
An emerging connected view: Phytocytokines in
regulating stomatal, apoplastic, and vascular
immunity
Yunqing Jian1, Zunyong Liu1, Ping He and Libo Shan

Foliar pathogens exploit natural openings, such as stomata
and hydathodes, to invade plants, multiply in the apoplast, and
potentially spread through the vasculature. To counteract these
threats, plants dynamically regulate stomatal movement and
apoplastic water potential, influencing hydathode guttation and
water transport. This review highlights recent advances in
understanding how phytocytokines, plant small peptides with
immunomodulatory functions, regulate these processes to limit
pathogen entry and proliferation. Additionally, we discuss the
coordinated actions of stomatal movement, hydathode gutta-
tion, and the vascular system in restricting pathogen entry,
multiplication, and dissemination. We also explore future per-
spectives and key questions arising from these findings,
aiming to advance our knowledge of plant immunity and
improve disease resistance strategies.
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Introduction
Pathogen infections or perception of microbe-associated
molecular patterns (MAMPs) induce the production of
immunomodulatory peptides, long known for their roles
in plant growth, development and immunity, and later
referred to as phytocytokines due to shared features with
metazoan cytokines [1e4]. Phytocytokines can be
induced at the transcriptional levels, undergo maturation
by cleavage or posttranslational modifications, and then
are released into the apoplast upon infections [4,5]

(Figure 1). They serve as endogenous alarming signals,
initiating danger-triggered immunity (DTI) [3,6,7]. Both
MAMPs and phytocytokines are recognized by plasma
membrane-resident pattern recognition receptors
(PRRs), which are encoded by receptor-like proteins
(RLPs) or kinases (RLKs) [8,9]. DTI signaling modu-
lates MAMP-activated pattern-triggered immunity
(PTI) and strengthens the intracellular nucleotide-
binding domain leucine-rich repeat protein (NLR)-
mediated effector-triggered immunity (ETI) [1,3,7].

Stomata, the natural openings on the leaf surface,
facilitate gas and water exchange between plants and
the atmosphere crucial for photosynthesis and transpi-
ration. Stomata are exploited by leaf-invading microbes
as entry points [10,11]. Consequently, plants and
pathogens dynamically regulate the size of stomatal
pores, enclosed by a pair of guard cells [11,12]. Upon
sensing initial infection, plants respond to MAMPs and
rapidly close stomata to restrict pathogen entry, known
as stomatal immunity [10,13] (Figure 2a). In turn,
pathogens have evolved counter-defense strategies,
such as releasing toxins or effectors, to keep stomatal
open, thereby facilitating pathogen entry [14].

Meantime, MAMP-induced stomatal closure creates a
watery apoplast, which is conducive to bacterial
multiplication [15,16]. Prolonged stomatal closure also
decreases the transpiration rate, constraining plant
productivity. To counteract these detrimental effects,
plants induce specific phytocytokines to reopen sto-
mata [17]. This mechanism, termed apoplastic immu-
nity, helps to reduce water potentials, disrupting the
pathogen-favorable aqueous environment for path-
ogen multiplication and lesion development
[10,17] (Figure 2b).

Besides stomata, hydathodes, valves for the secretion of
guttation drops at leaf margins and tips, represent large
cavities for pathogen entry [18]. Hydathodes are
connected to the vascular system through leaf veins,
thus influencing the pathogen spread and apoplast
water potential [19]. Unlike stomata, hydathodes
cannot be fully closed but their aperture and exudation
activities are regulated upon infections [20]. This
regulation contributes to restricting pathogen
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dissemination to the vasculature, a phenomenon
termed hydathode immunity [18,20] (Figure 2c).

Moreover, the vasculature, the primary transport system
for water, nutrients, and minerals, also acts as a conduit
for vascular pathogens [21e23]. The vascular system is
connected with hydathodes, the water movement in the
vasculature and hydathodes affects the water balance in
the leaf apoplast, modulating apoplastic immunity
[18,22]. Meantime, hydathodes and stomata drive the
flow of xylem sap from roots to shoots, influencing the
pathogen spread in the vasculature [19,24] (Figure 2d).
Phytocytokines have been implicated in stomatal and
apoplast immunity; however, their roles in hydathode
and vascular immunity remain less understood. This
review focuses on recent advances regarding the dy-
namic roles of phytocytokine-induced stomatal move-
ments in preventing pathogen entry and restricting

pathogen multiplication in the apoplast. We also explore
how these mechanisms coordinate with hydathodes and
the vascular system to regulate leaf water dynamics and
limit pathogen spread and proliferation. Additionally, we
discuss future perspectives and key questions arising
from these findings.

Phytocytokines trigger the stomatal closure
Many phytocytokines trigger largely overlapping
immune responses with MAMPs, including rapid sto-
matal closure, to amplify PTI [7] (Figure 2a). However,
the temporal and spatial dynamics of phytocytokine
production in regulating stomatal movement during
pathogen infections remain elusive. PLANT ELIC-
ITOR PEPTIDE1 (Pep1), a pioneer immune modulator
in plant defense against herbivores and pathogens, is
released from PRECURSOR OF PEP1 (PROPEP1) via
the cleavage by Ca2þ-dependent metacaspases (MCs)
upon wounding and microbial attacks [25,26]. Damage
of Arabidopsis cells leads to a massive and prolonged
influx of extracellular Ca2þ into the cytosol to activate
MCs, which cleaves vacuolar membrane-bound
PROPEP1 to release Pep1 into the cytosol [25], sub-
sequently exported into the apoplast. Upon recognition
by two closely related RLKs, Pep RECEPTOR 1
(PEPR1) and PEPR2, Pep1 triggers stomatal closure by
enhancing the activities of guard cell-expressed S-type
anion channels, including SLOW ANION CHANNEL 1
(SLAC1) and SLAC1 HOMOLOG 3 (SLAH3), yet in-
dependent of OPEN STOMATA1 (OST1), a key kinase
mediating plant hormone abscisic acid (ABA)- and
MAMP-induced stomatal closure [27]. In contrast,
PAMP-INDUCED PEPTIDE 1 (PIP1), perceived by
RLK7, initiates stomatal closure to defend against
pathogen invasion by activating SLAC1 via the canonical
OST1 pathway [28,29]. However, the mode-of-actions
of most other phytocytokines in regulating stomatal
closure remain to be explored.

Phytocytokines promote apoplastic
immunity by reopening MAMP-induced
stomatal closure
Stomatal closure during pathogen infections is a tran-
sient process, initially closing and subsequently
reopening [10]. On the plant side, the reopening of
stomata enhances water loss and dries the apoplast,
thereby constraining pathogen proliferation [30]
(Figure 2b). SMALL PHYTOCYTOKINES REGU-
LATING DEFENSE ANDWATER LOSSs (SCREWs),
also called CTNIPs based on the conserved amino acid
residues, are induced at the transcriptional level upon
bacterial infections, insect infestations, and drought
stresses [17,31,32]. Perceived by RLK PLANT SCREW
UNRESPONSIVE RECEPTOR (NUT)/HAESA-LIKE
3 (HSL3), SCREWs counteract MAMP-induced sto-
matal closure by triggering NUT-dependent phosphor-
ylation of ABA INSENSITIVE 1 (ABI1) and ABI2,

Figure 1
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The production and mode-of-action of phytocytokines in plant
immune responses. Pathogen infections or perception of microbe-
associated molecular patterns (MAMPs) by pattern recognition receptors
(PRRs) induce the transcription of phytocytokines, which undergo matu-
ration by cleavage or posttranslational modifications and secrete into the
apoplast. Upon recognition by PRRs, phytocytokines induce danger-
triggered immunity (DTI). Phytocytokine-induced DTI signaling amplifies
or modulates microbial pattern-triggered immunity (PTI), activates cell
death in effector-triggered immunity (ETI), and potentially systemic ac-
quired resistance (SAR). Phytocytokines, similar to cytokines in mam-
mals, may act in autocrine (signaling to self), paracrine (signaling to
neighboring cells), and endocrine (signaling to long-distance cells) man-
ners to activate or attenuate immune responses.
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leading to an increased ABI phosphatase activity towards
OST1 [17]. Analysis using an apoplastic water potential-
responding reporter revealed elevated water potential
levels in nut mutants compared to wild-type (WT)
plants upon infection by bacterial Pseudomonas syringae
pv. tomato (Pst) DC3000, corroborating the role of
SCREW-activated signaling in modulating stomatal
reopening and apoplastic water levels to enhance plant
immunity [17]. Consistent with the drought-induced
transcriptional upregulation, SCREWs also reopen sto-
mata closed by ABA, a key hormone that induces sto-
matal closure to limit water loss upon drought stresses
[17,31]. In addition, the rice ABA-deficient mutant
Osaba1, which exhibits increased stomatal conductance,
a parameter for stomatal opening, shows increased
resistance to the bacterial leaf blight pathogen Xantho-
monas oryzae pv. oryzae (Xoo) [33]. Although the
involvement of phytocytokines in this process remains
unknown, this study echoes the significance of stomatal
opening status in enhancing apoplastic immunity
against foliar pathogens during the postinvasion
stage (Figure 2b).

Pathogens close stomata to disrupt
apoplastic immunity for virulence
Water availability in the apoplast is crucial for pathogen
colonization [24,34]. Pathogens have evolved strategies
to establish aqueous apoplast and induce water-soaking
symptoms via secreted effectors, such as avirulence E1
(AvrE1) and Hrp outer protein M1 (HopM1) [15].
These effectors induce stomatal closure by promoting
ABA accumulation or manipulating the ABA signaling
pathway, leading to water-soaking of leaves during
infection [35e37]. Structural analysis indicated that
AvrE-family effectors form water-permeable channels,
altering osmotic/water potential and enriching the
apoplast with water and nutrients, ultimately promoting
bacterial multiplication within plant tissues [38].
Interestingly, some Xanthomonas transcription activator-
like (TAL) effectors only affect water-soaked disease
lesion development but not in planta bacterial multipli-
cation [39,40]. These effectors may promote water
uptake to enhance tissue damage and facilitate bacterial
egression from the apoplast to the leaf surface [40].
These studies highlight the apoplast as a crucial

Figure 2

The coordinated action of stomatal, apoplastic, hydathode, and vascular immunity through phytocytokines. (a) During the initial infection stage,
stomatal immunity restricts foliar pathogen entry into the apoplast through MAMP- and phytocytokine-induced stomatal closure. Phytocytokines, including
Pep1 and PIPs, work alongside MAMPs to induce stomatal closure, thereby preventing subsequent pathogen entry.
(b) At the postinvasion stage, phytocytokines trigger stomatal reopening, thereby reducing apoplastic water potential and disrupting the watery habitat
favorable to pathogens, contributing to apoplastic immunity. Phytocytokines, such as SCREWs, reopen closed stomata to promote water loss, thus
limiting pathogen proliferation in the apoplast.
(c) Hydathode immunity limits pathogen entry through guttation and restricts subsequent spread via leaf veins for nonvasculature-adapted, but apoplast-
adapted pathogens. However, this mechanism does not restrict vasculature-adapted pathogens. The hydathode structure is illustrated with large
chambers in light blue beneath the pores, epithem in yellow, an epidermal layer in light green, mesophyll cells in grey, and vascular tissues in blue lines.
(d) Vascular immunity hinders pathogen spread within the vasculature. The vascular tissue consists of xylem, which transports water upward, and
phloem, which transports metabolites bidirectionally. Stomata-mediated transpiration is the major driving force for water transport through the xylem,
influencing hydathode guttation and the spread of vascular pathogens.
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battleground for plant immunity and path-
ogen virulence.

Hydathode immunity protects the leaf
vasculature against bacterial pathogen
colonization
Hydathodes excrete xylem guttation saps from large
pores at their surface when root pressure exceeds the leaf
transpiration rate. The re-uptake of this guttation fluid
provides an entry point for pathogens into extracellular
cavity [18,20] (Figure 2c). Gummy guttation fluid plays a
role in limiting pathogen entry via hydathodes [18].
Unlike stomata, hydathodes do not fully close in response
to bacterial MAMP flg22, questioning whether the hy-
dathode pore plays an active role in limiting microbial
entry into the cavities [20]. However, resembling sto-
mata, hydathode apertures are responsive to ABA and
light, and limit the proliferation of a disarmed Xantho-
monas campestris pv. campestris (Xcc) hrpG mutant strain
(type III secretion system-deficient) [20,41], implying a
postinvasion immune response in hydathodes. Further-
more, some well-studied PRRs, such as FLAGELLIN
SENSING 2 (FLS2) and LysM RECEPTOR-LIKE
KINASE 4 (LYK4), perceiving MAMPs from bacterial
flagellin and fungal chitin, respectively, are highly
expressed in hydathodes [42]. Moreover, genes encoding
phytocytokine PIP1 and the cognate RLK7 receptor are
also highly expressed in hydathodes [29,43]. A recent
report used spraying assays with bioluminescence-
tagged, vascular-adapted bacterial Xcc and vascular-non-
adapted but apoplast-adapted Pst strains to visualize
bacterial dissemination in hydathodes and leaves. This
study showed that while both Xcc and Pst colonized hy-
dathodes via guttation, only Xcc, but not Pst, could escape
from hydathodes toward the leaf vasculature [44]. By
screening various Arabidopsis immune-compromised mu-
tants, the authors revealed that immune signaling nodes,
including RLKs BRASSINOSTEROID-INSENSITIVE
1-ASSOCIATED KINASE 1 (BAK1) and SUPPRES-
SOR OF BIR1 (SORBIR1), shared co-receptors for
multiple PRRs, and the ENHANCED DISEASE
SUSCEPTIBILITY 1 (EDS1)-PHYTOALEXIN-DEFI-
CIENT 4 (PAD4)-ACTIVATED DISEASE RESIS-
TANCE 1 (ADR1) module, activated by multiple NLRs,
are crucial for restricting both the initial hydathode
colonization and subsequent spread of Xcc via the leaf
vasculature [44]. This suggests the involvement of both
plant PTI and ETI in this process. The connection be-
tween PTI and ETI through phytocytokine-mediated
DTI [7] suggests that phytocytokines might be
involved in regulating hydathode immunity as a post-
invasion defense mechanism, a largely unexplored area.

Vascular immunity interplays with stomatal,
apoplastic, and hydathode defense
Stomatal movement and hydathode guttation influence
the transpiration rate, affecting the water potential in the

vascular system, where vascular pathogens reside [18,24]
(Figure 2d). Concurrently, as the xylem mediates water
transport throughout plants, the collective action of sto-
mata, hydathodes, and the vasculature system regulates
the water potential in the apoplast, affecting foliar
pathogen entry, multiplication and contributing to
apoplastic immunity [18,19,24] (Figure 2). Notable
vascular defense strategies include inducible physico-
chemical barriers, such as the deposition of lignin or the
formation of tyloses in vessels, to restrict pathogen spread
[45,46]. Additionally, the vascular system serves as a
conduit for immune signals, such as methyl-salicylic acid
(SA), which are transported from the site of infection to
systemic, uninfected tissues [47e50]. While it remains
unclear whether phytocytokines can be transported
through the vascular system as mobile signals, some
phytocytokines, such as PEPs and SYSTEMINs, have
been shown to trigger immune responses in distant tis-
sues [51,52].

Looking ahead: what we know and what’s
next

1. What determines the functional specificity and
redundancy of phytocytokine cocktails?

Plant genomes contain hundreds to thousands of genes
encoding small secreted peptides, yet the functions of
most of these peptides remain unclear, with only a small
subset known to be involved in plant immunity [2,53].
It is crucial to systemically identify the bona fide phyto-
cytokines secreted into the apoplast, hydathodes and
vasculature during different stresses. Phytocytokines
often exist as multimember protein families with loosely
conserved functional motifs. For instance, the SCREW
family contains four members, and SERINE RICH
ENDOGENOUS PEPTIDE (SCOOP) family has at
least 50 members in Arabidopsis thaliana [17,54]. It is
unclear whether and how they function additively, syn-
ergistically, or antagonistically.

Unlike peptides involved in plant growth and develop-
ment, the tissue- and cell-type specificity of phytocy-
tokines is poorly characterized, particularly in the
context of stomata, hydathode, and vascular systems. It
remains to be explored whether phytocytokines are
expressed and function differently in infected cells
compared to naı̈ve cells without direct contact with
pathogens. For instance, do surface epidermis cells
respond to MAMPs and phytocytokines similarly to
inner endodermis cell layers? In addition, plant roots are
classified by different developmental zones with
distinct features. Do different zones exhibit similar re-
sponses to various phytocytokines?

Single-cell-based omics can identify cell-type-specific
cellular responses in plant-microbe interactions
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[55,56]. Spatial transcriptomic analysis, combined
with cell-type-specific gene editing of multiple
family members and innovative infection assays,
will aid in the systemic characterization of the
involvement of phytocytokines in stomatal, hydathode,
and vascular immunity. Furthermore, employing
sensitive peptide detection methods, such as ribosome
footprinting capable of capturing peptides from short
upstream open reading frames (uORFs) [57,58],
could enhance the profiling of novel small peptides
found in vascular or hydathode fluids during path-
ogen infections.

2. What are the mode-of-actions of phytocytokines in
cell-to-cell communications?

Unlike cytokine-mediated cellular communication in
mammals, which includes autocrine (signaling to self),
paracrine (signaling to nearby cells), and endocrine
(signaling to distant cells) pathways, the ways in which
phytocytokines communicate among plant cells still
remain largely uncharacterized (Figure 1).

The evidence supporting the long-distance transport of
phytocytokines is currently limited. For instance,
biotin-labeled SCREW1 peptides, despite being
expressed in vascular tissues, were not detected in
distal leaves and did not induce immune responses in
systemic leaves [17], suggesting their autocrine or
paracrine functions. Similarly, although PEP1 triggers
systemic immune responses, its direct transport was
not detected [51]. This suggests that phytocytokines
may not move themselves over long distances but
instead elicit signaling events in nearby cells, leading to
the production of secondary messengers and metabo-
lites that act as mobile signals, ultimately triggering
immune responses in distant tissues.

Rapid calcium spikes have been proposed as a mobile
signal in the wounding response [59] and defense
hormone methyl-SA can be transported to systemic
tissues [47,48]. Notably, CLAVATA3/ENDOSPERM
SURROUNDING REGION-RELATED 25 (CLE25)
moves from roots to shoots, serving as long-distance
signals in mediating ABA-induced stomatal closure
during dehydration stress [60]. It is conceivable that
only minute quantities of individual phytocytokines are
transported to distant tissues, potentially too faint to
be detected with current techniques. Enhancing
detection sensitivity and resolution at the single-cell
level could offer insights into the mechanisms
through which phytocytokines operate in cell-to-
cell communication.

3. How do phytocytokines mediate the cross-talk
between biotic and abiotic stresses?

Plants confront various environmental challenges
concurrently, and stomata serve as crucial communica-
tion portals between plants and their surroundings.
Despite our understanding of the molecular mecha-
nisms governing stomatal movement under individual
stress conditions, the coordinated impact of simulta-
neous abiotic stresses, particularly dehydration, and
biotic stresses on stomatal movement, potentially
regulated by phytocytokines, remains largely unex-
plored. For instance, the SCREW-NUT ligand-receptor
pair positively regulates plant immunity but negatively
impacts dehydration tolerance by counteracting both
ABA- and MAMP-induced stomatal closure [17,31].
Structure modeling and molecular simulation, coupled
with mutational and functional analysis, may aid in
mechanistically understanding how SCREW-NUT pairs
regulate immunity and drought stress.

Given that drought-induced, root-derived CLE25 pep-
tides are transported into shoots to regulate stomatal
closure in response to ABA [60], it would be interesting
to investigate whether CLE25 or other peptides are
induced by soil-borne root pathogens and regulate sto-
matal or vascular immunity to foliar pathogens in leaves,
potentially contributing to systemic acquired resistance
against difference types of pathogens. Recent research
has shown that upregulation of the immune responsive
genes upon drought recovery, termed drought recovery-
induced immunity (DRII), confers resistance to rehy-
drated plants [61]. The involvement of phytocytokines
in the DRII process remains unknown.

In addition, PEPs are well-known for their roles in plant
immunity against bacteria, fungi, and herbivores [62].
Although the underlying mechanism is not clear, PEP3
also positively regulates responses to salinity stress [63].
Therefore, it would be reasonable to engineer PEP-
PEPR ligand-receptor pairs to increase resistance to
pathogens, insects, and salt stress.

4. How do phytocytokines coordinate stomatal,
apoplastic, hydathode, and vascular immunity?

Stomatal movement is connected to hydathodes and the
vascular system through apoplast water potential
changes. The SCREW-NUT system not only regulates
plant immunity to foliar pathogens by reducing
apoplastic water levels but also contributes to resistance
against phloem-feeding, sap-sucking insects, such as the
green peach aphid (Myzus persicae) [17]. These aphids
infest plants by using specialized mouthparts to pene-
trate plant tissues and extract sap from the phloem,
creating negative pressure through a pump in their head
as a passive feeding behavior [64,65]. Therefore, water
potentials in the plant vascular system influence the
infestation of sap-sucking insects.
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SCREWs are induced upon aphid feeding and are
expressed in vascular tissues [17], suggesting a potential
role in coordinating apoplastic and vascular immunity by
regulating stomatal movement and changes in apoplast
water potential. Changes in water potential in the
vascular system and guttation in hydathodes may in-
crease the mobility of phytocytokines. It is also plausible
that phytocytokine genes could be transcriptionally
regulated in response to water potential changes,
thereby mounting integrated stomatal, apoplastic, hy-
dathode, and vascular immune responses.

5. Is phytocytokine-mediated stomatal immunity
involved in ETI?

Stomatal immunity is well recognized in plant PTI.
Whether and how it is involved in ETI remains an open
question. A recent study shows that the EDS1/PAD4-
ADR1s module, a key component activated by NLRs,
regulates pathogen- and flg22-induced stomatal closure
and confers resistance to virulent bacterial Pst spray in-
fections. Additionally, Pst infections induce ADR1
interaction with EDS1/PAD4 in Nicotiana benthamiana
guard cells [66]. Since the EDS1/PAD4-ADR1s module
connects PTI and ETI [67,68], it would be interesting
to know whether EDS1/PAD4-ADR1s-mediated sto-
matal immunity is a result of PTI or if it is also involved
in ETI activated by sensor NLRs. The phytocytokine-
mediated DTI amplifies PTI, leading to EDS1/PAD4-
ADR1s-dependent ETI [67], suggesting the potential
involvement of phytocytokines in EDS1/PAD4-ADR1s-
mediated stomatal immunity. Furthermore, the effector
AvrRpt2-triggered ETI blocks Pst-induced apoplastic
water soaking to promote immunity [15]. It will be
intriguing to investigate whether AvrRpt2 regulates
water soaking by manipulating stomatal movement.

In contrast to fungal chitin-induced stomatal closure,
chitosan, converted from chitin oligosaccharides by chitin
deacetylases from fungi, does not induce stomatal closure
[69]. Instead, an elevated concentration of chitosan in-
duces cell death in guard cells, thereby impeding fungal
invasion through stomata [69]. Interestingly, chitosan-
triggered guard cell death does not depend on the
chitin receptor CHITIN ELICITOR RECEPTOR
KINASE 1 (CERK1) [69]. Localized cell death is a
hallmark of plant ETI. It would be worthwhile to
determine whether chitosan-triggered cell death is
mediated by NLRs, or if chitosan induces massive
phytocytokine production in guard cells, leading to
cell death.
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