
SelfCode 2.0: An Annotated Corpus of Student and Expert Line-by-Line
Explanations of Code for Automated Assessment

Jeevan Chapagain1, Arun Balajiee Lekshmi Narayanan2, Kamil Akhuseyinoglu2

Peter Brusilovsky2, Vasile Rus 1

1 Department of Computer Science, Institute of Intelligent System, University of Memphis, Memphis, TN, USA
2 School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

{jchpgain,vrus}@memphis.edu, {arl122,kaa108,peterb}@pitt.edu

Abstract

Assessing student responses is a critical task in adap-
tive educational systems. More specifically, automati-
cally evaluating students’ self-explanations contributes
to understanding their knowledge state which is needed
for personalized instruction, the crux of adaptive edu-
cational systems. To facilitate the development of Ar-
tificial Intelligence (AI) and Machine Learning models
for automated assessment of learners’ self-explanations,
annotated datasets are essential. In response to this
need, we developed the SelfCode2.0 corpus, which con-
sists of 3,019 pairs of student and expert explanations of
Java code snippets, each annotated with semantic sim-
ilarity, correctness, and completeness scores provided
by experts. Alongside the dataset, we also provide per-
formance results obtained with several baseline models
based on TF-IDF and Sentence-BERT vectorial repre-
sentations. This work aims to enhance the effectiveness
of automated assessment tools in programming educa-
tion and contribute to a better understanding and sup-
porting student learning of programming.

Introduction
Evaluating student responses, particularly natural language
responses, is a major challenge in the field of education.
It is also a major component of adaptive educational tech-
nologies, such as Intelligent Tutoring Systems (ITS), which
use automatic evaluation of student responses to maintain
an accurate model of student mastery, i.e., a student model.
An accurate student model is essential for ITSs for both
micro-adaptation, e.g., providing feedback and hints at the
step level, as well as for macro-adaptation, e.g., selecting the
most suitable instructional tasks for each student to work on
next.

However, the assessment of natural language (NL) re-
sponses, especially in technical fields like computer pro-
gramming,is a known challenge. Traditional methods often
struggle to capture the semantics of student understanding,
particularly when it comes to complex cognitive tasks such
as code comprehension. As programming education contin-
ues to evolve and scale, there is an increasing need for more

Copyright © 2025 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

sophisticated automated approaches to assessment that can
provide accurate and timely feedback to students while alle-
viating the burden on instructors.

To answer this need, this paper introduces a novel dataset,
SelfCode2.0, designed to facilitate the development and
evaluation of advanced AI models to automatically assess
student NL responses in the context of code comprehension.
By creating a comprehensive, annotated corpus of student
and expert explanations for Java code, we aim to provide
a valuable resource for researchers and educators working
on automated assessment tools in programming education.
This dataset is timely given the recent advancements in AI
and Large Language Models (LLMs), which have height-
ened the importance of code comprehension skills in modern
programming education. Indeed, comprehension is more im-
portant now: While Generative AI models can produce code
in response to users’ NL prompts, the user must comprehend
and assess the produced code in terms of correctness and
appropriateness relative to their goals. Thus, code writing is
diminished for the user/programmer, whereas code compre-
hension is emphasized.

Code Comprehension and Self-Explanations
Assessing students’ code comprehension is central to our re-
search. Code comprehension is vital for both students and
professionals who spend more time reading code (others’
code or their own code) than writing code. Rugaber (Ru-
gaber 2000) notes that code understanding consumes ap-
proximately 70% of the software development lifecycle.
Thus, helping students develop code-reading abilities ben-
efits both their academic and professional futures. Self-
explanation serves as a key strategy for developing these es-
sential code-reading skills.

Self-explanation is a well-known effective learning strat-
egy that could help students better comprehend texts and
master target domains, such as biology. Self-explanations
are student-generated explanations of the learning materi-
als (McNamara and Magliano 2009; Crippen and Earl 2004;
Van Merriënboer and Sluijsmans 2009; Roy and Chi 2005).
Typical self-explanations include inferences based on ed-
ucational resources and students’ knowledge, as well as
metacognitive statements, such as students’ assessment of
their degree of understanding (Roy and Chi 2005). Self-
explanations are of personal importance to students and en-



hance the learning process as they are self-directed and self-
generated. Self-explanations involve several cognitive pro-
cesses, including inferring new knowledge to fill any gaps
and combining new knowledge with previously acquired
knowledge.

Self-explanation theories (Chi 1989, 2000) indicate that
students who engage in self-explanations, i.e., explaining the
learning material to themselves while learning, are better
learners, i.e., they learn more deeply and show high learn-
ing gains. The positive effect of self-explanation on learn-
ing has been demonstrated in different science domains such
as biology (Chi et al. 1994), physics (Conati and VanLehn
2000), math (Aleven and Koedinger 2002), and program-
ming (Bielaczyc, Pirolli, and Brown 1995; Rus et al. 2021).

Although self-explanation is evidently beneficial, assess-
ing these explanations, especially in programming courses
with large enrollments, poses significant challenges. Man-
ual evaluation is time-consuming and often impractical on a
large scale, highlighting the need for automated assessment
tools. With recent advances in AI and natural language pro-
cessing, there are exciting opportunities to create these tools;
however, their success largely depends on the availability of
high-quality annotated datasets for training and assessment.

Currently, there is a lack of annotated datasets that cap-
ture both student and expert explanations in the context of
code comprehension learning activities. This gap makes it
hard for the reliable development of robust and automated
assessment models to provide accurate and timely feedback
to students on their code understanding. Furthermore, such
datasets can be used to evaluate generative AI models, such
as LLMs on code explanation tasks and can be included in
benchmarks for evaluating the performance of LLMs.

To address this need, we developed the SelfCode2.0 cor-
pus, a novel dataset consisting of self-explanations con-
structed by students for specific code lines in complete Java
code examples, along with corresponding expert explana-
tions. This corpus contains 3,019 sentence pairs of student
and expert explanations, each annotated with semantic sim-
ilarity scores (on a scale of 1-5, 1 being not similar and 5
being most similar), correctness scores (0 or 1 for incorrect
/ correct), and completeness (0 / 1 for complete or incom-
plete). The annotations were performed by senior computer
science PhD students, ensuring a high level of expertise in
the evaluation process. The SelfCode2.0 corpus offers sev-
eral unique features that make it valuable for advancing au-
tomated assessment methods in code comprehension:

• Paired student and expert explanations for a given line of
code, useful for direct comparison.

• Annotations based on semantic similarity reflecting four
distinct cases of student-expert explanation pairings along
with correctness and completeness annotation.

• Focus on line-by-line explanations, allowing for granular
analysis of code understanding.

This corpus has significant potential to impact computer
science education by enabling more accurate automated
assessment tools and the development of ITSs for code
comprehension and learning computer programming. These

tools could monitor and scaffold students’ code comprehen-
sion and learning processing by providing timely feedback
to students. The paper examines the importance of self-code-
type datasets and outlines key steps in collecting and anno-
tating student self-explanations of JAVA code examples. Ad-
ditionally, it contributes to the advancement of educational
technologies for computer science-related skills, which will
result in the production of more skilled computer science
professionals.

Related Works
Although limited research exists specifically on datasets for
code comprehension assessment, our work draws from and
contributes to several related areas in computer science edu-
cation and natural language processing. Various theoretical
foundations, including self-explanation theory (Chi 2000;
O’Brien 2003), advances in code and text comprehension re-
search (Brooks 1983; Graesser, Singer, and Trabasso 1994;
Good 1999; Pennington 1987), and recent progress in auto-
mated assessment of open-ended student responses (Banjade
et al. 2015) influenced the development of this corpus.

Semantic Similarity in Educational Assessment
Semantic similarity measures have been widely used in var-
ious educational contexts to assess student responses. Ma-
harjan et al. (2017) developed a high-performing system for
SemEval 2017 by combining an ensemble approach that in-
tegrated traditional machine learning algorithms with deep
learning models, achieving top-tier performance in the com-
petition. Pontes et al. (2018) developed an innovative neural
network model that combines siamese convolutional neural
networks (CNNs) and long short-term memory (LSTM) net-
works. This architecture first employs siamese CNNs to ana-
lyze and represent words in their sentential context, followed
by siamese LSTMs to process entire sentences based on
these word representations and their local contexts. Khayi,
Rus, and Tamang (2021) explored the application of fine-
tuned pre-trained transformer models for automatically as-
sessing open-ended student answers in physics. They inte-
grated this approach into a conversational Intelligent Tutor-
ing System, demonstrating its potential for real-time, adap-
tive learning environments. These studies demonstrate the
potential for semantic similarity in educational assessment,
but mainly focus on more traditional science domains rather
than code comprehension specifically.

Code Comprehension in Programming Education
Research on code comprehension in programming educa-
tion has largely focused on cognitive aspects and teaching
methodologies. Schulte et al. (2010) provided a comprehen-
sive review of code comprehension models in novice pro-
gramming. Letovsky (1986) argued that programmers do
not adopt any of the proposed models exclusively; rather,
programmers are ”opportunistic processors” switching be-
tween models as dictated by their knowledge and the task at
hand (von Mayrhauser and Vans 1994). Although valuable
for understanding the cognitive aspects of code reading, the
work of Schulte et al. (2010) and Letovsky (1986) did not



extend to creating resources for automated assessment fo-
cusing on code comprehension.

Tamang et al. (2021) proposed a structured 10-item rubric
for evaluating code comprehension based on code compre-
hension, self-explanation and other theories. The rubric in-
cludes factors such as prior knowledge references, inference
making, self-monitoring, control flow understanding, data
flow comprehension, and various mental model components.
This granular rubric-based approach offers a detailed frame-
work for assessment compared to holistic semantic similar-
ity approaches that compare student explanations against ex-
pert references.

Recent work has begun exploring the potential of LLMs
for automated assessment of code comprehension. Oli et al.
(2024) comprehensively evaluated different LLM-based ap-
proaches for assessing students’ line-by-line explanations
of code, finding that LLMs with few-shot and chain-of-
thought prompting can perform comparably to fine-tuned
encoder-based models. Additionally, Lekshmi Narayanan
et al. (2024) investigated the feasibility of using LLMs to
generate and assess code explanations, comparing LLM-
generated explanations with those from human experts and
students. These studies demonstrate promising directions for
using advanced language models to support automated as-
sessment in programming education.

This work contributes distinctly to Oli and Narayanan’s
(2024) LLM-focused studies by introducing SelfCode2.0,
an expert-annotated dataset designed for code comprehen-
sion assessment. Rather than evaluating LLM capabilities,
we establish baseline performance metrics using TF-IDF
and SBERT methods, creating a benchmark dataset that en-
ables future research in automated assessment while avoid-
ing LLM data contamination.

Dataset for Answer Assessment
Although not specific to code comprehension, there have
been efforts to create datasets for educational purposes. Rus,
Banjade, and Lintean (2014) offered an extensive review of
paraphrase or textual similarity identification datasets, en-
compassing those designed for evaluating student responses.
The task of identifying semantic similarity in student re-
sponses shares close similarities with computing semantic
similarity for assessing open-ended student responses, mak-
ing this overview particularly relevant to the field of auto-
mated educational assessment. SimLex-999 (Hill, Reichart,
and Korhonen 2015) is an important dataset that evaluates
distributional semantic models that focus on genuine sim-
ilarity rather than mere association. Their annotation pro-
tocol assigned lower scores to word pairs that are related
but not truly similar. Banjade et al. (2016) created the DT-
Grade corpus, which consists of brief, open-ended responses
gathered from student-ITS interactions in the field of Newto-
nian physics. Their annotation process evaluated the correct-
ness of student responses within the broader conversational
context, going beyond isolated comparisons of student self-
explanations and expert explanations.

This work addresses a significant gap in the existing liter-
ature by building on the work of SelfCode (Chapagain et al.
2023). The original SelfCode corpus was provided as a data

set for code comprehension assessment. It has some limita-
tions for multi-sentence explanations as it splits them into
individual sentence pairs, potentially losing important con-
text. Our work, SelfCode 2.0, advances this work by preserv-
ing the integrity of complete explanations, enabling a more
comprehensive assessment of semantic similarity and expla-
nation quality. This improved approach combines elements
of semantic similarity assessment, code comprehension, and
self-explanation in the context of programming education.

Data Collection and Annotation
Data Collection
This dataset was collected during a lab study conducted in
Spring 2022 for introductory Java programming, where stu-
dents provided line-by-line explanations for code examples
through the PCEX interface in the SPLICE catalog (Hicks et
al. 2020). Each example included expert explanations from
senior computer science PhD students. Students had two at-
tempts to explain each line correctly before receiving a fill-
in-the-blank prompt. We collected all first and second at-
tempts, along with the fill-in-the-blank responses from stu-
dents who failed both initial attempts.

Correctness and Completeness Annotations
Since there are multiple ways of writing correct explanations
and the expert explanations are not the only such responses,
we need to evaluate if student explanations are ”correct” and
”complete” without relying solely on expert benchmark ex-
planations. To establish a reliable benchmark for evaluating
automated assessment systems, we annotated each explana-
tion with correctness and completeness ratings in addition
to similarity scores, as detailed below. The goal is to enable
the systematic development and evaluation of AI-based ap-
proaches for assessing student code explanations.

Correctness and Completeness
Correctness: Student explanation is correct if it explains
the behavior or function of the code line correctly.
We rated the student explanation as Correct (1) or
Incorrect (0). Originally, both expert explanations and
the students participating in the study were written
with the idea of “construction” explanations – why a
line of code is needed in the context of the larger program.

Completeness: A student explanation is complete if it ex-
plains the code line correctly and covers all topics that are
necessary and sufficient to explain the line properly. We
rate the student’s explanation as Complete (1) or Incom-
plete (0). We also used the same labels to mark expert
explanations as complete or incomplete, which we used
to compare with the corresponding student explanations
later.

Similarity Annotations
Including semantic similarity scoring alongside correctness
and completeness metrics is crucial for several reasons.
First, many automated assessment approaches rely on se-
mantic similarity measures to evaluate student responses



against reference solutions. These approaches require reli-
able human-annotated similarity scores to train and validate
the underlying models. Second, semantic similarity cap-
tures nuanced variations in student explanations that might
be technically correct but expressed differently from expert
references. Although correctness and completeness provide
some types of assessments, semantic similarity offers a more
holistic evaluation capturing both completeness and correct-
ness. Third, in educational contexts where multiple valid ex-
planations exist, semantic similarity helps quantify the de-
gree of alignment between student and expert explanations,
enabling more flexible assessment strategies. This is partic-
ularly important in programming education, where students
may express the same concept using different vocabulary
and phrasing while still demonstrating a valid understand-
ing of the underlying programming concepts.

Unlike previous work that fragments multi-sentence re-
sponses, our annotation process preserves explanation in-
tegrity. We compare each student’s complete explanation
against individual expert sentences, assessing alignment
while maintaining contextual coherence. For each pair of
statements produced by experts and students for the same
line of code, we rated the semantic similarity between the
student and expert explanation on a scale of 1 - 5, with the
scale defined as “highly dissimilar” (1), “dissimilar” (2),
“neither” (3), “similar” (4) and “highly similar” (5). De-
pending on the number of sentences in the explanation pro-
duced by the student and the expert, we accommodated var-
ious explanation pairs, leading to four distinct cases:

1. When both the student and the expert provided a single-
sentence explanation, the pair receives just one similar-
ity score. For example, [(4)] indicates a high similarity
between the single-sentence explanation produced by the
student and the expert for the same line of code.

2. If the student provides one sentence while the expert of-
fers multiple sentences, each score represents the com-
parison of the student’s sentence to each expert sentence.
For example, [(3,1)] shows varying levels of similarity be-
tween expert sentences.

3. When a student provides multiple sentences against a sin-
gle expert sentence, each student sentence is rated individ-
ually. For example, [(4), (1)] indicates how each student’s
sentence compares to the expert’s single sentence.

4. For pairs in which both provide multiple sentences, each
student sentence is compared with each expert sentence,
resulting in paired scores such as [(2,2), (1,1)].

Table 2 illustrates examples of these cases, demonstrating
how different explanation structures were evaluated for sim-
ilarity. To derive an overall similarity score between a stu-
dent explanation and an expert explanation from these com-
plex sentence-level ratings, we developed three aggregation
methods:

1. Maximum-of-maximum: This approach selects the high-
est score from all comparisons, highlighting the most sig-
nificant match between the student and the expert expla-
nations. It provides an optimistic assessment of the stu-
dent’s understanding.

Round Row Sim. Corr. Comp.
Count

1 432 0.871 0.365 -0.012
2 432 0.856 0.263 0.329
3 100 0.797 0.000 0.299
4 100 0.762 0.108 0.275
5 200 0.926 -0.016 0.312
6 200 0.858 0.039 0.648
7 400 0.867 0.103 0.188
8 141 0.814 -0.026 0.117

Table 1: Multiple Rounds of κ Scores for Similarity (Sim.),
Correctness (Corr.), and Completeness (Comp.) Annotator
Agreement.

2. Maximum-of-average: This method selects the score for
the student sentence that aligns most consistently with the
expert sentences on average. It also tends towards an op-
timistic evaluation of students’ explanations.

3. Average-of-maximum: This approach computes the mean
of the highest similarity scores across sentence compar-
isons. While it captures the best matches through max-
imum scores, the averaging process means that weaker
alignments in student explanations will lower the over-
all score. This method provides a balanced assessment by
considering both the strengths and weaknesses of a stu-
dent’s explanation.

These aggregation methods were chosen to mitigate what
we consider the biggest risk in automated assessment: not
giving students credit when they deserve it. Given the cur-
rent limitations of NLP techniques, there’s a possibility that
automated methods might incorrectly indicate a student is
wrong when they are correct (false negative). Our optimistic
approaches aim to minimize this worst-case scenario. Table
3 shows the descriptive statistics of the data set for both the
student and the expert explanation

We excluded average-of-averages aggregation as it could
underestimate student understanding when a concise, single-
sentence explanation matches only one of multiple expert
sentences expressing the same concept, unfairly penalizing
students for not matching expert sentences.

Annotation Process and Inter-Rater Agreement
One of our goals in developing this dataset is to train a
model that automatically evaluates student explanations by
comparing them with expert explanations in the current sys-
tem. To support this implementation, a team of two se-
nior computer science PhD Students annotated the dataset
for Correctness, Completeness and Similarity. We con-
ducted multiple rounds of annotation to properly annotate
the dataset. In each round, we selected rows to annotate and
calculated Cohen’s κ scores (see Table 1). For the purposes
of annotation, we only considered the student’s first attempt
explanations in the dataset.

We found that the correctness and completeness annota-
tion was difficult for the raters (see Table 1). We attribute
this to the difficulty in differentiating “good” or “bad” stu-



Line of Code Student Explanation Expert Explanation Similarity Score
Point point = new Point(); Creates a class point and cre-

ates a variable within that class
called point and sets it equal to
a method point.

We need to create a Point ob-
ject to represent a point in the
Euclidean plane

[(4)]

private int y; This declares a private int vari-
able called y

The instance variables are de-
clared as private to prevent di-
rect access to them from out-
side the class. In this way, no
unexpected modifications to a
Point object’s data are possible.

[(3,1)]

int[] values = {5, 8, 4, 78,
95, 12, 1, 0, 6, 35, 46};

This line creates the integer ar-
ray with the values. You need
this to achieve the goal bc you
need an array to look in

We declare an array of values to
hold the numbers.

[(4), (1)]

if (num == previous) { If loop that compares num to
previous. If they are equal,
then it will print the statement.

We check whether the number
that the user entered is a du-
plicate of the previous num-
ber that the user entered. To
determine if the two numbers
are duplicates, we need to test
whether they are equal.

[(2,2),(1,1)]

Table 2: Comparison of Student and Expert Explanations with Similarity Scores

dent explanations. Student explanations are more direct in
their description of the line of code when compared with
expert explanations – for example, for the line of code “Sys-
tem.out.println(Maximum value: + maxValue);”, a student
explanation is “Print out the Maximum value” expert expla-
nation is “This statement prints the maximum value in the
array to the default standard output stream.”. Hence, it is
difficult to distinguish the correct and “good” from the cor-
rect but “bad” (lack of understanding) student explanations.
This makes it difficult to build a system that evaluates stu-
dent code comprehension skills and correctness (Oli et al.
2023) as students may also write correct explanations with-
out understanding the code. Therefore, we adopted a more
relaxed similarity annotation that led to higher κ scores. We
considered a difference of 1 in similarity ratings between
two judges as the same rating. For example, if one annotator
had rated the similarity as 3 and the other as 2 or 4, we would
consider the two ratings the same, inspired by the same ap-
proach discussed in SelfCode (Chapagain et al. 2023) when
considering a 5-scaled rating of the dataset. There is also
some evidence in clinical data annotation over ordinal data
rating inter-rater agreements, when “exact” agreement gets
the highest “credit” and the scales differing by one get the
next highest “credit” and so on (Mitani, Freer, and Nel-
son 2017). In this way, we could effectively calculate the
κ scores (see Table 1).

Explanations Word Count (µ) Word Count (σ)
Student 16.41 9.96
Expert 24.78 19.56

Table 3: Statistics of student explanation and expert expla-
nation

We acknowledge that this strategy may sometimes result
in more generous scoring than is strictly deserved. However,
we believe that this trade-off is appropriate given the cur-
rent state of technology in educational assessment. The goal
is to ensure that students receive due credit for their under-
standing, even if it means occasionally overestimating their
performance. Our detailed annotation process ensures that
SelfCode2.0 captures the nuances and complexity of code
comprehension explanations, providing a robust foundation
for developing and evaluating automated assessment tools in
programming education.

Baseline Models: Experiments and Results
Although our primary focus was creating a comprehensive
annotated corpus for code comprehension assessment, we
also developed baseline methods to serve as benchmarks for
future research. These methods provide a foundation for re-
searchers to build upon and compare against when develop-
ing more sophisticated automated assessment techniques in
programming education, helping to drive innovation in edu-
cational technology.

For our baselines, we used Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) and Sentence-BERT (SBERT)
(Reimers 2019). TF-IDF captures lexical overlap between
explanations, quantifying term importance in code compre-
hension contexts. SBERT generates high-quality sentence
embeddings that preserve contextual meaning in longer
text fragments, used in its pre-trained form without fine-
tuning. This combination leverages both traditional and ad-
vanced NLP techniques for comprehensive similarity as-
sessment. While specialized architectures like SIAMESE-
SBERT might improve performance, our focus was on intro-
ducing the SelfCode2.0 corpus rather than model optimiza-



tion, providing reference benchmarks for future domain-
specific research.

Table 4 presents the performance of the two baseline mod-
els, TF-IDF and SBERT, across three different aggregation
methods: Max of Max, Avg of Max, and Max of Avg. The
results are evaluated using Pearson and Spearman correla-
tion coefficients, denoted as P and S, respectively.

Models Max of Max Avg of Max Max of Avg
P S P S P S

TF-IDF .310 .290 .313 .293 .313 .293
SBERT .363 .338 .361 .337 .350 .343
P = Pearson correlation coefficient; S = Spearman

correlation coefficient

Table 4: Performance of baseline models on different aggre-
gating methods for semantic similarity.

Both TF-IDF and SBERT implementations used only stu-
dent and expert explanations as input, excluding code snip-
pets. We calculated cosine similarity between TF-IDF vec-
tors and between SBERT embeddings (using pretrained ’all-
MiniLM-L6-v2’ without fine-tuning). No hyperparameter
optimization was performed. Though our dataset includes
correctness and completeness annotations, baseline experi-
ments focused solely on semantic similarity prediction.

The TF-IDF model shows relatively modest performance,
with Pearson correlation coefficients ranging from 0.310 to
0.313 and Spearman correlation coefficients between 0.290
and 0.293 across the various aggregation methods. These re-
sults indicate that, while TF-IDF captures some degree of
similarity between student and expert explanations, its ef-
fectiveness is limited compared to more advanced models.

In contrast, SBERT shows modestly improved perfor-
mance across all aggregation methods, with Pearson corre-
lation coefficients ranging from 0.350 to 0.363 and Spear-
man coefficients from 0.337 to 0.343. While SBERT bet-
ter captures semantic relationships in explanations, these
results highlight the need for domain-specific fine-tuning.
The limited improvement over TF-IDF suggests that, de-
spite SBERT’s advanced architecture, its performance could
be significantly enhanced with additional training tailored to
the code comprehension domain.

Domain-specific fine-tuning would help SBERT better
understand programming explanation vocabulary and phras-
ing. Pre-trained models may not fully grasp the intricacies of
specialized language without further adaptation. Bi-encoder
models like SBERT need substantial domain-relevant train-
ing data to achieve competitive performance, especially with
limited or homogeneous datasets.

In summary, while our findings show that SBERT out-
performs TF-IDF in capturing semantic similarity, they also
underscore the importance of fine-tuning the model on rel-
evant datasets to enhance its applicability and accuracy in
automated assessment tasks within programming education.
This approach will ensure that SBERT can effectively lever-
age its capabilities to provide meaningful evaluations of stu-
dent self-explanations.

While we have implemented baseline models like TF-IDF
and SBERT to evaluate the effectiveness of our dataset, our
emphasis remains on providing high-quality resources that
can be utilized by the community. We believe that by pri-
oritizing the creation of a robust dataset, we enable other
researchers to experiment with different models and tech-
niques, ultimately advancing the field of automated assess-
ment in programming education.

Although recently LLMs like ChatGPT have shown
promising capabilities in assessment tasks, we deliberately
excluded them from our baseline evaluations due to data
contamination concerns. Exposing our dataset to these mod-
els could compromise future experiments by inadvertently
including it in their training data. For this reason, we are
making the dataset available only through individual re-
quests rather than public repositories, ensuring its continued
value as a reliable benchmark for automated assessment re-
search.

Conclusion
In this paper, we introduced the SelfCode2.0 corpus, a novel
dataset designed to enhance the automatic assessment of stu-
dent self-explanations for code comprehension and beyond.
By providing a comprehensive collection of paired student
and expert explanations, along with detailed annotations of
semantic similarity, we aim to address the existing gap in re-
sources for evaluating natural language explanations of code
in programming education. The findings highlight the poten-
tial of the SelfCode2.0 corpus to facilitate the development
of advanced artificial intelligence models that can provide
accurate and timely feedback to students, ultimately improv-
ing their understanding of coding concepts.

Future work will focus on developing advanced auto-
mated assessment methods by fine-tuning SBERT and other
models using domain-specific datasets and using these mod-
els to support a ITS to practice code comprehension. We
plan to expand our expert explanations by developing com-
prehensive guidelines for consistent coverage of key pro-
gramming concepts, while also gathering data from more
diverse student populations. These enhancements will im-
prove our dataset’s robustness and representativeness, en-
abling the development of more effective automated as-
sessment tools that can provide accurate, tailored feedback
within instructional systems.

Acknowledgments
This work has been supported by the following grants
awarded to Drs. Vasile Rus and Peter Brusilovsky (CSEdPad
project, NSF awards 1822816 and 1822752, respectively)
and to Dr. Vasile Rus (the Learner Data Institute, NSF award
1934745; iCODE, IES awardR305A220385). The opinions,
findings, and results are solely those of the authors and do
not reflect those of NSF or IES.

References
Aleven, V. A., and Koedinger, K. R. 2002. An effective
metacognitive strategy: Learning by doing and explaining



with a computer-based cognitive tutor. Cognitive science
26(2):147–179.
Banjade, R.; Niraula, N. B.; Maharjan, N.; Rus, V.; Ste-
fanescu, D.; Lintean, M.; and Gautam, D. 2015. NeRoSim:
A system for measuring and interpreting semantic textual
similarity. In Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), 164–171. Denver,
Colorado: Association for Computational Linguistics.
Banjade, R.; Maharjan, N.; Niraula, N. B.; Gautam, D.;
Samei, B.; and Rus, V. 2016. Evaluation dataset (dt-grade)
and word weighting approach towards constructed short an-
swers assessment in tutorial dialogue context. In Proceed-
ings of the 11th Workshop on Innovative Use of NLP for
Building Educational Applications, 182–187.
Bielaczyc, K.; Pirolli, P. L.; and Brown, A. L. 1995. Training
in self-explanation and self-regulation strategies: Investigat-
ing the effects of knowledge acquisition activities on prob-
lem solving. Cognition and Instruction 13(2):221–252.
Brooks, R. 1983. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies 18(6):543–554.
Chapagain, J.; Risha, Z.; Banjade, R.; Oli, P.; Tamang, L.;
Brusilovsky, P.; and Rus, V. 2023. Selfcode: An anno-
tated corpus and a model for automated assessment of self-
explanation during source code comprehension. In The In-
ternational FLAIRS Conference Proceedings, volume 36.
Chi, M. T. H.; Bassok, M.; Lewis, M. W.; Reimann, P.; and
Glaser, R. 1989. Self-explanations: How students study and
use examples in learning to solve problems. Cognitive Sci-
ence 13(2):145–182.
Chi, M. T.; De Leeuw, N.; Chiu, M.-H.; and LaVancher, C.
1994. Eliciting self-explanations improves understanding.
Cognitive science 18(3):439–477.
Chi, M. 2000. Self-explaining: The dual processes of gen-
erating inference and repairing mental models. In Glaser,
R., ed., Advances in Instructional Psychology: Educational
Design and Cognitive Science. Vol. 5. Lawrence Erlbaum
Associates. 161–238.
Conati, C., and VanLehn, K. 2000. Further results from
the evaluation of an intelligent computer tutor to coach self-
explanation. In Int. Conference on Intelligent Tutoring Sys-
tems, 304–313. Springer.
Crippen, K. J., and Earl, B. L. 2004. Considering the efficacy
of web-based worked examples in introductory chemistry.
Journal of Computers in Mathematics and Science Teaching
23(2):151–167.
Good, J. 1999. Programming Paradigms, Information
Types, and Graphical Representations: Empirical Investiga-
tions of Novice Program Comprehension. Ph.D. Disserta-
tion, University of Edinburgh.
Graesser, A. C.; Singer, M.; and Trabasso, T. 1994. Con-
structing inferences during narrative text comprehension.
Psychological Review 101(3):371.
Hicks, A.; Akhuseyinoglu, K.; Shaffer, C.; and Brusilovsky,
P. 2020. Live catalog of smart learning objects for computer
science education. In Sixth SPLICE Workshop ”Building

an Infrastructure for Computer Science Education Research
and Practice at Scale” at ACM Learning at Scale 2020.
Hill, F.; Reichart, R.; and Korhonen, A. 2015. SimLex-
999: Evaluating semantic models with (genuine) similarity
estimation. Computational Linguistics 41(4):665–695.
Khayi, N. A.; Rus, V.; and Tamang, L. 2021. Towards
improving open student answer assessment using pretrained
transformers. In The International FLAIRS Conference Pro-
ceedings, volume 34.
Lekshmi Narayanan, A.; Oli, P.; Chapagain, J.; Hassany, M.;
Banjade, R.; Brusilovsky, P.; and Rus, V. 2024. Explain-
ing code examples in introductory programming courses:
LLM vs humans. In AAAI 2024 AI for Education Workshop,
volume 257 of Proceedings of Machine Learning Research,
107–117.
Letovsky, S. 1986. Emperical studies of programmers, chap-
ter cognitive processes in program comprehension.
Maharjan, N.; Banjade, R.; Gautam, D.; Tamang, L. J.; and
Rus, V. 2017. Dt team at semeval-2017 task 1: Semantic
similarity using alignments, sentence-level embeddings and
gaussian mixture model output. In Proceedings of the 11th
international workshop on semantic evaluation (semeval-
2017), 120–124.
McNamara, D. S., and Magliano, J. P. 2009. Self-
explanation and metacognition: The dynamics of reading.
In Handbook of metacognition in education. Routledge. 72–
94.
Mitani, A. A.; Freer, P. E.; and Nelson, K. P. 2017.
Summary measures of agreement and association between
many raters’ ordinal classifications. Annals of epidemiology
27(10):677–685.
Oli, P.; Banjade, R.; Lekshmi Narayanan, A. B.; Chapa-
gain, J.; Tamang, L. J.; Brusilovsky, P.; and Rus, V. 2023.
Improving code comprehension through scaffolded self-
explanations. In Wang, N.; Rebolledo-Mendez, G.; Dim-
itrova, V.; Matsuda, N.; and Santos, O. C., eds., Artificial In-
telligence in Education. Posters and Late Breaking Results,
Workshops and Tutorials, Industry and Innovation Tracks,
Practitioners, Doctoral Consortium and Blue Sky, 478–483.
Cham: Springer Nature Switzerland.
Oli, P.; Banjade, R.; Chapagain, J.; and Rus, V. 2024. Au-
tomated assessment of students’ code comprehension using
llm. In Ananda, M.; Malick, D. B.; Burstein, J.; Liu, L. T.;
Liu, Z.; Sharpnack, J.; Wang, Z.; and Wang, S., eds., Pro-
ceedings of the 2024 AAAI Conference on Artificial Intel-
ligence, volume 257 of Proceedings of Machine Learning
Research, 118–128. PMLR.
O’Brien, M. P. 2003. Software comprehension–a review
& research direction. Department of Computer Science &
Information Systems University of Limerick, Ireland, Tech-
nical Report.
Pennington, N. 1987. Comprehension strategies in program-
ming. In Empirical Studies of Programmers: Second Work-
shop, 1987, 100–113.
Pontes, E. L.; Huet, S.; Linhares, A. C.; and Torres-Moreno,



J.-M. 2018. Predicting the semantic textual similarity with
siamese cnn and lstm. arXiv preprint arXiv:1810.10641.
Reimers, N. 2019. Sentence-bert: Sentence em-
beddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.
Roy, M., and Chi, M. T. 2005. The self-explanation prin-
ciple in multimedia learning. The Cambridge handbook of
multimedia learning 271–286.
Rugaber, S. 2000. The use of domain knowledge in program
understanding. Annals of Software Engineering 9(1):143–
192.
Rus, V.; Banjade, R.; and Lintean, M. 2014. On paraphrase
identification corpora. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation
(LREC’14).
Rus, V.; Akhuseyinoglu, K.; Chapagain, J.; Tamang, L.; and
Brusilovsky, P. 2021. Prompting for free self-explanations
promotes better code comprehension. In 5th Educational
Data Mining in CS Education Workshop at EDM2021.
Schulte, C.; Clear, T.; Taherkhani, A.; Busjahn, T.; and Pa-
terson, J. H. 2010. An introduction to program comprehen-
sion for computer science educators. In Proceedings of the
2010 ITiCSE working group reports. 65–86.
Tamang, L. J.; Alshaikh, Z.; Khayi, N. A.; Oli, P.; and Rus,
V. 2021. A comparative study of free self-explanations and
socratic tutoring explanations for source code comprehen-
sion. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education, 219–225.
Van Merriënboer, J. J., and Sluijsmans, D. M. 2009. To-
ward a synthesis of cognitive load theory, four-component
instructional design, and self-directed learning. Educational
Psychology Review 21(1):55–66.
von Mayrhauser, A., and Vans, A. M. 1994. Comprehension
processes during large scale maintenance. In Proceedings
of 16th International Conference on Software Engineering,
39–48. IEEE.


