluation metrics. 

2. Methodology 

To achieve a comprehensive synthesis of existing research on SSD 
generation and applications, this study conducts a systematic review. 
Within this review, we will outline the various SSD generation strategies 
available, identify the metrics used to evaluate these strategies, assess 
their performance, and ultimately develop a guideline for selecting 
appropriate SSD generation strategy. 

2.1. Literature retrieval strategy 

The PRISMA [37] was used for literature retravel to ensure the 
comprehensiveness and relevance of the literature. In addition, the 
snowballing strategy [38] was employed as a supplementary method to 
ensure the literature’s comprehensiveness. This two-pronged approach 
to literature retrieval aimed to minimize the risk of omitting pertinent 
studies. In the literature retrieval process, it is essential to establish 
several elements of the search strategy to ensure transparency and 
reproducibility of the review. These include 1) selecting suitable search 
engines to access scientific databases, 2) implementing specific search 

limits to restrict the number of retrieved results, and 3) establishing 
exclusion criteria to include only the pertinent publications in the final 
analysis. Fig. 1 depicts the PRISMA [37] process used to find published 
articles on the topic and how we decided to include them in our study. 

In the identification stage, the Web of Science [39] was chosen as the 
primary search database due to its extensive coverage of scholarly 
journals and conference proceedings across a variety of academic fields 
[40]. To facilitate the search process, the search string was formulated 
utilizing Boolean operators: existing publications related to SSD were 
retrieved by searching “Title/Abstract/Keywords” with the string “TS=

(((“synthetic image”) OR (“synthetic data”) OR (“synthetic dataset”) OR 
(“synthetic sample”) OR (“image synthesis”) OR (“data synthesis”) OR 
(“data generation”) OR (“data augmentation”)) AND (“simulation” OR 
“simulator” OR “simulating” OR “physical model”))”. The latest studies 
on the subject were identified by selecting publications from the past six 
years. The search was conducted in January 2024 and a total of 1809 
articles were obtained. 

In the screening stage, articles were excluded using the following 
criteria to ensure relevance. (1) Publications did not pertain to the field 
of engineering and computer science. (2) Publications did not utilize 
simulation as the primary method for generating synthetic data. The 
screening process consists of two steps. First, publications in other fields 
were eliminated based on subject categories. Second, we examined the 
titles, keywords, and abstracts of the remaining publications to exclude 
those that did not use simulation methods to generate synthetic data. 
After these two steps of screening, 1513 articles were eliminated and 
296 publications were retained for further analysis. 

In the Eligibility stage, we took the articles remaining after the title, 
keyword, and abstract screening and read their full texts. 106 articles 
were excluded because they did not include content related to SSD 
generation and 190 articles left, which were saved in a marked list in 
Web of Science. 

In the including stage, to minimize the risk of omitting pertinent 
studies, we conducted two types of iterations on the initial 190 articles, 
namely backward and forward snowballing. Since some articles ob
tained through the snowballing strategy cannot be retrieved on the Web 
of Science, Google Scholar [41] was also used at this stage. During the 
snowballing process, we went through two loops in total and obtained 
18 articles. In the backward snowballing process of the first loop, all the 
cited articles by the initial 190 articles were saved in a marked list of 
Web of Science. Subsequently, in the forward snowballing process of the 
first loop, all articles that cite these 190 articles were also saved in the 
marked list. Then the articles that are duplicates of the 190 articles 
previously obtained were discard from the marker list. The remaining 
articles in the marked list were screened, leaving 18 articles. Similarly, 
the same process was used for these 18 articles in the second loop, but no 
new articles were found. In the end, 18 articles were obtained using the 
snowballing method, and a total of 208 articles, including 190 previ
ously obtained articles, were included in this study. Note: All articles 
identified in this paper include content related to SSD generation and 
application, but due to the page limit, only some of them are presented 
in this paper. 

2.2. Literature analysis and synthesis 

After obtaining the 208 literatures, a comprehensive analysis of 208 
pertinent scholarly literatures is conducted from four aspects, including 
the the application of SSD across various domains, the techniques used 
for SSD generation, the asset sources leveraged for SSD generation, and 
the evaluation of generated SSD. Each identified aspect was meticu
lously cataloged, culminating in the assembly of a tabulated database 
that serves as the foundational infrastructure of this review. 

For the applications of SSD, we conducted a dual-track investigation. 
Initially, we investigated its deployment within the construction sector, 
followed by an expansive review across other domains, such autono
mous driving and robotics. The reason why we study the application of 

L. Xu et al.                                                                                                                                                                                                                                       



Advanced Engineering Informatics 62 (2024) 102699

3

SSD in other fields is that its application in these fields precedes its 
application in the construction field and is characterized by the diversity 
and large number of use cases. We hope that insights drawn from these 
mature applications could potentially catalyze and shape the nascent 
adoption of SSD within construction. A summary of these applications is 
systematically presented in Section 3.1. 

Progressing to the techniques and asset source used for SSD gener
ation, our analysis is guided by an integral premise that generating SSD 
requires not only SSD generation techniques but also corresponding 
assets. Our literature survey found a total of 3 sources of assets and 3 SSD 
generation techniques, which combined to a total of seven different SSD 
generation strategies. At the same time, we summarize six evaluation 
metrics based on the evaluation of the generated SSD in the formulated 
tabulate database. Table 2 encapsulates a comparative analysis of the 
seven strategies, detailing their performance across the six metrics and 
delineating the technologies and asset sources employed by each. 

Finally, since each strategy shows advantages under different eval
uation metrics, it became imperative to devise a heuristic tool to aid 
practitioners in selecting the appropriate SSD generation strategy based 
on their application requirements. To this end, we opted for the con
struction of a decision tree. This decision tree is interactive, soliciting 
user input at successive decision nodes, each predicated on the evalua
tion metrics previously delineated. The resultant decision-making 
framework, which facilitates tailored strategy selection based on user 
responses, is explicated in Section 4.1. 

3. Review results 

3.1. SSD applications 

3.1.1. SSD applications in construction 
SSD has been utilized in a variety of construction applications related 

to safety, productivity, and occupational ergonomics. Lee et al. [42] 
recognized two challenges in computer vision-based construction 
workers safety monitoring: the difficulty in obtaining a sufficient 

number of unsafe behavior images for a specific accident case, and the 
fact that the quality of annotation may be affected by the construction 
experience and capabilities of the annotator. To address these two 

Fig. 1. PRISMA flow diagram of the literature search process for this study.  

Table 1 
Evaluation metrics of SSD generation strategies.  

Evaluation metric Definition 

Texture realism Texture encompasses various characteristics and patterns found 
on the surfaces of objects. It can be categorized into three types: 
(a) color texture refers to various patterns and features on the 
surface of objects, such as marble walls; (b) geometry texture 
pertains to the micro-level geometry of surface textures such as 
uneven details on rock surfaces; (c) process texture involves 
diverse regular or irregular dynamic changes observed in 
natural phenomena, such as water and clouds [80]. Texture 
realism refers to the degree to which the texture properties of an 
object in an image accurately represent the texture properties of 
the real-world object being captured. 

Relationship 
realism 

Relationships refer to the spatial and visual arrangement of 
objects within an image or scene. They involve the relative 
positions, sizes, occlusions, and visual hierarchy of objects [81]. 
Relational realism refers to the degree to which the 
relationships between objects in an image accurately represent 
the relationships among the real-world objects being captured. 

Motion realism Motion is the movement of objects over time in a sequence of 
images or videos [78]. Motion realism is defined as the degree 
to which the movement of objects in a virtual environment 
accurately resembles the motion observed in the real world. It 
involves capturing and portraying the natural dynamics, 
timing, speed, and fluidity of movement [78,79]. 

Data variability This encompasses the range of diverse values and patterns 
observable within a dataset, including variations in color, 
shape, texture, size, orientation, and other visual attributes  
[59]. 

Assets required It refers to the source of assets needed to implement this 
strategy, including real, virtual and a mixture of the two. 

Level of 
complexity 

It refers to the relative rating of the complexity of implementing 
this strategy, which is divided into three levels: high, medium 
and low.  
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challenges, the authors used game engine Unity generate images, which 
were then used to train a construction worker safety monitoring model. 
Experimental results show that the method proposed by the author can 
well solve the above challenges and achieve higher detection accuracy. 
In response to the lack of public data sets for safety equipment detection, 
Benedetto et al. [43] generated photo-realistic synthetic safety equip
ment image dataset. A DL model trained using this dataset was able to 
identify whether workers were using personal safety equipment 
correctly during hazardous work activities. Schuster et al. [44] identi
fied that the typical operating environment of an excavator is complex, 
unstructured, and continuously evolving. In response to these challenges 
when developing autonomous excavator, the authors proposed a 
training and testing loop that provides a way to generate synthetic 
camera and Lidar data using 3D simulated environments. The generated 
data can be automatically modified to support continuous development 
and testing of autonomous systems. Rather than identifying challenges 
unique to the built environment, Assadzadeh et al. [45] proposed a 
synthetic data generation method based on domain randomization in 
response to the difficulty of real-world data collection. [45]generated 
data were used for training excavator pose estimation model. To address 
the challenge of developing an extensive training image dataset, the 
study conducted by Kim et al. [46] encompassed the construction of a 
synthetic training image dataset. The generated data was subsequently 
utilized to facilitate accurate estimation of workers’ 3D pose. 

Furthermore, SSD has received interest in both construction progress 
monitoring and quality inspection. Ramimian et al. [47] noted that in 
large-scale construction projects, monitoring the implementation of 
each component of buildings and updating this information in BIM 
models can be highly labor-intensive and susceptible to errors. In order 
to address the above challenge, the authors successfully proposed a 
framework and a proof of concept prototype for on-demand automated 
simulation of construction projects. In the prototype, synthetic images 
generated by BIM are used to train the building elements identification 
model. Tang et al. [48] identified challenges when generating synthetic 
point clouds from BIM models, which included requiring extensive 
manual intervention and losing the unique characteristics of laser scans 
in real-world environments. To overcome the above challenges, the 
authors proposed a fully automatic method to generate synthetic point 
clouds from as-built BIM models. After that, these synthetic point clouds 
were used to train indoor scene understanding model, and experimental 
results showed that models trained using synthesized point clouds can 
achieve significant 5% −10% improvement. In view of the lack of im
ages of dam cracks, Xu et al. [49] introduced a method in which real 
concrete cracks were superimposed onto dam images, generating a 
synthetic crack detection dataset. This dataset was subsequently 
employed to train models for crack detection, segmentation, and 
quantification, and the results showed significant improvements in 
model accuracy. 

3.1.2. SSD applications in other fields 
SSD has gained considerable attention in the field of image/video 

recognition, encompassing classification, object detection, and seg
mentation. Hwang et al. [50] developed action simulation platform that 
can generate synthetic elders’ daily activities including RGB videos, 
skeleton trajectories for human action recognition. De Melo et al. [51] 

employed synthetic human gesture videos to train a gesture recognition 
model that was subsequently utilized for robot control. In their work, Li 
et al. [52] generated realistic traffic flows for vehicles and pedestrians in 
images, subsequently leveraging this data to train the Mask R-CNN [53] 
model for vehicle and pedestrian detection. To address the scarcity of 
high-quality data for planetary exploration missions, Müller et al. [54] 
developed a simulator specifically tailored for unstructured outdoor 
environments. The effectiveness of this simulator was demonstrated by 
evaluating the generated images using a segmentation algorithm. Inan 
et al. [55] used the CARLA [56] to generate a synthetic point cloud 
dataset for training road-objects segmentation model. 

There has been a recent surge of interest in generating SSD for ro
botics and autonomous driving, such as uncrewed aerial vehicle (UAV) 
navigation and robot manipulation. Stein and Roy [57] employed syn
thetic image series to train a quadcopter to navigate through complex, 
cluttered environments. In their study, Leão et al. [58] utilized simula
tion to construct an environment specifically designed for bin picking, 
thereby enabling the generation of synthetic point clouds. These point 
clouds were then utilized to train a tube perception algorithm tailored 
for bin-picking tasks. 

3.2. Review and evaluation of SSD generation strategies 

3.2.1. SSD generation strategies 
Advancements in computer graphics tools, including Unity, Unreal, 

and Gazebo, along with the growing accessibility of 3D assets, have 
facilitated the synthesis of simulated data. Within the computer graphics 
pipeline, the system receives input consisting of the 3D scene informa
tion (e.g., spatial points defining a vehicle), details regarding the ma
terials and lighting characteristics (e.g., vehicle color and light sources), 
and rendering parameters (e.g., rasterization or raytracing algorithms), 
and subsequently generates a 3D visualization of the scene [30]. As the 
pipeline has information about the scene details, it can automatically 
generate accurate ground-truth information, including bounding boxes 
for objects of interest, depth information, and scene segmentation masks 
[59]. The utilization of advanced physics engines (e.g., Pybullet) enables 
the enhancement of motion realism in the generated output [60,61]. 

Cut-Paste is a simple and widely used method in which images of 
objects are superimposed onto a background to create imagery [62]. 
This is often accomplished by superimposing virtual objects [21,63] on 
real backgrounds, ensuring seamless integration through techniques 
such as surface alignment and lighting adjustments. Extending this 
approach to fusing real entities on real backgrounds [49,61] introduces 
the additional challenge of extracting the real entities from their original 
backgrounds [30]. 

Finally, there is great potential for integrating computer graphics 
tools and data-driven methods to generate SSD. All assets are manually 
created in the computer graphics pipeline[44]. Data-driven methods 
enable the extraction of patterns and features from data and the inte
gration of the acquired information (e.g., speed and acceleration) into 
computer graphics pipelines [30]. 

The assets used for generating SSD can come from virtual assets (e.g., 
human-create 3D models), real assets (e.g., real-world images), or a 
hybrid of them [64–66]. Considering the sources of assets and the 
techniques employed for their combination, we identify seven SSD 

Table 2 
Evaluation of generation strategies.  

Strategy Texture realism Relationship realism Motion realism Data variability Assets required Level of complexity 

Strategy-1 None is real High Low High Virtual High 
Strategy-2 None is real Medium Medium High Virtual Medium 
Strategy-3 Part is real High High Medium Hybrid High 
Strategy-4 Part is real Medium Medium Medium Hybrid Medium 
Strategy-5 Part is real Low Low Medium Hybrid Low 
Strategy-6 All is real Low Low Low Real High 
Strategy-7 All is real Low Low Low Real Low  
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generation strategies in existing studies as shown in Fig. 2. Among these 
strategies, Strategy-2 stands out as the prevailing one, being adopted by 
a significant majority of 79% of the reviewed articles. The identified SSD 
generation strategies include: 

Strategy-1 “Virtual assets by integrated data-driven approaches and 
computer graphics pipelines” [57,67]. Strategy-1 uses both data-driven 
approach and computer graphics pipeline to combine virtual assets to 
generate SSD. 

Strategy-2 “Virtual assets by computer graphics pipelines” [64,68]. 
Strategy-2 exclusively utilizes computer graphics pipelines to combine 
virtual assets for SSD generation. 

Strategy-3 “Virtual & real assets by integrated data-driven ap
proaches and computer graphics pipelines” [65,69]. Strategy-3 employs 
both data-driven methods and computer graphics pipelines to combine 
virtual and real assets to generate SSD. 

Strategy-4 “Virtual & real assets by computer graphics pipelines” 
[61,70]. Strategy-4 exclusively uses computer graphics pipelines to 
combine virtual and real assets for SSD generation. 

Strategy-5 “Virtual & real assets by cut-paste” [21,63]. Strategy-5 
uses the cut-paste method to combine virtual assets and real assets to 
generate SSD. 

Strategy-6 “Real assets by integrated data-driven approaches and 
computer graphics pipelines” [65,69]. Strategy-6 uses both data-driven 
approach and computer graphics pipeline to combine real assets to 
generate SSD. 

Strategy-7 “Real assets by cut-paste” [49,61]. Strategy-7 uses the cut- 
paste method to combine real assets together to generate SSD. 

3.2.2. Evaluation of SSD generation strategies 
Several studies have evaluated SSD generation strategies from 

different aspects. Chen et al. [66] found that images generated by other 
techniques cannot simulate realistic motion compared to computer 
graphics pipelines. Two studies [52,71] found that images generated 
using virtual assets lack texture realism. Beery et al. [61] evaluated the 
realism of relationships between objects in images generated by Cut- 
Paste and computer graphic pipelines, and found that relationships 
generated by computer graphics pipelines were more realistic. They also 
found that data generated using virtual assets has greater variability 
than real assets. Rudorfer et al. [72] found that Cut-Paste method is 
simpler than computer graphic pipelines. 

As shown in Table 1, we summarized the above studies and identified 
six evaluation metrics to assess the performance of SSD generation 
strategies. The performance of each strategy is summarized as below. 

• Texture realism: Virtual assets often lack the richness and authen
ticity of real-world data [52,66]. Therefore, all textures of data 
generated using virtual assets are not real, all textures of data 

generated using real assets are real, and some textures of data 
generated using hybrid assets are real.  

• Relationship realism: Computer graphics pipelines can provide 
realistic relationship realism and the Cut-Paste method cannot 
guarantee the same level of fidelity [61]. Combining data-driven 
approaches with computer graphics pipelines can yield high rela
tionship realism by integrating relationship-related patterns extrac
ted from real-world data, such as the distribution of cars on roads 
[52,66]. Hence, when it comes to the relationship realism of the 
generated data, the Cut-Paste method yields the lowest level of 
relationship realism, while both data-driven approaches and com
puter graphics pipelines produce the highest level. The relationship 
realism of data generated through computer graphics pipelines falls 
somewhere in between.  

• Motion realism: Similar to relationship realism, computer graphics 
pipelines can provide realistic motion realism, while the Cut-Paste 
method may fall short in ensuring this level of fidelity. Combining 
data-driven approaches with computer graphics pipelines can ach
ieve high motion realism by incorporating motion-related patterns 
derived from real-world data [66]. Therefore, the data produced 
through Cut-Paste exhibits the lowest level of motion realism, while 
the data generated through both data-driven approaches and com
puter graphics pipelines achieves the highest level of motion realism. 
Data generated solely through computer graphics pipelines falls 
somewhere in between.  

• Data variability: The data generated using virtual assets offers higher 
data variability due to the ability to control visual features such as 
color, shape, texture, size, and orientation [61]. So, in theory, the 
more virtual assets one uses, the greater the diversity of data that can 
be generated. If we were to rank the diversity of generated data from 
highest to lowest, it would be as follows: the strategy utilizing virtual 
assets, the strategy employing hybrid assets, and finally, the strategy 
relying solely on real assets. 

• Assets required: Utilizing virtual assets for SSD generation necessi
tates the collection of virtual assets. Similarly, it becomes inevitable 
to collect real assets when employing them for SSD generation. 
Therefore, when recommending a generation strategy, it is crucial to 
contemplate the accessibility of required assets for users. This is why 
we considered the required assets when categorizing the SSD gen
eration strategies.  

• Level of complexity: The complexity of the Cut-Paste method is lower 
relative to computer graphics pipelines, whereas the combination of 
data-driven approaches and computer graphics pipelines proves to 
be more intricate [72]. 

Table 2 summarizes our assessment of the seven SSD generation 
strategies in terms of the six evaluation criteria. Notably, the relation
ships (high, medium, low) in the table are qualitative, describing the 

Fig. 2. Number of articles reviewed- categorized by generation strategies.  
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Fig. 3. The decision tree for recommending synthetic data generation strategies. Fig. 3. (Continued from the previous page) The decision tree for recommending 
synthetic data generation strategies. Fig. 3. (Continued from the previous page) The decision tree for recommending synthetic data generation strategies. Fig. 3. 
(Continued from the previous page) The decision tree for recommending synthetic data generation strategies. 
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Fig. 3. (continued). 
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relative ranking of one strategy compared to others. It can be found that 
none of the strategies outperformed other strategies under all metrics. 

4. SSD generation guideline and validation 

From evaluation results in Table 2, we can find that each strategy 
shows advantages under different evaluation metrics. Therefore, it is 
necessary to establish a guideline to help users choose the strategies 
suitable for their applications. 

4.1. SSD generation guideline 

The SSD generation guideline is modeled as a decision tree 
comprising steps and decision points. Since each strategy exhibits 
comparable performance in terms of motion realism and relationship 
realism, users are queried about their requirements for these two metrics 
concurrently as shown in Fig. 3 (a). This offers the advantage of reducing 
the number of branches within the decision tree. Subsequently, users are 
queried regarding their specifications concerning texture realism, fol
lowed by inquiries regarding the availability of the required assets as 
shown in Fig. 3 (b), (c), (d). 

It is worth noting that we introduced post-processing in the last step 
of the decision tree to identify the optimal SSD generation strategy. After 
completing the aforementioned steps, multiple alternative strategies 
that satisfy the requirements may emerge, and we need to select the 
most suitable option among them. Firstly, these alternative strategies 
will be sorted based on their data variability, with the highest variability 
being prioritized. If multiple strategies are equally viable, they will be 
further sorted based on their complexity level, with less complex stra
tegies receiving higher priority. Ultimately, the strategy that ranks first 
will be recommended. 

Specifically, the guideline involves ten questions, centered around 
the specified application’s demands for data quality and the availability 
of necessary assets. As shown in Fig. 3 (a), the first two questions (Q1 
and Q2) inquire whether the motion of objects and the relationships 
between objects hold significance for the target application. If neither 
holds significance, the progression proceeds directly to the first branch. 
Conversely, if motion is deemed important, Q3 prompts the user to 
determine the existence of corresponding motion models. Alternatively, 
if the relationship between objects is identified as crucial, Q4 is reached, 
wherein the user is asked to ascertain the presence of a corresponding 
relationship model. The user’s responses to Q3 and Q4 determine the 
subsequent course of action. If the user lacks corresponding motion or 
relationship models, the progression proceeds to the third branch; 
otherwise, it will enter the second branch. 

Subsequently, within branches 1, 2, and 3, the questions posed 
within each branch are the same. For instance, as shown in Fig. 3 (b), the 
user is queried regarding the significance of real-world textures for the 
target application in Q5. An affirmative response leads to Q6, where the 
availability of real assets for objects requiring real-world textures is 
examined. Conversely, a negative response in Q5 leads to Q7, where the 
user is asked about the availability of corresponding assets for all objects 
in the application. If the answer to either Q6 or Q7 is “Cannot”, SSD 
cannot be generated due to the unavailability of required assets. How
ever, if the answer to Q6 is affirmative, the user is queried in Q8 about 
the ability to obtain assets for objects not requiring real-world textures. 
If this question is not applicable, that is, all objects require real textures, 
then the final recommended strategy is Strategy-7. Conversely, if the 
response is negative, SSD generation remains infeasible due to the un
availability of requisite assets. A positive response in Q8 leads to Q9, 
where the user is asked if the assets they can obtain are solely real assets. 
If the answer is “Real only”, Strategy-7 is the ultimate recommendation. 
Otherwise, Strategy-5 is recommended. In the scenario where the 
response to Q7 is “Can”, progression to Q9 is initiated. A response of 
“Real only” in Q9 results in the final recommended strategy being 
Strategy-7. Conversely, if the answer is “Real & virtual”, it directs the 

user to Q10, where the user is asked if the acquired assets can represent 
all objects in the application. If the answer is “Can”, Strategy-2 is rec
ommended; otherwise, Strategy-5 is suggested. 

4.2. A guideline use case 

To explain how the decision tree works for SSD generation strategies 
recommendation, a use case of the guideline in concrete surface defect 
detection is presented. Initially, we set up the background and re
quirements of the concrete surface defect detection. It requires the use of 
digital images to detect surface crack defects on concrete dam. After 
clarifying the application background and requirements, the using of the 
decision tree in the guideline commences. This begins with responses to 
Q1 and Q2. Given that defect detection does not require consideration of 
object motion, object motion is not important in defect detection. For 
Q2, the defect detection does not involve exploring the relationship 
between defects, so the answer to this question is not important. The 
decision tree then evaluates the responses to Q1 and Q2. With both 
answers being in the negative, the process advances to “Texture realism 
& assets accessibility-1”. 

After entering the “Texture realism & assets accessibility-1”, the first 
decision point is Q5. Defect detection relies on discerning textural dis
crepancies between defective zones and the intact substrate. Given the 
inherent challenge in simulating authentic textures of concrete defects 
and their corresponding intact backgrounds, it becomes paramount to 
employ real-world textures for both defect and background. Advancing 
to Q6, since I can obtain a public data set of concrete surface defects and 
images of a concrete dam on the Internet, that is, obtain the real-world 
textures of the concrete defects and background, the answer to Q6 is 
“Can”. So, the decision tree directs us to Q8. Since I can create a 3D 
model of dam, the response to Q8 is “Can”. This leads to Q9. Obviously 
based on my previous answers to Q6 and Q8, the answer to Q9 is “Real & 
virtual”. Ultimately, the decision tree culminates in the endorsement of 
Strategy-5 as the optimal strategy for this context, as per the delineated 
decision-making process. 

4.3. Guideline testing and discussion 

In order to ascertain the efficacy of the proposed guideline in the 
realm of construction, we conducted a comparative analysis, specifically 
by comparing the methodologies employed in the literature and those 
recommended by the guideline for targeted applications. Among the 208 
articles reviewed, 36 pertain to SSD generation in construction. 
Following the 7:3 rule of thumb for DL data splitting, we randomly 
selected 11 articles to serve as the test set. It is worth noting that, to 
ensure the reliability and fairness of the test results, none of the articles 
in the test set were used during the development of the guideline. We 
then tested the proposed guideline on these 11 articles. The test process 
encompasses a wide range of DL applications, including tracking of 
construction workers (1 case), equipment recognition (1 case), pose 
estimation (3 cases), construction process monitoring (2 cases), infra
structure scene understanding (1 case), PPE detection (1 case), and 
defect detection (2 cases). The analysis result revealed that nine of the 
eleven articles adopted the same strategies as those suggested by our 
guideline (with a matching rate of 82%), while the remaining two 
[49,73] used different strategies, as listed in Table 3. 

In order to demonstrate the robustness of the decision tree in the 
guideline, we calculated the sensitivity and specificity of the recom
mended strategies in the cases. The results are summarized in Table 4. In 
the table, a positive instance refers to the case where the strategy is 
recommended by the guideline. A negative instance refers to refers to 
the case where the strategy is not recommended by the guideline. True 
positive (TP) refers to the positive instances which are actually used by 
the cases. True negative (TN) refers to the negative instances which are 
not actually used by the cases. False positive (FP) refers to the positive 
instances which are not actually used by the cases. False negative (FN) 
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refers to the negative instances which are actually used by the cases. It 
can be found that the decision tree has low sensitivity when determining 
whether to recommend Strategy-2 and Strategy-4, and low specificity 
when judging whether to recommend Strategy-5. This is due to the 
mismatches between the recommended strategies and those actually 
used in the two defect detection cases. However, for these two cases, our 
assessment (as discussed below) indicate that the strategies recom
mended by our guideline are more suitable than the ones used in those 
cases. 

In one case, Kim et al. [73] utilized Strategy-2 to generate SSD for 
training a DL model to identify rusted areas, crack sizes, and deforma
tion sizes in scaffolding. However, this strategy exhibits limitations 
regarding the variability of scaffold crack defects in the generated data, 
as it exclusively permits the generation of elliptical-shaped cracks, 
which do not accurately represent the real-world cracks on scaffolding. 
Additionally, the generated data lacks interference textures in the real 
world, such as cement stains, as the other parts of the scaffolding remain 
perfect except for the defects. These two constraints can adversely 
impact the performance of the model trained on such data. Since real- 
world scaffolding cracks exhibit diverse irregular shapes, and interfer
ence textures are easily mistaken as defects. 

In contrast, Strategy-5, recommended by our guideline, can effec
tively overcome these limitations. In Strategy-5, images of scaffolding 
defects and interference elements, such as cement stains from the real 
world, are integrated into various positions within the scaffolding 3D 
model. On one hand, this strategy utilizes real assets to obtain diverse 
real defects and interference backgrounds, thereby enhancing texture 
realism and variability. On the other hand, Strategy-5 uses virtual assets 
to acquire images of various types of scaffolding from multiple per
spectives, thus enriching data variability. Hence, we believe that the 
strategy recommended by our guideline is better suited for this appli
cation than the one used in the literature. 

In another case, Xu et al. [49] employed Strategy-4 and Strategy-7 to 
generate images of cracks in a concrete dam, which was used to train 
models for crack detection and segmentation. However, the authors did 
not evaluate and compare the data generated by these two strategies. 
Notably, Strategy-7 potentially reduces data variability since it exclu
sively employs real assets. In contrast, Strategy-4 introduces virtual 

assets beyond dams, such as the sky, thereby potentially enhancing data 
variability. Nevertheless, Strategy-4 is more complicated compared to 
Strategy-5 as illustrated in Table 2. 

Strategy-5 is recommended for this application by our guideline. It is 
important to note that dam defect detection does not entail the detection 
of moving objects. Additionally, the relationship between dams and 
defects is relatively straightforward, allowing a simple Cut-Paste 
approach to sufficiently simulate this relationship. As a result, while 
Strategy-4 may improve motion realism and relationship realism, it is 
not crucial for dam defect detection. Consequently, both Strategy-4 and 
Strategy-5 can adequately meet the application’s requirements, with 
Strategy-4 being the more complex of the two. Taking all factors into 
account, the recommended strategy for this case is Strategy-5. 

5. Summary and conclusions 

SSD has emerged as a potential solution to address the data collection 
and labeling challenges for DL-based industry applications. This paper 
provides an extensive literature review of the current applications of 
SSD in construction and other fields, as well as the strategies employed 
for SSD generation. Subsequently, we have summarized SSD generation 
strategies considering both the techniques used and the required assets 
and identified seven SSD generation strategies in existing studies. 
Furthermore, we identified six evaluation metrics of SSD generation 
strategies and summarized the performance of each strategy under these 
evaluation metrics. We found that none of the strategies outperformed 
other strategies under all metrics. We then formulated a guideline for 
selecting the suitable strategy to generate SSD for the intended appli
cation based on the performance of each strategy. Users only need to 
answer the questions in the guideline to obtain the recommended SSD 
generation strategy for their target application. To demonstrate the ef
ficacy of the proposed guideline, we compared the strategies employed 
in eleven cases with those recommended by our guideline. Among these 
cases, nine align with the strategies recommended by our guideline. 
Further examination of the other two cases revealed that the strategies 
recommended by our guideline were, in fact, better suited than the ones 
used in the cases. These findings show that the developed guideline can 
be effective to help users select suitable SSD generation strategies for DL 
applications in construction. 

This research contributes to the body of knowledge by summarizing 
existing SSD generation strategies, evaluation metrics, and their per
formance under these evaluation metrics. Furthermore, this paper syn
thesizes these insights into practical guidance for SSD users. The 
proposed guideline takes into account data quality, necessary assets, 
strategy complexity, and application requirements, making it applicable 
in practice. It has the potential to facilitate the utilization of SSD within 

Table 3 
List of the publications generating synthetic data in the realm of construction.  

Publication Construction application Description Data types Generation strategy 

Adopted Recommended 

[74] Construction workers tracking Tracking workers from a bird’s view on a construction site Video Strategy-2 Strategy-2 
[45] Equipment pose estimation Keypoints-based excavator pose estimation in construction site Image Strategy-2 Strategy-2 
[11] Equipment recognition Recognizing excavators with different poses on the construction site Image Strategy-5 Strategy-5 
[75] Equipment pose estimation Excavator operation activity estimation in construction site Video Strategy-4 Strategy-4 
[46] Workers pose estimation Keypoints-based workers’ pose estimation in construction site Video Strategy-4 Strategy-4 
[47] Construction progress 

monitoring 
Monitoring the implementation of every single part of the buildings Image Strategy-2 Strategy-2 

[76] Infrastructure scene 
understanding 

Recognizing every single part of buildings Image Strategy-2 Strategy-2 

[77] Construction progress 
monitoring 

Recognizing every single part of buildings Point cloud Strategy-2 Strategy-2 

[43] PPE detection Recognizing the correct use of PPE during at-risk work activities Image Strategy-2 Strategy-2 
[49] Defect detection Dam crack detection, segmentation, and quantification Image Strategy- 

4,7 
Strategy-5 

[73] Defect detection Recognizing rusted area, crack size, and deformation size of scaffolding 
part 

Image & point 
cloud 

Strategy-2 Strategy-5  

Table 4 
Guideline validation results.  

Strategy TP TN FP FN Sensitivity Specificity 

Strategy-2 6 4 0 1  85.71%  100.00% 
Strategy-4 2 8 0 1  66.67%  100.00% 
Strategy-5 1 8 2 0  100.00%  80.00%  
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the construction industry and additionally advances the progression of 
construction automation. However, the proposed guideline is limited to 
strategies for generating visual data, such as images and videos, and is 
not applicable to generating auditory content, text, drawings, or other 
forms of data. Another limitation is that the validation section of the 
guideline only qualitatively compares the recommended and adopted 
strategies when they do not match, without conducting quantitative 
comparisons. 
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