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The integration of deep learning (DL) into construction applications holds substantial potential for enhancing
construction automation and intelligence. However, successful implementation of DL necessitates the acquisition
of substantial data for training. The acquisition process can be error-prone, time-consuming, and impractical. For
this reason, synthetic simulated data (SSD) has emerged as a promising alternative. While various strategies have
been developed to generate such data, a systematic review and evaluation are lacking to aid researchers and
professionals in selecting appropriate strategies for their applications. To fill this gap, this paper conducts a
comprehensive literature review related to SSD generation and applications, and develops a guideline for
strategy selection. Two hundred and eight articles are identified from the academic database Web of Science by
using PRISMA. After thoroughly analyzing the literature, seven SSD generation strategies are identified and
evaluated across six metrics. Based on the performance of each strategy, a guideline is synthesized as a decision
tree. Users only need to follow the steps and answer the questions in the decision tree, and then they will get the
recommended SSD generation strategy. We demonstrate the guideline’s effectiveness by comparing its recom-
mendations with the strategies chosen by researchers in existing DL construction applications and achieve a

matching rate of 82%.

1. Introduction

The construction industry faces complex challenges, such as cost and
time overruns, health and safety concerns, reduced productivity, and
labor shortages [1,2]. The construction industry is among the least
digitized industries in the world [3,4]. Integrating deep learning (DL) in
construction automation is a promising development. It can revolu-
tionize the construction industry and improve construction safety,
quality, and productivity [5,6]. Potential applications of DL in con-
struction include, but are not limited to, surveillance [7], progress
monitoring [8], safety management [9], quality inspections [10],
resource utilization management [11], and construction robotics [12].
For example, DL models detect the features of workers (e.g., hat shape,
clothing color, etc.) in construction scene videos to determine whether
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they are wearing personal protective equipments (PPEs) [13]. If it is
detected that workers not meeting PPE regulations, they will be marked
so that subsequent reminders can be sent to them.

However, DL models require a substantial amount of high-quality
labeled data for the training of the models to produce desirable results
[14,15], and these data are difficult to obtain [16,17]. Traditionally,
training data are collected from real-world sources and labeled manu-
ally. This approach is costly [18,19], labor-intensive [19], and time-
consuming [20]. When collecting data from the real world and label
them manually, the labeling results are also prone to errors and often
inconsistent [21] due to the lack of labelers who have expertise in both
construction and DL domains. Data collection may also pose a risk of
confidentiality breaches [22,23], particularly when sensitive informa-
tion is involved. Additionally, data availability is often restricted in the
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real world [24], making it difficult to collect sufficient training examples
of rare events. This predicament is particularly pronounced within the
construction industry, where a lack of established standard schema and
practices for data sharing severely constrains access to real-world con-
struction data [25].

The use of synthetic simulated data (SSD) has emerged as a prom-
ising solution to the aforementioned challenges [26]. A simulation is an
imitative representation of a system that could exist in the real-world
[27]. Synthetic data generated using simulation methods offers
inherent flexibility in replicating complex real-world scenarios, facili-
tating controlled experiments and algorithm validation [28]. Further-
more, SSD is relatively easy to generate, limitless, pre-annotated, and
less expensive [29-32]. It enables the generation of data that may be
infeasible or impractical to attain in reality [19,23,33,34]. Therefore, it
has the potential to circumvent ethical concerns and practical issues,
such as privacy and security [35].

Despite the advantages of SSD, the existing research lacks a sys-
tematic evaluation of SSD generation strategies. This gap leaves poten-
tial users unclear about the performance of various strategies, making it
difficult to select the most suitable strategies for specific applications
[36]. To address this gap, this study aims to identify and evaluate SSD
generation strategies through an exhaustive survey. Further, based on
the survey results, this study aims to establish a guideline for selecting
appropriate SSD generation strategies. To achieve these objectives, we
reviewed a total of 208 articles about SSD generation and applications
retrieved from the Web of Science. Seven SSD generation strategies were
identified within these articles. Additionally, six metrics were utilized to
evaluate these strategies, and their performance was compiled into a
table. A guideline for selecting the most suitable SSD generation strategy
was developed based on the performance of the SSD generation strate-
gies. To demonstrate the effectiveness of our proposed guideline, a
comparative analysis was conducted by comparing the SSD generation
strategies employed in the existing literature with those recommended
by our guideline. We randomly selected eleven SSD application cases
from the literature. In each application case, its requirements and assets
availability were identified, based on which we can obtain the recom-
mended SSD generation strategy using the decision tree proposed in our
guideline. Then, we analyzed the SSD generation method in the appli-
cation case and figured out its strategy adopted by the authors. If that
strategy is the same as our recommended one, a match was noted.
Otherwise, it was identified as a not match. In total, we got 9 out of 11
matches which is approximately 82%. Finally, for the literature that
adopts inconsistent SSD generation strategies, we discuss the perfor-
mance of the strategies used in the literature and the strategies recom-
mended by the guidelines under the evaluation metrics.

2. Methodology

To achieve a comprehensive synthesis of existing research on SSD
generation and applications, this study conducts a systematic review.
Within this review, we will outline the various SSD generation strategies
available, identify the metrics used to evaluate these strategies, assess
their performance, and ultimately develop a guideline for selecting
appropriate SSD generation strategy.

2.1. Literature retrieval strategy

The PRISMA [37] was used for literature retravel to ensure the
comprehensiveness and relevance of the literature. In addition, the
snowballing strategy [38] was employed as a supplementary method to
ensure the literature’s comprehensiveness. This two-pronged approach
to literature retrieval aimed to minimize the risk of omitting pertinent
studies. In the literature retrieval process, it is essential to establish
several elements of the search strategy to ensure transparency and
reproducibility of the review. These include 1) selecting suitable search
engines to access scientific databases, 2) implementing specific search
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limits to restrict the number of retrieved results, and 3) establishing
exclusion criteria to include only the pertinent publications in the final
analysis. Fig. 1 depicts the PRISMA [37] process used to find published
articles on the topic and how we decided to include them in our study.

In the identification stage, the Web of Science [39] was chosen as the
primary search database due to its extensive coverage of scholarly
journals and conference proceedings across a variety of academic fields
[40]. To facilitate the search process, the search string was formulated
utilizing Boolean operators: existing publications related to SSD were
retrieved by searching “Title/Abstract/Keywords” with the string “TS=
(((“synthetic image”) OR (“synthetic data”) OR (“synthetic dataset™”) OR
(“synthetic sample”) OR (“image synthesis”) OR (“data synthesis”) OR
(“data generation™) OR (“data augmentation”)) AND (“simulation” OR
“simulator” OR “simulating” OR “physical model”))”. The latest studies
on the subject were identified by selecting publications from the past six
years. The search was conducted in January 2024 and a total of 1809
articles were obtained.

In the screening stage, articles were excluded using the following
criteria to ensure relevance. (1) Publications did not pertain to the field
of engineering and computer science. (2) Publications did not utilize
simulation as the primary method for generating synthetic data. The
screening process consists of two steps. First, publications in other fields
were eliminated based on subject categories. Second, we examined the
titles, keywords, and abstracts of the remaining publications to exclude
those that did not use simulation methods to generate synthetic data.
After these two steps of screening, 1513 articles were eliminated and
296 publications were retained for further analysis.

In the Eligibility stage, we took the articles remaining after the title,
keyword, and abstract screening and read their full texts. 106 articles
were excluded because they did not include content related to SSD
generation and 190 articles left, which were saved in a marked list in
Web of Science.

In the including stage, to minimize the risk of omitting pertinent
studies, we conducted two types of iterations on the initial 190 articles,
namely backward and forward snowballing. Since some articles ob-
tained through the snowballing strategy cannot be retrieved on the Web
of Science, Google Scholar [41] was also used at this stage. During the
snowballing process, we went through two loops in total and obtained
18 articles. In the backward snowballing process of the first loop, all the
cited articles by the initial 190 articles were saved in a marked list of
Web of Science. Subsequently, in the forward snowballing process of the
first loop, all articles that cite these 190 articles were also saved in the
marked list. Then the articles that are duplicates of the 190 articles
previously obtained were discard from the marker list. The remaining
articles in the marked list were screened, leaving 18 articles. Similarly,
the same process was used for these 18 articles in the second loop, but no
new articles were found. In the end, 18 articles were obtained using the
snowballing method, and a total of 208 articles, including 190 previ-
ously obtained articles, were included in this study. Note: All articles
identified in this paper include content related to SSD generation and
application, but due to the page limit, only some of them are presented
in this paper.

2.2. Literature analysis and synthesis

After obtaining the 208 literatures, a comprehensive analysis of 208
pertinent scholarly literatures is conducted from four aspects, including
the the application of SSD across various domains, the techniques used
for SSD generation, the asset sources leveraged for SSD generation, and
the evaluation of generated SSD. Each identified aspect was meticu-
lously cataloged, culminating in the assembly of a tabulated database
that serves as the foundational infrastructure of this review.

For the applications of SSD, we conducted a dual-track investigation.
Initially, we investigated its deployment within the construction sector,
followed by an expansive review across other domains, such autono-
mous driving and robotics. The reason why we study the application of
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1809 records identified through
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1513 records excluded, with reasons
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- Do not utilize simulation as the primary
method for generating synthetic data.

190 articles assessed by full text |—> 106 articles excluded, with reasons

E database searching
b= =
€6
(3]
o
A 4
= 1809 records screened by title
£ and abstract
&
[
b
n
\ 4
z
2
2
w
A 4
208 studies included in the
B systematic review
E] - 18 studies obtained through the
E snowball method were added

- Do not include content related to
synthetic data generation

Fig. 1. PRISMA flow diagram of the literature search process for this study.

SSD in other fields is that its application in these fields precedes its
application in the construction field and is characterized by the diversity
and large number of use cases. We hope that insights drawn from these
mature applications could potentially catalyze and shape the nascent
adoption of SSD within construction. A summary of these applications is
systematically presented in Section 3.1.

Progressing to the techniques and asset source used for SSD gener-
ation, our analysis is guided by an integral premise that generating SSD
requires not only SSD generation techniques but also corresponding
assets. Our literature survey found a total of 3 sources of assets and 3 SSD
generation techniques, which combined to a total of seven different SSD
generation strategies. At the same time, we summarize six evaluation
metrics based on the evaluation of the generated SSD in the formulated
tabulate database. Table 2 encapsulates a comparative analysis of the
seven strategies, detailing their performance across the six metrics and
delineating the technologies and asset sources employed by each.

Finally, since each strategy shows advantages under different eval-
uation metrics, it became imperative to devise a heuristic tool to aid
practitioners in selecting the appropriate SSD generation strategy based
on their application requirements. To this end, we opted for the con-
struction of a decision tree. This decision tree is interactive, soliciting
user input at successive decision nodes, each predicated on the evalua-
tion metrics previously delineated. The resultant decision-making
framework, which facilitates tailored strategy selection based on user
responses, is explicated in Section 4.1.

3. Review results
3.1. SSD applications

3.1.1. SSD applications in construction

SSD has been utilized in a variety of construction applications related
to safety, productivity, and occupational ergonomics. Lee et al. [42]
recognized two challenges in computer vision-based construction
workers safety monitoring: the difficulty in obtaining a sufficient

Table 1
Evaluation metrics of SSD generation strategies.

Evaluation metric ~ Definition

Texture realism Texture encompasses various characteristics and patterns found
on the surfaces of objects. It can be categorized into three types:
(a) color texture refers to various patterns and features on the
surface of objects, such as marble walls; (b) geometry texture
pertains to the micro-level geometry of surface textures such as
uneven details on rock surfaces; (c) process texture involves
diverse regular or irregular dynamic changes observed in
natural phenomena, such as water and clouds [80]. Texture
realism refers to the degree to which the texture properties of an
object in an image accurately represent the texture properties of
the real-world object being captured.

Relationships refer to the spatial and visual arrangement of
objects within an image or scene. They involve the relative
positions, sizes, occlusions, and visual hierarchy of objects [81].
Relational realism refers to the degree to which the
relationships between objects in an image accurately represent
the relationships among the real-world objects being captured.
Motion is the movement of objects over time in a sequence of
images or videos [78]. Motion realism is defined as the degree
to which the movement of objects in a virtual environment
accurately resembles the motion observed in the real world. It
involves capturing and portraying the natural dynamics,
timing, speed, and fluidity of movement [78,79].

This encompasses the range of diverse values and patterns
observable within a dataset, including variations in color,
shape, texture, size, orientation, and other visual attributes
[59]1.

It refers to the source of assets needed to implement this
strategy, including real, virtual and a mixture of the two.

It refers to the relative rating of the complexity of implementing
this strategy, which is divided into three levels: high, medium
and low.

Relationship
realism

Motion realism

Data variability

Assets required

Level of
complexity

number of unsafe behavior images for a specific accident case, and the
fact that the quality of annotation may be affected by the construction
experience and capabilities of the annotator. To address these two
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Table 2
Evaluation of generation strategies.
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Strategy Texture realism Relationship realism Motion realism Data variability Assets required Level of complexity
Strategy-1 None is real High Low High Virtual High

Strategy-2 None is real Medium Medium High Virtual Medium

Strategy-3 Part is real High High Medium Hybrid High

Strategy-4 Part is real Medium Medium Medium Hybrid Medium

Strategy-5 Part is real Low Low Medium Hybrid Low

Strategy-6 All is real Low Low Low Real High

Strategy-7 All is real Low Low Low Real Low

challenges, the authors used game engine Unity generate images, which
were then used to train a construction worker safety monitoring model.
Experimental results show that the method proposed by the author can
well solve the above challenges and achieve higher detection accuracy.
In response to the lack of public data sets for safety equipment detection,
Benedetto et al. [43] generated photo-realistic synthetic safety equip-
ment image dataset. A DL model trained using this dataset was able to
identify whether workers were using personal safety equipment
correctly during hazardous work activities. Schuster et al. [44] identi-
fied that the typical operating environment of an excavator is complex,
unstructured, and continuously evolving. In response to these challenges
when developing autonomous excavator, the authors proposed a
training and testing loop that provides a way to generate synthetic
camera and Lidar data using 3D simulated environments. The generated
data can be automatically modified to support continuous development
and testing of autonomous systems. Rather than identifying challenges
unique to the built environment, Assadzadeh et al. [45] proposed a
synthetic data generation method based on domain randomization in
response to the difficulty of real-world data collection. [45]generated
data were used for training excavator pose estimation model. To address
the challenge of developing an extensive training image dataset, the
study conducted by Kim et al. [46] encompassed the construction of a
synthetic training image dataset. The generated data was subsequently
utilized to facilitate accurate estimation of workers’ 3D pose.

Furthermore, SSD has received interest in both construction progress
monitoring and quality inspection. Ramimian et al. [47] noted that in
large-scale construction projects, monitoring the implementation of
each component of buildings and updating this information in BIM
models can be highly labor-intensive and susceptible to errors. In order
to address the above challenge, the authors successfully proposed a
framework and a proof of concept prototype for on-demand automated
simulation of construction projects. In the prototype, synthetic images
generated by BIM are used to train the building elements identification
model. Tang et al. [48] identified challenges when generating synthetic
point clouds from BIM models, which included requiring extensive
manual intervention and losing the unique characteristics of laser scans
in real-world environments. To overcome the above challenges, the
authors proposed a fully automatic method to generate synthetic point
clouds from as-built BIM models. After that, these synthetic point clouds
were used to train indoor scene understanding model, and experimental
results showed that models trained using synthesized point clouds can
achieve significant 5% —10% improvement. In view of the lack of im-
ages of dam cracks, Xu et al. [49] introduced a method in which real
concrete cracks were superimposed onto dam images, generating a
synthetic crack detection dataset. This dataset was subsequently
employed to train models for crack detection, segmentation, and
quantification, and the results showed significant improvements in
model accuracy.

3.1.2. SSD applications in other fields

SSD has gained considerable attention in the field of image/video
recognition, encompassing classification, object detection, and seg-
mentation. Hwang et al. [50] developed action simulation platform that
can generate synthetic elders’ daily activities including RGB videos,
skeleton trajectories for human action recognition. De Melo et al. [51]

employed synthetic human gesture videos to train a gesture recognition
model that was subsequently utilized for robot control. In their work, Li
et al. [52] generated realistic traffic flows for vehicles and pedestrians in
images, subsequently leveraging this data to train the Mask R-CNN [53]
model for vehicle and pedestrian detection. To address the scarcity of
high-quality data for planetary exploration missions, Miiller et al. [54]
developed a simulator specifically tailored for unstructured outdoor
environments. The effectiveness of this simulator was demonstrated by
evaluating the generated images using a segmentation algorithm. Inan
et al. [55] used the CARLA [56] to generate a synthetic point cloud
dataset for training road-objects segmentation model.

There has been a recent surge of interest in generating SSD for ro-
botics and autonomous driving, such as uncrewed aerial vehicle (UAV)
navigation and robot manipulation. Stein and Roy [57] employed syn-
thetic image series to train a quadcopter to navigate through complex,
cluttered environments. In their study, Leao et al. [58] utilized simula-
tion to construct an environment specifically designed for bin picking,
thereby enabling the generation of synthetic point clouds. These point
clouds were then utilized to train a tube perception algorithm tailored
for bin-picking tasks.

3.2. Review and evaluation of SSD generation strategies

3.2.1. SSD generation strategies

Advancements in computer graphics tools, including Unity, Unreal,
and Gazebo, along with the growing accessibility of 3D assets, have
facilitated the synthesis of simulated data. Within the computer graphics
pipeline, the system receives input consisting of the 3D scene informa-
tion (e.g., spatial points defining a vehicle), details regarding the ma-
terials and lighting characteristics (e.g., vehicle color and light sources),
and rendering parameters (e.g., rasterization or raytracing algorithms),
and subsequently generates a 3D visualization of the scene [30]. As the
pipeline has information about the scene details, it can automatically
generate accurate ground-truth information, including bounding boxes
for objects of interest, depth information, and scene segmentation masks
[59]. The utilization of advanced physics engines (e.g., Pybullet) enables
the enhancement of motion realism in the generated output [60,61].

Cut-Paste is a simple and widely used method in which images of
objects are superimposed onto a background to create imagery [62].
This is often accomplished by superimposing virtual objects [21,63] on
real backgrounds, ensuring seamless integration through techniques
such as surface alignment and lighting adjustments. Extending this
approach to fusing real entities on real backgrounds [49,61] introduces
the additional challenge of extracting the real entities from their original
backgrounds [30].

Finally, there is great potential for integrating computer graphics
tools and data-driven methods to generate SSD. All assets are manually
created in the computer graphics pipeline[44]. Data-driven methods
enable the extraction of patterns and features from data and the inte-
gration of the acquired information (e.g., speed and acceleration) into
computer graphics pipelines [30].

The assets used for generating SSD can come from virtual assets (e.g.,
human-create 3D models), real assets (e.g., real-world images), or a
hybrid of them [64-66]. Considering the sources of assets and the
techniques employed for their combination, we identify seven SSD
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generation strategies in existing studies as shown in Fig. 2. Among these
strategies, Strategy-2 stands out as the prevailing one, being adopted by
a significant majority of 79% of the reviewed articles. The identified SSD
generation strategies include:

Strategy-1 “Virtual assets by integrated data-driven approaches and
computer graphics pipelines” [57,67]. Strategy-1 uses both data-driven
approach and computer graphics pipeline to combine virtual assets to
generate SSD.

Strategy-2 “Virtual assets by computer graphics pipelines” [64,68].
Strategy-2 exclusively utilizes computer graphics pipelines to combine
virtual assets for SSD generation.

Strategy-3 “Virtual & real assets by integrated data-driven ap-
proaches and computer graphics pipelines” [65,69]. Strategy-3 employs
both data-driven methods and computer graphics pipelines to combine
virtual and real assets to generate SSD.

Strategy-4 “Virtual & real assets by computer graphics pipelines”
[61,70]. Strategy-4 exclusively uses computer graphics pipelines to
combine virtual and real assets for SSD generation.

Strategy-5 “Virtual & real assets by cut-paste” [21,63]. Strategy-5
uses the cut-paste method to combine virtual assets and real assets to
generate SSD.

Strategy-6 “Real assets by integrated data-driven approaches and
computer graphics pipelines” [65,69]. Strategy-6 uses both data-driven
approach and computer graphics pipeline to combine real assets to
generate SSD.

Strategy-7 “Real assets by cut-paste” [49,61]. Strategy-7 uses the cut-
paste method to combine real assets together to generate SSD.

3.2.2. Evaluation of SSD generation strategies

Several studies have evaluated SSD generation strategies from
different aspects. Chen et al. [66] found that images generated by other
techniques cannot simulate realistic motion compared to computer
graphics pipelines. Two studies [52,71] found that images generated
using virtual assets lack texture realism. Beery et al. [61] evaluated the
realism of relationships between objects in images generated by Cut-
Paste and computer graphic pipelines, and found that relationships
generated by computer graphics pipelines were more realistic. They also
found that data generated using virtual assets has greater variability
than real assets. Rudorfer et al. [72] found that Cut-Paste method is
simpler than computer graphic pipelines.

As shown in Table 1, we summarized the above studies and identified
six evaluation metrics to assess the performance of SSD generation
strategies. The performance of each strategy is summarized as below.

e Texture realism: Virtual assets often lack the richness and authen-
ticity of real-world data [52,66]. Therefore, all textures of data
generated using virtual assets are not real, all textures of data
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generated using real assets are real, and some textures of data

generated using hybrid assets are real.
e Relationship realism: Computer graphics pipelines can provide
realistic relationship realism and the Cut-Paste method cannot
guarantee the same level of fidelity [61]. Combining data-driven
approaches with computer graphics pipelines can yield high rela-
tionship realism by integrating relationship-related patterns extrac-
ted from real-world data, such as the distribution of cars on roads
[52,66]. Hence, when it comes to the relationship realism of the
generated data, the Cut-Paste method yields the lowest level of
relationship realism, while both data-driven approaches and com-
puter graphics pipelines produce the highest level. The relationship
realism of data generated through computer graphics pipelines falls
somewhere in between.
Motion realism: Similar to relationship realism, computer graphics
pipelines can provide realistic motion realism, while the Cut-Paste
method may fall short in ensuring this level of fidelity. Combining
data-driven approaches with computer graphics pipelines can ach-
ieve high motion realism by incorporating motion-related patterns
derived from real-world data [66]. Therefore, the data produced
through Cut-Paste exhibits the lowest level of motion realism, while
the data generated through both data-driven approaches and com-
puter graphics pipelines achieves the highest level of motion realism.
Data generated solely through computer graphics pipelines falls
somewhere in between.
Data variability: The data generated using virtual assets offers higher
data variability due to the ability to control visual features such as
color, shape, texture, size, and orientation [61]. So, in theory, the
more virtual assets one uses, the greater the diversity of data that can
be generated. If we were to rank the diversity of generated data from
highest to lowest, it would be as follows: the strategy utilizing virtual
assets, the strategy employing hybrid assets, and finally, the strategy
relying solely on real assets.
Assets required: Utilizing virtual assets for SSD generation necessi-
tates the collection of virtual assets. Similarly, it becomes inevitable
to collect real assets when employing them for SSD generation.
Therefore, when recommending a generation strategy, it is crucial to
contemplate the accessibility of required assets for users. This is why
we considered the required assets when categorizing the SSD gen-
eration strategies.
Level of complexity: The complexity of the Cut-Paste method is lower
relative to computer graphics pipelines, whereas the combination of
data-driven approaches and computer graphics pipelines proves to
be more intricate [72].

Table 2 summarizes our assessment of the seven SSD generation
strategies in terms of the six evaluation criteria. Notably, the relation-
ships (high, medium, low) in the table are qualitative, describing the

I Strategy-1 “Virtual assets by integrated data driven approaches & computer graphic pipelines”
Strategy-2 “Virtual assets by computer graphics pipelines”
Strategy-3 “Virtual & real assets by integrated data-driven approaches and computer graphics pipelines”
I Strategy-4 “Virtual & real assets by computer graphics pipelines”

Strategy-5 “Virtual & real assets by cut-paste”

[ Strategy-6 “Real assets by integrated data-driven approaches and computer graphics pipelines”

Strategy-7 “Real assets by cut-paste”

Fig. 2. Number of articles reviewed- categorized by generation strategies.
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(c) Texture realism & assets accessibility-2

Texture realism &
assets accessibility-2

[ Q5. Is it important that objects in your application have real-world textures? ]

“Important” or

“Not important™?
Important \ Not important v
Q6. Can you acquire real assets for objects that require real- Q7. Can you acquire virtual and/or real
world in your application? assets for all objects in your application?

Synthetic data
cannot be generated

Q8. Can you acquire virtual and/or real assets for those objects Q9. Are all the assets you can acquire real
that don't require real-world textures in your application? assets only?

Cannot

“Can”, “Cannot”, or "NA”? Real only

“Real only” or “Real &

N/A since all objects in Synthetic data
the application require cannot be generated . @
real-world textures Can Real & virtual Method-6
[ Q9. Are all the assets you can acquire real assets only? ] Q10. Can the acquired virtual assets
represent all objects in your application?

Can

\ 4
( Method-6 ’ Method-4 Method-2 Method-4

(d) Texture realism & assets accessibility-3

Texture realism &
assets accessibility-3

“Important” or
“Not important?

Important Not important v
Q6. Can you acquire real assets for objects that require real- Q7. Can you acquire virtual and/or real
world textures in your application? assets for all objects in your application?

Cannot

an” or “Cannot”?

Synthetic data
cannot be generated

Q8. Can you acquire virtual and/or real assets for those objects Q9. Are all the assets you can acquire real
that don't require real-world textures in your application? assets only?

Cannot

“Can”, “Cannot”, or "NA™ Real only

“Real only” or “Real &
N/A since all objects in

Synthetic data

the application require cannot be generated . Method-6
real-world textures Can e ethod-
[ Q9. Are all the assets you can acquire real assets only? ] Q10. Can the acquired virtual assets
represent all objects in your application?

Real only

‘Real only” or “Real & Can
irtual”?2 an” or “Cannot”?
v Real & virtual Cannot

‘ Method-6 > Method-3

( Method-1 )

Fig. 3. (continued).
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relative ranking of one strategy compared to others. It can be found that
none of the strategies outperformed other strategies under all metrics.

4. SSD generation guideline and validation

From evaluation results in Table 2, we can find that each strategy
shows advantages under different evaluation metrics. Therefore, it is
necessary to establish a guideline to help users choose the strategies
suitable for their applications.

4.1. SSD generation guideline

The SSD generation guideline is modeled as a decision tree
comprising steps and decision points. Since each strategy exhibits
comparable performance in terms of motion realism and relationship
realism, users are queried about their requirements for these two metrics
concurrently as shown in Fig. 3 (a). This offers the advantage of reducing
the number of branches within the decision tree. Subsequently, users are
queried regarding their specifications concerning texture realism, fol-
lowed by inquiries regarding the availability of the required assets as
shown in Fig. 3 (b), (c), (d).

It is worth noting that we introduced post-processing in the last step
of the decision tree to identify the optimal SSD generation strategy. After
completing the aforementioned steps, multiple alternative strategies
that satisfy the requirements may emerge, and we need to select the
most suitable option among them. Firstly, these alternative strategies
will be sorted based on their data variability, with the highest variability
being prioritized. If multiple strategies are equally viable, they will be
further sorted based on their complexity level, with less complex stra-
tegies receiving higher priority. Ultimately, the strategy that ranks first
will be recommended.

Specifically, the guideline involves ten questions, centered around
the specified application’s demands for data quality and the availability
of necessary assets. As shown in Fig. 3 (a), the first two questions (Q1
and Q2) inquire whether the motion of objects and the relationships
between objects hold significance for the target application. If neither
holds significance, the progression proceeds directly to the first branch.
Conversely, if motion is deemed important, Q3 prompts the user to
determine the existence of corresponding motion models. Alternatively,
if the relationship between objects is identified as crucial, Q4 is reached,
wherein the user is asked to ascertain the presence of a corresponding
relationship model. The user’s responses to Q3 and Q4 determine the
subsequent course of action. If the user lacks corresponding motion or
relationship models, the progression proceeds to the third branch;
otherwise, it will enter the second branch.

Subsequently, within branches 1, 2, and 3, the questions posed
within each branch are the same. For instance, as shown in Fig. 3 (b), the
user is queried regarding the significance of real-world textures for the
target application in Q5. An affirmative response leads to Q6, where the
availability of real assets for objects requiring real-world textures is
examined. Conversely, a negative response in Q5 leads to Q7, where the
user is asked about the availability of corresponding assets for all objects
in the application. If the answer to either Q6 or Q7 is “Cannot”, SSD
cannot be generated due to the unavailability of required assets. How-
ever, if the answer to Q6 is affirmative, the user is queried in Q8 about
the ability to obtain assets for objects not requiring real-world textures.
If this question is not applicable, that is, all objects require real textures,
then the final recommended strategy is Strategy-7. Conversely, if the
response is negative, SSD generation remains infeasible due to the un-
availability of requisite assets. A positive response in Q8 leads to Q9,
where the user is asked if the assets they can obtain are solely real assets.
If the answer is “Real only”, Strategy-7 is the ultimate recommendation.
Otherwise, Strategy-5 is recommended. In the scenario where the
response to Q7 is “Can”, progression to Q9 is initiated. A response of
“Real only” in Q9 results in the final recommended strategy being
Strategy-7. Conversely, if the answer is “Real & virtual”, it directs the
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user to Q10, where the user is asked if the acquired assets can represent
all objects in the application. If the answer is “Can”, Strategy-2 is rec-
ommended; otherwise, Strategy-5 is suggested.

4.2. A guideline use case

To explain how the decision tree works for SSD generation strategies
recommendation, a use case of the guideline in concrete surface defect
detection is presented. Initially, we set up the background and re-
quirements of the concrete surface defect detection. It requires the use of
digital images to detect surface crack defects on concrete dam. After
clarifying the application background and requirements, the using of the
decision tree in the guideline commences. This begins with responses to
Q1 and Q2. Given that defect detection does not require consideration of
object motion, object motion is not important in defect detection. For
Q2, the defect detection does not involve exploring the relationship
between defects, so the answer to this question is not important. The
decision tree then evaluates the responses to Q1 and Q2. With both
answers being in the negative, the process advances to “Texture realism
& assets accessibility-1".

After entering the “Texture realism & assets accessibility-1”, the first
decision point is Q5. Defect detection relies on discerning textural dis-
crepancies between defective zones and the intact substrate. Given the
inherent challenge in simulating authentic textures of concrete defects
and their corresponding intact backgrounds, it becomes paramount to
employ real-world textures for both defect and background. Advancing
to Q6, since I can obtain a public data set of concrete surface defects and
images of a concrete dam on the Internet, that is, obtain the real-world
textures of the concrete defects and background, the answer to Q6 is
“Can”. So, the decision tree directs us to Q8. Since I can create a 3D
model of dam, the response to Q8 is “Can”. This leads to Q9. Obviously
based on my previous answers to Q6 and Q8, the answer to Q9 is “Real &
virtual”. Ultimately, the decision tree culminates in the endorsement of
Strategy-5 as the optimal strategy for this context, as per the delineated
decision-making process.

4.3. Guideline testing and discussion

In order to ascertain the efficacy of the proposed guideline in the
realm of construction, we conducted a comparative analysis, specifically
by comparing the methodologies employed in the literature and those
recommended by the guideline for targeted applications. Among the 208
articles reviewed, 36 pertain to SSD generation in construction.
Following the 7:3 rule of thumb for DL data splitting, we randomly
selected 11 articles to serve as the test set. It is worth noting that, to
ensure the reliability and fairness of the test results, none of the articles
in the test set were used during the development of the guideline. We
then tested the proposed guideline on these 11 articles. The test process
encompasses a wide range of DL applications, including tracking of
construction workers (1 case), equipment recognition (1 case), pose
estimation (3 cases), construction process monitoring (2 cases), infra-
structure scene understanding (1 case), PPE detection (1 case), and
defect detection (2 cases). The analysis result revealed that nine of the
eleven articles adopted the same strategies as those suggested by our
guideline (with a matching rate of 82%), while the remaining two
[49,73] used different strategies, as listed in Table 3.

In order to demonstrate the robustness of the decision tree in the
guideline, we calculated the sensitivity and specificity of the recom-
mended strategies in the cases. The results are summarized in Table 4. In
the table, a positive instance refers to the case where the strategy is
recommended by the guideline. A negative instance refers to refers to
the case where the strategy is not recommended by the guideline. True
positive (TP) refers to the positive instances which are actually used by
the cases. True negative (TN) refers to the negative instances which are
not actually used by the cases. False positive (FP) refers to the positive
instances which are not actually used by the cases. False negative (FN)
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Table 3
List of the publications generating synthetic data in the realm of construction.
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Publication  Construction application Description Data types Generation strategy
Adopted Recommended
[74] Construction workers tracking Tracking workers from a bird’s view on a construction site Video Strategy-2 Strategy-2
[45] Equipment pose estimation Keypoints-based excavator pose estimation in construction site Image Strategy-2 Strategy-2
[11] Equipment recognition Recognizing excavators with different poses on the construction site Image Strategy-5 Strategy-5
[75] Equipment pose estimation Excavator operation activity estimation in construction site Video Strategy-4 Strategy-4
[46] Workers pose estimation Keypoints-based workers’ pose estimation in construction site Video Strategy-4 Strategy-4
[47] Construction progress Monitoring the implementation of every single part of the buildings Image Strategy-2 Strategy-2
monitoring
[76] Infrastructure scene Recognizing every single part of buildings Image Strategy-2 Strategy-2
understanding
[77] Construction progress Recognizing every single part of buildings Point cloud Strategy-2 Strategy-2
monitoring
[43] PPE detection Recognizing the correct use of PPE during at-risk work activities Image Strategy-2 Strategy-2
[49] Defect detection Dam crack detection, segmentation, and quantification Image Strategy- Strategy-5
4,7
[73] Defect detection Recognizing rusted area, crack size, and deformation size of scaffolding ~ Image & point Strategy-2 Strategy-5
part cloud
assets beyond dams, such as the sky, thereby potentially enhancing data
Ta]_’le 4 L variability. Nevertheless, Strategy-4 is more complicated compared to
Guideline validation results. . .
Strategy-5 as illustrated in Table 2.
Strategy TP ™N FP FN Sensitivity Specificity Strategy-5 is recommended for this application by our guideline. It is
Strategy-2 6 4 0 1 85.71% 100.00% important to note that dam defect detection does not entail the detection
Strategy-4 2 8 0 1 66.67% 100.00% of moving objects. Additionally, the relationship between dams and
Strategy-5 1 8 2 0 100.00% 80.00%

refers to the negative instances which are actually used by the cases. It
can be found that the decision tree has low sensitivity when determining
whether to recommend Strategy-2 and Strategy-4, and low specificity
when judging whether to recommend Strategy-5. This is due to the
mismatches between the recommended strategies and those actually
used in the two defect detection cases. However, for these two cases, our
assessment (as discussed below) indicate that the strategies recom-
mended by our guideline are more suitable than the ones used in those
cases.

In one case, Kim et al. [73] utilized Strategy-2 to generate SSD for
training a DL model to identify rusted areas, crack sizes, and deforma-
tion sizes in scaffolding. However, this strategy exhibits limitations
regarding the variability of scaffold crack defects in the generated data,
as it exclusively permits the generation of elliptical-shaped cracks,
which do not accurately represent the real-world cracks on scaffolding.
Additionally, the generated data lacks interference textures in the real
world, such as cement stains, as the other parts of the scaffolding remain
perfect except for the defects. These two constraints can adversely
impact the performance of the model trained on such data. Since real-
world scaffolding cracks exhibit diverse irregular shapes, and interfer-
ence textures are easily mistaken as defects.

In contrast, Strategy-5, recommended by our guideline, can effec-
tively overcome these limitations. In Strategy-5, images of scaffolding
defects and interference elements, such as cement stains from the real
world, are integrated into various positions within the scaffolding 3D
model. On one hand, this strategy utilizes real assets to obtain diverse
real defects and interference backgrounds, thereby enhancing texture
realism and variability. On the other hand, Strategy-5 uses virtual assets
to acquire images of various types of scaffolding from multiple per-
spectives, thus enriching data variability. Hence, we believe that the
strategy recommended by our guideline is better suited for this appli-
cation than the one used in the literature.

In another case, Xu et al. [49] employed Strategy-4 and Strategy-7 to
generate images of cracks in a concrete dam, which was used to train
models for crack detection and segmentation. However, the authors did
not evaluate and compare the data generated by these two strategies.
Notably, Strategy-7 potentially reduces data variability since it exclu-
sively employs real assets. In contrast, Strategy-4 introduces virtual

defects is relatively straightforward, allowing a simple Cut-Paste
approach to sufficiently simulate this relationship. As a result, while
Strategy-4 may improve motion realism and relationship realism, it is
not crucial for dam defect detection. Consequently, both Strategy-4 and
Strategy-5 can adequately meet the application’s requirements, with
Strategy-4 being the more complex of the two. Taking all factors into
account, the recommended strategy for this case is Strategy-5.

5. Summary and conclusions

SSD has emerged as a potential solution to address the data collection
and labeling challenges for DL-based industry applications. This paper
provides an extensive literature review of the current applications of
SSD in construction and other fields, as well as the strategies employed
for SSD generation. Subsequently, we have summarized SSD generation
strategies considering both the techniques used and the required assets
and identified seven SSD generation strategies in existing studies.
Furthermore, we identified six evaluation metrics of SSD generation
strategies and summarized the performance of each strategy under these
evaluation metrics. We found that none of the strategies outperformed
other strategies under all metrics. We then formulated a guideline for
selecting the suitable strategy to generate SSD for the intended appli-
cation based on the performance of each strategy. Users only need to
answer the questions in the guideline to obtain the recommended SSD
generation strategy for their target application. To demonstrate the ef-
ficacy of the proposed guideline, we compared the strategies employed
in eleven cases with those recommended by our guideline. Among these
cases, nine align with the strategies recommended by our guideline.
Further examination of the other two cases revealed that the strategies
recommended by our guideline were, in fact, better suited than the ones
used in the cases. These findings show that the developed guideline can
be effective to help users select suitable SSD generation strategies for DL
applications in construction.

This research contributes to the body of knowledge by summarizing
existing SSD generation strategies, evaluation metrics, and their per-
formance under these evaluation metrics. Furthermore, this paper syn-
thesizes these insights into practical guidance for SSD users. The
proposed guideline takes into account data quality, necessary assets,
strategy complexity, and application requirements, making it applicable
in practice. It has the potential to facilitate the utilization of SSD within
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the construction industry and additionally advances the progression of
construction automation. However, the proposed guideline is limited to
strategies for generating visual data, such as images and videos, and is
not applicable to generating auditory content, text, drawings, or other
forms of data. Another limitation is that the validation section of the
guideline only qualitatively compares the recommended and adopted
strategies when they do not match, without conducting quantitative
comparisons.
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